1
|
Truchon AR, Chase EE, Stark AR, Wilhelm SW. The diel disconnect between cell growth and division in Aureococcus is interrupted by giant virus infection. Front Microbiol 2024; 15:1426193. [PMID: 39234538 PMCID: PMC11371579 DOI: 10.3389/fmicb.2024.1426193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Viruses of eukaryotic algae have become an important research focus due to their role(s) in nutrient cycling and top-down control of algal blooms. Omics-based studies have identified a boon of genomic and transcriptional potential among the Nucleocytoviricota, a phylum of large dsDNA viruses which have been shown to infect algal and non-algal eukaryotes. However, little is still understood regarding the infection cycle of these viruses, particularly in how they take over a metabolically active host and convert it into a virocell state. Of particular interest are the roles light and the diel cycle in virocell development. Yet despite such a large proportion of Nucleocytoviricota infecting phototrophs, little work has been done to tie infection dynamics to the presence, and absence, of light. Here, we examine the role of the diel cycle on the physiological and transcriptional state of the pelagophyte Aureococcus anophagefferens while undergoing infection by Kratosvirus quantuckense strain AaV. Our observations demonstrate how infection by the virus interrupts the diel growth and division of this cell strain, and that infection further complicates the system by enhancing export of cell biomass.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Ashton R Stark
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Powell JA, Burgess SC. How modularity and heterotrophy complicate the understanding of the causes of thermal performance curves: the case of feeding rate in a filter-feeding animal. J Exp Biol 2024; 227:jeb247776. [PMID: 38920135 PMCID: PMC11418027 DOI: 10.1242/jeb.247776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.
Collapse
Affiliation(s)
- Jackson A. Powell
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4296, USA
| | - Scott C. Burgess
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4296, USA
| |
Collapse
|
3
|
Chen H, Sosa A, Chen F. Growth and Cell Size of Microalga Auxenochlorella protothecoides AS-1 under Different Trophic Modes. Microorganisms 2024; 12:835. [PMID: 38674779 PMCID: PMC11052296 DOI: 10.3390/microorganisms12040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Certain microalgal species can grow with different trophic strategies depending on the availability of nutrient resources. They can use the energy from light or an organic substrate, or both, and can therefore be called autotrophs, heterotrophs, or mixotrophs. We recently isolated a microalgal strain from the microplastic biofilm, which was identified as Auxenochlorella protothecoides, AS-1. Strain AS-1 grew rapidly in bacterial culture media and exhibited different growth rates and cell sizes under different trophic conditions. We compared the growth performance of AS-1 under the three different trophic modes. AS-1 reached a high biomass (>4 g/L) in 6 days under mixotrophic growth conditions with a few organic carbons as a substrate. In contrast, poor autotrophic growth was observed for AS-1. Different cell sizes, including daughter and mother cells, were observed under the different growth modes. We applied a Coulter Counter to measure the size distribution patterns of AS-1 under different trophic modes. We showed that the cell size distribution of AS-1 was affected by different growth modes. Compared to the auto-, hetero- and mixotrophic modes, AS-1 achieved higher biomass productivity by increasing cell number and cell size in the presence of organic substrate. The mechanisms and advantages of having more mother cells with organic substrates are still unclear and warrant further investigations. The work here provides the growth information of a newly isolated A. protothecoides AS-1 which will be beneficial to future downstream applications.
Collapse
Affiliation(s)
- Haoyu Chen
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21613, USA; (H.C.); (A.S.)
| | - Ana Sosa
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21613, USA; (H.C.); (A.S.)
- Maryland Sea Grant College, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA
| | - Feng Chen
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21613, USA; (H.C.); (A.S.)
| |
Collapse
|
4
|
Nakanishi A, Yomogita M, Horimoto T. Evaluation of Cellular Responses by Chlamydomonas reinhardtii in Media Containing Dairy-Processing Residues Derived from Cheese as Nutrients by Analyzing Cell Growth Activity and Comprehensive Gene Transcription Levels. Microorganisms 2024; 12:715. [PMID: 38674659 PMCID: PMC11052199 DOI: 10.3390/microorganisms12040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Utilities of whey powder (WP) and whey protein concentrate 34% powder (WPC34) prepared as dairy-processing residues were evaluated using a green alga Chlamydomonas reinhardtii. Analysis of C. reinhardtii growth showed that the strain used WP and WPC34 as nitrogen sources. Its specific growth rate and maximum cell density in WP-containing medium were higher than those in WPC34-containing medium; growth with WPC34 was improved by adding KCl or K2HPO4, which content was decreased as a result of WPC34's preparation from WP. Although the lipid contents in media containing dairy-processing residues were 2.72 ± 0.31 wt% and 2.62 ± 0.20 wt% with no significant difference, the composition ratio of fatty acid C14 with WPC34 was higher than that with WP and the composition ratio of the sum of fatty acid-C16 and -C18 with WPC34 tended to be lower than that with WP. Additionally, analyses of gene transcription showed that the transcription level of acetyl-CoA carboxylase biotin carboxyl carrier protein in WPC34-containing medium was lower than that in WP-containing medium, possibly affecting the ratios of the chain lengths of fatty acids. The transcription of genes involved in glycolysis and the TCA cycle was outstandingly lower in algae grown in WPC34-containing medium when compared to those cultivated in the presence of WP, resulting in differences in energy production for cell proliferation.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | | |
Collapse
|
5
|
Liu F, Zheng B, Zheng N, Alfaiz FA, Ali HE, Al Garalleh H, Assilzadeh H, Xia S. Smart nano generation of transgenic algae expressing white spot syndrome virus in shrimps for inner ear-oral infection treatments using the spotted hyena optimizer (SHO)-Long short-term memory algorithm. ENVIRONMENTAL RESEARCH 2024; 243:117519. [PMID: 37972807 DOI: 10.1016/j.envres.2023.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Nanotechnology offers a promising avenue to amplify the effectiveness and precision of using transgenic algae in managing WSSV in shrimp by possibly crafting nano-carriers for targeted therapeutic agent delivery or modifying algae cells at a molecular level. Leveraging the capabilities of nano-scale interventions, this study could explore innovative means to manipulate cellular processes, control biological interactions, and enhance treatment efficacy while minimizing undesirable impacts in aquatic environments. The White Spot Syndrome Virus (WSSV) is a double-stranded DNA virus with a tail and rod form that belongs to theNimaviridaefamily. There is no workable way to manage this illness at the moment. This research proposes a new model based on the Long Short-Term Memory (LSTM) and Spotted Hyena Optimizer (SHO) method to control the inner ear-oral infection, utilizing transgenic algae (Chlamydomonas reinhardtii). It is pretty tricky to modify the weight matrix in LSTM. The output will be more accurate if the weight of the neurons is exact. Histological examinations and nested polymerase chain reaction (PCR) testing were performed on the challenged shrimp every 4 h to assess the degree of white spot disease. The SHO-LSTM has shown the highest accuracy and Roc value (98.12% and 0.93, respectively) and the lowest error values (MSE = 0.182 and MAE = 0.48). The hybrid optimized model improves the overall inner ear-oral linked neurological diseases detection ratio. Additionally, with the slightest technical complexity, it effectively controls the forecast factors required to anticipate the ENT. Algal cells were found to be particularly well-suited for inner ear-oral infections, and shrimps fed a transgenic line had the best survival ratio in WSSV infection studies, with 87% of the shrimp surviving. This shows that using this line would effectively stop the spread of WSSV in shrimp populations.
Collapse
Affiliation(s)
- Fanli Liu
- Department of Otolaryngology Head & Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bin Zheng
- Department of Rehabilitation Therapeutics, Chongqing Medical University, Chongqing 401120, China
| | - Nan Zheng
- School of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou 310053, China
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Dahban- Jeddah 21360, Saudi Arabia
| | - Hamid Assilzadeh
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Siwen Xia
- Department of Otolaryngology Head & Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
6
|
Zhang N, Venn B, Bailey CE, Xia M, Mattoon EM, Mühlhaus T, Zhang R. Moderate high temperature is beneficial or detrimental depending on carbon availability in the green alga Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:979-1003. [PMID: 37877811 DOI: 10.1093/jxb/erad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
7
|
Songserm R, Nishiyama Y, Sanevas N. Light Influences the Growth, Pigment Synthesis, Photosynthesis Capacity, and Antioxidant Activities in Scenedesmus falcatus. SCIENTIFICA 2024; 2024:1898624. [PMID: 38293704 PMCID: PMC10827371 DOI: 10.1155/2024/1898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Light plays a significant role in microalgae cultivation, significantly influencing critical parameters, including biomass production, pigment content, and the accumulation of metabolic compounds. This study was intricately designed to optimize light intensities, explicitly targeting enhancing growth, pigmentation, and antioxidative properties in the green microalga, Scenedesmus falcatus (KU.B1). Additionally, the study delved into the photosynthetic efficiency in light responses of S. falcatus. The cultivation of S. falcatus was conducted in TRIS-acetate-phosphate medium (TAP medium) under different light intensities of 100, 500, and 1000 μmol photons m-2·s-1 within a photoperiodic cycle of 12 h of light and 12 h of dark. Results indicated a gradual increase in the growth of S. falcatus under high light conditions at 1000 μmol photons m-2·s-1, reaching a maximum optical density of 1.33 ± 0.03 and a total chlorophyll content of 22.67 ± 0.2 μg/ml at 120 h. Conversely, a slower growth rate was observed under low light at 100 μmol photons m-2·s-1. However, noteworthy reductions in the maximum quantum yield (Fv/Fm) and actual quantum yield (Y(II)) were observed under 1000 μmol photons m-2·s-1, reflecting a decline in algal photosynthetic efficiency. Interestingly, these changes under 1000 μmol photons m-2·s-1 were concurrent with a significant accumulation of a high amount of beta-carotene (919.83 ± 26.33 mg/g sample), lutein (34.56 ± 0.19 mg/g sample), and canthaxanthin (24.00 ± 0.38 mg/g sample) within algal cells. Nevertheless, it was noted that antioxidant activities and levels of total phenolic compounds (TPCs) decreased under high light at 1000 μmol photons m-2·s-1, with IC50 of DPPH assay recorded at 218.00 ± 4.24 and TPC at 230.83 ± 86.75 mg of GAE/g. The findings suggested that the elevated light intensity at 1000 μmol photons m-2·s-1 enhanced the growth and facilitated the accumulation of valuable carotenoid pigment in S. falcatus, presenting potential applications in the functional food and carotenoid industry.
