1
|
Duarte-Sanmiguel S, Salazar-Puerta AI, Panic A, Dodd D, Francis C, Alzate-Correa D, Ortega-Pineda L, Lemmerman L, Rincon-Benavides MA, Dathathreya K, Lawrence W, Ott N, Zhang J, Deng B, Wang S, Santander SP, McComb DW, Reategui E, Palmer AF, Carson WE, Higuita-Castro N, Gallego-Perez D. ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer. Biomater Sci 2023; 11:6834-6847. [PMID: 37646133 PMCID: PMC10591940 DOI: 10.1039/d3bm00573a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.
Collapse
Affiliation(s)
| | - Ana I Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Daniel Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Diego Alzate-Correa
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Lilibeth Ortega-Pineda
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Luke Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Maria A Rincon-Benavides
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - William Lawrence
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Neil Ott
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Binbin Deng
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
| | - Shipeng Wang
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Sandra P Santander
- Juan N. Corpas University Foundation, Center of Phytoimmunomodulation Department of Medicine, Bogota, Colombia
| | - David W McComb
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
- The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 43210, USA
| | - Eduardo Reategui
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Andre F Palmer
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
- The Ohio State University, Department of Neurological Surgery, Columbus, OH, 43210, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Lee S, Karns R, Shin S. Mechanism of paracrine communications between hepatic progenitor cells and endothelial cells. Cell Signal 2022; 100:110458. [PMID: 36055565 PMCID: PMC9971365 DOI: 10.1016/j.cellsig.2022.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
Hepatic progenitor cells (HPCs) are facultative tissue-specific stem cells lining reactive ductules, which are ubiquitously observed in chronic liver diseases and cancer. Although previous research mainly focused on their contribution to liver regeneration, it turned out that in vivo differentiation of HPCs into hepatocytes only occurs after extreme injury. While recent correlative evidence implies the association of HPCs with disease progression, their exact role in pathogenesis remains largely unknown. Our previous research demonstrated that HPCs expressing angiogenic paracrine factors accumulate in the peritumoral area and are positively correlated with the extent of intratumoral cell proliferation and angiogenesis in the livers of patients with liver cancer. Given the crucial roles of angiogenesis in liver disease progression and carcinogenesis, we aimed to test the hypothesis that HPCs secrete paracrine factors to communicate with endothelial cells, to determine molecular mechanisms mediating HPCs-endothelial interactions, and to understand how the paracrine function of HPCs is regulated. HPCs promoted viability and tubulogenesis of human umbilical vein endothelial cells (HUVECs) and upregulated genes known to be involved in angiogenesis, endothelial cell function, and disease progression in a paracrine manner. The paracrine function of HPCs as well as expression of colony stimulating factor 1 (CSF1) were inhibited upon differentiation of HPCs toward hepatocytes. Inhibition of CSF1 receptor partly suppressed the paracrine effects of HPCs on HUVECs. Taken together, our study indicates that inhibition of the paracrine function of HPCs through modulation of their differentiation status and inhibition of CSF1 signaling is a promising strategy for inhibition of angiogenesis during pathological progression.
