1
|
Bryan JN, Maitz CA. Translational History and Hope of Immunotherapy of Canine Tumors. Clin Cancer Res 2024; 30:4272-4285. [PMID: 39042399 PMCID: PMC11444889 DOI: 10.1158/1078-0432.ccr-23-2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Companion dogs have served an important role in cancer immunotherapy research. Sharing similar environments and diets with humans, dogs naturally develop many of the same cancers. These shared exposures, coupled with dogs' diverse genetic makeup, make them ideal subjects for studying cancer therapies. Tumors like osteosarcoma, hemangiosarcoma, soft-tissue sarcoma, and non-Hodgkin lymphoma occur with greater frequency than their counterpart disease in humans. Canine brain tumors allow the study of therapy strategies with imaging, surgery, and radiotherapy equipment in veterinary patients with near-human geometry. Nonspecific immunostimulants, autologous and allogeneic vaccines, immune checkpoint inhibitors, and cellular therapies used in treating canine cancers have been tested in veterinary clinical trials. These treatments have not only improved outcomes for dogs but have also provided valuable insights for human cancer treatment. Advancements in radiation technology and the development of tools to characterize canine immune responses have further facilitated the ability to translate veterinary clinical trial results to human applications. Advancements in immunotherapy of canine tumors have directly supported translation to human clinical trials leading to approved therapies for patients with cancer around the world. The study of immunotherapy in dogs has been and will continue to be a promising avenue for advancing human cancer treatment.
Collapse
Affiliation(s)
- Jeffrey N. Bryan
- Comparative Oncology, Radiobiology, and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Charles A. Maitz
- Comparative Oncology, Radiobiology, and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
2
|
Mikiewicz M, Paździor-Czapula K, Fiedorowicz J, Otrocka-Domagała I. Expression of programmed cell death protein 1 and programmed cell death ligand 1 in feline injection site fibrosarcomas. Res Vet Sci 2024; 176:105350. [PMID: 38963993 DOI: 10.1016/j.rvsc.2024.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/31/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Feline injection site fibrosarcomas represent a unique challenge in veterinary oncology due to their association with injection sites and aggressive behaviour. The study explores the expression of immune checkpoints programmed cell death protein 1 and programmed cell death ligand 1 in the malignancy, aiming to unravel their potential significance in tumour progression. The study included 31, archival diagnostic specimens of feline fibrosarcomas, located in the common injection sites. The programmed cell death protein 1 and programmed cell death ligand 1 expression in tumour cells and tumour infiltrating lymphocytes were assessed by immunohistochemical methods. Programmed cell death protein 1 and programmed cell death ligand 1 expression were observed in 84% and 81% of cases, respectively. In tumour infiltrating lymphocytes the PD-1 expression was observed in 71% of cases. Notably, higher programmed cell death protein 1 expression correlated with tumour grade and heightened inflammation score, suggesting a potential association with tumour aggressiveness. Similarly, programmed cell death ligand 1 expression exhibited a positive correlation with tumour grade and inflammation score. The observed findings suggest a potential role for programmed cell death protein 1 and programmed cell death ligand 1 in tumour progression and immune response within the tumour microenvironment. Moreover, this study contributes to a deeper understanding of feline injection site fibrosarcoma pathogenesis, emphasizing the importance of considering immunological perspectives in developing effective treatment strategies for this challenging condition. Further investigations are warranted to advance our knowledge and refine therapeutic approaches for feline injection site fibrosarcoma management.
Collapse
Affiliation(s)
- Mateusz Mikiewicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 13, 10-719 Olsztyn, Poland.
| | - Katarzyna Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 13, 10-719 Olsztyn, Poland
| | - Joanna Fiedorowicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 13, 10-719 Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 13, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Oliveira-Lopes AF, Götze MM, Lopes-Neto BE, Guerreiro DD, Bustamante-Filho IC, Moura AA. Molecular and Pathobiology of Canine Mammary Tumour: Defining a Translational Model for Human Breast Cancer. Vet Comp Oncol 2024. [PMID: 39011576 DOI: 10.1111/vco.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Canine mammary tumours (CMT) have histological, clinicopathological and molecular resemblances to human breast cancer (HBC), positioning them as viable models for studying the human disease. CMT initiation and progression occur spontaneously in immune-competent animals, which challenge the suggested limitations of genetically modified mice, also enabling the evaluation of immunotherapies in canine patients. Dogs have shorter life expectancy compared to humans, and cancer advances more rapidly in this species. This makes it possible to perform studies about the clinical efficacy of new therapeutic modalities in a much shorter time than in human patients. The identification of biomarkers for tumour subtypes, progression and treatment response paves the way for the development of novel therapeutic and diagnostic approaches. This review addresses the similarities between CMT and HBC and the molecular signatures identified in CMT samples that have been explored to date. We proposed a detailed molecular exploration of the CMT stroma using state-of-the-art methods in transcriptomics and proteomics. Using CMT as an analog for HBC not only helps to understand the complexities of the disease, but also to advance comparative oncology to the next level to prove the claim of dogs as a valid translational model.
Collapse
Affiliation(s)
| | - Marcelo M Götze
- Graduate Studies Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, Brazil
| | | | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | | |
Collapse
|
4
|
Pimenta J, Prada J, Pires I, Cotovio M. Programmed-cell death ligand 1 (PD-L1) expression in equine sarcoids and squamous cell carcinoma. Open Vet J 2024; 14:1476-1482. [PMID: 39055760 PMCID: PMC11268900 DOI: 10.5455/ovj.2024.v14.i6.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Background Sarcoids and squamous cell carcinomas (SCCs) are the most concerning equine oncological diseases. Both tumors are challenging to manage due to their invasive behavior and high prevalence of recurrences. Furthermore, SCCs have a propensity to metastasize. Programed cell-death ligand 1 (PD-L1) has been one of the main therapeutic targets for immunotherapy in various human tumors. PD-L1 research in equine tumors is scarce and more efforts are necessary to understand the potential of this biomarker as a therapeutical target. Aim Evaluate the immunohistochemical expression of PD-L1 in equine sarcoids and SCC. Methods Thirteen equine tumors (seven sarcoids and 6 SCCs) were tested by immunohistochemistry and evaluated semi quantitatively to assess the percentage of positive cells. Results None of the sarcoids presented PD-L1 expression. Regarding SCC, 2 tumors presented <10% of labeled cells; 2 tumors presented 10%-25% of labeled cells and 2 tumors presented 25%-50% of labeled cells. There were statistically significant differences between sarcoids and SCC regarding the expression of PD-L1. Conclusion Our results point to the fact that PD-L1 could be a potential therapeutic target against SCC, and also encourage in-depth studies in this area, with larger sample sizes.
Collapse
Affiliation(s)
- José Pimenta
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- CIVG Vasco da Gama Research Center / EUVG – Vasco da Gama University School, Coimbra, Portugal
| | - Justina Prada
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Mário Cotovio
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| |
Collapse
|
5
|
Wang X, Zhou Y, Wang L, Haseeb A, Li H, Zheng X, Guo J, Cheng X, Yin W, Sun N, Sun P, Zhang Z, Yang H, Fan K. Fascin-1 Promotes Cell Metastasis through Epithelial-Mesenchymal Transition in Canine Mammary Tumor Cell Lines. Vet Sci 2024; 11:238. [PMID: 38921985 PMCID: PMC11209228 DOI: 10.3390/vetsci11060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Canine mammary tumors (CMTs) are the most common type of tumor in female dogs. In this study, we obtained a metastatic key protein, Fascin-1, by comparing the proteomics data of in situ tumor and metastatic cell lines from the same individual. However, the role of Fascin-1 in the CMT cell line is still unclear. Firstly, proteomics was used to analyze the differential expression of Fascin-1 between the CMT cell lines CHMm and CHMp. Then, the overexpression (CHMm-OE and CHMp-OE) and knockdown (CHMm-KD and CHMp-KD) cell lines were established by lentivirus transduction. Finally, the differentially expressed proteins (DEPs) in CHMm and CHMm-OE cells were identified through proteomics. The results showed that the CHMm cells isolated from CMT abdominal metastases exhibited minimal expression of Fascin-1. The migration, adhesion, and invasion ability of CHMm-OE and CHMp-OE cells increased, while the migration, adhesion, and invasion ability of CHMm-KD and CHMp-KD cells decreased. The overexpression of Fascin-1 can upregulate the Tetraspanin 4 (TSPAN4) protein in CHMm cells and increase the number of migrations. In conclusion, re-expressed Fascin-1 could promote cell EMT and increase lamellipodia formation, resulting in the enhancement of CHMm cell migration, adhesion, and invasion in vitro. This may be beneficial to improve female dogs' prognosis of CMT.
Collapse
Affiliation(s)
- Xin Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Ye Zhou
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Linhao Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Abdul Haseeb
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoliang Cheng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Zhenbiao Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Huizhen Yang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Kuohai Fan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| |
Collapse
|
6
|
Kocikowski M, Dziubek K, Węgrzyn K, Hrabal V, Zavadil-Kokas F, Vojtesek B, Alfaro JA, Hupp T, Parys M. Comparative characterization of two monoclonal antibodies targeting canine PD-1. Front Immunol 2024; 15:1382576. [PMID: 38779661 PMCID: PMC11110041 DOI: 10.3389/fimmu.2024.1382576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.