Collapse
Affiliation(s)
- Rattanaporn Songserm
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nuttha Sanevas
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
9
|
Fettweis A, Hansul S, Schamphelaere KD, Smolders E. Metal Mixture Toxicity of Ni, Cu, and Zn in Freshwater Algal Communities and the Correlation of Single-Species Sensitivities Among Single Metals: A Comparative Analysis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2666-2683. [PMID: 37606176 DOI: 10.1002/etc.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The effects assessment of metals is mainly based on data of single metals on single species, thereby not accounting for effects of metal mixtures or effects of species interactions. Both of these effects were tested in combination, thereby hypothesizing that the sensitivity of a community to synergistic mixture toxicity depends on the correlation of single-species sensitivities among the single metals. Single-metal and metal-mixture effects were tested in full concentration-response experiments (fixed ray of 1:1:3 and 5:1:13 mass ratio Ni:Cu:Zn) on eight single freshwater algal species and 14 algal communities of four species each. The mean correlation of single-species median effect concentrations among the single metals (Ni-Cu, Cu-Zn, and Zn-Ni) for all species in a community (r ̅ ) ranged from -0.4 to 0.9 among the communities; most of these (12/14) were positive. Functional endpoints (total biomass) were overall less sensitive than structural endpoints (Bray-Curtis similarity index) for communities with positively correlated single-species sensitivities among the single metals (r ̅ > 0.33 ), suggesting that such correlations indicate functional redundancy under metal-mixture stress. Antagonistic metal-mixture interactions were predominantly found in single species, whereas metal-mixture interactions were antagonistic and surprisingly synergistic for the communities, irrespective of the reference mixture model used (concentration addition or independent action). The mixture interactions close to the carrying capacity (day 7) of communities gradually shifted from antagonism to more noninteractions with increasing correlation of single-species sensitivities among the single metals. Overall, this suggests that functional redundancy under mixed-metal stress comes at the cost of reduced biodiversity and that synergisms can emerge at the community level without any synergisms on the single-species level. Environ Toxicol Chem 2023;42:2666-2683. © 2023 SETAC.
Collapse
Affiliation(s)
- Andreas Fettweis
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Simon Hansul
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Karel De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| |
Collapse
|
10
|
Yeh YC, Ebbing T, Frick K, Schmid-Staiger U, Haasdonk B, Tovar GEM. Improving Determination of Pigment Contents in Microalgae Suspension with Absorption Spectroscopy: Light Scattering Effect and Bouguer-Lambert-Beer Law. Mar Drugs 2023; 21:619. [PMID: 38132940 PMCID: PMC10744667 DOI: 10.3390/md21120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The Bouguer-Lambert-Beer (BLB) law serves as the fundamental basis for the spectrophotometric determination of pigment content in microalgae. Although it has been observed that the applicability of the BLB law is compromised by the light scattering effect in microalgae suspensions, in-depth research concerning the relationship between the light scattering effect and the accuracy of spectrophotometric pigment determination remains scarce. We hypothesized that (1) the precision of spectrophotometric pigment content determination using the BLB law would diminish with increasing nonlinearity of absorbance, and (2) employing the modified version of the BLB (mBLB) law would yield superior performance. To assess our hypotheses, we cultivated Phaeodactylum tricornutum under varying illumination conditions and nitrogen supplies in controlled indoor experiments, resulting in suspensions with diverse pigment contents. Subsequently, P. tricornutum samples were diluted into subsamples, and spectral measurements were conducted using different combinations of biomass concentrations and path lengths. This was carried out to assess the applicability of the BLB law and the nonlinearity of absorbance. The chlorophyll a and fucoxanthin contents in the samples were analyzed via high-performance liquid chromatography (HPLC) and subsequently used in our modeling. Our findings confirm our hypotheses, showing that the modified BLB law outperforms the original BLB law in terms of the normalized root mean square error (NRMSE): 6.3% for chlorophyll a and 5.8% for fucoxanthin, compared to 8.5% and 7.9%, respectively.
Collapse
Affiliation(s)
- Yen-Cheng Yeh
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; (T.E.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Tobias Ebbing
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; (T.E.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Konstantin Frick
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; (T.E.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; (T.E.); (U.S.-S.); (G.E.M.T.)
| | - Bernard Haasdonk
- Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany;
| | - Günter E. M. Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; (T.E.); (U.S.-S.); (G.E.M.T.)
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Gonzalez DI, Ynalvez RA. Comparison of the effects of nitrogen-, sulfur- and combined nitrogen- and sulfur-deprivations on cell growth, lipid bodies and gene expressions in Chlamydomonas reinhardtii cc5373-sta6. BMC Biotechnol 2023; 23:35. [PMID: 37684579 PMCID: PMC10492388 DOI: 10.1186/s12896-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Biofuel research that aims to optimize growth conditions in microalgae is critically important. Chlamydomonas reinhardtii is a green microalga that offers advantages for biofuel production research. This study compares the effects of nitrogen-, sulfur-, and nitrogen and sulfur- deprivations on the C. reinhardtii starchless mutant cc5373-sta6. Specifically, it compares growth, lipid body accumulation, and expression levels of acetyl-CoA carboxylase (ACC) and phosphoenolpyruvate carboxylase (PEPC). RESULTS Among nutrient-deprived cells, TAP-S cells showed significantly higher total chlorophyll, cell density, and protein content at day 6 (p < 0.05). Confocal analysis showed a significantly higher number of lipid bodies in cells subjected to nutrient deprivation than in the control over the course of six days; N deprivation for six days significantly increased the size of lipid bodies (p < 0.01). In comparison with the control, significantly higher ACC expression was observed after 8 and 24 h of NS deprivation and only after 24 h with N deprivation. On the other hand, ACC and PEPC expression at 8 and 24 h of S deprivation was not significantly different from that in the control. A significantly lower PEPC expression was observed after 8 h of N and NS deprivation (p < 0.01), but a significantly higher PEPC expression was observed after 24 h (p < 0.01). CONCLUSIONS Based on our findings, it would be optimum to cultivate cc5373-sta6 cells in nutrient deprived conditions (-N, -S or -NS) for four days; whereby there is cell growth, and both a high number of lipid bodies and a larger size of lipid bodies produced.
Collapse
Affiliation(s)
- David I Gonzalez
- Department of Biological Science, Vanderbilt University, 465 21st Ave S, Nashville, TN, 37240, USA
| | - Ruby A Ynalvez
- Department of Biology and Chemistry, Texas A&M International University, 5201 University Blvd, Laredo, TX, 78041, USA.
| |
Collapse
|
12
|
Rafique A, Hichiwa G, Jatnika MF, Ito Y. A Novel Strategy for Screening Tumor-Specific Variable Domain of Heavy-Chain Antibodies. Int J Mol Sci 2023; 24:10804. [PMID: 37445977 DOI: 10.3390/ijms241310804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The properties of the variable domain of heavy-chain (VHH) antibodies are particularly relevant in cancer therapy. To isolate tumor cell-specific VHH antibodies, VHH phage libraries were constructed from multiple tumor cells. After enriching the libraries against particular tumor cell lines, a next-generation sequencer was used to screen the pooled phages of each library for potential antibody candidates. Based on high amplification folds, 50 sequences from each library were used to construct phylogenetic trees. Several clusters with identical CDR3 were observed. Groups X, Y, and Z were assigned as common sequences among the different trees. These identical groups over the trees were considered to be cross-reactive antibodies. To obtain monoclonal antibodies, we assembled 200 sequences (top 50 sequences from each library) and rebuilt a combined molecular phylogenetic tree. Groups were categorized as A-G. For each group, we constructed a phagemid and determined its binding specificity with tumor cells. The phage-binding results were consistent with the phylogenetic tree-generated groups, which indicated particular tumor-specific clusters; identical groups showed cross-reactivity. The strategy used in the current study is effective for screening and isolating monoclonal antibodies. Specific antibodies can be identified, even when the target markers of cancer cells are unknown.
Collapse
Affiliation(s)
- Abdur Rafique
- Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan
| | - Genki Hichiwa
- Graduate School of Medical Sciences, Tottori University, Tottori 680-8550, Japan
| | - Muhammad Feisal Jatnika
- Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
13
|
Merz CR, Arora N, Welch M, Lo E, Philippidis GP. Microalgal cultivation characteristics using commercially available air-cushion packaging material as a photobioreactor. Sci Rep 2023; 13:3792. [PMID: 36882465 PMCID: PMC9992509 DOI: 10.1038/s41598-023-30080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Air-cushion (AC) packaging has become widely used worldwide. ACs are air-filled, dual plastic packaging solutions commonly found surrounding and protecting items of value within shipping enclosures during transit. Herein, we report on a laboratory assessment employing ACs as a microalgal photobioreactor (PBR). Such a PBR inherently addresses many of the operational issues typically encountered with open raceway ponds and closed photobioreactors, such as evaporative water loss, external contamination, and predation. Using half-filled ACs, the performance of microalgal species Chlorella vulgaris, Nannochloropsis oculata, and Cyclotella cryptica (diatom) was examined and the ash-free dry cell weight and overall biomass productivity determined to be 2.39 g/L and 298.55 mg/L/day for N. oculata, 0.85 g/L and 141.36 mg/L/day for C. vulgaris, and 0.67 g/L and 96.08 mg/L/day for C. cryptica. Furthermore, maximum lipid productivity of 25.54 mg/L/day AFDCW and carbohydrate productivity of 53.69 mg/L/day AFDCW were achieved by C. cryptica, while maximum protein productivity of 247.42 mg/L/day AFDCW was attained by N. oculata. Data from this work will be useful in determining the applicability and life-cycle profile of repurposed and reused ACs as potential microalgal photobioreactors depending upon the end product of interest, scale utilized, and production costs.