Collapse
Affiliation(s)
- Sanghoon Lee
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Banerjee S, Mishra S, Xu W, Thompson WE, Chowdhury I. Neuregulin-1 signaling regulates cytokines and chemokines expression and secretion in granulosa cell. J Ovarian Res 2022; 15:86. [PMID: 35883098 PMCID: PMC9316729 DOI: 10.1186/s13048-022-01021-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Granulosa cells (GCs) are multilayered somatic cells within the follicle that provide physical support and microenvironment for the developing oocyte. In recent years, the role of Neuregulin-1 (NRG1), a member of the EGF-like factor family, has received considerable attention due to its neurodevelopmental and cardiac function. However, the exact physiological role of NRG1 in GC is mainly unknown. In order to confirm that NRG1 plays a regulatory role in rat GC functions, endogenous NRG1-knockdown studies were carried out in GCs using RNA interference methodology. RESULTS Knockdown of NRG1 in GCs resulted in the enhanced expression and secretion of the cytokines and chemokines. In addition, the phosphorylation of PI3K/Akt/ERK1/2 was significantly low in GCs under these experimental conditions. Moreover, in vitro experimental studies suggest that tumor necrosis factor-α (TNFα) treatment causes the physical destruction of GCs by activating caspase-3/7 activity. In contrast, exogenous NRG1 co-treatment of GCs delayed the onset of TNFα-induced apoptosis and inhibited the activation of caspase-3/7 activity. Furthermore, current experimental studies suggest that gonadotropins promote differential expression of NRG1 and ErbB3 receptors in GCs of the antral follicle. Interestingly, NRG1 and ErbB3 were intensely co-localized in the mural and cumulus GCs and cumulus-oocyte complex of pre-ovulatory follicles in the estrus stage. CONCLUSIONS The present studies suggest that gonadotropins-dependent NRG1-signaling in GCs may require the balance of the cytokines and chemokines expression and secretion, ultimately which may be supporting the follicular maturation and oocyte competence for ovulation and preventing follicular atresia.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Sameer Mishra
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
4
|
Cui Y, Luo Y, Qian Q, Tian J, Fang Z, Wang X, Zeng Y, Wu J, Li Y. Sanguinarine Regulates Tumor-Associated Macrophages to Prevent Lung Cancer Angiogenesis Through the WNT/β-Catenin Pathway. Front Oncol 2022; 12:732860. [PMID: 35847885 PMCID: PMC9282876 DOI: 10.3389/fonc.2022.732860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor-associated macrophage (TAM)-mediated angiogenesis in the tumor microenvironment is a prerequisite for lung cancer growth and metastasis. Therefore, targeting TAMs, which block angiogenesis, is expected to be a breakthrough in controlling the growth and metastasis of lung cancer. In this study, we found that Sanguinarine (Sang) inhibits tumor growth and tumor angiogenesis of subcutaneously transplanted tumors in Lewis lung cancer mice. Furthermore, Sanguinarine inhibited the proliferation, migration, and lumen formation of HUVECs and the expression of CD31 and VEGF by regulating the polarization of M2 macrophages in vitro. However, the inhibitory effect of Sanguinarine on angiogenesis remained in vivo despite the clearance of macrophages using small molecule drugs. Further high-throughput sequencing suggested that WNT/β-Catenin signaling might represent the underlying mechanism of the beneficial effects of Sanguinarine. Finally, the β-Catenin activator SKL2001 antagonized the effect of Sanguinarine, indicating that Sanguinarine can regulate M2-mediated angiogenesis through the WNT/β-Catenin pathway. In conclusion, this study presents the first findings that Sanguinarine can function as a novel regulator of the WNT/β-Catenin pathway to modulate the M2 macrophage polarization and inhibit angiogenesis, which has potential application value in immunotherapy and antiangiogenic therapy for lung cancer.