Collapse
Affiliation(s)
- Mikolaj Kocikowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Katarzyna Węgrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Vaclav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Maciej Parys
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
7
|
Chon E, Hendricks W, White M, Rodrigues L, Haworth D, Post G. Precision Medicine in Veterinary Science. Vet Clin North Am Small Anim Pract 2024; 54:501-521. [PMID: 38212188 DOI: 10.1016/j.cvsm.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Precision medicine focuses on the clinical management of the individual patient, not on population-based findings. Successes from human precision medicine inform veterinary oncology. Early evidence of success for canines shows how precision medicine can be integrated into practice. Decreasing genomic profiling costs will allow increased utilization and subsequent improvement of knowledge base from which to make better informed decisions. Utility of precision medicine in canine oncology will only increase for improved cancer characterization, enhanced therapy selection, and overall more successful management of canine cancer. As such, practitioners are called to interpret and leverage precision medicine reports for their patients.
Collapse
Affiliation(s)
- Esther Chon
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - William Hendricks
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Michelle White
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - Lucas Rodrigues
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - David Haworth
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Gerald Post
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA.
| |
Collapse
|
8
|
Liu Y, Zhao Z, Su S, Li Y, Chen N, He L, Dong M, Xu B, Zhang Z, Zhou Y, Zhu Z. Blockade of BTLA alone or in combination with PD-1 restores the activation and proliferation of CD8 + T cells during in vitro infection with NCP BVDV. Vet Microbiol 2024; 290:110004. [PMID: 38281324 DOI: 10.1016/j.vetmic.2024.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Bovine viral diarrhea virus (BVDV) infection can result in typical peripheral blood lymphopenia and immune dysfunction. However, the molecular mechanism underlying the onset of lymphopenia remains unclear. B and T lymphocyte attenuator (BTLA) is a novel immune checkpoint molecule that primarily inhibits activation and proliferation of T cells. Blockade of BTLA with antibodies can boost the proliferation and anti-viral immune functions of T cells. Nonetheless, the immunomodulatory effects of BTLA in CD8+ T cells during BVDV infection remain unknown. Therefore, BTLA expression was measured in bovine peripheral blood CD8+ T cells infected with BVDV in vitro. Furthermore, the effects of BTLA or PD-1 blockade on CD8+ T cell activation, proliferation, and anti-viral immunological activities were investigated, as well as expression of signaling molecules downstream of BTLA, both alone and in combination. The results demonstrated that BTLA and PD-1 mRNA and protein levels were considerably increased in CD8+ T cells infected with cytopathic and non-cytopathic (NCP) BVDV. Surprisingly, as compared to blockade of either BTLA or PD-1, blockade of both dramatically increased proliferation and expression of CD25 and p-EKR of CD8+ T cells infected with NCP BVDV. Furthermore, blockade of BTLA, but not PD-1, had no effect on BVDV replication or IFN-γ expression. These findings confirmed the immunomodulatory roles of BTLA during BVDV infection, as well as the synergistic role of BTLA and PD-1 in NCP BVDV infection, thereby providing new insights to promote activation and the anti-viral immunological activities of CD8+ T cells.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Engineering Research Center of Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China
| | - Zhibo Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Siyu Su
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yang Li
- Engineering Research Center of Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China
| | - Nannan Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Linru He
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Meiqi Dong
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Engineering Research Center of Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
| |
Collapse
|
9
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
10
|
Pimenta J, Prada J, Pires I, Cotovio M. Programmed Cell Death-Ligand 1 (PD-L1) Immunohistochemical Expression in Equine Melanocytic Tumors. Animals (Basel) 2023; 14:48. [PMID: 38200779 PMCID: PMC10778310 DOI: 10.3390/ani14010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Currently available treatments for equine melanocytic tumors have limitations, mainly due to mass localization and dimension, or the presence of metastases. Therefore, a search for new therapies is necessary. Programmed cell death-ligand 1 (PD-L1) is expressed by several tumors, blocking T cell-mediated elimination of the tumor cells by binding to programmed cell death protein 1 (PD-1). A novel therapeutic approach using PD-1/PD-L1 blockade in human melanoma resulted in tumor regression and prolonged tumor-free survival. This study aimed to evaluate the immunohistochemical expression of PD-L1 in equine melanocytic tumors. A total of 77 melanocytic tumors were classified as benign or malignant and evaluated by extension of labeling. A total of 59.7% of the tumors showed >50% of immunolabeled cells. Regarding malignant tumors, 24/38 tumors presented >50% of labeled cells, 13 tumors presented between 25-50% and one tumor presented <10%. Regarding benign tumors, 22/39 tumors presented >50% of labeled cells, nine tumors presented 25-50%, three tumors presented 10-25%, two tumors presented <10% and three tumors did not present expression. Our results suggest that PD-L1 blockade may be a potential target for immunotherapy in equine melanocytic tumors and that future clinical research trials into the clinical efficacy of the anti-PD-L1 antibody are necessary.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
11
|
Sirivisoot S, Boonkrai C, Wongtangprasert T, Phakham T, Muanwein P, Pisitkun T, Sawangmake C, Radtanakatikanon A, Rungsipipat A. Development and characterization of mouse anti-canine PD-L1 monoclonal antibodies and their expression in canine tumors by immunohistochemistry in vitro. Vet Q 2023; 43:1-9. [PMID: 37477617 PMCID: PMC10388796 DOI: 10.1080/01652176.2023.2240380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Immune escape is the hallmark of carcinogenesis. This widely known mechanism is the overexpression of immune checkpoint ligands, such as programmed cell death protein 1 and programmed death-ligand 1 (PD-1/PD-L1), leading to T cell anergy. Therefore, cancer immunotherapy with specific binding to these receptors has been developed to treat human cancers. Due to the lack of cross-reactivity of these antibodies in dogs, a specific canine PD-1/PD-L1 antibody is required. The aim of this study is to develop mouse anti-canine PD-L1 (cPD-L1) monoclonal antibodies and characterize their in vitro properties. Six mice were immunized with recombinant cPD-L1 with a fusion of human Fc tag. The hybridoma clones that successfully generated anti-cPD-L1 antibodies and had neutralizing activity were selected for monoclonal antibody production. Antibody properties were tested by immunosorbent assay, surface plasmon resonance, and immunohistochemistry. Four hybridomas were effectively bound and blocked to recombinant cPD-L1 and cPD-1-His-protein, respectively. Candidate mouse monoclonal antibodies worked efficiently on formalin-fixed paraffin-embedded tissues of canine cancers, including cutaneous T-cell lymphomas, mammary carcinomas, soft tissue sarcomas, squamous cell carcinomas, and malignant melanomas. However, functional assays of these anti-cPD-L1 antibodies need further investigation to prove their abilities as therapeutic drugs in dogs as well as their applications as prognostic markers.
Collapse
Affiliation(s)
- Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phijitra Muanwein
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center, Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Araya Radtanakatikanon
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Maekawa N, Konnai S, Hosoya K, Kim S, Kinoshita R, Deguchi T, Owaki R, Tachibana Y, Yokokawa M, Takeuchi H, Kagawa Y, Takagi S, Ohta H, Kato Y, Yamamoto S, Yamamoto K, Suzuki Y, Okagawa T, Murata S, Ohashi K. Safety and clinical efficacy of an anti-PD-L1 antibody (c4G12) in dogs with advanced malignant tumours. PLoS One 2023; 18:e0291727. [PMID: 37792729 PMCID: PMC10550157 DOI: 10.1371/journal.pone.0291727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been developed for canine tumour treatment, and pilot clinical studies have demonstrated their antitumour efficacy in dogs with oral malignant melanoma (OMM). Although ICIs have been approved for various human malignancies, their clinical benefits in other tumour types remain to be elucidated in dogs. Here, we conducted a clinical study of c4G12, a canine chimeric anti-PD-L1 antibody, to assess its safety and efficacy in dogs with various advanced malignant tumours (n = 12) at the Veterinary Teaching Hospital of Hokkaido University from 2018 to 2023. Dogs with digit or foot pad malignant melanoma (n = 4), osteosarcoma (n = 2), hemangiosarcoma (n = 1), transitional cell carcinoma (n = 1), nasal adenocarcinoma (n = 1), B-cell lymphoma (n = 1), or undifferentiated sarcoma (n = 2) were treated with 2 or 5 mg/kg c4G12 every 2 weeks. Treatment-related adverse events of any grade were observed in eight dogs (66.7%), including elevated aspartate aminotransferase (grade 3) in one dog (8.3%) and thrombocytopenia (grade 4) in another dog (8.3%). Among dogs with target disease at baseline (n = 8), as defined by the response evaluation criteria for solid tumours in dogs (cRECIST), one dog with nasal adenocarcinoma and another with osteosarcoma experienced a partial response (PR), with an objective response rate of 25.0% (2 PR out of 8 dogs; 95% confidence interval: 3.2-65.1%). These results suggest that c4G12 is safe and tolerable and shows antitumor effects in dogs with malignant tumours other than OMM. Further clinical studies are warranted to identify the tumour types that are most likely to benefit from c4G12 treatment.