Collapse
Affiliation(s)
- Clifford R Merz
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA.
| | - Neha Arora
- Department of Cell, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Michael Welch
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - Enlin Lo
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Thiviyanathan VA, Ker PJ, Amin EPP, Tang SGH, Yee W, Jamaludin MZ. Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules 2023; 28:molecules28031318. [PMID: 36770982 PMCID: PMC9921349 DOI: 10.3390/molecules28031318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Microalgae have become a popular area of research over the past few decades due to their enormous benefits to various sectors, such as pharmaceuticals, biofuels, and food and feed. Nevertheless, the benefits of microalgae cannot be fully exploited without the optimization of their upstream production. The growth of microalgae is commonly measured based on the optical density of the sample. However, the presence of debris in the culture and the optical absorption of the intercellular components affect the accuracy of this measurement. As a solution, this paper introduces the direct optical detection of glucose molecules at 940-960 nm to accurately measure the growth of microalgae. In addition, this paper also discusses the effects of the presence of glucose on the absorption of free water molecules in the culture. The potential of the optical detection of glucose as a complement to the commonly used optical density measurement at 680 nm is discussed in this paper. Lastly, a few recommendations for future works are presented to further verify the credibility of glucose detection for the accurate determination of microalgae's growth.
Collapse
Affiliation(s)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
- Correspondence: (P.J.K.); (S.G.H.T.)
| | - Eric P. P. Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (P.J.K.); (S.G.H.T.)
| | - Willy Yee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - M. Z. Jamaludin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
15
|
Ho QN, Fettweis M, Hur J, Desmit X, Kim JI, Jung DW, Lee SD, Lee S, Choi YY, Lee BJ. Flocculation kinetics and mechanisms of microalgae- and clay-containing suspensions in different microalgal growth phases. WATER RESEARCH 2022; 226:119300. [PMID: 36323221 DOI: 10.1016/j.watres.2022.119300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Interplays between microalgae and clay minerals enhance biologically mediated flocculation, thereby affecting the sedimentation and transportation of suspended particulate matter (SPM) in water and benthic environments. This interaction forms larger flocs with a higher settling velocity and enhances SPM sinking. The aim of this study was to investigate the flocculation kinetics of microalgae and clay in suspension and to elucidate the mechanisms associated with such interactions. Standard jar test experiments were conducted using various mixtures of kaolinite and microalgal samples from batch cultures (Chlorella vulgaris) to estimate biologically mediated flocculation kinetics. The organic matter (OM) composition secreted by the microalgae was characterized using a liquid chromatography - organic carbon detection system, and quantitative analysis of transparent exopolymer particles was conducted separately. A two-class flocculation kinetic model, based on the interaction between flocculi and flocs, was also adopted to quantitatively analyze the experimental data from flocculation. Results from the flocculation kinetic tests and OM analyses, in association with other data analyses (i.e., floc size distribution and flocculation kinetic model), showed that flocculation increased with OM concentration during the growth phase (10-20 d). However, on day 23 during the early stationary phase, flocculation kinetics started decreasing and substantially declined on day 30, even though the amount of OM (mainly biopolymers) continued to increase. Our results indicate that an adequate quantity of biopolymers produced by the microalgal cells in the growth phase enhanced floc-to-floc attachment and hence flocculation kinetics. In contrast, an excessive quantity of biopolymers and humic substances in the stationary phase enhanced the formation of polymeric backbone structures and flocculation via scavenging particles but simultaneously increased steric stabilization with the production of a large number of fragmented particles.
Collapse
Affiliation(s)
- Que Nguyen Ho
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Michael Fettweis
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Bruxelles B-1000, Belgium
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Xavier Desmit
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Bruxelles B-1000, Belgium
| | - Jae In Kim
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea
| | - Dae Won Jung
- Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Gyeongsangbuk-do 37242, South Korea
| | - Sang Deuk Lee
- Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Gyeongsangbuk-do 37242, South Korea
| | - Sungyun Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea
| | - Yun Young Choi
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea
| | - Byung Joon Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea.
| |
Collapse
|
16
|
Estimating Biomass and Vitality of Microalgae for Monitoring Cultures: A Roadmap for Reliable Measurements. Cells 2022; 11:cells11152455. [PMID: 35954299 PMCID: PMC9368473 DOI: 10.3390/cells11152455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Estimating algal biomass is a prerequisite for monitoring growth of microalgae. Especially for large-scale production sites, the measurements must be robust, reliable, fast and easy to obtain. We compare the relevant parameters, discuss potential hurdles and provide recommendations to tackle these issues. The focus is on optical density and in vivo autofluorescence of chlorophyll, which have proven to be ideal candidates for monitoring purposes. Beyond biomass, cell vitality is also crucial for maintaining cultures. While maximizing biomass yield is often the primary consideration, some applications require adverse growth conditions for the synthesis of high-quality compounds. The non-invasive technique of pulse-amplified modulated (PAM) fluorescence measurements provides an ideal tool and is increasingly being employed due to ever more affordable devices. We compared three devices and studied the robustness of the dark fluorescence yield of photosystem II (Fv/Fm) at various cell densities. Although the so-called inner filter effects influence the fluorescence signal, the resulting Fv/Fm remain stable and robust over a wide range of cell densities due to mutual effects.
Collapse
|
17
|
Young EB, Reed L, Berges JA. Growth parameters and responses of green algae across a gradient of phototrophic, mixotrophic and heterotrophic conditions. PeerJ 2022; 10:e13776. [PMID: 35891646 PMCID: PMC9308967 DOI: 10.7717/peerj.13776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Many studies have shown that algal growth is enhanced by organic carbon and algal mixotrophy is relevant for physiology and commercial cultivation. Most studies have tested only a single organic carbon concentration and report different growth parameters which hampers comparisons and improvements to algal cultivation methodology. This study compared growth of green algae Chlorella vulgaris and Chlamydomonas reinhardtii across a gradient of photoautotrophic-mixotrophic-heterotrophic culture conditions, with five acetate concentrations. Culture growth rates and biomass achieved were compared using different methods of biomass estimation. Both species grew faster and produced the most biomass when supplied with moderate acetate concentrations (1-4 g L-1), but light was required to optimize growth rates, biomass yield, cell size and cell chlorophyll content. Higher acetate concentration (10 g L-1) inhibited algal production. The choice of growth parameter and method to estimate biomass (optical density (OD), chlorophyll a fluorescence, flow cytometry, cell counts) affected apparent responses to organic carbon, but use of OD at 600, 680 or 750 nm was consistent. There were apparent trade-offs among exponential growth rate, maximum biomass, and culture time spent in exponential phase. Different cell responses over 1-10 g L-1 acetate highlight profound physiological acclimation across a gradient of mixotrophy. In both species, cell size vs cell chlorophyll relationships were more constrained in photoautotrophic and heterotrophic cultures, but under mixotrophy, and outside exponential growth phase, these relationships were more variable. This study provides insights into algal physiological responses to mixotrophy but also has practical implications for choosing parameters for monitoring commercial algal cultivation.
Collapse
Affiliation(s)
- Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States,School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Lindsay Reed
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - John A. Berges
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States,School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| |
Collapse
|
18
|
Microalgae Cultivation on Nutrient Rich Digestate: The Importance of Strain and Digestate Tailoring under PH Control. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The bioremediation of digestate using microalgae presents a solution to the current eutrophication issue in Northwest Europe, where the use of digestate as soil fertiliser is limited, thus resulting in an excess of digestate. Ammonium is the main nutrient of interest in digestate for microalgal cultivation, and improving its availability and consequent uptake is crucial for optimal bioremediation. This work aimed to determine the influence of pH on ammonium availability in cultures of two green microalgae, additionally screened for their growth performances on three digestates produced from different feedstocks, demonstrating the importance of tailoring a microalgal strain and digestate for bioremediation purposes. Results showed that an acidic pH of 6–6.5 resulted in a better ammonium availability in the digestate media, translated into better growth yields for both S. obliquus (GR: 0.099 ± 0.001 day−1; DW: 0.23 ± 0.02 g L−1) and C. vulgaris (GR: 0.09 ± 0.001 day−1; DW: 0.49 ± 0.012 g L−1). This result was especially true when considering larger-scale applications where ammonium loss via evaporation should be avoided. The results also demonstrated that digestates from different feedstocks resulted in different growth yields and biomass composition, especially fatty acids, for which, a digestate produced from pig manure resulted in acid contents of 6.94 ± 0.033% DW and 4.91 ± 0.3% DW in S. obliquus and C. vulgaris, respectively. Finally, this work demonstrated that the acclimation of microalgae to novel nutrient sources should be carefully considered, as it could convey significant advantages in terms of biomass composition, especially fatty acids and carbohydrate, for which, this study also demonstrated the importance of harvesting time.
