1
|
Riecan M, Domanska V, Lupu C, Patel M, Vondrackova M, Rossmeisl M, Saghatelian A, Lupu F, Kuda O. Tissue-specific sex-dependent difference in the metabolism of fatty acid esters of hydroxy fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159543. [PMID: 39097081 DOI: 10.1016/j.bbalip.2024.159543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.
Collapse
Affiliation(s)
- Martin Riecan
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Veronika Domanska
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Maulin Patel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Michaela Vondrackova
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Martin Rossmeisl
- Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ondrej Kuda
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia.
| |
Collapse
|
2
|
Riecan M, Domanska V, Lupu C, Patel M, Vondrackova M, Rossmeisl M, Saghatelian A, Lupu F, Kuda O. Tissue-specific sex difference in the metabolism of fatty acid esters of hydroxy fatty acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567158. [PMID: 38014093 PMCID: PMC10680750 DOI: 10.1101/2023.11.15.567158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex effects on FAHFA metabolism in humans.
Collapse
Affiliation(s)
- Martin Riecan
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Veronika Domanska
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Maulin Patel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Michaela Vondrackova
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Martin Rossmeisl
- Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ondrej Kuda
- Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| |
Collapse
|
3
|
Godina C, Tryggvadottir H, Bosch A, Borgquist S, Belting M, Isaksson K, Jernström H. Caveolin-1 genotypes as predictor for locoregional recurrence and contralateral disease in breast cancer. Breast Cancer Res Treat 2023; 199:335-347. [PMID: 37017811 PMCID: PMC10175335 DOI: 10.1007/s10549-023-06919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE Caveolin-1 (CAV1) has been implicated in breast cancer oncogenesis and metastasis and may be a potential prognosticator, especially for non-distant events. CAV1 functions as a master regulator of membrane transport and cell signaling. Several CAV1 SNPs have been linked to multiple cancers, but the prognostic impact of CAV1 SNPs in breast cancer remains unclear. Here, we investigated CAV1 polymorphisms in relation to clinical outcomes in breast cancer. METHODS A cohort of 1017 breast cancer patients (inclusion 2002-2012, Sweden) were genotyped using Oncoarray by Ilumina. Patients were followed for up to 15 years. Five out of six CAV1 SNPs (rs10256914, rs959173, rs3807989, rs3815412, and rs8713) passed quality control and were used for haplotype construction. CAV1 genotypes and haplotypes in relation to clinical outcomes were assessed with Cox regression and adjusted for potential confounders (age, tumor characteristics, and adjuvant treatments). RESULTS Only one SNP was associated with lymph node status, no other SNPs or haplotypes were associated with tumor characteristics. The CAV1 rs3815412 CC genotype (5.8% of patients) was associated with increased risk of contralateral breast cancer, adjusted hazard ratio (HRadj) 4.26 (95% CI 1.86-9.73). Moreover, the TTACA haplotype (13% of patients) conferred an increased risk for locoregional recurrence HRadj 2.24 (95% CI 1.24-4.04). No other genotypes or haplotypes were associated with clinical outcome. CONCLUSION CAV1 polymorphisms were associated with increased risk for locoregional recurrence and contralateral breast cancer. These findings may identify patients that could derive benefit from more tailored treatment to prevent non-distant events, if confirmed.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund and Malmö, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund and Malmö, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Mattias Belting
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund and Malmö, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University and Kristianstad Hospital, Lund and Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden.
| |
Collapse
|
4
|
Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 2023; 14:4. [PMID: 36750874 PMCID: PMC9903633 DOI: 10.1186/s13293-023-00490-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread pandemic in the developed world. These pathologies show sex differences in their development and prevalence, and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. The influence of sex hormones on these pathologies is not only reflected in differences between men and women, but also between women themselves, depending on the hormonal changes associated with the menopause. The observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut-brain axis, given the relevance of these factors in the development of metabolic diseases.
