1
|
Liu Q, Liu M, Chen W, Yuan H, Jiang Y, Huang D, Liu H, Wang T. Recent Advances in 2-Keto-l-gulonic Acid Production Using Mixed-Culture Fermentation and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1419-1428. [PMID: 38206567 DOI: 10.1021/acs.jafc.3c08189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Vitamin C, also known as ascorbic acid, is an essential vitamin that cannot be synthesized by the human body and must be acquired through our diet. At present, the precursor of vitamin C, 2-keto-l-gulonic acid (2-KGA), is typically produced via a two-step fermentation process utilizing three bacterial strains. The second step of this traditional two-step fermentation method involves mixed-culture fermentation employing 2-KGA-producing bacteria (Ketogulonicigenium vulgare) along with associated bacteria. Because K. vulgare has defects in various metabolic pathways, associated bacteria are needed to provide key substances to promote K. vulgare growth and 2-KGA production. Unlike previous reviews where the main focus was the interaction between associated bacteria and K. vulgare, this Review presents the latest scientific research from the perspective of the metabolic pathways associated with 2-KGA production by K. vulgare and the mechanism underlying the interaction between K. vulgare and the associated bacteria. In addition, the dehydrogenases that are responsible for 2-KGA production, the 2-KGA synthesis pathway, strategies for simplifying 2-KGA production via a one-step fermentation route, and, finally, future prospects and research goals in vitamin C production are also presented.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Meng Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Wenhu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| |
Collapse
|
2
|
da Silva GAR, Oliveira SSDS, Lima SF, do Nascimento RP, Baptista ARDS, Fiaux SB. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives. World J Microbiol Biotechnol 2022; 38:134. [PMID: 35688964 PMCID: PMC9187504 DOI: 10.1007/s11274-022-03310-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Gluconobacter oxydans is a well-known acetic acid bacterium that has long been applied in the biotechnological industry. Its extraordinary capacity to oxidize a variety of sugars, polyols, and alcohols into acids, aldehydes, and ketones is advantageous for the production of valuable compounds. Relevant G. oxydans industrial applications are in the manufacture of L-ascorbic acid (vitamin C), miglitol, gluconic acid and its derivatives, and dihydroxyacetone. Increasing efforts on improving these processes have been made in the last few years, especially by applying metabolic engineering. Thereby, a series of genes have been targeted to construct powerful recombinant strains to be used in optimized fermentation. Furthermore, low-cost feedstocks, mostly agro-industrial wastes or byproducts, have been investigated, to reduce processing costs and improve the sustainability of G. oxydans bioprocess. Nonetheless, further research is required mainly to make these raw materials feasible at the industrial scale. The current shortage of suitable genetic tools for metabolic engineering modifications in G. oxydans is another challenge to be overcome. This paper aims to give an overview of the most relevant industrial G. oxydans processes and the current strategies developed for their improvement.
Collapse
Affiliation(s)
- Gabrielle Alves Ribeiro da Silva
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil.
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil.
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil.