Collapse
|
19
|
Krust D, Gusbeth C, Müller ASK, Scherer D, Müller G, Frey W, Nick P. Biological signalling supports biotechnology - Pulsed electric fields extract a cell-death inducing factor from Chlorella vulgaris. Bioelectrochemistry 2022; 143:107991. [PMID: 34763172 DOI: 10.1016/j.bioelechem.2021.107991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Compared to mechanical extraction methods, pulsed electric field (PEF) treatment provides an energy-efficient and gentle alternative. However, the biological processes involved are poorly understood. The unicellular green microalga Chlorella vulgaris was used as model organism to investigate the effect of PEF treatment on biological cells. A viability assay using fluorescein diacetate measured by flow cytometry was established. The influence of developmental stage on viability could be shown in synchronised cultures when applying PEF treatment with very low specific energies where one part of cells undergoes cell death, and the other part stays viable after treatment. Reactive oxygen species generation after similar low-energy PEF treatment could be shown, indicating that PEFs could act as abiotic stress signal. Most importantly, a cell-death inducing factor could be extracted. A water-soluble extract derived from microalgae suspensions incubated for 24 h after PEF treatment caused the recipient microalgae to die, even though the recipient cells had not been subjected to PEF treatment directly. The working model assumes that low-energy PEF treatment induces programmed cell death in C.vulgaris while specifically releasing a cell-death inducing factor. Low-energy PEF treatment with subsequent incubation period could be a novel biotechnological strategy to extract soluble proteins and lipids in cascade process.
Collapse
Affiliation(s)
- Damaris Krust
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Christian Gusbeth
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Alexander S K Müller
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Daniel Scherer
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Georg Müller
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
20
|
Anto S, Premalatha M, Mathimani T. Tertiary amine as an efficient CO 2 switchable solvent for extracting lipids from hypersaline microalgae. CHEMOSPHERE 2022; 288:132442. [PMID: 34606898 DOI: 10.1016/j.chemosphere.2021.132442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Considering the momentous cost drivers in energy efficient algal biorefinery processes, a green alternative in extracting lipid from microalgae is anticipated. Switchable solvent system using tertiary amines namely DMBA (Dimethylbenzylamine), DMCHA (Dimethylcyclohexylamine), and DIPEA (Diisopropylethylamine) for lipid extraction from wet hypersaline microalgae was investigated in this study. Interestingly, present study showed that at 1:1 (v/v of fresh DMBA solvent: microalgal biomass), and for 1 h extraction time, the lipid yield was 41.9, 26.6, and 33.3% for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04, respectively and for recovered DMBA solvent, at 1:1 (v/v) and for 1 h extraction time, the lipid yield was 40.8, 25.97, and 32%, respectively. Similarly, lipid extraction using DMCHA solvent for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04 at 1:1 (v/v of solvent: microalgal biomass) and 1 h extraction time showed 34.28, 24.24 and 23.33% lipids, respectively for fresh solvent and 34.01, 24.24 and 23.18% for recovered solvent respectively; while DIPEA was not competent in lipid extraction from three tested microalgae. FAME profile revealed the presence of saturated fatty acids as 43.04%, 40.98%, 38.45% and monounsaturated fatty acids as 28.38%, 27.05%, 23.3% for Chlorella sp. NITT05, Picochlorum sp. NITT04, Chlorella sp. NITT02, respectively. This study attributes Chlorella sp. NITT05 and Picochlorum sp. NITT04 to be ideal algal species for biodiesel production.
Collapse
Affiliation(s)
- Susaimanickam Anto
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| |
Collapse
|
21
|
On-Line Monitoring of Biological Parameters in Microalgal Bioprocesses Using Optical Methods. ENERGIES 2022. [DOI: 10.3390/en15030875] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microalgae are promising sources of fuels and other chemicals. To operate microalgal cultivations efficiently, process control based on monitoring of process variables is needed. On-line sensing has important advantages over off-line and other analytical and sensing methods in minimizing the measurement delay. Consequently, on-line, in-situ sensors are preferred. In this respect, optical sensors occupy a central position since they are versatile and readily implemented in an on-line format. In biotechnological processes, measurements are performed in three phases (gaseous, liquid and solid (biomass)), and monitored process variables can be classified as physical, chemical and biological. On-line sensing technologies that rely on standard industrial sensors employed in chemical processes are already well-established for monitoring the physical and chemical environment of an algal cultivation. In contrast, on-line sensors for the process variables of the biological phase, whether biomass, intracellular or extracellular products, or the physiological state of living cells, are at an earlier developmental stage and are the focus of this review. On-line monitoring of biological process variables is much more difficult and sometimes impossible and must rely on indirect measurement and extensive data processing. In contrast to other recent reviews, this review concentrates on current methods and technologies for monitoring of biological parameters in microalgal cultivations that are suitable for the on-line and in-situ implementation. These parameters include cell concentration, chlorophyll content, irradiance, and lipid and pigment concentration and are measured using NMR, IR spectrophotometry, dielectric scattering, and multispectral methods. An important part of the review is the computer-aided monitoring of microalgal cultivations in the form of software sensors, the use of multi-parameter measurements in mathematical process models, fuzzy logic and artificial neural networks. In the future, software sensors will play an increasing role in the real-time estimation of biological variables because of their flexibility and extendibility.
Collapse
|
22
|
Zhao Y, Li J, Ma X, Fang X, Zhu B, Pan K. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6744-6754. [PMID: 34462853 DOI: 10.1007/s11356-021-15950-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To use microalgae for the biosequestration of carbon dioxide (CO2) emitted from the coal-fired power plants, the screening of high CO2 tolerant microalgae and their accumulation of toxic agents have attracted significant research attention. This study evaluated 10 Chlorella strains for high CO2 tolerance using combined growth rates and growth periods subjected to logistic parameters. We selected LAMB 31 with high r (0.89 ± 0.10 day-1), high k (6.51 ± 0.19), and medium Tp (5.17 ± 0.15 day) as a candidate for CO2 biosequestration. Correspondingly, six genes involving carbon fixation and metabolism processes were upregulated in LAMB 31 under high CO2 conditions, verifying its high CO2 tolerant ability. LAMB 31 cultures exposed to exhaust gas of power plant under different flow rates grew well, but the high flow rate (0.6 L/h) showed inhibition effects compared with low flow rates (0.2 and 0.3 L/h) at the end of the culturing period. The toxic agents in the exhaust gas including sulfur, arsenic, and mercury accumulated in LAMB 31 biomass but were deemed safe for use in the production of both human food and animal feed based on the National Food Safety Standard in China. This study showed a complete process involving high CO2 tolerant microalgae screening, high CO2 tolerant verification, and in situ application in a power plant. Data results provide valuable information as the basis for future research studies in microalgae application on CO2 mitigation at emission sources.
Collapse
Affiliation(s)
- Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuebin Ma
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Xingyu Fang
- Department of Radiology, PLA 305 Hospital, Beijing, 100017, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao, 266003, Shandong, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| |
Collapse
|
23
|
Cycil LM, Hausrath EM, Ming DW, Adcock CT, Raymond J, Remias D, Ruemmele WP. Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars. Front Microbiol 2021; 12:733244. [PMID: 34867849 PMCID: PMC8633435 DOI: 10.3389/fmicb.2021.733244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62-70 μmol m-2 s-1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200-300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed.
Collapse
Affiliation(s)
- Leena M Cycil
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Elisabeth M Hausrath
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Christopher T Adcock
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - James Raymond
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | | |
Collapse
|
24
|
Flow cytometric analysis reveals culture condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri. Sci Rep 2021; 11:23567. [PMID: 34876641 PMCID: PMC8651721 DOI: 10.1038/s41598-021-02919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Optimisation of cultivation conditions in the industrial production of probiotics is crucial to reach a high-quality product with retained probiotic functionality. Flow cytometry-based descriptors of bacterial morphology may be used as markers to estimate physiological fitness during cultivation, and can be applied for online monitoring to avoid suboptimal growth. In the current study, the effects of temperature, initial pH and oxygen levels on cell growth and cell size distributions of Limosilactobacillus reuteri DSM 17938 were measured using multivariate flow cytometry. A pleomorphic behaviour was evident from the measurements of light scatter and pulse width distributions. A pattern of high growth yielding smaller cells and less heterogeneous populations could be observed. Analysis of pulse width distributions revealed significant morphological heterogeneities within the bacterial cell population under non-optimal growth conditions, and pointed towards low temperature, high initial pH, and high oxygen levels all being triggers for changes in morphology towards cell chain formation. However, cell size did not correlate to survivability after freeze-thaw or freeze-drying stress, indicating that it is not a key determinant for physical stress tolerance. The fact that L. reuteri morphology varies depending on cultivation conditions suggests that it can be used as marker for estimating physiological fitness and responses to its environment.