Collapse
Affiliation(s)
- Naoya Maekawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Ryohei Kinoshita
- Cancer Research Unit, One Health Research Center, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Companion Animal Clinical Sciences, Companion Animal Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Ryo Owaki
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Yurika Tachibana
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Madoka Yokokawa
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | | | - Satoshi Takagi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hiroshi Ohta
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- Department of Companion Animal Clinical Sciences, Companion Animal Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yamamoto
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Keiichi Yamamoto
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Yasuhiko Suzuki
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, International Affairs Office, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Talavera Guillén NC, Barboza de Nardi A, Noleto de Paiva F, Dias QC, Pinheiro Fantinatti A, Fávaro WJ. Clinical Implications of Immune Checkpoints and the RANK/RANK-L Signaling Pathway in High-Grade Canine Mast Cell Tumors. Animals (Basel) 2023; 13:1888. [PMID: 37370399 DOI: 10.3390/ani13121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mast cell tumors (MCTs) are the most common malignant cutaneous tumors in dogs, and they present extremely variable biological behavior. The interaction between RANK, RANK-L, and immune checkpoints is frequently detected in the tumor microenvironment, and, together, they participate in every stage of cancer development. Thus, the aim of this study was to characterize the molecular profiles of PD-L1, CTLA-4, RANK/RANK-L signaling pathway, and IFN-γ in primary tumors and lymph node metastases. Formalin-fixed, paraffin-embedded slides of MCTs and metastatic lymph nodes of ten dogs were submitted to immunohistochemical investigations. The results demonstrated that the tumor microenvironment of the high-grade mast cell tumors showed moderate or intense immunolabeling of all proteins, and the lymph node metastases also showed moderate or intense immunolabeling of checkpoint proteins. In addition, MCTs larger than 3 cm were associated with intensified PD-L1 (p = 0.03) in metastatic lymph nodes and RANK-L (p = 0.049) immunoreactivity in the tumor. Furthermore, dogs with a survival time of less than 6 months showed higher PD-L1 immunoreactivity (p = 0.042). In conclusion, high-grade MCT is associated with an immunosuppressive microenvironment that exhibits elevated RANK/RANK-L signaling and enhanced immune checkpoint immunoreactivity, potentially facilitating intratumorally immune escape. These biomarkers show promise as clinical indicators of disease progression and might response to immunotherapy in dogs with high-grade MCTs, thus emphasizing their importance for guiding treatment decisions and improving outcomes.
Collapse
Affiliation(s)
- Noelia C Talavera Guillén
- Department of Veterinary Clinics and Surgery, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Andrigo Barboza de Nardi
- Department of Veterinary Clinics and Surgery, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Felipe Noleto de Paiva
- Department of Veterinary Clinics and Surgery, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Queila Cristina Dias
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | | | - Wagner José Fávaro
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| |
Collapse
|
14
|
Deguchi T, Maekawa N, Konnai S, Owaki R, Hosoya K, Morishita K, Nakamura M, Okagawa T, Takeuchi H, Kim S, Kinoshita R, Tachibana Y, Yokokawa M, Takagi S, Kato Y, Suzuki Y, Murata S, Ohashi K. Enhanced Systemic Antitumour Immunity by Hypofractionated Radiotherapy and Anti-PD-L1 Therapy in Dogs with Pulmonary Metastatic Oral Malignant Melanoma. Cancers (Basel) 2023; 15:cancers15113013. [PMID: 37296981 DOI: 10.3390/cancers15113013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Although immune checkpoint inhibitors (ICIs), such as the anti-programmed death-ligand 1 (PD-L1) antibody, have been developed for the treatment of canine malignant melanoma, desirable clinical efficacies have not been achieved. Recent studies in humans have suggested that radiation therapy (RT) combined with ICIs induces robust systemic antitumour immunity in patients with cancer. This study retrospectively examined the therapeutic efficacy of combination therapy (hypofractionated RT and anti-PD-L1 antibody [c4G12]) in dogs with pulmonary metastatic oral malignant melanoma. The intrathoracic clinical benefit rate (CBR)/median overall survival (OS) in the no RT (n = 20, free from the effect of RT), previous RT (n = 9, received RT ≤8 weeks prior to the first c4G12 dose), and concurrent RT (n = 10, c4G12 therapy within ±1 week of the first RT fraction) groups were 10%/185 days, 55.6%/283.5 days (p < 0.05 vs. no RT group), and 20%/129 days (p > 0.05 vs. no RT group), respectively. The adverse events were considered to be tolerable in the combination therapy. Thus, hypofractionated RT before the initiation of c4G12 therapy can be an effective approach for enhancing the therapeutic efficacy of immunotherapy, with acceptable safety profiles. Further prospective clinical studies are required to confirm the findings of this study.
Collapse
Affiliation(s)
- Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Owaki
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Motoji Nakamura
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Sangho Kim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Ryohei Kinoshita
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Yurika Tachibana
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Madoka Yokokawa
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0819, Japan
| | - Satoshi Takagi
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
15
|
Tiyamanee W, Konnai S, Okagawa T, Nojima Y, Ganbaatar O, Maekawa N, Hasebe R, Kagawa Y, Kato Y, Suzuki Y, Murata S, Ohashi K. Molecular characterization of immunoinhibitory factors PD-1/PD-L1 in sheep. Vet Immunol Immunopathol 2023; 261:110609. [PMID: 37201379 DOI: 10.1016/j.vetimm.2023.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Sheep have been used as a large animal experimental model for studying infectious diseases. However, due to a lack of staining antibodies and reagents, immunological studies on sheep have not progressed. The immunoinhibitory receptor programmed death-1 (PD-1) is expressed on T lymphocytes. The interaction of PD-1 with its ligand PD-ligand 1 (PD-L1) delivers inhibitory signals and impairs proliferation, cytokine production, and cytotoxicity of T cells. We previously reported that the PD-1/PD-L1 pathway was closely associated with T-cell exhaustion and disease progression in bovine chronic infections using anti-bovine PD-L1 monoclonal antibodies (mAbs). Furthermore, we found that blocking antibodies against PD-1 and PD-L1 restore T-cell functions and could be used in immunotherapy of cattle. However, the immunological role of the PD-1/PD-L1 pathway in chronic diseases of sheep remains unknown. In this study, we identified cDNA sequences of ovine PD-1 and PD-L1 and examined the cross-activity of anti-bovine PD-L1 mAbs against ovine PD-L1 as well as the expression of PD-L1 in ovine listeriosis. The amino acid sequences of ovine PD-1 and PD-L1 share a high degree of identity and similarity with homologs from ruminants and other mammalian species. Anti-bovine PD-L1 mAb recognized ovine PD-L1 on lymphocytes in the flow cytometric assay. Furthermore, an immunohistochemical staining confirmed the PD-L1 expression on macrophages in the brain lesions of ovine listeriosis. These findings indicated that our anti-PD-L1 mAb would be useful for analyzing the ovine PD-1/PD-L1 pathway. Further research is needed to determine the immunological role of PD-1/PD-L1 in chronic diseases such as BLV infection through experimental infection of sheep.
Collapse
Affiliation(s)
- Wisa Tiyamanee
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Xu S, Xie J, Wang S, Tang N, Feng J, Su Y, Li G. Reversing stage III oral adenocarcinoma in a dog treated with anti-canine PD-1 therapeutic antibody: a case report. Front Vet Sci 2023; 10:1144869. [PMID: 37252387 PMCID: PMC10219605 DOI: 10.3389/fvets.2023.1144869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Monoclonal antibody targeting programmed cell death-1 (PD-1) is one of the most promising treatment therapies for human cancers. Canine PD-1 antibodies used in clinical trials have also shown efficacy in treating canine cancers. An 11-year-old male intact border collie presented to us for evaluation of left cervical mass. Computed tomography (CT) examination revealed an irregular pharyngeal mass invading the surrounding soft tissue. Histological and immunohistochemical results were consistent with a diagnosis of adenocarcinoma, most likely originating from the minor salivary gland. An anti-canine PD-1 monoclonal antibody was administered. Two months after the initial treatment, the tumor reached partial remission and maintained as such for 6 months. Finally, the patient was euthanized due to reasons unrelated to cancer, with a survival time of 316 days. To our knowledge, this is the first report of response to PD-1 blockade treatment in canine adenocarcinoma.
Collapse
Affiliation(s)
- Shuo Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingshu Xie
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., Beijing, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Na Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junli Feng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Youhong Su
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Hambly JN, Ruby CE, Mourich DV, Bracha S, Dolan BP. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet Sci 2023; 10:336. [PMID: 37235419 PMCID: PMC10224056 DOI: 10.3390/vetsci10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.