Collapse
Affiliation(s)
- Yajing Cui
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Qian
- Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoying Zeng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Yan Li,
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Yan Li,
| |
Collapse
|
5
|
Oudard S, Benhamouda N, Escudier B, Ravel P, Tran T, Levionnois E, Negrier S, Barthelemy P, Berdah JF, Gross-Goupil M, Sternberg CN, Bono P, Porta C, Giorgi UD, Parikh O, Hawkins R, Highley M, Wilke J, Decker T, Tanchot C, Gey A, Terme M, Tartour E. Decrease of Pro-Angiogenic Monocytes Predicts Clinical Response to Anti-Angiogenic Treatment in Patients with Metastatic Renal Cell Carcinoma. Cells 2021; 11:17. [PMID: 35011579 PMCID: PMC8750389 DOI: 10.3390/cells11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The modulation of subpopulations of pro-angiogenic monocytes (VEGFR-1+CD14 and Tie2+CD14) was analyzed in an ancillary study from the prospective PazopanIb versus Sunitinib patient preferenCE Study (PISCES) (NCT01064310), where metastatic renal cell carcinoma (mRCC) patients were treated with two anti-angiogenic drugs, either sunitinib or pazopanib. Blood samples from 86 patients were collected prospectively at baseline (T1), and at 10 weeks (T2) and 20 weeks (T3) after starting anti-angiogenic therapy. Various subpopulations of myeloid cells (monocytes, VEGFR-1+CD14 and Tie2+CD14 cells) decreased during treatment. When patients were divided into two subgroups with a decrease (defined as a >20% reduction from baseline value) (group 1) or not (group 2) at T3 for VEGFR-1+CD14 cells, group 1 patients presented a median PFS and OS of 24 months and 37 months, respectively, compared with a median PFS of 9 months (p = 0.032) and a median OS of 16 months (p = 0.033) in group 2 patients. The reduction in Tie2+CD14 at T3 predicted a benefit in OS at 18 months after therapy (p = 0.04). In conclusion, in this prospective clinical trial, a significant decrease in subpopulations of pro-angiogenic monocytes was associated with clinical response to anti-angiogenic drugs in patients with mRCC.
Collapse
Affiliation(s)
- Stephane Oudard
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
- APHP, Service de Cancérologie, Hôpital Européen Georges Pompidou, Université de Paris, 75908 Paris, France
| | - Nadine Benhamouda
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| | - Bernard Escudier
- Department of Medical Oncology, Institut Gustave Roussy, CEDEX, 94805 Villejuif, France;
| | - Patrice Ravel
- Cancer Bioinformatics and Systems Biology, Institut de Recherche en Cancérologie de Montpellier, Campus Val d’Aurelle, Université Montpellier, CEDEX 5, 34298 Montpellier, France;
| | - Thi Tran
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| | - Emeline Levionnois
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| | - Sylvie Negrier
- Centre Léon Bérard Lyon, University Lyon 1, 69008 Lyon, France;
| | - Philippe Barthelemy
- Institut de Cancérologie Strasbourg Europe, Strasbourg University Hospital, 67200 Strasbourg, France;
| | - Jean François Berdah
- Medical Oncology Unit, Hôpital Privé Toulon-Hyères, Sainte-Marguerite, 83400 Hyeres, France;
| | - Marine Gross-Goupil
- Department of Medical Oncology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, 31000 Bordeaux, France;
| | - Cora N. Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Sandra and Edward Meyer Cancer, New York, NY 10065, USA;
| | - Petri Bono
- Kamppi Hospital Department, Terveystalo Finland, 00100 Helsinki, Finland;
| | - Camillo Porta
- Division of Translational Oncology, IRCCS San Matteo University Hospital, 27100 Pavia, Italy;
- Division of Oncology, Policlinico Consorziale di Bari, University of Bari ‘A. Moro’, 70121 Bari, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, 47014 Meldola, Italy;
| | - Omi Parikh
- Department of Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK;
| | - Robert Hawkins
- Institute of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Martin Highley
- Oncology Centre, Derriford Hospital, Plymouth PL6 8DH, UK;
| | - Jochen Wilke
- Gemeinschaftspraxis Dres. Wilke/Wagner/Petzoldt, 90766 Fuerth, Germany;
| | - Thomas Decker
- Studienzentrum Onkologie, Practice for Hematology and Oncology, 88212 Ravensburg, Germany;
| | - Corinne Tanchot
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| | - Alain Gey
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| | - Magali Terme
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| | - Eric Tartour
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, 75020 Paris, France; (N.B.); (T.T.); (E.L.); (C.T.); (A.G.); (M.T.)
| |
Collapse
|
6
|
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant leukocyte population in most solid tumors and are greatly influenced by the tumor microenvironment. More importantly, these macrophages can promote tumor growth and metastasis through interactions with other cell populations within the tumor milieu and have been associated with poor outcomes in multiple tumors. In this review, we examine how the tumor microenvironment facilitates the polarization of TAMs. Additionally, we evaluate the mechanisms by which TAMs promote tumor angiogenesis, induce tumor invasion and metastasis, enhance chemotherapeutic resistance, and foster immune evasion. Lastly, we focus on therapeutic strategies that target TAMs in the treatments of cancer, including reducing monocyte recruitment, depleting or reprogramming TAMs, and targeting inhibitory molecules to increase TAM-mediated phagocytosis.