Collapse
|
25
|
Janova A, Kolackova M, Bytesnikova Z, Capal P, Chaloupsky P, Svec P, Ridoskova A, Cernei N, Klejdus B, Richtera L, Adam V, Huska D. New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: Effects on the pathways of secondary metabolites. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Yoshitomi T, Karita H, Mori-Moriyama N, Sato N, Yoshimoto K. Reduced cytotoxicity of polyethyleneimine by covalent modification of antioxidant and its application to microalgal transformation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:864-874. [PMID: 34658670 PMCID: PMC8519552 DOI: 10.1080/14686996.2021.1978273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The conversion of carbon dioxide into valuable chemicals is an effective strategy for combating augmented concentrations of carbon dioxide in the environment. Microalgae photosynthetically produce valuable chemicals that are used as biofuels, sources for industrial materials, medicinal leads, and food additives. Thus, improvements in microalgal technology via genetic engineering may prove to be promising for the tailored production of novel metabolites. For the transformation of microalgae, nucleic acids such as plasmid DNA (pDNA) are delivered into the cells using physical and mechanical techniques, such as electroporation, bombardment with DNA-coated microprojectiles, and vortexing with glass beads. However, owing to the electrostatic repulsion between negatively charged cell walls and nucleic acids, the delivery of nucleic acids into the microalgal cells is challenging. To solve this issue, in this study, we investigated microalgal transformation via electroporation using polyplexes with linear polyethyleneimine (LPEI) and pDNA. However, the high toxicity of LPEI decreased the transformation efficiency in Chlamydomonas reinhardtii cells. We revealed that the toxicity of LPEI was due to oxidative stress resulting from the cellular uptake of LPEI. To suppress the toxicity of LPEI, an antioxidant, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was covalently conjugated with LPEI; the conjugate was named as TEMPO-LPEI. Interestingly, with a cellular uptake tendency similar to that of LPEI, TEMPO-LPEI dramatically decreased oxidative stress and cytotoxicity. Electroporation using polyplexes of TEMPO-LPEI and pDNA enhanced the transformation efficiency, compared to those treated with bare pDNA and polyplexes of LPEI/pDNA. This result indicates that polycations conjugated with antioxidants could be useful in facilitating microalgal transformation.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Haruka Karita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Purushanahalli Shivagangaiah C, Sanyal D, Dasgupta S, Banik A. Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa. PHYSIOLOGIA PLANTARUM 2021; 173:246-258. [PMID: 33583021 DOI: 10.1111/ppl.13368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) pollution is a serious agro-economic concern and algae can be used as one of the bioremediating agents as it can grow in different water bodies. In this study, the Scenedesmus acutus and Chlorella pyrenoidosa were exposed to various concentrations of Pb2+ for 96 h and a multidimensional toxicity assessment has been performed by pulse amplitude modulation technique and Fourier transform infrared spectroscopy (FTIR). High-angle annular dark-field scanning transmission electron microscopy coupled energy dispersive spectroscopy (HAADF-S/TEM-EDS) detected intracellular localization of Pb2+ , thus confirming algal bio-accumulation abilities. Sensitivity assay demonstrated that 500 and 400 ppm of Pb2+ as minimum inhibitory concentrations (MIC50) for S. acutus and C. pyrenoidosa, respectively, which inhibited growth (OD) by >50% in 96 h. During bioremoval studies, S. acutus and C. pyrenoidosa were found to remove ∼52 and ∼32% of total Pb2+ , respectively. The particulate analysis of Pb2+ by ICP-OES showed >99.5% biosorption capacity by both the species. The biomass characterization by FTIR showed the involvement of various cell wall functional groups such as hydroxyl, alkane, and C=C groups in the biosorption of Pb2+ by both the species. The noninvasive chlorophyll fluorescence techniques provide a quick insight on heavy metal stress and can be adapted as a rapid detection tool to study the Pb2+ stress. S. acutus strain showed higher tolerance and higher bioremoval capacity than C. pyrenoidosa. However, both the species can be exploited for biosorption of Pb2+ from aquatic streams as an alternative way for low cost Pb2+ recovery systems.
Collapse
Affiliation(s)
| | - Debanjan Sanyal
- Research and Development, Reliance Industries Ltd, Jamnagar, India
| | - Santanu Dasgupta
- Research and Development, Reliance Industries Ltd, Navi Mumbai, India
| | - Avishek Banik
- School of Biotechnology, Presidency University, Kolkata, India
| |
Collapse
|
28
|
Abu-Ghosh S, Iluz D, Dubinsky Z, Miller G. Exogenous Abscisic Acid Confers Salinity Tolerance in Chlamydomonas reinhardtii During Its Life Cycle. JOURNAL OF PHYCOLOGY 2021; 57:1323-1334. [PMID: 33963561 DOI: 10.1111/jpy.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The plant hormone abscisic acid (ABA) coordinates responses to environmental signals with developmental changes and is important for stress resilience and crop yield. However, fundamental questions remain about how this phytohormone affects microalgal growth and stress regulation throughout the different stages of their life cycle. In this study, the effects of ABA on the physiology of the freshwater microalga Chlamydomonas reinhardtii at its different life cycle stages were investigated. Exogenously added ABA enhanced the growth and photosynthesis of C. reinhardtii during the vegetative stage. The hormone also increased the tolerance of this alga to high-salinity stress during gamete formation under nutrient depletion, as well as it extended their survival. We show that the level of reactive oxygen species (ROS) generated in the ABA-treated cells was significantly less than that in the untreated cells under inhibiting NaCl concentrations. Cell size examination showed that ABA prevents cells from forming palmella when exposed to high salinity. All together, these results suggest that ABA can support the vitality and survival of C. reinhardtii under high salt conditions.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - David Iluz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Environmental Sciences and Agriculture, Beit Berl Academic College, Kfar Saba, Israel
- Deptartment of science, Talpiot Academic College, Holon, Israel
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
29
|
Jiang T, Chen X, Ren Y, Tang D, Jiang H. Dielectric Characterization and Multistage Separation of Various Cells via Dielectrophoresis in a Bipolar Electrode Arrayed Device. Anal Chem 2021; 93:10220-10228. [PMID: 34261311 DOI: 10.1021/acs.analchem.1c01610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolation of microalgal cells is as an indispensable part of producing biofuels for energy security and detecting toxic contaminants for marine routine monitoring. Microalgae live together with various microalgae naturally, and abundant samples need to be tackled in practical applications. Therefore, effective separation technologies need to be developed urgently to achieve high-throughput separation of various microalgae. Herein, we develop a reliable device to characterize the dielectric response of microalgae and sequentially separate various microalgae utilizing dielectrophoretic force in a bipolar electrode (BPE) arrayed device. First, by investigating the array width extension (AWE) effect on the electric- and flow-field distributions, we explore consequences of incidental electrohydrodynamic mechanisms and axial flow rate on the separation. Second, based on device performance on sample characterizations, we demonstrate this technology by separating microparticles in three- and five-channel devices. Third, we discriminate dead and live cells to explore its capability using the cell viability test and illustrate the AWE influence on the separation. Fourth, we characterize dielectric responses of different microalgae and separate C. vulgaris and Oocystis sp. Finally, we extended BPEs in length and developed an arrayed device for sequential separation of various microalgae, and this platform is successfully engineered in high-throughput isolation of C. vulgaris from complex samples. This technology presents good potential in addressing depleting fossil fuel and burgeoning environmental concerns due to its performance in the separation of microalgal strains from complex samples.
Collapse
Affiliation(s)
- Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xiaoming Chen
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, PR China
| | - Dewei Tang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
30
|
Li X, Slavens S, Crunkleton DW, Johannes TW. Interactive effect of light quality and temperature on Chlamydomonas reinhardtii growth kinetics and lipid synthesis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Nourbakhsh F, Pazouki M, Mohsennia M. Simultaneous Investigation of Three Effective Parameters of Substrate, Microorganism Type and Reactor Design on Power Generation in a Dual-Chamber Microbial Fuel Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 18:e2308. [PMID: 33542934 PMCID: PMC7856403 DOI: 10.30498/ijb.2020.137279.2308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Endophytic bacteria reside inside healthy plant tissues and provide several benefits to their host, and help them to tolerate various stresses. Aminocyclopropane-1-carboxylate deaminase (ACCD) production is one of the mechanisms by which these bacteria help the plant to survive under ethylene stress Objectives: The main focus of this study was to isolate endophytic bacteria and effectively screen them for ACCD production. The selected isolate was identified and assessed for plant growth-promoting potential under pot conditions. Materials and Methods: Endophytic bacteria were isolated from root nodules of Pisum sativum plants, grown in northern India (Haryana state).
ACCD activity was initially screened on DF minimal salt medium with ACC as a sole nitrogen source. To narrow down the number of the isolates,
another screening method was adopted using a modified medium containing indicator dyes along with ACC. The strain producing ACCD
as well as a significant amount of Indole 3 acetic acid (IAA) was identified using 16S rDNA gene sequencing and amplification
of acdS gene. Its ability to promote plant growth was evaluated under pot culture conditions. Results: Twenty-six endophytic bacteria were isolated from nodules of P. sativum plants. Sixteen isolates showed growth on
DF minimal salts medium supplemented with ACC along with negative control. On the modified medium containing indicator dyes, two isolates,
PJN13 and PJN17, showed zones of the color gradient. The ACC deaminase activity was further confirmed by enzymatic assay. The strains PJN13
and PJN17 produced 160 and 130 µM of α-ketobutyrate m.g-1 protein h-1, respectively. The IAA production in the strain
PJN13 (79.04 ± 0.78 µg.mL -1) was significantly more than that in the strain PJN17 (38.36 ± 1.89 µg.mL-1). It could enhance
pea plant growth parameters, including root and shoot length and fresh and dry weight from 1 to 4 times compare to the control (untreated pea plants)
under pot conditions. The results of 16S rDNA amplification and sequencing showed that PJN13 has maximum similarity
to Bacillus mojavensis, and the sequence submitted to GenBank under accession number MH298523. Also, a band about 800 bp was amplified for the acdS gene. Conclusions: Though Bacillus is known as a predominant non-rhizobial endophytic genus, however in the present study, a B. mojavensisBacillus mojavensis PRN2 (MH298523) was reported for the first time as an endophyte from the nodules of pea plants. The isolated strain possesses ACC deaminase activity along with IAA production capability, and high potentials as PGPE (Plant growth-promoting endophyte) for plant growth, so it has potential to be used as biofertilizers in pea fields.
Collapse
Affiliation(s)
- Fatemeh Nourbakhsh
- NonMetallic Materials Research Group, Niroo Research Institute (NRI), End of Dadman Street, Tehran Province 1468613113, Iran.,Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Pazouki
- Energy Department, Materials and Energy Research Center, MeshkinDasht, Alborz Province, IR Iran
| | - Mohsen Mohsennia
- NonMetallic Materials Research Group, Niroo Research Institute (NRI), End of Dadman Street, Tehran Province 1468613113, Iran
| |
Collapse
|
32
|
Nayar S. Exploring the Role of a Cytokinin-Activating Enzyme LONELY GUY in Unicellular Microalga Chlorella variabilis. FRONTIERS IN PLANT SCIENCE 2021; 11:611871. [PMID: 33613586 PMCID: PMC7891180 DOI: 10.3389/fpls.2020.611871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 05/29/2023]
Abstract
LONELY GUY has been previously characterized in flowering plants to be involved in the direct activation of cytokinins. In this study, the function of the only LONELY GUY gene (CvarLOG1) from unicellular green microalga Chlorella variabilis NC64A has been investigated. CvarLOG1 expressed mainly in the lag and log phases of growth and was confirmed to be a cytokinin-activating enzyme. Overexpression of CvarLOG1 in Chlorella led to extended life in culture by almost 10-20 days, creating a "stay-green" phenotype. In the transformed alga, the cell cycle was lengthened due to delayed entry into the G2/M phase contrary to the known role of cytokinins in stimulating G2/M transition possibly due to excessive levels of this hormone. However, due to the sustained growth and delayed senescence, there was an increase in cell number by 11% and in biomass by 46% at the stationary phase, indicating a potential application for the biofuel industry. The total carbohydrate and lipid yield increased by approximately 30 and 20%, respectively. RNA-Seq-based transcriptomic analysis revealed that the genes associated with light and dark reactions of photosynthesis were upregulated, which may be the reason for the increased biomass. These data show that LOG plays an essential role during the cell cycle and in the functioning of the chloroplast and that the pathway leading to direct activation of cytokinins via LOG is functional in algae.