| | - Simone Santos de Sousa Oliveira
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Sara Fernandes Lima
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Rodrigo Pires do Nascimento
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil
| | - Andrea Regina de Souza Baptista
- Center for Microorganisms Investigation, Microbiology and Parasitology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
| | - Sorele Batista Fiaux
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| |
Collapse
|
3
|
Wang Y, Li H, Liu Y, Zhou M, Ding M, Yuan Y. Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis. Synth Syst Biotechnol 2022; 7:481-489. [PMID: 34977392 PMCID: PMC8671096 DOI: 10.1016/j.synbio.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the establishment of synthetic microbial consortia with rational strategies has gained extensive attention, becoming one of the important frontiers of synthetic biology. Systems biology can offer insights into the design and construction of synthetic microbial consortia. Taking the high-efficiency production of 2-keto-l-gulonic acid (2-KLG) as an example, we constructed a synthetic microbial consortium “Saccharomyces cerevisiae-Ketogulonigenium vulgare” based on systems biology analysis. In the consortium, K. vulgare was the 2-KLG producing strain, and S. cerevisiae acted as the helper strain. Comparative transcriptomic analysis was performed on an engineered S. cerevisiae (VTC2) and a wild-type S. cerevisiae BY4741. The results showed that the up-regulated genes in VTC2, compared with BY4741, were mainly involved in glycolysis, TCA cycle, purine metabolism, and biosynthesis of amino acids, B vitamins, and antioxidant proteases, all of which play important roles in promoting the growth of K. vulgare. Furthermore, Vitamin C produced by VTC2 could further relieve the oxidative stress in the environment to increase the production of 2-KLG. Therefore, VTC2 would be of great advantage in working with K. vulgare. Thus, the synthetic microbial consortium "VTC2-K. vulgare" was constructed based on transcriptomics analyses, and the accumulation of 2-KLG was increased by 1.49-fold compared with that of mono-cultured K. vulgare, reaching 13.2 ± 0.52 g/L. In addition, the increased production of 2-KLG was accompanied by the up-regulated activities of superoxide dismutase and catalase in the medium and the up-regulated oxidative stress-related genes (sod, cat and gpd) in K. vulgare. The results indicated that the oxidative stress in the synthetic microbial consortium was efficiently reduced. Thus, systems analysis confirmed a favorable symbiotic relationship between microorganisms, providing guidance for further engineering synthetic consortia.
Collapse
Affiliation(s)
- Yan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Hengchang Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yu Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mengyu Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Nanthini Devi K, Raju P, Santhanam P, Dinesh Kumar S, Krishnaveni N, Roopavathy J, Perumal P. Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch Microbiol 2021; 203:6253-6265. [PMID: 34591146 DOI: 10.1007/s00203-021-02592-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
The present study aimed to evaluate the microplastic degradation efficiency of bacterial isolates collected from Vaigai River, Madurai, India. The isolates were processed with proper methods and incorporated in to the UV-treated polyethylene (PE) and polypropylene (PP) degradation. Based on preliminary screening, four bacterial isolates such as Bacillus sp. (BS-1), Bacillus cereus (BC), Bacillus sp. (BS-2), and Bacillus paramycoides (BP) were proceed to further degradation experiment for 21 days. The microplastics were filled with bacterial isolates which is use microplastic (PE, PP) as carbon source for their growth and proceed for shake flask experiment were carried out by two approaches with control. The microplastic degradation was confirmed through their weight loss, increasing fragmentations and changes of surface area against control experiments (microplastic without isolates) also confirms degrading efficiency of isolated bacterial strains through non-changes in their weight and surface area. The highest degradation of PP and PE were observed in BP (78.99 ± 0.005%), and BC (63.08 ± 0.009%) in single approach, while in combined approach BC & BP recorded the highest degradation in both PP (78.62 ± 2.16%), and PE (72.50 ± 20.53%). The formation of new functional groups is confirming the biofilm formation in the surface area of microplastics by isolates and proving their efficiency in degrade the microplastics. The degradation of microplastic experiments should be cost effective and zero waste which is helpful to save the environment and the present findings could reveal the way to degrade the microplastics and prevent the microplastic pollution in aquatic environment.
Collapse
Affiliation(s)
- K Nanthini Devi
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P Raju
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P Santhanam
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - S Dinesh Kumar
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - N Krishnaveni
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - J Roopavathy
- PG & Research Department of Zoology, Nirmala College for Women (Autonomous), Red Fields, Coimbatore, Tamil Nadu, 641 018, India
| | - P Perumal
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| |
Collapse
|
5
|
Ma Q, Bi YH, Wang EX, Zhai BB, Dong XT, Qiao B, Ding MZ, Yuan YJ. Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C. ACTA ACUST UNITED AC 2019; 46:21-31. [DOI: 10.1007/s10295-018-2096-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/21/2018] [Indexed: 01/04/2023]
Abstract
Abstract
Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of ‘build a consortium to understand it’, a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-l-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell–cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.