Collapse
|
5
|
Liang J, Wang H, Cade BE, Kurniansyah N, He KY, Lee J, Sands SA, A. Brody J, Chen H, Gottlieb DJ, Evans DS, Guo X, Gharib SA, Hale L, Hillman DR, Lutsey PL, Mukherjee S, Ochs-Balcom HM, Palmer LJ, Purcell S, Saxena R, Patel SR, Stone KL, Tranah GJ, Boerwinkle E, Lin X, Liu Y, Psaty BM, Vasan RS, Manichaikul A, Rich SS, Rotter JI, Sofer T, Redline S, Zhu X. Targeted Genome Sequencing Identifies Multiple Rare Variants in Caveolin-1 Associated with Obstructive Sleep Apnea. Am J Respir Crit Care Med 2022; 206:1271-1280. [PMID: 35822943 PMCID: PMC9746833 DOI: 10.1164/rccm.202203-0618oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 01/04/2023] Open
Abstract
Rationale: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epidemiologic evidence supporting the importance of genetic factors influencing OSA but limited data implicating specific genes. Objectives: To search for rare variants contributing to OSA severity. Methods: Leveraging high-depth genomic sequencing data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the CFS (Cleveland Family Study), followed by multistage gene-based association analyses in independent cohorts for apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. Measurements and Main Results: Linkage analysis in the CFS identified a suggestive linkage peak on chromosome 7q31 (LOD = 2.31). Gene-based analysis identified 21 noncoding rare variants in CAV1 (Caveolin-1) associated with lower AHI after accounting for multiple comparisons (P = 7.4 × 10-8). These noncoding variants together significantly contributed to the linkage evidence (P < 10-3). Follow-up analysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (P = 0.024) and higher minimum overnight oxygen saturation (P = 0.007). Conclusions: Rare variants in CAV1, a membrane-scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Karen Y. He
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
| | | | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- VA Boston Healthcare System, Boston, Massachusetts
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Department of Medicine
| | - Lauren Hale
- Family, Population, and Preventive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - David R. Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Heather M. Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
- Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Eric Boerwinkle
- Cardiovascular Health Research Unit, Department of Medicine
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xihong Lin
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine
- Department of Epidemiology, and
- Department of Health Services and Population Health, University of Washington, Seattle, Washington
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology and
- Section of Cardiology, Department of Medicine, School of Medicine, and
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and
| | - Ani Manichaikul
- Center for Public Health Genomics and
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | | | - Jerome I. Rotter
- California Pacific Medical Center Research Institute, San Francisco, California
- Institute for Translational Genomics and Population Sciences and
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - TOPMed Sleep Working Group
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Cardiovascular Health Research Unit, Department of Medicine
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Department of Medicine
- Department of Epidemiology, and
- Department of Health Services and Population Health, University of Washington, Seattle, Washington
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
- VA Boston Healthcare System, Boston, Massachusetts
- California Pacific Medical Center Research Institute, San Francisco, California
- Institute for Translational Genomics and Population Sciences and
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
- Family, Population, and Preventive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
- Center for Genomic Medicine and
- Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
- Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology and
- Section of Cardiology, Department of Medicine, School of Medicine, and
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and
- Center for Public Health Genomics and
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Human Intestinal Tissue Explant Exposure to Silver Nanoparticles Reveals Sex Dependent Alterations in Inflammatory Responses and Epithelial Cell Permeability. Int J Mol Sci 2020; 22:ijms22010009. [PMID: 33374948 PMCID: PMC7792613 DOI: 10.3390/ijms22010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Consumer products manufactured with antimicrobial silver nanoparticles (AgNPs) may affect the gastrointestinal (GI) system. The human GI-tract is complex and there are physiological and anatomical differences between human and animal models that limit comparisons between species. Thus, assessment of AgNP toxicity on the human GI-tract may require tools that allow for the examination of subtle changes in inflammatory markers and indicators of epithelial perturbation. Fresh tissues were excised from the GI-tract of human male and female subjects to evaluate the effects of AgNPs on the GI-system. The purpose of this study was to perform an assessment on the ability of the ex vivo model to evaluate changes in levels of pro-/anti-inflammatory cytokines/chemokines and mRNA expression of intestinal permeability related genes induced by AgNPs in ileal tissues. The ex vivo model preserved the structural and biological functions of the in-situ organ. Analysis of cytokine expression data indicated that intestinal tissue of male and female subjects responded differently to AgNP treatment, with male samples showing significantly elevated Granulocyte-macrophage colony-stimulating factor (GM-CSF) after treatment with 10 nm and 20 nm AgNPs for 2 h and significantly elevated RANTES after treatment with 20 nm AgNPs for 24 h. In contrast, tissues of female showed no significant effects of AgNP treatment at 2 h and significantly decreased RANTES (20 nm), TNF-α (10 nm), and IFN-γ (10 nm) at 24 h. Smaller size AgNPs (10 nm) perturbed more permeability-related genes in samples of male subjects, than in samples from female subjects. In contrast, exposure to 20 nm AgNPs resulted in upregulation of a greater number of genes in female-derived samples (36 genes) than in male-derived samples (8 genes). The ex vivo tissue model can distinguish sex dependent effects of AgNP and could serve as a translational non-animal model to assess the impacts of xenobiotics on human intestinal mucosa.