Collapse
Affiliation(s)
- Amy J Petty
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine and OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, College of Medicine and OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaopei Huang
- Division of Hematology, Department of Internal Medicine, College of Medicine and OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Targeting Tumor-Associated Macrophages in Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13215318. [PMID: 34771482 PMCID: PMC8582510 DOI: 10.3390/cancers13215318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant leukocyte population in most solid tumors and are greatly influenced by the tumor microenvironment. More importantly, these macrophages can promote tumor growth and metastasis through interactions with other cell populations within the tumor milieu and have been associated with poor outcomes in multiple tumors. In this review, we examine how the tumor microenvironment facilitates the polarization of TAMs. Additionally, we evaluate the mechanisms by which TAMs promote tumor angiogenesis, induce tumor invasion and metastasis, enhance chemotherapeutic resistance, and foster immune evasion. Lastly, we focus on therapeutic strategies that target TAMs in the treatments of cancer, including reducing monocyte recruitment, depleting or reprogramming TAMs, and targeting inhibitory molecules to increase TAM-mediated phagocytosis.
Collapse
|
8
|
Wu L, Zhang XHF. Tumor-Associated Neutrophils and Macrophages-Heterogenous but Not Chaotic. Front Immunol 2020; 11:553967. [PMID: 33343560 PMCID: PMC7738476 DOI: 10.3389/fimmu.2020.553967] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) have been extensively studied. Their pleotropic roles were observed in multiple steps of tumor progression and metastasis, and sometimes appeared to be inconsistent across different studies. In this review, we collectively discussed many lines of evidence supporting the mutual influence between cancer cells and TAMs/TANs. We focused on how direct interactions among these cells dictate co-evolution involving not only clonal competition of cancer cells, but also landscape shift of the entire tumor microenvironment (TME). This co-evolution may take distinct paths and contribute to the heterogeneity of cancer cells and immune cells across different tumors. A more in-depth understanding of the cancer-TAM/TAN co-evolution will shed light on the development of TME that mediates metastasis and therapeutic resistance.
Collapse
Affiliation(s)
- Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Targeting Tumor-Associated Macrophages to Increase the Efficacy of Immune Checkpoint Inhibitors: A Glimpse into Novel Therapeutic Approaches for Metastatic Melanoma. Cancers (Basel) 2020; 12:cancers12113401. [PMID: 33212945 PMCID: PMC7698460 DOI: 10.3390/cancers12113401] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapeutic intervention for a variety of advanced/metastatic solid tumors, including melanoma, but in a large number of cases, patients fail to establish a sustained anti-tumor immunity and to achieve a long-lasting clinical benefit. Cells of the tumor micro-environment such as tumor-associated M2 macrophages (M2-TAMs) have been reported to limit the efficacy of immunotherapy, promoting tumor immune evasion and progression. Thus, strategies targeting M2-TAMs have been suggested to synergize with immune checkpoint blockade. This review recapitulates the molecular mechanisms by which M2-TAMs promote cancer immune evasion, with focus on the potential cross-talk between pharmacological interventions targeting M2-TAMs and ICIs for melanoma treatment.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
- Correspondence: ; Tel.: +39-06-7259-6338
| |
Collapse
|
10
|
Peranzoni E, Ingangi V, Masetto E, Pinton L, Marigo I. Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade. Front Immunol 2020; 11:1590. [PMID: 32793228 PMCID: PMC7393010 DOI: 10.3389/fimmu.2020.01590] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitors are becoming standard treatments in several cancer types, profoundly changing the prognosis of a fraction of patients. Currently, many efforts are being made to predict responders and to understand how to overcome resistance in non-responders. Given the crucial role of myeloid cells as modulators of T effector cell function in tumors, it is essential to understand their impact on the clinical outcome of immune checkpoint blockade and on the mechanisms of immune evasion. In this review we focus on the existing clinical evidence of the relation between the presence of myeloid cell subsets and the response to anti-PD(L)1 and anti-CTLA-4 treatment. We highlight how circulating and tumor-infiltrating myeloid populations can be used as predictive biomarkers for immune checkpoint inhibitors in different human cancers, both at baseline and on treatment. Moreover, we propose to follow the dynamics of myeloid cells during immunotherapy as pharmacodynamic biomarkers. Finally, we provide an overview of the current strategies tested in the clinic that use myeloid cell targeting together with immune checkpoint blockade with the aim of uncovering the most promising approaches for effective combinations.