Collapse
Affiliation(s)
- Jeilene N. Hambly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carl E. Ruby
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Dan V. Mourich
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Shay Bracha
- Biotesserae Inc., Corvallis, OR 97331, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Nishibori S, Kaneko MK, Nakagawa T, Nishigaki K, Kato Y, Igase M, Mizuno T. Development of anti-feline PD-1 antibody and its functional analysis. Sci Rep 2023; 13:6420. [PMID: 37095139 PMCID: PMC10126011 DOI: 10.1038/s41598-023-31543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 04/26/2023] Open
Abstract
Antibodies against immune checkpoint molecules restore T-cell function by inhibiting the binding of PD-1 and PD-L1 and have been shown to exert therapeutic effects in various human cancers. However, to date, no monoclonal antibody that recognizes feline PD-1 or PD-L1 has been reported, and there are many unknowns regarding the expression of immune checkpoint molecules and their potential as therapeutic targets in cats. Here we developed anti-feline PD-1 monoclonal antibody (1A1-2), and found that the monoclonal antibody against anti-canine PD-L1 (G11-6), which was previously developed in our laboratory, cross-reacted with feline PD-L1. Both antibodies inhibited the interaction of feline PD-1 and feline PD-L1 in vitro. These inhibitory monoclonal antibodies augmented the interferon-gamma (IFN-γ) production in activated feline peripheral blood lymphocytes (PBLs). Furthermore, for clinical application in cats, we generated a mouse-feline chimeric mAb by fusing the variable region of clone 1A1-2 with the constant region of feline IgG1 (ch-1A1-2). Ch-1A1-2 also augmented the IFN-γ production in activated feline PBLs. From this study, 1A1-2 is first anti-feline PD-1 monoclonal antibody with the ability to inhibit the interaction of feline PD-1 and PD-L1, and the chimeric antibody, ch-1A1-2 will be a beneficial therapeutic antibody for feline tumors.
Collapse
Affiliation(s)
- Shoma Nishibori
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
19
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
20
|
Enhancement of Vaccine-Induced T-Cell Responses by PD-L1 Blockade in Calves. Vaccines (Basel) 2023; 11:vaccines11030559. [PMID: 36992143 DOI: 10.3390/vaccines11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.
Collapse
|
21
|
Owaki R, Deguchi T, Konnai S, Maekawa N, Okagawa T, Hosoya K, Kim S, Sunaga T, Okumura M. Regulation of programmed death ligand 1 expression by interferon-γ and tumour necrosis factor-α in canine tumour cell lines. Vet Comp Oncol 2023; 21:279-290. [PMID: 36802270 DOI: 10.1111/vco.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Expression of programmed death ligand 1 (PD-L1) on tumour cells provides an immune evasion mechanism by inducing suppression of cytotoxic T cells. Various regulatory mechanisms of PD-L1 expression have been described in human tumours, however, little is known in canine tumours. To investigate whether inflammatory signalling is involved in PD-L1 regulation in canine tumours, the effects of interferon (IFN)-γ and tumour necrosis factor (TNF)-α treatment were examined in canine malignant melanoma cell lines (CMeC and LMeC) and an osteosarcoma cell line (HMPOS). The protein level of PD-L1 expression was upregulated by IFN-γ and TNF-α stimulation. Upon IFN-γ stimulation, all cell lines showed an increase in expression of PD-L1, signal transducer and activator of transcription (STAT)1, STAT3 and genes regulated by STAT activation. Upregulated expression of these genes was suppressed by the addition of a JAK inhibitor, oclacitinib. Contrastingly, upon TNF-α stimulation, all cell lines exhibited higher gene expression of the nuclear factor kappa B (NF-κB) gene RELA and genes regulated by NF-κB activation, whereas expression of PD-L1 was upregulated in LMeC only. Upregulated expression of these genes was suppressed by the addition of an NF-κB inhibitor, BAY 11-7082. The expression level of cell surface PD-L1 induced by IFN-γ and TNF-α treatment was reduced by oclacitinib and BAY 11-7082, respectively, indicating that upregulation of PD-L1 expression by IFN-γ and TNF-α stimulation is regulated via the JAK-STAT and NF-κB signalling pathways, respectively. These results provide insights into the role of inflammatory signalling in PD-L1 regulation in canine tumours.
Collapse
Affiliation(s)
- Ryo Owaki
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Nanamiya R, Ohishi T, Suzuki H, Mizuno T, Yoshikawa T, Asano T, Tanaka T, Kaneko MK, Kato Y. Defucosylated Mouse-Dog Chimeric Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody (H77Bf) Exerts Antitumor Activities in Mouse Xenograft Models of Canine Osteosarcoma. Monoclon Antib Immunodiagn Immunother 2023; 42:27-33. [PMID: 36399552 DOI: 10.1089/mab.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) has been studied in many human cancer types, and its overexpression and/or gene mutation contribute to the poor prognosis. Therefore, HER2 is an important therapeutic target in various cancer types, including breast and gastric cancers. We previously developed an anti-HER2 monoclonal antibody (mAb), H2Mab-77 (mouse IgG1, kappa), which detects HER2 and dog HER2 (dHER2) with high sensitivity and specificity. In this study, we produced a defucosylated mouse-dog chimeric anti-HER2 mAb (H77Bf), and investigated the reactivity against canine osteosarcoma D-17 cells by flow cytometry. Furthermore, we showed that H77Bf exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against D-17 cells in vitro and exhibited the potent antitumor activity in vivo. These results suggest that H77Bf exerts antitumor effects against dHER2-expressing canine tumors and could be valuable as part of an antibody treatment regimen for them.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
23
|
Grimaldi C, Ibraghimov A, Kiessling A, Rattel B, Ji C, Fuller CL, Brennan FR, Regenass-Lechner F, Shenton J, Price KD, Piché MS, Steeves MA, Prell R, Dudal S, Kronenberg S, Freebern W, Blanset D. Current nonclinical approaches for immune assessments of immuno-oncology biotherapeutics. Drug Discov Today 2023; 28:103440. [PMID: 36375739 DOI: 10.1016/j.drudis.2022.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Harnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities. Challenges and limitations of knowledge and models are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sherri Dudal
- Roche Pharmaceutical Research and Early Development, United States
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, United States
| | | | - Diann Blanset
- Boehringer Ingelheim Pharmaceuticals, Inc., United States.
| |
Collapse
|
24
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
25
|
Maekawa N, Konnai S, Asano Y, Otsuka T, Aoki E, Takeuchi H, Kato Y, Kaneko MK, Yamada S, Kagawa Y, Nishimura M, Takagi S, Deguchi T, Ohta H, Nakagawa T, Suzuki Y, Okagawa T, Murata S, Ohashi K. Molecular characterization of feline immune checkpoint molecules and establishment of PD-L1 immunohistochemistry for feline tumors. PLoS One 2023; 18:e0281143. [PMID: 36701405 PMCID: PMC9879432 DOI: 10.1371/journal.pone.0281143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Spontaneous tumors are a major cause of death in cats. Treatment of human tumors has progressed dramatically in the past decade, partly due to the success of immunotherapies using immune checkpoint inhibitors, such as anti-programmed death 1 (PD-1) and anti-PD-ligand 1 (PD-L1) antibodies. However, little is known about the PD-1 pathway and its association with tumor disease in cats. This study investigated the applicability of anti-PD-1/PD-L1 therapy in feline tumors. We first determined the complete coding sequence of feline PD-L1 and PD-L2, and found that the deduced amino acid sequences of feline PD-L1/PD-L2 share high sequence identities (66-83%) with orthologs in other mammalian species. We prepared recombinant feline PD-1, PD-L1, and PD-L2 proteins and confirmed receptor-ligand binding between PD-1 and PD-L1/PD-L2 using flow cytometry. Next, we established an anti-feline PD-L1 monoclonal antibody (clone CL1Mab-7) to analyze the expression of PD-L1. Flow cytometry using CL1Mab-7 revealed the cell surface expression of PD-L1 in a feline macrophage (Fcwf-4) and five mammary adenocarcinoma cell lines (FKNp, FMCm, FYMp, FONp, and FONm), and showed that PD-L1 expression was upregulated by interferon-γ stimulation. Finally, immunohistochemistry using CL1Mab-7 also showed PD-L1 expression in feline squamous cell carcinoma (5/5, 100%), mammary adenocarcinoma (4/5, 80%), fibrosarcoma (5/5, 100%), and renal cell carcinoma (2/2, 100%) tissues. Our results strongly encourage further investigations of the PD-1/PD-L1 pathway as a potential therapeutic target for feline tumors.
Collapse
Affiliation(s)
- Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Yumie Asano
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Otsuka
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Eri Aoki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Satoshi Takagi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Companion Animal Internal Medicine, Department of Companion Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroshi Ohta
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Companion Animal Internal Medicine, Department of Companion Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
27
|
The PD-1/PD-L1 Pathway: A Perspective on Comparative Immuno-Oncology. Animals (Basel) 2022; 12:ani12192661. [PMID: 36230402 PMCID: PMC9558501 DOI: 10.3390/ani12192661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway inhibits the function of activated immune cells. This mediates immune tolerance and prevents immune-mediated tissue destruction. The malfunction of this pathway is involved in the pathogenesis of chronic infections, autoimmunity, and cancer. The PD-1/PD-L1 pathway is an excellent example of the research benefits of comparative pathology and attests to the importance of the “one health one medicine” concept. Pioneering research was mainly focused on the examination of cells and tissues of human and mouse origin. It mainly revealed that PD-L1-positive tumor cells can paralyze PD-1-bearing immune cells, which prevents immunological destruction of cancer cells. This led to a major breakthrough in cancer treatment, i.e., the use of antibodies that block the interaction of these molecules and restore anti-cancer immune defense (immune checkpoint therapy). Further studies provided more detailed information on the tissue-specific context and fine-tuning of this pathway. The most recent research has extended the investigations to the examination of several animal species with the aim of improving disease diagnostics and treatment for certain animal diseases, in particular cancer, which is a major cause of disease and death in companion animals. Abstract The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway mainly attracted attention in immuno-oncology, leading to the development of immune checkpoint therapy. It has, however, much broader importance for tissue physiology and pathology. It mediates basic processes of immune tolerance and tissue homeostasis. In addition, it is involved in the pathogenesis of chronic infectious diseases, autoimmunity, and cancer. It is also an important paradigm for comparative pathology as well as the “one health one medicine” concept. The aim of this review is to provide an overview of novel research into the diverse facets of the PD-1/PD-L1 pathway and to give insights into its fine-tuning homeostatic role in a tissue-specific context. This review details early translational research from the discovery phase based on mice as animal models for understanding pathophysiological aspects in human tissues to more recent research extending the investigations to several animal species. The latter has the twofold goal of comparing this pathway between humans and different animal species and translating diagnostic tools and treatment options established for the use in human beings to animals and vice versa.