Collapse
|
33
|
Winnicki K, Łudzik K, Żabka A, Polit JT, Zawisza A, Maszewski J. Anti-algal activity of the 12-5-12 gemini surfactant results from its impact on the photosynthetic apparatus. Sci Rep 2021; 11:2360. [PMID: 33504917 PMCID: PMC7840743 DOI: 10.1038/s41598-021-82165-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
A rapid amplification of algal population has a negative impact on the environment and the global economy. Thus, control of algal proliferation is an important issue and effective procedures which reduce algal blooms and control algal fouling are highly desired. Gemini surfactants are considered to have a low environmental impact, therefore they seem to be a promising group of detergents which could reduce algal blooms in water systems. Furthermore, due to their emulsifying properties they could replace algaecides added to antifouling paints and decrease algae adhesion to various surfaces. In this study the toxic effect of the 12-5-12 gemini surfactant was investigated on Chlorella cells and close attention was paid to a potential mechanism of its action. At the high cell density (10.05 × 107 cells/mL) a dose-dependent cell death was found and the IC50 value was reached at the concentration of 19.6 µmol/L after 72-h exposure to the surfactant. The decrease in chlorophyll autofluorescence shows that the photosynthetic apparatus seems to be the target of the tested compound. The presented studies indicate that gemini surfactants could effectively reduce algal blooms in water systems, and if added to paints, they could decrease algal growth on external building walls or other water immersed surfaces.
Collapse
Affiliation(s)
- Konrad Winnicki
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| | - Katarzyna Łudzik
- grid.10789.370000 0000 9730 2769Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, ul. Pomorska 163/165, 90-236 Łódź, Poland ,grid.33762.330000000406204119Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Aneta Żabka
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| | - Justyna Teresa Polit
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| | - Anna Zawisza
- grid.10789.370000 0000 9730 2769Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| | - Janusz Maszewski
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lódź, Poland
| |
Collapse
|
34
|
Fernandes F, Silkina A, Fuentes-Grünewald C, Wood EE, Ndovela VLS, Oatley-Radcliffe DL, Lovitt RW, Llewellyn CA. Valorising nutrient-rich digestate: Dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:197-208. [PMID: 32892096 DOI: 10.1016/j.wasman.2020.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Digestate produced from the anaerobic digestion of food and farm waste is primarily returned to land as a biofertiliser for crops, with its potential to generate value through alternative processing methods at present under explored. In this work, valorisation of a digestate resulting from the treatment of kitchen and food waste was investigated, using dilution, settlement and membrane processing technology. Processed digestate was subsequently tested as a nutrient source for the cultivation of Chlorella vulgaris, up to pilot-scale (800L). Dilution of digestate down to 2.5% increased settlement rate and induced release of valuable compounds for fertiliser usage such as nitrogen and phosphorus. Settlement, as a partial processing of digestate offered a physical separation of liquid and solid fractions at a low cost. Membrane filtration demonstrated efficient segregation of nutrients, with micro-filtration recovering 92.38% of phosphorus and the combination of micro-filtration, ultra-filtration, and nano-filtration recovering a total of 94.35% of nitrogen from digestate. Nano-filtered and micro-filtered digestates at low concentrations were suitable substrates to support growth of Chlorella vulgaris. At pilot-scale, the microalgae grew successfully for 28 days with a maximum growth rate of 0.62 day-1 and dry weight of 0.86 g⋅L-1. Decline in culture growth beyond 28 days was presumably linked to ammonium and heavy metal accumulation in the cultivation medium. Processed digestate provided a suitable nutrient source for successful microalgal cultivation at pilot-scale, evidencing potential to convert excess nutrients into biomass, generating value from excess digestate and providing additional markets to the anaerobic digestion sector.
Collapse
Affiliation(s)
- Fleuriane Fernandes
- Algal Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Alla Silkina
- Algal Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Claudio Fuentes-Grünewald
- Algal Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Eleanor E Wood
- Algal Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Vanessa L S Ndovela
- Algal Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Darren L Oatley-Radcliffe
- Energy Safety Research Institute (ESRI), Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| | - Robert W Lovitt
- Energy Safety Research Institute (ESRI), Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| | - Carole A Llewellyn
- Algal Research Group, Bioscience Department, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
35
|
Wang Z, Lee YY, Scherr D, Senger RS, Li Y, He Z. Mitigating nutrient accumulation with microalgal growth towards enhanced nutrient removal and biomass production in an osmotic photobioreactor. WATER RESEARCH 2020; 182:116038. [PMID: 32619685 DOI: 10.1016/j.watres.2020.116038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Forward osmosis (FO) has great potential for low energy consumption wastewater reuse provided there is no requirement for draw solutes (DS) regeneration. Reverse solute flux (RSF) can lead to DS build-up in the feed solution. This remains a key challenge because it can cause significant water flux reduction and lead to additional water quality problems. Herein, an osmotic photobioreactor (OsPBR) system was developed to employ fast-growing microalgae to consume the RSF nutrients. Diammonium phosphate (DAP) was used as a fertilizer DS, and algal biomass was a byproduct. The addition of microalgae into the OsPBR proved to maintain water flux while reducing the concentrations of NH4+-N, PO43--P and chemical oxygen demand (COD) in the OsPBR feed solution by 44.4%, 85.6%, and 77.5%, respectively. Due to the forward cation flux and precipitation, intermittent supplements of K+, Mg2+, Ca2+, and SO42- salts further stimulated algal growth and culture densities by 58.7%. With an optimal hydraulic retention time (HRT) of 3.33 d, the OsPBR overcame NH4+-N overloading and stabilized key nutrients NH4+-N at ∼ 2.0 mg L-1, PO43--P < 0.6 mg L-1, and COD < 30 mg L-1. A moderate nitrogen reduction stress resulted in a high carbohydrate content (51.3 ± 0.1%) among microalgal cells. A solids retention time (SRT) of 17.82 d was found to increase high-density microalgae by 3-fold with a high yield of both lipids (9.07 g m-3 d-1) and carbohydrates (16.66 g m-3 d-1). This study encourages further exploration of the OsPBR technology for simultaneous recovery of high-quality water and production of algal biomass for value-added products.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Yi-Ying Lee
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, USA
| | - David Scherr
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ryan S Senger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, USA
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
| |
Collapse
|
36
|
Kolackova M, Chaloupsky P, Cernei N, Klejdus B, Huska D, Adam V. Lycorine and UV-C stimulate phenolic secondary metabolites production and miRNA expression in Chlamydomonas reinhardtii. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122088. [PMID: 32045800 DOI: 10.1016/j.jhazmat.2020.122088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Studying stress pathways on the level of secondary metabolites that are found in very small concentration in the cells is complicated. In the algae, the role of individual metabolites (such as carotenoids, phenolic compounds, organic acids, and vitamins) and miRNAs that participate in plant's defence are very poorly understood during stressful conditions. Therefore, in the present experiment, the model organism Chlamydomonas reinhardtii was exposed to stress conditions (Lyc and UV-C irradiation) to detect these substances, even at very low concentrations. The purpose was to monitored changes at each response level with a future view to identifying their specific roles under different stress factors. In stress-treated cultures, numerous transcriptomic and metabolomic pathways were triggered in C. reinhardtii. Although Lyc significantly decreased the concentration of AA, suggesting that Lyc has a similar function in C. reinhardtii as in plants. The negative effect of UV-C radiation was based on the production of ROS and enhancement of antioxidant responses, resulting in increased levels of polyphenols and simple phenolic compounds. Both treatments did lead to extensive changes in transcript levels and miRNA expression patterns.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno, Czech Republic
| | - Borivoj Klejdus
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno, Czech Republic.
| |
Collapse
|
37
|
Veas R, Rojas-Pirela M, Castillo C, Olea-Azar C, Moncada M, Ulloa P, Rojas V, Kemmerling U. Microalgae extracts: Potential anti-Trypanosoma cruzi agents? Biomed Pharmacother 2020; 127:110178. [PMID: 32371317 DOI: 10.1016/j.biopha.2020.110178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Chagas disease, caused by the protozoan parasiteTrypanosoma cruzi, has no effective treatment available. On the other hand, microalgae are aquatic organisms that constitute an interesting reservoir of biologically active metabolites. Moreover, some species of green and red algae present anti-protozoan activity. Our aim was to study the antiparasitic effects of aqueous, methanolic and ethanolic extracts from different microalgae. METHODS AND RESULTS Our results show that the methanolic extracts of S. obliquus and T. suecica as well as the ethanolic extracts of C. reinhardtii and T. suecica present trypanocidal activity on the infective extracellular trypomastigotes and intracellular amastigotes. In addition, the ethanolic extract of C. reinhardtii potentiates the activity of the conventional antichagasic drug nifurtimox. In order to identify some potential compounds with trypanocidal activity, we performed a phytochemical screening analyzing the presence of phenolic compounds, pigments and terpenoids. CONCLUSION The different microalgae extracts, particularly the ethanolic extract ofC. reinhardtii, are promising potential candidates for the development of future natural antichagasic drugs.