Collapse
Affiliation(s)
- Qian Ma
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0000 9735 6249 grid.413109.e College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Yan-Hui Bi
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - En-Xu Wang
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Bing-Bing Zhai
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Xiu-Tao Dong
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Bin Qiao
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Ming-Zhu Ding
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| | - Ying-Jin Yuan
- 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University No. 92, Weijin Road 300072 Tianjin People’s Republic of China
- 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University 300072 Tianjin People’s Republic of China
| |
Collapse
|
6
|
Pothakos V, Debeer N, Debonne I, Rodriguez A, Starr JN, Anderson T. Fermentation Titer Optimization and Impact on Energy and Water Consumption during Downstream Processing. Chem Eng Technol 2018; 41:2358-2365. [PMID: 31007402 PMCID: PMC6472596 DOI: 10.1002/ceat.201800279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023]
Abstract
A common focus of fermentation process optimization is the product titer. Different strategies to boost fermentation titer target whole-cell biocatalyst selection, process control, and medium composition. Working at higher product concentrations reduces the water that needs to be removed in the case of aqueous systems and, therefore, lowers the cost of downstream separation and purification. Different approaches to achieve higher titer in fermentation are examined. Energy and water consumption data collected from different Cargill fermentation plants, i.e., ethanol, lactic acid, and 2-keto-L-gulonic acid, confirm that improvements in fermentation titer play a decisive role in downstream economics and environmental footprint.
Collapse
Affiliation(s)
| | - Nadine Debeer
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| | - Ignace Debonne
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| | - Asier Rodriguez
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| | - John N. Starr
- Engineering R&D, Cargill, IncP.O. Box 9300MN 55440MinneapolisUSA
| | - Todd Anderson
- Cargill R&D Centre Europe BVBAHavenstraat 841800VilvoordeBelgium
| |
Collapse
|
7
|
Auta HS, Emenike CU, Fauziah SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1552-1559. [PMID: 28964604 DOI: 10.1016/j.envpol.2017.09.043] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 05/06/2023]
Abstract
The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers.
Collapse
Affiliation(s)
- H S Auta
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Department of Microbiology, Federal University of Technology, Minna, Nigeria.
| | - C U Emenike
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - S H Fauziah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Dou J, Qin W, Ding A, Liu X, Zhu Y. iTRAQ-based proteomic profiling of a Microbacterium sp. strain during benzo(a)pyrene removal under anaerobic conditions. Appl Microbiol Biotechnol 2017; 101:8365-8377. [DOI: 10.1007/s00253-017-8536-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
9
|
Jia N, Ding MZ, Zou Y, Gao F, Yuan YJ. Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium. Sci Rep 2017; 7:46759. [PMID: 28440340 PMCID: PMC5404267 DOI: 10.1038/srep46759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Adaptive evolution by serial subcultivation of co-cultured Bacillus thuringiensis and Ketogulonicigenium vulgare significantly enhanced the productivity of 2-keto-L-gulonic acid in two-step vitamin C production. The adaptation mechanism in K. vulgare-B. thuringiensis consortium was investigated in this study based on comparative genomics and metabolomics studies. It was found that the growth, anti-oxidation, transcription and regulation were significantly enhanced in the adapted consortium. The mutation of the genes, which encode amidohydrolase in adapted K. vulgare (K150) and amino acid permease in adapted B. thuringiensis (B150), resulted in the increase of some amino acids levels in each species, and further enhanced the metabolic exchange and growth ability of the two species. Besides, the mutation of the gene encoding spore germination protein enhanced the metabolic levels of tricarboxylic acid cycle, and decreased the sporulation in B150, which induced its growth. The mutation of the genes, which encode NADPH nitroreductase in K150 and NADPH-dependent FMN reductase in B150, may enhance the ability of anti-oxidation. Overall, the long-term adaptation of K. vulgare and B. thuringiensis influenced the global regulation and made them more inseparable in metabolite exchange. Our work will provide ideas for the molecular design and optimization in microbial consortium.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yang Zou
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
10
|
Jia N, Ding MZ, Du J, Pan CH, Tian G, Lang JD, Fang JH, Gao F, Yuan YJ. Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies. Sci Rep 2016; 6:23068. [PMID: 26979567 PMCID: PMC4793288 DOI: 10.1038/srep23068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/29/2016] [Indexed: 02/02/2023] Open
Abstract
Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jin Du