Collapse
|
7
|
Fachim HA, Siddals K, Malipatil N, Donn RP, Moreno GYC, Dalton CF, Adam S, Soran H, Gibson JM, Heald AH. Lifestyle intervention in individuals with impaired glucose regulation affects Caveolin-1 expression and DNA methylation. Adipocyte 2020; 9:96-107. [PMID: 32125224 PMCID: PMC7153542 DOI: 10.1080/21623945.2020.1732513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: We investigated whether a lifestyle intervention could influence expression and DNA methylation of diabetes-related genes in patients with impaired glucose regulation (IGR), the results were compared to bariatric surgery, considering it an intensive change. Methods: Twenty participants with IGR had adipose tissue biopsy and blood collected pre- and post-lifestyle (6 months) intervention; 12 obese patients had subcutaneous fat taken before and after bariatric surgery. RNA/DNA was extracted from all samples and underwent qPCR. DNA was bisulphite converted and 12 CpG sites of Caveolin-1 (CAV1) promoter were pyrosequenced. Results: lifestyle intervention resulted in opposite direction changes in fat tissue and blood for CAV1 expression and DNA methylation and these changes were correlated between tissues, while no significative differences were found in CAV1 expression after bariatric surgery. Conclusions: Our findings suggest a role for CAV1 in modulating adipocyte function as a consequence of lifestyle changes, as exercises and diet. These results may provide insights into new therapeutic targets for diabetes prevention.
Collapse
Affiliation(s)
- Helene A. Fachim
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Kirk Siddals
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nagaraj Malipatil
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Rachelle P Donn
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gabriela YC Moreno
- Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico City, Mexico
| | - Caroline F Dalton
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Endocrinology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Endocrinology, Diabetes and Metabolism, Manchester Royal Infirmary, Manchester, UK
| | - Handrean Soran
- Department of Endocrinology, Diabetes and Metabolism, Manchester Royal Infirmary, Manchester, UK
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Core Technology Facility, Manchester, UK
| | - J Martin Gibson
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Adrian H Heald
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
8
|
Orr SE, Gokulan K, Boudreau M, Cerniglia CE, Khare S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats. J Nanobiotechnology 2019; 17:63. [PMID: 31084603 PMCID: PMC6513523 DOI: 10.1186/s12951-019-0499-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Silver ions from silver nanoparticles (AgNP) or AgNPs themselves itself that are ingested from consumer health care products or indirectly from absorbed food contact material can interact with the gastrointestinal tract (GIT). The permeability of the GIT is strictly regulated to maintain barrier function and proper nutrient absorption. The single layer intestinal epithelium adheres and communicates actively to neighboring cells and the extracellular matrix through different cell junctions. In the current study, we hypothesized that oral exposure to AgNPs may alter the intestinal permeability and expression of genes controlling cell junctions. Changes in cell junction gene expression in the ileum of male and female rats administered different sizes of AgNP for 13-weeks were assessed using qPCR. RESULTS The results of this study indicate that AgNPs have an altering effect on cell junctions that are known to dictate intestinal permeability. mRNA expression of genes representing tight junction (Cldn1, Cldn5, Cldn6, Cldn10 and Pecam1), focal adhesion (Cav1, Cav2, and Itgb2), adherens junction (Pvrl1, Notch1, and Notch2), and hemidesmosome (Dst) groups were upregulated significantly in females treated with 10 nm AgNP, while no change or downregulation of same genes was detected in male animals. In addition, a higher concentration of pro-inflammatory cytokine, TNF-α, was noticed in AgNP-treated female animals as compared to controls. CONCLUSIONS This study proposes that interaction of silver with GIT could potentially initiate an inflammatory process that could lead to changes in the gastrointestinal permeability and/or nutrient deficiencies in sex-specific manner. Fully understanding the mechanistic consequences of oral AgNP exposure may lead to stricter regulation for the commercial usage of AgNPs and/or improved clinical therapy in the future.