Collapse
|
28
|
Costa VR, Soileau AM, Liu CC, Moeller CE, Carossino M, Langohr IM, Withers SS. Exploring the association of intratumoral immune cell infiltrates with histopathologic grade in canine mast cell tumors. Res Vet Sci 2022; 147:83-91. [PMID: 35490489 PMCID: PMC11293894 DOI: 10.1016/j.rvsc.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Cutaneous canine mast cell tumors (ccMCTs) vary in their biological behavior, treatment, and prognosis, based on their grade. Immune cell infiltration has been associated with prognosis and response to treatments in some human cancers, and immune-targeting therapeutics are increasingly being explored in veterinary oncology. However, currently little is known about the tumor microenvironment (TME) in ccMCTs. Therefore, the objective of this study was to determine the prevalence of T lymphocytes, T regulatory lymphocytes, PD-1+ cells and macrophages in low- and high-grade ccMCTs. Thirty low-grade and 20 high-grade formalin-fixed paraffin-embedded ccMCT samples were included. Immunohistochemistry (IHC) was performed to detect CD3, FOXP3, Iba1, and PD-1 on sequential sections. Three 400x fields with the highest numbers of CD3+ cells were identified for each tumor. The percentage of CD3+, FOXP3+, and Iba1+ cells, and the number of PD-1+ cells, was quantified in each of these three "hot-spot" fields using ImageJ software. Iba1 expression was significantly greater in high-grade compared to low-grade ccMCTs (mean = 12.5% vs. 9.6%, p = 0.043). PD-1 expression was low overall, but a significantly higher number of PD-1-expressing cells was observed in high-grade ccMCTs (median 1 vs. 0, p = 0.001). No significant difference was noted in CD3 and FOXP3 expression between ccMCT grades. Macrophages and PD-1+ cells were more frequent in high-grade, compared to low-grade ccMCTs. Further studies are needed to define the role of macrophages and rare PD-1+ cells in high-grade ccMCTs.
Collapse
Affiliation(s)
- Victoria R Costa
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Aimee M Soileau
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Cambri E Moeller
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana State University, Department of Pathobiological Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA; Louisiana State University, Louisiana Animal Disease Diagnostic Laboratory (LADDL), River Rd, #1043, Baton Rouge, LA 70803, USA
| | - Ingeborg M Langohr
- Louisiana State University, Department of Pathobiological Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA; Louisiana State University, Louisiana Animal Disease Diagnostic Laboratory (LADDL), River Rd, #1043, Baton Rouge, LA 70803, USA
| | - Sita S Withers
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA.
| |
Collapse
|
29
|
Riondato F, Colitti B, Rosati S, Sini F, Martini V. A method to test antibody cross-reactivity toward animal antigens for flow cytometry. Cytometry A 2022; 103:455-457. [PMID: 36161760 DOI: 10.1002/cyto.a.24691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022]
Abstract
The availability of cross-reacting antibodies and/or of antibodies working in flow cytometry is a major issue in the veterinary field. One of the main problems is the availability of certain positive controls. With this brief communication, we report an method to quickly screen a wide number of products without the need to look for positive biological samples. We propose this approach as a first step to select the best antibodies to test on biological specimens.
Collapse
Affiliation(s)
- Fulvio Riondato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Sini
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Valeria Martini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Ramanayake Mudiyanselage TM, Fujiwara D, Michigami M, Watanabe S, Ye Z, Uyeda A, Kanegi R, Hatoya S, Fujii I, Sugiura K. Generation of molecular-targeting helix-loop-helix peptides for inhibition of the interaction between cytotoxic T-lymphocyte-associated protein 4 and B7 in the dog. J Vet Med Sci 2022; 84:1101-1107. [PMID: 35753760 PMCID: PMC9412056 DOI: 10.1292/jvms.21-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blocking the interaction between CD28 and B7 by cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a potent immune checkpoint that prevents damage to host tissues from excessive immune responses. However, it also significantly diminishes immune responses against cancers and allows cancer cell growth. This study found that recombinant (r) human (h) CTLA-4 specifically binds to canine dendritic cells (DCs) and suppresses the responses of canine T cells to allogeneic DCs. ERY2-4, a peptide targeting rhCTLA-4 selected from a yeast-displayed library of helix-loop-helix (HLH) peptides and improved to have a binding affinity to rhCTLA-4 as strong as that of rhB7, inhibited the binding of rhCTLA-4 to canine DCs. Furthermore, the targeting peptide significantly enhanced the response of canine T cells to allogeneic DCs. These results suggest that the CTLA-4-targeting peptide enhances canine T cell activity by blocking the interaction between canine CTLA-4 on T cells and canine B7 on DCs. This study demonstrates the generation of a new type of immune checkpoint inhibitor, which may be applicable to cancer therapy in dogs.
Collapse
Affiliation(s)
- Tharanga Mr Ramanayake Mudiyanselage
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University.,Present address: Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna
| | - Daisuke Fujiwara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| | - Masataka Michigami
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| | - Shunichi Watanabe
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Zhengmao Ye
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| | - Atsuko Uyeda
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| | - Ryoji Kanegi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Ikuo Fujii
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
31
|
Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, Sun T. Immune checkpoint inhibitor-based therapy for advanced clear cell renal cell carcinoma: A narrative review. Int Immunopharmacol 2022; 110:108900. [PMID: 35753122 DOI: 10.1016/j.intimp.2022.108900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
The prognosis for advanced clear cell renal cell carcinoma (ccRCC) is not satisfactory, even though its treatment has evolved rapidly over the past 20 years. Systemic ccRCC treatment options mainly involve antiangiogenic therapy, immune checkpoint blockade, or a combination of these therapies, and as more clinical evidence becomes available, immune checkpoint inhibitors (ICIs) are increasingly dominant. Conventional ICIs lead to the restoration of T-cell activation and a reduction in T-cell depletion by specifically blocking programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen 4 (CTLA-4), ultimately enhancing the antitumor immune response. There is no doubt that these therapies have achieved some clinical efficacy in the overall ccRCC population, but response rates and durability remain a great challenge. Therefore, novel immune checkpoints or new combination therapeutic strategies based on ICIs continue to be sought and developed. This review will provide a comprehensive overview of ICI-based therapeutic strategies in advanced ccRCC, including their mechanisms of action and the latest clinical evidence.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Si-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Feng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
32
|
Maekawa N, Konnai S, Asano Y, Sajiki Y, Deguchi T, Okagawa T, Watari K, Takeuchi H, Takagi S, Hosoya K, Kim S, Ohta H, Kato Y, Suzuki Y, Murata S, Ohashi K. Exploration of serum biomarkers in dogs with malignant melanoma receiving anti-PD-L1 therapy and potential of COX-2 inhibition for combination therapy. Sci Rep 2022; 12:9265. [PMID: 35665759 PMCID: PMC9166720 DOI: 10.1038/s41598-022-13484-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) such as anti-PD-L1 antibodies are widely used to treat human cancers, and growing evidence suggests that ICIs are promising treatments for canine malignancies. However, only some canine oral malignant melanoma (OMM) cases respond to ICIs. To explore biomarkers predictive of survival in dogs with pulmonary metastatic OMM receiving the anti-PD-L1 antibody c4G12 (n = 27), serum concentrations of prostaglandin E2 (PGE2), cytokines, chemokines, and growth factors were measured prior to treatment initiation. Among 12 factors tested, PGE2, interleukin (IL)-12p40, IL-8, monocyte chemotactic protein-1 (MCP-1), and stem cell factor (SCF) were higher in OMM dogs compared to healthy dogs (n = 8). Further, lower baseline serum PGE2, MCP-1, and vascular endothelial growth factor (VEGF)-A concentrations as well as higher IL-2, IL-12, and SCF concentrations predicted prolonged overall survival. These observations suggest that PGE2 confers resistance against anti-PD-L1 therapy through immunosuppression and thus is a candidate target for combination therapy. Indeed, PGE2 suppressed IL-2 and interferon (IFN)-γ production by stimulated canine peripheral blood mononuclear cells (PBMCs), while inhibition of PGE2 biosynthesis using the COX-2 inhibitor meloxicam in combination with c4G12 enhanced Th1 cytokine production by PBMCs. Thus, serum PGE2 may be predictive of c4G12 treatment response, and concomitant use of COX-2 inhibitors may enhance ICI antitumor efficacy.