Collapse
Affiliation(s)
- Elisa Peranzoni
- Center for Therapeutic Innovation in Oncology, Institut de Recherche International Servier, Suresnes, France
| | | | - Elena Masetto
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Laura Pinton
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
11
|
Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, Condeelis JS. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol 2020; 99:151098. [PMID: 32800278 DOI: 10.1016/j.ejcb.2020.151098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Metastasis, a process that requires tumor cell dissemination followed by tumor growth, is the primary cause of death in cancer patients. An essential step of tumor cell dissemination is intravasation, a process by which tumor cells cross the blood vessel endothelium and disseminate to distant sites. Studying this process is of utmost importance given that intravasation in the primary tumor, as well as the secondary and tertiary metastases, is the key step in the systemic spread of tumor cells, and that this process continues even after removal of the primary tumor. High-resolution intravital imaging of the tumor microenvironment of breast carcinoma has revealed that tumor cell intravasation exclusively occurs at doorways, termed "Tumor MicroEnvironment of Metastasis" (TMEM), composed of three different cell types: a Tie2high/VEGFhigh perivascular macrophage, a Mena overexpressing tumor cell, and an endothelial cell, all in direct contact. In this review article, we discuss the interactions between these cell types, the subsequent signaling events which lead to tumor cell intravasation, and the role of invadopodia in supporting tumor cell invasion and dissemination. We end our review by discussing how the knowledge acquired from the use of intravital imaging is now leading to new clinical trials targeting tumor cell dissemination and preventing metastatic progression.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
12
|
Retraction: Macrophage Colony-Stimulating Factor Augments Tie2-Expressing Monocyte Differentiation, Angiogenic Function, and Recruitment in a Mouse Model of Breast Cancer. PLoS One 2020; 15:e0235096. [PMID: 32555748 PMCID: PMC7299350 DOI: 10.1371/journal.pone.0235096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Yang Z, Tang Z, Cao X, Xie Q, Hu C, Zhong Z, Tan J, Zheng Y. Controlling chronic low-grade inflammation to improve follicle development and survival. Am J Reprod Immunol 2020; 84:e13265. [PMID: 32395847 DOI: 10.1111/aji.13265] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic low-grade inflammation is one cause of follicle development disturbance. Chronic inflammation exists in pathological conditions such as premature ovarian failure, physiological aging of the ovaries, and polycystic ovary syndrome. Inflammation of the whole body can affect oocytes via the follicle microenvironment, oxidative stress, and GM-CSF. Many substances without toxic side-effects extracted from natural organisms have gradually gained researchers' attention. Recently, chitosan oligosaccharide, resveratrol, anthocyanin, and melatonin have been found to contribute to an improvement in inflammation. This review discusses the interrelationships between chronic low-grade inflammation and follicle development, the underlying mechanisms, and methods that may improve follicle development by controlling the level of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Ziwei Yang
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zijuan Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Xiuping Cao
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Qi Xie
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Chuan Hu
- Jiangxi Medical College, Nanchang University, Nanchang, China.,The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
14
|