Collapse
Affiliation(s)
- Sarah E Orr
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Mary Boudreau
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA.
| |
Collapse
|
9
|
Kruglikov IL, Scherer PE. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen Med 2019; 4:9. [PMID: 31044089 PMCID: PMC6486604 DOI: 10.1038/s41536-019-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Reduced expression of caveolin-1 (Cav-1) is an important pathogenic factor in hypertrophic scarring (HTS). Such a reduction can be found in connection with the main known risk factors for HTS, including dark skin, female gender, young age, burn site and severity of the injury. The degree of overexpression of Cav-1 associated with different therapeutic options for HTS correlates with clinical improvements in HTS. This makes endo- or exogenous induction of Cav-1 not only an important therapeutic target for HTS, but also highlights its use as a preventive target to reduce or avoid HTS formation.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549 USA
| |
Collapse
|
10
|
Tonn Eisinger KR, Woolfrey KM, Swanson SP, Schnell SA, Meitzen J, Dell'Acqua M, Mermelstein PG. Palmitoylation of caveolin-1 is regulated by the same DHHC acyltransferases that modify steroid hormone receptors. J Biol Chem 2018; 293:15901-15911. [PMID: 30158247 PMCID: PMC6187622 DOI: 10.1074/jbc.ra118.004167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Palmitoylation is a reversible post-translational addition of a 16-carbon lipid chain involved in trafficking and compartmentalizing target proteins. It is important for many cellular functions, including signaling via membrane-localized estrogen receptors (ERs). Within the nervous system, palmitoylation of ERα is necessary for membrane surface localization and mediation of downstream signaling through the activation of metabotropic glutamate receptors (mGluRs). Substitution of the single palmitoylation site on ERα prevents its physical association with the integral membrane protein caveolin-1 (CAV1), required for the formation of the ER/mGluR signaling complex. Interestingly, siRNA knockdown of either of two palmitoyl acyltransferases, zinc finger DHHC type-containing 7 (DHHC7) or DHHC21, also eliminates this signaling mechanism. Because ERα has only one palmitoylation site, we hypothesized that one of these DHHCs palmitoylates CAV1. We investigated this possibility by using an acyl-biotin exchange assay in HEK293 cells in conjunction with DHHC overexpression and found that DHHC7 increases CAV1 palmitoylation. Substitution of the palmitoylation sites on CAV1 eliminated this effect but did not disrupt the ability of the DHHC enzyme to associate with CAV1. In contrast, siRNA-mediated knockdown of DHHC7 alone was not sufficient to decrease CAV1 palmitoylation but rather required simultaneous knockdown of DHHC21. These findings provide additional information about the overall influence of palmitoylation on the membrane-initiated estrogen signaling pathway and highlight the importance of considering the influence of palmitoylation on other CAV1-dependent processes.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- From the Department of Neuroscience and
- the Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kevin M Woolfrey
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, and
| | | | | | - John Meitzen
- the Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mark Dell'Acqua
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Paul G Mermelstein