Collapse
Affiliation(s)
- Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yumie Asano
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Takagi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Veterinary Surgery 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ohta
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Pinard CJ, Hocker SE, Poon AC, Inkol JM, Matsuyama A, Wood RD, Wood GA, Woods JP, Mutsaers AJ. Evaluation of PD-1 and PD-L1 expression in canine urothelial carcinoma cell lines. Vet Immunol Immunopathol 2021; 243:110367. [PMID: 34923192 DOI: 10.1016/j.vetimm.2021.110367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Urothelial carcinoma (UC) is the most common urinary tumor in dogs and despite combinational therapies, only modest improvements in survival have been achieved in recent years. Given the utility of monoclonal antibodies against PD-1 and PD-L1 in human UC, we evaluated the protein and mRNA expression in three established canine urothelial carcinoma cell lines. Flow cytometry and western blot analysis confirmed cell line expression of both molecules in varying degrees. Reverse transcription PCR (RT-PCR) documented mRNA expression in all three cell lines for both PD-1 and PD-L1. Fluorescence microscopy was consistent with strong PD-1 and PD-L1 expression in the canine cell lines and was in line with previous human literature. Importantly, the flow cytometry work described in this study revealed higher cell intrinsic PD-1 expression in these cell lines which may have implications for tumor behavior and potential treatment opportunities in the future. Further work is necessary to determine the expression patterns in canine UC and potential for benefit with immunotherapy directed against PD-1 and PD-L1.
Collapse
Affiliation(s)
- Christopher J Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Samuel E Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66502, USA
| | - Andrew C Poon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordon M Inkol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Arata Matsuyama
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
34
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
35
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
36
|
Pinard CJ, Stegelmeier AA, Bridle BW, Mutsaers AJ, Wood RD, Wood GA, Woods JP, Hocker SE. Evaluation of lymphocyte-specific programmed cell death protein 1 receptor expression and cytokines in blood and urine in canine urothelial carcinoma patients. Vet Comp Oncol 2021; 20:427-436. [PMID: 34797014 DOI: 10.1111/vco.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Urothelial carcinoma (UC) is the most common urinary tumour in dogs. Despite a range of treatment options, prognosis remains poor in dogs. In people, breakthroughs with checkpoint inhibitors have established new standards of care for muscle-invasive bladder cancer patients and elevated levels of programmed cell death protein 1 (PD-1) suggest immune checkpoint blockade may be a novel target for therapy. The goal of this study was to determine if canine UC patients express elevated levels of lymphocyte-specific PD-1 and/or urinary cytokine biomarkers compared to healthy dogs. Paired blood and urine were evaluated in 10 canine UC patients, five cystitis patients and 10 control dogs for lymphocyte-specific PD-1 expression via flow cytometry and relative cytokine expression. In UC patients, PD-1 expression was significantly elevated on CD8+ lymphocytes in urine samples. UC patients had a higher CD4:CD8 ratio in their urine compared to healthy dogs, however, there was no significant variation in the CD8:Treg ratio between any group. Cystitis patients had significantly elevated levels of CD4+ T cells, CD8+ T cells and Tregs in their blood samples compared to UC patients and healthy dogs. Cytokine analysis demonstrated significant elevations in urinary cytokines (granulocyte-macrophage colony-stimulating factor, interferon-gamma [IFN-γ], interleukin (IL)-2, IL-6 IL-7, IL-8 and IL-15, IP-10, KC-like, IL-18, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha). Several of these cytokines have been previously correlated with both lymphocyte-specific PD-1 expression (IFN-γ, IL-2, IL-7 and IL-15) in muscle-invasive urothelial carcinoma in humans. Our results provide evidence of urinary lymphocyte PD-1 expression and future studies could elucidate whether veterinary UC patients will respond favourably to anti-PD-1 immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Christopher J Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - R Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samuel E Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
37
|
Song DW, Ro WB, Park HM. Evaluation of circulating PD-1 and PD-L1 as diagnostic biomarkers in dogs with tumors. J Vet Sci 2021; 22:e75. [PMID: 34553519 PMCID: PMC8460464 DOI: 10.4142/jvs.2021.22.e75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background Programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) have important roles in tumor evasion of the immune system. Objectives This study aimed to assess the diagnostic utility of circulating PD-1 and PD-L1 levels in healthy dogs and dogs with tumors. Methods Circulating PD-1 and PD-L1 levels in the serum of 71 dogs with tumors were compared with those of 52 healthy dogs by performing enzyme-linked immunosorbent assay (ELISA). Results The ELISA results revealed higher circulating PD-1 and PD-L1 levels in dogs with tumors (2.9 [2.2–3.7] ng/mL; median [IQR] and 2.4 [1.4–4.4] ng/mL, respectively) than in healthy dogs (2.4 [1.9–3.0] ng/mL; p = 0.012 and 1.4 [0.9–2.1] ng/mL; p < 0.001, respectively). Especially, there was a significant difference in circulating PD-1 levels between healthy dogs and dogs with malignant epithelial tumors (2.4 [1.9–3.0] ng/mL and 3.1 [2.6–4.4] ng/mL, respectively; p < 0.01). In addition, there was a significant difference in circulating PD-L1 levels between healthy dogs and dogs with lymphomas (1.4 [0.9–2.1] ng/mL and 2.7 [1.6–5.8] ng/mL, respectively; p < 0.001). Conclusion This study indicates that circulating PD-1 and PD-L1 have potential as tumor diagnostic biomarkers in dogs with tumors.
Collapse
Affiliation(s)
- Doo-Won Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Woong-Bin Ro
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee-Myung Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
Liu Y, Wu C, Chen N, Li Y, Fan C, Zhao S, Bai T, Zhao Z, Chen J, Su S, Zhang Z, Zhou Y, Zhu Z. PD-1 Blockade Restores the Proliferation of Peripheral Blood Lymphocyte and Inhibits Lymphocyte Apoptosis in a BALB/c Mouse Model of CP BVDV Acute Infection. Front Immunol 2021; 12:727254. [PMID: 34552590 PMCID: PMC8450576 DOI: 10.3389/fimmu.2021.727254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Acute infection of bovine viral diarrhea virus (BVDV) is associated with immune dysfunction and can cause peripheral blood lymphopenia and lymphocyte apoptosis. Our previous study has confirmed that programmed death-1 (PD-1) blockade inhibits peripheral blood lymphocytes (PBL) apoptosis and restores proliferation and anti-viral immune functions of lymphocytes after BVDV infection in vitro. However, the situation in vivo remains to be further studied and confirmed. Therefore, in this study, we established a BALB/c mouse model of acute BVDV infection with cytopathic (CP) BVDV (strain NADL) and non-cytopathic (NCP) BVDV (strain NY-1). Then, we examined the mRNA and protein levels of PD-1 and programmed death-ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC) from BVDV-infected mice and analyzed the effects of PD-1 blockade on the proportions of CD3+, CD4+, and CD8+ T cell subsets, the apoptosis and proliferation of PBL, and the production of IL-2 and IFN-γ. We found that leukopenia, lymphocytopenia, and thrombocytopenia were developed in both CP and NCP BVDV-infected mice at day 7 of post-infection. The mRNA and protein expression of PD-1 and PD-L1 were significantly upregulated in CP and NCP BVDV-infected mice. Moreover, PD-1/PD-L1 upregulation was accompanied by leukopenia and lymphopenia. Additionally, PD-1 blockade inhibited PBL apoptosis and virus replication, restored the proportions of CD3+, CD4+, and CD8+ T cell subsets, and increased IFN-γ production and p-ERK expression in BVDV-infected mice. However, blocking PD-1 did not significantly affect PBL proliferation and IL-2 production in NCP BVDV-infected mice. Our findings further confirmed the immunomodulatory role of PD-1 in peripheral blood lymphocytopenia in vivo and provided a scientific basis for exploring the molecular mechanism of immune dysfunction caused by acute BVDV infection.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Chenhua Wu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Nannan Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Yang Li
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- College of Engineering, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Chunling Fan
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Shangqi Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zhibo Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Jinwei Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Siyu Su
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, HeiLongJiang BaYi Agricultural University, Daqing, China
| |
Collapse
|
39
|
Tierce R, Martin T, Hughes KL, Harrison L, Swancutt KL, Rao S, Leary D, LaRue SM, Boss MK. Response of Canine Soft Tissue Sarcoma to Stereotactic Body Radiotherapy. Radiat Res 2021; 196:587-601. [PMID: 34473832 DOI: 10.1667/rade-20-00271.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Canine soft tissue sarcoma (STS) has served as a preclinical model for radiation, hyperthermia, experimental therapeutics, and tumor microenvironmental research for decades. Stereotactic body radiotherapy (SBRT) demonstrates promising results for the control of various tumors in human and veterinary medicine; however, there is limited clinical data for the management of STS with SBRT. In this retrospective study, we aimed to define overall efficacy and toxicity of SBRT for the treatment of macroscopic canine STS to establish this preclinical model for comparative oncology research. Fifty-two canine patients met inclusion criteria. Total radiation dose prescribed ranged from 20-50 Gy delivered in 1-5 fractions. Median progression-free survival time (PFST) was 173 days and overall survival time (OST) 228 days. Best overall response was evaluable in 46 patients, with 30.4% responding to treatment (complete response n = 3; partial response n = 11). For responders, OST significantly increased to 475 days vs. 201 days (P = 0.009). Prognostic factors identified by multivariable Cox regressions included size of tumor and metastasis at presentation. Dogs were 3× more likely to progress (P = 0.009) or 3.5× more likely to experience death (P = 0.003) at all times of follow up if they presented with metastatic disease. Similarly, every 100-cc increase in tumor volume resulted in a 5% increase in the risk of progression (P = 0.002) and death (P = 0.001) at all times of follow up. Overall, 30.8% of patients developed acute toxicities, 7.7% grade 3; 28.8% of patients developed late toxicities, 11.5% grade 3. Increased dose administered to the skin significantly affected toxicity development. SBRT serves as a viable treatment option to provide local tumor control for canine macroscopic STS, particularly those with early-stage disease and smaller tumors. The results of this study will help to define patient inclusion criteria and to set dose limits for preclinical canine STS trials involving SBRT.