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Cai-Hui Pan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Geng Tian
- Sequencing platform of Tsinghua University, Beijing, 100084, PR China
| | - Ji-Dong Lang
- Sequencing platform of Tsinghua University, Beijing, 100084, PR China
| | - Jian-Huo Fang
- Sequencing platform of Tsinghua University, Beijing, 100084, PR China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
11
|
Ravikumar V, Jers C, Mijakovic I. Elucidating Host-Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches. Front Microbiol 2015; 6:1313. [PMID: 26635773 PMCID: PMC4653285 DOI: 10.3389/fmicb.2015.01312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes with the capability to survive in the host tissue and efficiently subvert its innate immune responses can cause various health hazards. There is an inherent need to understand microbial infection patterns and mechanisms in order to develop efficient therapeutics. Microbial pathogens display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein abundance, the modification status, the site occupancy level, interactors, functional significance of key players, potential drug targets, etc. This mini review discusses the potential of proteomics to investigate the involvement of post-translational modifications in bacterial pathogenesis and host-pathogen interactions.
Collapse
Affiliation(s)
- Vaishnavi Ravikumar
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg, Sweden
| | - Carsten Jers
- Department of Systems Biology, Technical University of Denmark , Lyngby, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg, Sweden ; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , Hørsholm, Denmark
| |
Collapse
|
12
|
Jia N, Du J, Ding MZ, Gao F, Yuan YJ. Genome Sequence of Bacillus endophyticus and Analysis of Its Companion Mechanism in the Ketogulonigenium vulgare-Bacillus Strain Consortium. PLoS One 2015; 10:e0135104. [PMID: 26248285 PMCID: PMC4527741 DOI: 10.1371/journal.pone.0135104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Bacillus strains have been widely used as the companion strain of Ketogulonigenium vulgare in the process of vitamin C fermentation. Different Bacillus strains generate different effects on the growth of K. vulgare and ultimately influence the productivity. First, we identified that Bacillus endophyticus Hbe603 was an appropriate strain to cooperate with K. vulgare and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the B. endophyticus Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of B. endophyticus Hbe603 has a size of 4.87 Mb with GC content of 36.64% and has the highest similarity with that of Bacillus megaterium among all the bacteria with complete genomes. By comparing the distribution of COGs with that of Bacillus thuringiensis, Bacillus cereus and B. megaterium, B. endophyticus has less genes related to cell envelope biogenesis and signal transduction mechanisms, and more genes related to carbohydrate transport and metabolism, energy production and conversion, as well as lipid transport and metabolism. Genome-based functional studies revealed the specific capability of B. endophyticus in sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular proteins and nutrients synthesis, which would be beneficial for K. vulgare. In particular, B. endophyticus lacks the Rap-Phr signal cascade system and, in part, spore coat related proteins. In addition, it has specific pathways for vitamin B12 synthesis and sorbitol metabolism. The genome analysis of the industrial B. endophyticus will help us understand its cooperative mechanism in the K. vulgare-Bacillus strain consortium to improve the fermentation of vitamin C.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jin Du
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Department of Physics, Tianjin University, Tianjin, 300072, PR China
- * E-mail: (FG); (YJY)
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- * E-mail: (FG); (YJY)
| |
Collapse
|
13
|
Unraveling interactions in microbial communities - from co-cultures to microbiomes. J Microbiol 2015; 53:295-305. [PMID: 25935300 DOI: 10.1007/s12275-015-5060-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 12/15/2022]
Abstract
Microorganisms do not exist in isolation in the environment. Instead, they form complex communities among themselves as well as with their hosts. Different forms of interactions not only shape the composition of these communities but also define how these communities are established and maintained. The kinds of interaction a bacterium can employ are largely encoded in its genome. This allows us to deploy a genomescale modeling approach to understand, and ultimately predict, the complex and intertwined relationships in which microorganisms engage. So far, most studies on microbial communities have been focused on synthetic co-cultures and simple communities. However, recent advances in molecular and computational biology now enable bottom up methods to be deployed for complex microbial communities from the environment to provide insight into the intricate and dynamic interactions in which microorganisms are engaged. These methods will be applicable for a wide range of microbial communities involved in industrial processes, as well as understanding, preserving and reconditioning natural microbial communities present in soil, water, and the human microbiome.