- From the Department of Neuroscience and
- the Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
11
|
Li M, Chen D, Huang H, Wang J, Wan X, Xu C, Li C, Ma H, Yu C, Li Y. Caveolin1 protects against diet induced hepatic lipid accumulation in mice. PLoS One 2017; 12:e0178748. [PMID: 28570612 PMCID: PMC5453590 DOI: 10.1371/journal.pone.0178748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background and aim Caveolin1 (CAV1) is involved in lipid homeostasis and endocytosis, but little is known about the significance of CAV1 in the pathogenesis and development of nonalcoholic fatty liver disease (NAFLD). This study aimed to determine the role of CAV1 in NAFLD. Methods Expression of CAV1 in the in vitro and in vivo models of NAFLD was analyzed. The effects of CAV1 knockdown or overexpression on free fatty acid (FFA)-induced lipid accumulation in L02 cells and AML12 cells were determined. CAV1 knockout (CAV1-KO) mice and their wild-type (WT) littermates were subjected to a high fat diet (HFD) for 4 weeks, and the functional consequences of losing the CAV1 gene and its subsequent molecular mechanisms were also examined. Results Noticeably, CAV1 expression was markedly reduced in NAFLD. CAV1 knockdown led to the aggravation of steatosis that was induced by FFA in both L02 cells and AML12 cells, while CAV1 overexpression markedly attenuated lipid accumulation in the cells. Consistent with CAV1 repression in the livers of HFD-induced mice, the CAV1-KO mice exhibited more severe hepatic steatosis upon HFD intake. In addition, increased cholesterol levels and elevated transaminases were detected in the plasma of CAV1-KO mice. The protein expression of SREBP1, a key gene involved in lipogenesis, was augmented following CAV1 suppression in FFA-treated hepatocytes and in the livers of HFD-fed CAV1-KO mice. Conclusions CAV1 serves as an important protective factor in the development of NAFLD by modulating lipid metabolism gene expression.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dahua Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haixiu Huang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiewei Wang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Han Ma
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (CHY); (YML)
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (CHY); (YML)
| |
Collapse
|
12
|
A gene and protein expression study on four porcine genes related to intramuscular fat deposition. Meat Sci 2016; 121:27-32. [PMID: 27236338 DOI: 10.1016/j.meatsci.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022]
Abstract
Intramuscular fat (IMF) content has a prominent role in meat quality, affecting sensory attributes such as flavour and texture. In the present research, we studied in samples of porcine Semimembranosus muscle four genes related to lipid metabolism and whose gene expressions have been associated to IMF deposition: FASN, SCD, LIPE and LPL. We analysed both mRNA and protein expressions in two groups of Italian Large White pigs divergent for Semimembranosus IMF deposition, with the aim of comparing the levels of four genes and enzymes between the two groups and identifying possible coexpression links. The obtained results suggest a prominent role of LIPE enzyme in IMF hydrolysis, as the samples with low IMF deposition show a significantly higher amount of this lipase. Finally, a poorly known correlation was found between LIPE and FASN enzymes only in female individuals. These results provide new information for the understanding of IMF deposition.