Collapse
Affiliation(s)
- Rebecca Tierce
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado.,Division of Comparative Medicine, New York University Langone Medical Center, New York, New York
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Kelly L Hughes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Lauren Harrison
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Katy L Swancutt
- Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Susan M LaRue
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
40
|
Dias JNR, André AS, Aguiar SI, Gil S, Tavares L, Aires-da-Silva F. Immunotherapeutic Strategies for Canine Lymphoma: Changing the Odds Against Non-Hodgkin Lymphoma. Front Vet Sci 2021; 8:621758. [PMID: 34513964 PMCID: PMC8427286 DOI: 10.3389/fvets.2021.621758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
| |
Collapse
|
41
|
Ganbaatar O, Konnai S, Okagawa T, Nojima Y, Maekawa N, Ichikawa Y, Kobayashi A, Shibahara T, Yanagawa Y, Higuchi H, Kato Y, Suzuki Y, Murata S, Ohashi K. Programmed death-ligand 1 expression in swine chronic infections and enhancement of interleukin-2 production via programmed death-1/programmed death-ligand 1 blockade. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1573-1583. [PMID: 34414683 PMCID: PMC8589367 DOI: 10.1002/iid3.510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023]
Abstract
Introduction Chronic infections lead to the functional exhaustion of T cells. Exhausted T cells are phenotypically differentiated by the surface expression of the immunoinhibitory receptor, such as programmed death‐1 (PD‐1). The inhibitory signal is produced by the interaction between PD‐1 and its PD‐ligand 1 (PD‐L1) and impairs the effector functions of T cells. However, the expression dynamics of PD‐L1 and the immunological functions of the PD‐1/PD‐L1 pathway in chronic diseases of pigs are still poorly understood. In this study, we first analyzed the expression of PD‐L1 in various chronic infections in pigs, and then evaluated the immune activation by the blocking assay targeting the swine PD‐1/PD‐L1 pathway. Methods In the initial experiments, anti‐bovine PD‐L1 monoclonal antibodies (mAbs) were tested for cross‐reactivity with swine PD‐L1. Subsequently, immunohistochemical analysis was conducted using the anti‐PD‐L1 mAb. Finally, we assessed the immune activation of swine peripheral blood mononuclear cells (PBMCs) by the blockade with anti‐PD‐L1 mAb. Results Several anti‐PD‐L1 mAbs tested recognized swine PD‐L1‐expressing cells. The binding of swine PD‐L1 protein to swine PD‐1 was inhibited by some of these cross‐reactive mAbs. In addition, immunohistochemical analysis revealed that PD‐L1 was expressed at the site of infection in chronic infections of pigs. The PD‐L1 blockade increased the production of interleukin‐2 from swine PBMCs. Conclusions These findings suggest that the PD‐1/PD‐L1 pathway could be also involved in immunosuppression in chronic infections in pigs. This study provides a new perspective on therapeutic strategies for chronic diseases in pigs by targeting immunosuppressive pathways.
Collapse
Affiliation(s)
- Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshiki Ichikawa
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Shibahara
- Division of Hygiene Management Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yojiro Yanagawa
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hidetoshi Higuchi
- Division of Health and Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Aresu L, Marconato L, Martini V, Fanelli A, Licenziato L, Foiani G, Melchiotti E, Nicoletti A, Vascellari M. Prognostic Value of PD-L1, PD-1 and CD8A in Canine Diffuse Large B-Cell Lymphoma Detected by RNAscope. Vet Sci 2021; 8:vetsci8070120. [PMID: 34209830 PMCID: PMC8310184 DOI: 10.3390/vetsci8070120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Immune checkpoints are a set of molecules dysregulated in several human and canine cancers and aberrations of the PD-1/PD-L1 axis are often correlated with a worse prognosis. To gain an insight into the role of immune checkpoints in canine diffuse large B-cell lymphoma (cDLBCL), we investigated PD-L1, PD-1 and CD8A expression by RNAscope. Results were correlated with several clinico-pathological features, including treatment, Ki67 index and outcome. A total of 33 dogs treated with chemotherapy (n = 12) or chemoimmunotherapy with APAVAC (n = 21) were included. PD-L1 signal was diffusely distributed among neoplastic cells, whereas PD-1 and CD8A were localized in tumor infiltrating lymphocytes. However, PD-1 mRNA was also retrieved in tumor cells. An association between PD-L1 and PD-1 scores was identified and a higher risk of relapse and lymphoma-related death was found in dogs treated with chemotherapy alone and dogs with higher PD-L1 and PD-1 scores. The correlation between PD-L1 and PD-1 is in line with the mechanism of immune checkpoints in cancers, where neoplastic cells overexpress PD-L1 that, in turn, binds PD-1 receptors in activated TIL. We also found that Ki67 index was significantly increased in dogs with the highest PD-L1 and PD-1 scores, indirectly suggesting a role in promoting tumor proliferation. Finally, even if the biological consequence of PD-1+ tumor cells is unknown, our findings suggest that PD-1 intrinsic expression in cDLBCL might contribute to tumor growth escaping adaptive immunity.
Collapse
Affiliation(s)
- Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (A.F.); (L.L.); (A.N.)
- Correspondence:
| | - Laura Marconato
- Department of Medical Veterinary Science, University of Bologna, 40064 Ozzano dell’Emilia, Italy;
| | - Valeria Martini
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (A.F.); (L.L.); (A.N.)
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (A.F.); (L.L.); (A.N.)
| | - Greta Foiani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (G.F.); (E.M.); (M.V.)
| | - Erica Melchiotti
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (G.F.); (E.M.); (M.V.)
| | - Arturo Nicoletti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (A.F.); (L.L.); (A.N.)
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (G.F.); (E.M.); (M.V.)
| |
Collapse
|
43
|
Stevenson VB, Perry SN, Todd M, Huckle WR, LeRoith T. PD-1, PD-L1, and PD-L2 Gene Expression and Tumor Infiltrating Lymphocytes in Canine Melanoma. Vet Pathol 2021; 58:692-698. [PMID: 34169800 DOI: 10.1177/03009858211011939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma in humans and dogs is considered highly immunogenic; however, the function of tumor-infiltrating lymphocytes (TILs) is often suppressed in the tumor microenvironment. In humans, current immunotherapies target checkpoint molecules (such as PD-L1, expressed by tumor cells), inhibiting their suppressive effect over TILs. The role of PD-L2, an alternative PD-1 ligand also overexpressed in malignant tumors and in patients with anti-PD-L1 resistance, remains poorly understood. In the current study, we evaluated the expression of checkpoint molecule mRNAs in canine melanoma and TILs. Analysis of checkpoint molecule gene expression was performed by RT-qPCR (real-time quantitative polymerase chain reaction) using total RNA isolated from formalin-fixed and paraffin-embedded melanomas (n = 22) and melanocytomas (n = 9) from the Virginia Tech Animal Laboratory Services archives. Analysis of checkpoint molecule expression revealed significantly higher levels of PDCD1 (PD-1) and CD274 (PD-L1) mRNAs and an upward trend in PDCD1LG2 (PD-L2) mRNA in melanomas relative to melanocytomas. Immunohistochemistry revealed markedly increased numbers of CD3+ T cells in the highest PD-1-expressing subgroup of melanomas compared to the lowest PD-1 expressors, whereas densities of IBA1+ cells (macrophages) were similar in both groups. CD79a+ cell numbers were low for both groups. As in human melanoma, overexpression of the PD-1/PD-L1/PD-L2 axis is a common feature of canine melanoma. High expression of PD-1 and PD-L1 correlates with increased numbers of CD3+ cells. Additionally, the high level of IBA1+ cells in melanomas with low PD-1 expression and low CD3+ cells levels suggest that the expression of checkpoint molecules is modulated by interactions between T cells and cancer cells rather than histiocytes.
Collapse
|
44
|
Palma SD, McConnell A, Verganti S, Starkey M. Review on Canine Oral Melanoma: An Undervalued Authentic Genetic Model of Human Oral Melanoma? Vet Pathol 2021; 58:881-889. [PMID: 33685309 DOI: 10.1177/0300985821996658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral melanoma (OM) is a highly aggressive tumor of the oral cavity in humans and dogs. Here we review the phenotypic similarities between the disease in these 2 species as the basis for the view that canine OM is a good model for the corresponding human disease. Utility of the "canine model" has likely been hindered by a paucity of information about the extent of the molecular genetic similarities between human and canine OMs. Current knowledge of the somatic alterations that underpin human tumorigenesis and metastatic progression is relatively limited, primarily due to the rarity of the disease in humans and consequent lack of opportunity for large-scale molecular analysis. The molecular genetic comparisons between human and canine OMs that have been completed indicate some overlap between the somatic mutation profiles of canine OMs and a subset of human OMs. However, further comparative studies featuring, in particular, larger numbers of human OMs are required to provide substantive evidence that canine OMs share mechanisms of tumorigenesis with at least a subset of human OMs. Future molecular genetic investigations of both human and canine OMs should investigate how primary tumors develop a metastatic gene expression signature and the genetic and epigenetic alterations specific to metastatic sites. Such studies may identify genetic alterations and pathways specific to the metastatic disease which could be targetable by new drugs.