Collapse
Affiliation(s)
- Rhonda Veas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Maura Rojas-Pirela
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Claudio Olea-Azar
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile 8380494, Chile
| | - Mauricio Moncada
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile; Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile 8380494, Chile
| | - Pablo Ulloa
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santiago de Chile 8831314, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile.
| |
Collapse
|
38
|
Nourbakhsh F, Pazouki M, Mohsennia M. Simultaneous Investigation of Three Effective Parameters of Substrate, Microorganism Type and Reactor Design on Power Generation in a Dual-Chamber Microbial Fuel Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020. [PMID: 33542932 PMCID: PMC7856404 DOI: 10.30498/ijb.2020.132869.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The use of Microbial Fuel Cells (MFCs) has been expanded in recent years due to their ability in producing bioelectricity and treating wastewater simultaneously. However, there are still some obstacles to use MFC on an industrial scale. Regardless of the restriction of electrodes applied in the electron transferring process, there are also some other factors having strong roles in reducing the power density of MFCs. OBJECTIVES In this paper, the effect of three categories of limiting factors such as kinds of microorganisms (Saccharomyces cerevisiae and Shewanella sp.), substrate type (Glucose and acetate), and features reactor components have been investigated on the power density generation. Simultaneous investigation of these parameters and demonstration of which parameters would induce more power density can help to improve the scale‑up of MFCs. MATERIALS AND METHODS Two types of MFCs with different designs were constructed and inoculated with pure cultures of Saccharomyces cerevisiae PTCC 5269 and Shewanella sp. The OCV (Open Circuit Voltage) and polarization curves of MFCs were measured when the quasi‑steady‑state condition was observed. RESULTS Based on results, utilizing acetate in the presence of both microorganisms led to approximately 60% higher power density compared to glucose. The comparison of maximum power densities of different reactor designs indicated an approximately 17-70 % increase of power generation. However, the resultant shows modification of reactor design even when other parameters are not optimal can increase power density more than three times. CONCLUSION Actually, reactor design has the most important role in the power density with the MFC while the effects of substrate and microorganism parameters are not inappreciable.
Collapse
Affiliation(s)
- Fatemeh Nourbakhsh
- NonMetallic Materials Research Group, Niroo Research Institute (NRI), End of Dadman Street, Tehran Province 1468613113, Iran,
Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Pazouki
- Energy Department, Materials and Energy Research Center, MeshkinDasht, Alborz Province, IR Iran
| | - Mohsen Mohsennia
- NonMetallic Materials Research Group, Niroo Research Institute (NRI), End of Dadman Street, Tehran Province 1468613113, Iran
| |
Collapse
|
39
|
Parallelisable non-invasive biomass, fitness and growth measurement of macroalgae and other protists with nephelometry. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Takahashi T. Routine Management of Microalgae Using Autofluorescence from Chlorophyll. Molecules 2019; 24:molecules24244441. [PMID: 31817244 PMCID: PMC6943654 DOI: 10.3390/molecules24244441] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
From a high-potential biomass perspective, microalgae have recently attracted considerable attention due to their extensive application in many areas. Although studies searching for algal species with extensive application potential are ongoing, technical development for their assessment and maintenance of quality in culture are also critical and inescapable challenges. Considering the sensitivity of microalgae to environmental changes, management of algal quality is one of the top priorities for industrial applications. Helping substitute for conventional methods such as manual hemocytometry, turbidity, and spectrophotometry, this review presents an image-based, automated cell counter with a fluorescence filter to measure chlorophyll autofluorescence emitted by algae. Capturing chlorophyll-bearing cells selectively, the device accomplished precise qualification of algal numbers. The results for cell density using the device with fluorescence detection were almost identical to those obtained using hemocytometry. The automated functions of the device allow operators to reduce working hours, for not only cell density analysis but simultaneous multiparametric analysis such as cell size and algal status based on chlorophyll integrity. The automated device boldly supports further development of algal application and might contribute to opening up more avenues in the microalgal industry.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Chemical Science and Engineering, National Institute of Technology (KOSEN), Miyakonojo College, Miyakonojo, Miyazaki 885-8567, Japan
| |
Collapse
|
41
|
Haberkorn I, Buchmann L, Hiestand M, Mathys A. Continuous nanosecond pulsed electric field treatments foster the upstream performance of Chlorella vulgaris-based biorefinery concepts. BIORESOURCE TECHNOLOGY 2019; 293:122029. [PMID: 31473378 DOI: 10.1016/j.biortech.2019.122029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Nanosecond pulsed electric field treatment (nsPEF) is an innovative, technology-driven, and resource-efficient approach to foster the upstream performance of microalgae-based biorefinery concepts to transform microalgae into economic more viable raw materials for the biobased industry. A processing window applying three treatments of 100 ns, 5 Hz, and 10 kV cm-1 to industrially relevant phototrophic Chlorella vulgaris in the early exponential growth phase significantly increased biomass yields by up to 17.53 ± 10.46% (p = 3.18 × 10-5). Treatments had limited effects on the carbon and pigment contents, but the protein content was decreased. The longest possible pulse width (100 ns) resulted in the highest biomass yield indicating underlying working mechanisms of enhanced cell proliferation based on intracellular and plasma membrane-related effects. The applicability to eukaryotes and prokaryotes, such as C. vulgaris and cyanobacteria highlights the possible impacts of nsPEF across multiple domains of the biobased industry relying on single-cell-based value-chains.
Collapse
Affiliation(s)
- Iris Haberkorn
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Leandro Buchmann
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Michèle Hiestand
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Alexander Mathys
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
42
|
Pahija E, Hui CW. A systematic study on the effects of dynamic environments on microalgae concentration. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Gaidarenko O, Sathoff C, Staub K, Huesemann MH, Vernet M, Hildebrand M. Timing is everything: Diel metabolic and physiological changes in the diatom Cyclotella cryptica grown in simulated outdoor conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Alves MI, Macagnan KL, Piecha CR, Torres MM, Perez IA, Kesserlingh SM, Rodrigues RDS, de Oliveira PD, Moreira ADS. Optimization of Ralstonia solanacearum cell growth using a central composite rotational design for the P(3HB) production: Effect of agitation and aeration. PLoS One 2019; 14:e0211211. [PMID: 30695062 PMCID: PMC6350987 DOI: 10.1371/journal.pone.0211211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
The intracellular accumulation of polyhydroxyalkanoates (PHAs) normally occurs after cell growth, during the second fermentation stage and under nutrient-limited conditions in the presence of a carbon excess. However, some microorganisms are able to accumulate PHAs as poly(3-hydroxybutyrate) [P(3HB)] during the first fermentation stage, the cell growth phase, without nutrient limitation, once they have been reported to utilize type II metabolism during the polymer accumulation phase. This study evaluated the effect of aeration and agitation on cell growth and P(3HB) accumulation in Ralstonia solanacearum RS, performed in a bioreactor for 24h at 32°C. A 22 central composite rotational design (CCRD) was used, with agitation (150 to 250 rpm) and aeration (0.3 to 1 vvm) as independent variables and optical density (OD600nm), dry cell weight (DCW), and P(3HB) yield as dependent variables. A significant polymer accumulation, until 70% of P(3HB), was observed, proving that R. solanacearum RS exhibited metabolism type II, regardless of the aeration process. The best results were obtained for 1 vvm and 250 rpm (+1, +1), with values of OD600nm (18.04) and DCW (4.82 g.L-1).
Collapse
Affiliation(s)
- Mariane Igansi Alves
- Department of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karine Laste Macagnan
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Rios Piecha
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Matheus Marques Torres
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Izadora Almeida Perez
- Center for Chemical, Pharmaceutical and Food Science, University Federal of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Science, University Federal of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Patrícia Diaz de Oliveira
- Department of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Center for Chemical, Pharmaceutical and Food Science, University Federal of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Angelita da Silveira Moreira
- Department of Food Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Center for Chemical, Pharmaceutical and Food Science, University Federal of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
45
|
Caballero-García M, Cortés-Robles G, Herrera-Yáñez MB, Alvarado-Lassman A, Manuel Méndez-Contreras J. Mitigation of greenhouse gases (CO 2) generated in the anaerobic digestion of physicochemical sludges using airlift photobioreactors operated with Chlorella spp. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:427-434. [PMID: 30663543 DOI: 10.1080/10934529.2018.1562809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study was to evaluate the mitigation of greenhouse gasses generated in the anaerobic digestion process of physicochemical sludges by evaluating the effect of CO2 supply and light intensity requirements on the growth of microalga Chlorella spp. and measuring the consumption of CO2. The best conditions at a laboratory scale were performed in an airlift photobioreactor (PBR) at pilot-scale plant (26 L) during 60 days with a CO2 supply of 2% v v-1 from an electric generator coupled to an anaerobic digestion of physicochemical sludge process. The maximum %CO2 consumed was 91.92% which was reached in the seventh supply cycle and biomass production was 2.18 g L-1. The results obtained showed that airlift-type PBRs are a suitable complement for anaerobic digestion of physicochemical sludge technologies in order to reduce emissions of greenhouse gases produced during the combustion of biogas.