Collapse
|
13
|
Metz L, Gerbaix M, Masgrau A, Guillet C, Walrand S, Boisseau N, Boirie Y, Courteix D. Nutritional and exercise interventions variably affect estrogen receptor expression in the adipose tissue of male rats. Nutr Res 2016; 36:280-9. [DOI: 10.1016/j.nutres.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 12/23/2022]
|
14
|
Mukherjee R, Yun JW. Pharmacological inhibition of galectin-1 by lactulose alleviates weight gain in diet-induced obese rats. Life Sci 2016; 148:112-7. [PMID: 26880535 DOI: 10.1016/j.lfs.2016.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 12/28/2022]
Abstract
AIMS Galectin-1 (GAL1) is an important member of the lectin family with a carbohydrate recognition domain and has recently been demonstrated to be involved in adipose metabolism. In the present study, we investigated the effects of targeted inhibition of GAL1 by its binding inhibitor lactulose under high fat diet (HFD)-induced obesity. MAIN METHODS Effects of targeted inhibition of GAL1 by lactulose on lipid metabolism were investigated in vitro and in vivo. Changes in lipogenic capacity in lactulose-treated adipocytes were demonstrated by Oil Red O staining, triglyceride quantification and major adipogenic marker expression patterns. After lactulose treatment in Sprague-Dawley rats, various important body weight parameters, food efficiency, plasma metabolic parameters (glucose, ALT, free fatty acid, triglycerides, leptin, and insulin) and metabolic protein expression patterns were evaluated. KEY FINDINGS Lactulose treatment reduced adipogenesis and fat accumulation in vitro by down-regulation of major adipogenic transcription factors such as C/EBPα and PPARγ. In vivo treatment of lactulose to 5-week-old Sprague-Dawley male rats significantly alleviated HFD-induced body weight gain and food efficiency as well as improved plasma and other metabolic parameters. In addition, lactulose treatment down-regulated major adipogenic marker proteins (C/EBPα and PPARγ) in adipose tissue as well as stimulated expression of proteins involved in energy expenditure and lipolysis (ATP5B, COXIV, HSL, and CPT1). SIGNIFICANCE In conclusion, reduced adipogenesis and increased energy expenditure mediated by lactulose treatment synergistically contribute to alleviation of HFD-induced body weight gain. Therefore, pharmaceutical targeting of GAL1 using lactulose would be a novel therapeutic approach for the treatment of obesity.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea.
| |
Collapse
|
15
|
Maselli A, Pierdominici M, Vitale C, Ortona E. Membrane lipid rafts and estrogenic signalling: a functional role in the modulation of cell homeostasis. Apoptosis 2015; 20:671-8. [PMID: 25637184 DOI: 10.1007/s10495-015-1093-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has become widely accepted that along with their ability to directly regulate gene expression, estrogens also influence cell signalling and cell function via rapid membrane-initiated events. Many of these signalling processes are dependent on estrogen receptors (ER) localized to the plasma membrane. However, the mechanisms by which ER are able to trigger cell signalling when targeted to the membrane surface have to be determined yet. Lipid rafts seem to be essential for the plasma membrane localization of ER and play a critical role in their membrane-initiated effects. In this review, we briefly recapitulate the localization and function of ER in different cell types and mostly discuss the possible role of lipid rafts in this context. Further studies in this field may disclose new promising therapeutic avenues by the disruption of lipid rafts in those diseases in which membrane ER activation has been demonstrated to play a pathogenetic role.
Collapse
Affiliation(s)
- Angela Maselli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | |
Collapse
|
16
|
Mukherjee R, Yun JW. Lactobionic acid reduces body weight gain in diet-induced obese rats by targeted inhibition of galectin-1. Biochem Biophys Res Commun 2015; 463:1311-6. [PMID: 26116537 DOI: 10.1016/j.bbrc.2015.06.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Abstract
Galectin-1 (GAL1), an animal lectin with a carbohydrate recognition domain, is known for its roles in cancer, tumor progression, as well as obesity and related complications. Here, we investigated the anti-obesity effect of lactobionic acid (LBA), a GAL1 inhibitor, both in vitro and in vivo. LBA treatment significantly reduced lipogenic capacity of both 3T3-L1 and HIB1B adipocytes through down-regulation of major adipogenic transcription factors at both mRNA and protein levels. Moreover, oral administration and intraperitoneal injection of LBA in Sprague-Dawley male rats fed a high fat diet caused marked reduction of body weight gain as well as improvement of related metabolic parameters. Important lipogenic transcription factors were also down-regulated in LBA-treated rats, resulting in attenuated lipogenesis and fat accumulation. Collectively, pharmaceutical targeting of GAL1 using LBA would be a novel therapeutic approach for the treatment of obesity.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 712-714, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 712-714, Republic of Korea.
| |
Collapse
|
17
|
Choi M, Chaudhari HN, Ji YR, Ryoo ZY, Kim SW, Yun JW. Effect of estrogen on expression of prohibitin in white adipose tissue and liver of diet-induced obese rats. Mol Cell Biochem 2015; 407:181-96. [DOI: 10.1007/s11010-015-2468-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
|
18
|
Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int J Obes (Lond) 2015. [DOI: 10.1038/ijo.2015.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|