Collapse
Affiliation(s)
| | | | - Sara Verganti
- 170851Dick White Referrals, Station Farm, Cambridgeshire, UK
| | - Mike Starkey
- 11661Animal Health Trust, Newmarket, Suffolk, UK
| |
Collapse
|
45
|
Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, Bettschart-Wolfensberger R, Rohrer Bley C, Läubli H, vom Berg J. Cross-Reactivity and Functionality of Approved Human Immune Checkpoint Blockers in Dogs. Cancers (Basel) 2021; 13:785. [PMID: 33668625 PMCID: PMC7918463 DOI: 10.3390/cancers13040785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine. METHODS Here, we assessed suitability of seven FDA-approved human ICIs to target CTLA-4 or PD-1/PD-L1 in dogs. Cross-reactivity and blocking potential was assessed using ELISA and flow cytometry. Functional responses were assessed on peripheral blood mononuclear cells (PBMCs) derived from healthy donors (n = 12) and cancer patient dogs (n = 27) as cytokine production after stimulation. Immune composition and target expression of healthy donors and cancer patients was assessed via flow cytometry. RESULTS Four candidates showed cross-reactivity and two blocked the interaction of canine PD-1 and PD-L1. Of those, only atezolizumab significantly increased cytokine production of healthy and patient derived PBMCs in vitro. Especially lymphoma patient PBMCs responded with increased cytokine production. In other types of cancer, response to atezolizumab appeared to correlate with a lower frequency of CD8 T cells. CONCLUSIONS Cross-functionality of atezolizumab encourages reverse translational efforts using (combination) immunotherapies in companion dog tumor patients to benefit both veterinary and human medicine.
Collapse
Affiliation(s)
- Stanislav Pantelyushin
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Elisabeth Ranninger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Diego Guerrera
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Department of Neurosurgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heinz Läubli
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Division of Medical Oncology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| |
Collapse
|
46
|
PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. NPJ Precis Oncol 2021; 5:10. [PMID: 33580183 PMCID: PMC7881100 DOI: 10.1038/s41698-021-00147-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy targeting programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1) represents promising treatments for human cancers. Our previous studies demonstrated PD-L1 overexpression in some canine cancers, and suggested the therapeutic potential of a canine chimeric anti-PD-L1 monoclonal antibody (c4G12). However, such evidence is scarce, limiting the clinical application in dogs. In the present report, canine PD-L1 expression was assessed in various cancer types, using a new anti-PD-L1 mAb, 6C11-3A11, and the safety and efficacy of c4G12 were explored in 29 dogs with pulmonary metastatic oral malignant melanoma (OMM). PD-L1 expression was detected in most canine malignant cancers including OMM, and survival was significantly longer in the c4G12 treatment group (median 143 days) when compared to a historical control group (n = 15, median 54 days). In dogs with measurable disease (n = 13), one dog (7.7%) experienced a complete response. Treatment-related adverse events of any grade were observed in 15 dogs (51.7%). Here we show that PD-L1 is a promising target for cancer immunotherapy in dogs, and dogs could be a useful large animal model for human cancer research.
Collapse
|
47
|
Wong C, Darby JM, Murphy PR, Pinfold TL, Lennard PR, Woods GM, Lyons AB, Flies AS. Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103882. [PMID: 33039410 DOI: 10.1016/j.dci.2020.103882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.
Collapse
Affiliation(s)
- Candida Wong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Terry L Pinfold
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Patrick R Lennard
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
48
|
Mason NJ. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:199-221. [PMID: 32767244 DOI: 10.1007/978-3-030-43085-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 800 people are diagnosed with osteosarcoma (OSA) per year in the USA. Although 70% of patients with localized OSA are cured with multiagent chemotherapy and surgical resection, the prognosis for patients with metastatic or relapsed disease is guarded. The small number of patients diagnosed annually contributes to an incomplete understanding of disease pathogenesis, and challenges in performing appropriately powered clinical trials and detecting correlative biomarkers of response. While mouse models of OSA are becoming increasingly sophisticated, they generally fail to accurately recapitulate tumor heterogeneity, tumor microenvironment (TME), systemic immune dysfunction, and the clinical features of tumor recurrence, metastases, and chemoresistance, which influence outcome. Pet dogs spontaneously develop OSA with an incidence that is 30-50 times higher than humans. Canine OSA parallels the human disease in its clinical presentation, biological behavior, genetic complexity, and therapeutic management. However, despite therapy, most dogs die from metastatic disease within 1 year of diagnosis. Since OSA occurs in immune-competent dogs, immune factors that sculpt tumor immunogenicity and influence responses to immune modulation are in effect. In both species, immune modulation has shown beneficial effects on patient outcome and work is now underway to identify the most effective immunotherapies, combination of immunotherapies, and correlative biomarkers that will further improve clinical response. In this chapter, the immune landscape of canine OSA and the immunotherapeutic strategies used to modulate antitumor immunity in dogs with the disease will be reviewed. From this immunological viewpoint, the value of employing dogs with spontaneous OSA to accelerate and inform the translation of immunotherapies into the human clinic will be underscored.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Ganbaatar O, Konnai S, Okagawa T, Nojima Y, Maekawa N, Minato E, Kobayashi A, Ando R, Sasaki N, Miyakoshi D, Ichii O, Kato Y, Suzuki Y, Murata S, Ohashi K. PD-L1 expression in equine malignant melanoma and functional effects of PD-L1 blockade. PLoS One 2020; 15:e0234218. [PMID: 33216754 PMCID: PMC7678989 DOI: 10.1371/journal.pone.0234218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death-1 (PD-1) is an immunoinhibitory receptor expressed on lymphocytes. Interaction of PD-1 with its ligand PD-ligand 1 (PD-L1) delivers inhibitory signals and impairs proliferation, cytokine production, and cytotoxicity of T cells. In our previous studies, we have developed anti-bovine PD-L1 monoclonal antibodies (mAbs) and reported that the PD-1/PD-L1 pathway was closely associated with T-cell exhaustion and disease progression in bovine chronic infections and canine tumors. Furthermore, we found that blocking antibodies that target PD-1 and PD-L1 restore T-cell functions and could be used in immunotherapy in cattle and dogs. However, the immunological role of the PD-1/PD-L1 pathway for chronic equine diseases, including tumors, remains unclear. In this study, we identified cDNA sequences of equine PD-1 (EqPD-1) and PD-L1 (EqPD-L1) and investigated the role of anti-bovine PD-L1 mAbs against EqPD-L1 using in vitro assays. In addition, we evaluated the expression of PD-L1 in tumor tissues of equine malignant melanoma (EMM). The amino acid sequences of EqPD-1 and EqPD-L1 share a considerable identity and similarity with homologs from non-primate species. Two clones of the anti-bovine PD-L1 mAbs recognized EqPD-L1 in flow cytometry, and one of these cross-reactive mAbs blocked the binding of equine PD-1/PD-L1. Of note, immunohistochemistry confirmed the PD-L1 expression in EMM tumor tissues. A cultivation assay revealed that PD-L1 blockade enhanced the production of Th1 cytokines in equine immune cells. These findings showed that our anti-PD-L1 mAbs would be useful for analyzing the equine PD-1/PD-L1 pathway. Further research is warranted to discover the immunological role of PD-1/PD-L1 in chronic equine diseases and elucidate a future application in immunotherapy for horses.
Collapse
Affiliation(s)
- Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Erina Minato
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Ando
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | | | - Osamu Ichii
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
50
|
A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci Rep 2020; 10:18311. [PMID: 33110170 PMCID: PMC7591904 DOI: 10.1038/s41598-020-75533-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition of programmed death 1 (PD-1), expressed on activated T cells, can break through immune resistance and elicit durable responses in human melanoma as well as other types of cancers. Canine oral malignant melanoma is one of the most aggressive tumors bearing poor prognosis due to its high metastatic potency. However, there are few effective treatments for the advanced stages of melanoma in veterinary medicine. Only one previous study indicated the potential of the immune checkpoint inhibitor, anti-canine PD-L1 therapeutic antibody in dogs, and no anti-canine PD-1 therapeutic antibodies are currently available. Here, we developed two therapeutic antibodies, rat-dog chimeric and caninized anti-canine PD-1 monoclonal antibodies and evaluated in vitro functionality for these antibodies. Moreover, we conducted a pilot study to determine their safety profiles and clinical efficacy in spontaneously occurring canine cancers. In conclusion, the anti-canine PD-1 monoclonal antibody was relatively safe and effective in dogs with advanced oral malignant melanoma and other cancers. Thus, our study suggests that PD-1 blockade may be an attractive treatment option in canine cancers.
Collapse
|