Collapse
Affiliation(s)
- Margarita Caballero-García
- a División de Estudios de Posgrado e Investigación , Tecnológico Nacional de México/Orizaba , Orizaba , Mexico
| | - Guillermo Cortés-Robles
- a División de Estudios de Posgrado e Investigación , Tecnológico Nacional de México/Orizaba , Orizaba , Mexico
| | - María Betsabé Herrera-Yáñez
- a División de Estudios de Posgrado e Investigación , Tecnológico Nacional de México/Orizaba , Orizaba , Mexico
| | - Alejandro Alvarado-Lassman
- a División de Estudios de Posgrado e Investigación , Tecnológico Nacional de México/Orizaba , Orizaba , Mexico
| | | |
Collapse
|
46
|
Sachdeva N, Giambarresi G, Poughon L, Cabrera JC, Leroy B, Lasseur C, Dussap CG, Wattiez R. Assessment of transient effects of alternative nitrogen sources in continuous cultures of Arthrospira sp. using proteomic, modeling and biochemical tools. BIORESOURCE TECHNOLOGY 2018; 267:492-501. [PMID: 30041143 DOI: 10.1016/j.biortech.2018.07.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The ability of cyanobacterium Arthrospira sp. to assimilate waste nitrogen sources (ammonium and urea) makes it an important candidate for wastewater management. The aim of this work was to evaluate a cultivation approach based on continuous-transitional-feeding regime (nitrate-ammonium-nitrate) in a photobioreactor to assess the effects of ammonium salts on Arthrospira sp. PCC 8005 metabolism. Using a comprehensive biochemical, proteomic and stoichiometric profiling of biomass, this study demonstrated that the proposed cultivation approach could increase the proteins and pigments yields by 20-30%, compared to the respective yields obtained from wild-type Arthrospira sp. strain A light-energy-transfer model was used to predict the biomass and oxygen productivities of Arthrospira sp. cultivated under transitional-feeding regime. 95 ± 2% match was observed between the experimental and simulated productivities. This study thus opened new avenues for use of ammonium rich wastewater for commercial production of high value pigments, biofuel and bioplastics using Arthrospira sp.
Collapse
Affiliation(s)
- Neha Sachdeva
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium
| | - Giuseppe Giambarresi
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium
| | - Laurent Poughon
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, Aubière 63178, France
| | | | - Baptiste Leroy
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium
| | | | - Claude-Gilles Dussap
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, Aubière 63178, France
| | - Ruddy Wattiez
- Department of Proteomic and Microbiology, Research Institute of Biosciences, University of Mons, Mons 7000, Belgium.
| |
Collapse
|
47
|
Adamakis ID, Lazaridis PA, Terzopoulou E, Torofias S, Valari M, Kalaitzi P, Rousonikolos V, Gkoutzikostas D, Zouboulis A, Zalidis G, Triantafyllidis KS. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23018-23032. [PMID: 29859001 DOI: 10.1007/s11356-018-2368-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
A systematic study of the effect of nitrogen levels in the cultivation medium of Chlorella vulgaris microalgae grown in photobioreactor (PBR) on biomass productivity, biochemical and elemental composition, fatty acid profile, heating value (HHV), and composition of the algae-derived fast pyrolysis (bio-oil) is presented in this work. A relatively high biomass productivity and cell concentration (1.5 g of dry biomass per liter of cultivation medium and 120 × 106 cells/ml, respectively) were achieved after 30 h of cultivation under N-rich medium. On the other hand, the highest lipid content (ca. 36 wt.% on dry biomass) was obtained under N-depletion cultivation conditions. The medium and low N levels favored also the increased concentration of the saturated and mono-unsaturated C16:0 and C18:1(n-9) fatty acids (FA) in the lipid/oil fraction, thus providing a raw lipid feedstock that can be more efficiently converted to high-quality biodiesel or green diesel (via hydrotreatment). In terms of overall lipid productivity, taking in consideration both the biomass concentration in the medium and the content of lipids on dry biomass, the most effective system was the N-rich one. The thermal (non-catalytic) pyrolysis of Chlorella vulgaris microalgae produced a highly complex bio-oil composition, including fatty acids, phenolics, ethers, ketones, etc., as well as aromatics, alkanes, and nitrogen compounds (pyrroles and amides), originating from the lipid, protein, and carbohydrate fractions of the microalgae. However, the catalytic fast pyrolysis using a highly acidic ZSM-5 zeolite, afforded a bio-oil enriched in mono-aromatics (BTX), reducing at the same time significantly oxygenated compounds such as phenolics, acids, ethers, and ketones. These effects were even more pronounced in the catalytic fast pyrolysis of Chlorella vulgaris residual biomass (after extraction of lipids), thus showing for the first time the potential of transforming this low value by-product towards high added value platform chemicals.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis Adamakis
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Polykarpos A Lazaridis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelia Terzopoulou
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stylianos Torofias
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Valari
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Photeini Kalaitzi
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Vasilis Rousonikolos
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitris Gkoutzikostas
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Georgios Zalidis
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Konstantinos S Triantafyllidis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
48
|
Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, Li L, Dou S, Liu L, Liu G. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS One 2018; 13:e0199873. [PMID: 29969497 PMCID: PMC6029798 DOI: 10.1371/journal.pone.0199873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
To reveal growth properties of Chlorella sorokiniana UTEX 1230, four monosaccharides (glucose, fructose, galactose and xylose) were individually supplemented into medium as carbon sources for the cultivation of C. sorokiniana UTEX 1230. Supplementation with glucose increased OD750, biomass and lipid yield but decreased protein abundance per unit dry weight of biomass under all concentrations examined, the maximum OD750, biomass and lipid yield increased 2.04, 6.78 and 12.43 times, respectively, compared with autotrophic controls. A low concentration of glucose (<4 g/L) simultaneously promoted the biosynthesis of chlorophylls and protein abundance per unit culture volume, but decreased the lipid content per unit dry weight of biomass and all supplemented glucose can be exhausted within 7 days. Higher glucose concentrations (≥4 g/L) decreased the biosynthesis of chlorophylls and protein abundance per unit culture volume, but increased the lipid content per unit dry weight of biomass. In glucose supplemented scenario, C. sorokiniana UTEX 1230 growth was light-independent. Supplementation with fructose promoted C. sorokiniana UTEX 1230 growth to a much lesser extent compared with glucose, whereas supplementation with galactose had no effect and supplementation with xylose even inhibited growth. Our findings represent basic experimental data on the effect of monosaccharides and can serve as the basis for a robust cultivation system to increase biomass and lipid yield.
Collapse
Affiliation(s)
- Shuaijie Chai
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jianan Shi
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Teng Huang
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Yalu Guo
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jian Wei
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Meicen Guo
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Liyun Li
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Shijuan Dou
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Lijuan Liu
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Guozhen Liu
- Institute of Bioenergy, Hebei Agricultural University, Baoding, Hebei Province, China
- * E-mail:
| |
Collapse
|
49
|
Luo Y, Le-Clech P, Henderson RK. Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. WATER RESEARCH 2018; 138:169-180. [PMID: 29597119 DOI: 10.1016/j.watres.2018.03.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Membrane photobioreactor (MPBR) technology is an emerging algae-based wastewater treatment system. Given the limitations due to the general use of conventional analytical approaches in previous research, this study aims to provide a more comprehensive assessment of MPBR performance through advanced characterisation techniques. New performance parameters are also proposed, encompassing five important aspects of MPBR system efficiency (i.e. biomass concentration, composition, production, nutrient uptake and harvesting potential). Under initial standard operating conditions, performance parameters, such as cell count/MLSS ratio, cell viability, proportion of bacteria and biomass yield coefficient, were found to offer new insights into the operation of MPBR. These parameters were then used, for the first time, to systematically investigate MPBRs operated under different hydraulic retention times (HRTs) and solids retention times (SRTs). Applying shorter HRT and SRT was observed to increase cell viability and productivity (up to 0.25 × 107 cells/mL·d), as anticipated due to the higher nutrient loading. It was noted that the faster growing algal cells featured lower requirement for nutrients. On the other hand, extending HRT and SRT resulted in a more heterogeneous culture (lower cell count/MLSS ratio and higher proportion of bacteria), achieving a higher degree of autoflocculation and greater NO3-N and PO4-P removals of up to 79% and 78% respectively. The results demonstrate the trade-off between applying different HRTs and SRTs and the importance of fully characterising system performance to critically assess the advantages and limitations of chosen operating conditions.
Collapse
Affiliation(s)
- Yunlong Luo
- The BioMASS Lab, School of Chemical Engineering, UNSW Sydney, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia
| | - Rita K Henderson
- The BioMASS Lab, School of Chemical Engineering, UNSW Sydney, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia.
| |
Collapse
|
50
|
Katsumata M, Ikushima Y, Bennett K, Sato Y, Takeuchi A, Tatarazako N, Hakamata T. Validation of rapid algal bioassay using delayed fluorescence in an interlaboratory ring study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:842-851. [PMID: 28683428 DOI: 10.1016/j.scitotenv.2017.06.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Algal growth inhibition tests are generally used to determine the toxic effects of chemical substances on algae growth. In this report, we describe a rapid and simple test procedure using delayed fluorescence (DF) to determine chemical toxicities more rapidly than the conventional 72h or 96h growth inhibition tests. We assess the suitability of DF to serve as an alternative endpoint for biomass production and determine the variability by an interlaboratory ring study using a typical reference toxicant 3,5-dichlorophenol (DCP). The results suggest that DF has the potential to be used as a surrogate measure of photosynthetically-active biomass in the algal growth inhibition tests. The half maximal effective concentration (EC50) values of DCP determined from the DF inhibition test in 6h and 24h (1.2±0.3mg/L and 2.7±0.5mg/L respectively) are in reasonable agreement with the EC50 value of DCP determined by the 72h conventional method (1.8mg/L). In the interlaboratory ring study, the intralaboratory and interlaboratory variabilities of the EC50 of the DF inhibition test for a 24h exposure period are 12% and 28% respectively. DF intensity can be considered as a surrogate of living biomass with active photosynthesis, and we conclude that a 24h exposure duration better estimates the toxic effects measured using conventional surrogate measures for dry weight such as cell counts, volume, optical density or fluorescence.
Collapse
Affiliation(s)
| | - Yuko Ikushima
- Central Research Laboratory, Hamamatsu Photonics K.K., Japan
| | - Keith Bennett
- Central Research Laboratory, Hamamatsu Photonics K.K., Japan
| | - Yukiko Sato
- Central Research Laboratory, Hamamatsu Photonics K.K., Japan
| | - Ayano Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., Japan
| | | | | |
Collapse
|