Collapse
|
14
|
Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ. Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 2014; 43:6954-81. [PMID: 25017039 DOI: 10.1039/c4cs00114a] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic biology is an emerging research field that focuses on using rational engineering strategies to program biological systems, conferring on them new functions and behaviours. By developing genetic parts and devices based on transcriptional, translational, post-translational modules, many genetic circuits and metabolic pathways had been programmed in single cells. Extending engineering capabilities from single-cell behaviours to multicellular microbial consortia represents a new frontier of synthetic biology. Herein, we first reviewed binary interaction modes of microorganisms in microbial consortia and their underlying molecular mechanisms, which lay the foundation of programming cell-cell interactions in synthetic microbial consortia. Systems biology studies on cellular systems enable systematic understanding of diverse physiological processes of cells and their interactions, which in turn offer insights into the optimal design of synthetic consortia. Based on such fundamental understanding, a comprehensive array of synthetic microbial consortia constructed in the last decade were reviewed, including isogenic microbial communities programmed by quorum sensing-based cell-cell communications, sender-receiver microbial communities with one-way communications, and microbial ecosystems wired by two-way (bi-directional) communications. Furthermore, many applications including using synthetic microbial consortia for distributed bio-computations, chemicals and bioenergy production, medicine and human health, and environments were reviewed. Synergistic development of systems and synthetic biology will provide both a thorough understanding of naturally occurring microbial consortia and rational engineering of these complicated consortia for novel applications.
Collapse
Affiliation(s)
- Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Ding MZ, Zou Y, Song H, Yuan YJ. Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonicigenium vulgare. PLoS One 2014; 9:e94889. [PMID: 24728527 PMCID: PMC3984275 DOI: 10.1371/journal.pone.0094889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/19/2014] [Indexed: 11/29/2022] Open
Abstract
The cooperative adaptation of subcultivated Bacillus cereus and Ketogulonicigenium vulgare significantly increased the productivity of 2-keto-L-gulonic acid, the precursor of vitamin C. The mechanism of cooperative adaptation of the serial subcultivated B. cereus and K. vulgare was investigated in this study by culturing the two strains orthogonally on agar plates. It was found that the swarming distance of B. cereus along the trace of K. vulgare on the plate decreased after 150 days' subcultivation. Metabolomic analysis on these co-cultured B. cereus and K. vulgare strains showed that their cooperative adaptation was accomplished by three key events: (i) the ability of nutrients (e.g., amino acids and purines) searching and intaking, and proteins biosynthesis is increased in the evolved B. cereus; (ii) the capability of protein degradation and amino acids transportation is enhanced in evolved K. vulgare; (iii) the evolved B. cereus was found to provide more nutrients (mostly amino acids and purines) to K. vulgare, thus strengthening the oxidation and energy generation of K. vulgare. Our results provided novel insights into the systems-level understanding of the cooperative adaptation between strains in synergistic consortium.
Collapse
Affiliation(s)
- Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
| | - Yang Zou
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
| | - Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, PR China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, PR China
- * E-mail:
| |
Collapse
|