Neuropilin1 Expression Acts as a Prognostic Marker in Stomach Adenocarcinoma by Predicting the Infiltration of Treg Cells and M2 Macrophages. J Clin Med 2020; 9:jcm9051430. [PMID: 32408477 PMCID: PMC7290937 DOI: 10.3390/jcm9051430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropilin1 (NRP1) plays a critical role in tumor progression and immune responses. Although the roles of NRP1 in various tumors have been investigated, the clinical relevance of NRP1 expression in stomach adenocarcinoma (STAD) has not been studied. To investigate the use of NRP1 as a prognostic biomarker of STAD, we analyzed NRP1 mRNA expression and its correlation with patient survival and immune cell infiltration using various databases. NRP1 mRNA expression was significantly higher in STAD than normal tissues, and Kaplan-Meier survival analysis showed that NRP1 expression was significantly associated with poor prognosis in patients with STAD. To elucidate the related mechanism, we analyzed the correlation between NRP1 expression and immune cell infiltration level. In particular, the infiltration of immune-suppressive cells, such as regulatory T (Treg) cells and M2 macrophage, was significantly increased by NRP1 expression. In addition, the expression of interleukin (IL)-35, IL-10, and TGF-β1 was also positively correlated with NRP1 expression, resulting in the immune suppression. Collectively in this study, our integrated analysis using various clinical databases shows that the significant correlation between NRP1 expression and the infiltration of Treg cells and M2 macrophage explains poor prognosis mechanism in STAD, suggesting the clinical relevance of NRP1 expression as a prognostic biomarker for STAD patients.
Collapse
|
15
|
Wang Y, Li B, Xu H, Du S, Liu T, Ren J, Zhang J, Zhang H, Liu Y, Lu L. Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe 3O 4·Rhodamine 6G@PDA superparticles. J Nanobiotechnology 2020; 18:64. [PMID: 32334582 PMCID: PMC7183675 DOI: 10.1186/s12951-020-00621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background The primary strategy to repair peripheral nerve injuries is to bridge the lesions by promoting axon regeneration. Thus, the ability to direct and manipulate neuronal cell axon regeneration has been one of the top priorities in the field of neuroscience. A recent innovative approach for remotely guiding neuronal regeneration is to incorporate magnetic nanoparticles (MNPs) into cells and transfer the resulting MNP-loaded cells into a magnetically sensitive environment to respond to an external magnetic field. To realize this intention, the synthesis and preparation of ideal MNPs is an important challenge to overcome. Results In this study, we designed and prepared novel fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@polydopamine superparticles (FMSPs) as neural regeneration therapeutics. With the help of their excellent biocompatibility and ability to interact with neural cells, our in-house fabricated FMSPs can be endocytosed into cells, transported along the axons, and then aggregated in the growth cones. As a result, the mechanical forces generated by FMSPs can promote the growth and elongation of axons and stimulate gene expression associated with neuron growth under external magnetic fields. Conclusions Our work demonstrates that FMSPs can be used as a novel stimulator to promote noninvasive neural regeneration through cell magnetic actuation.![]()
Collapse
Affiliation(s)
- Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Binxi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Hao Xu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Shulin Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Ting Liu
- Departments of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
16
|
Chen L, Oke T, Siegel N, Cojocaru G, Tam AJ, Blosser RL, Swailes J, Ligon JA, Lebid A, Morris C, Levin A, Rhee DS, Johnston FM, Greer JB, Meyer CF, Ladle BH, Thompson ED, Montgomery EA, Choi W, McConkey DJ, Anders RA, Pardoll DM, Llosa NJ. The Immunosuppressive Niche of Soft-Tissue Sarcomas is Sustained by Tumor-Associated Macrophages and Characterized by Intratumoral Tertiary Lymphoid Structures. Clin Cancer Res 2020; 26:4018-4030. [PMID: 32332015 DOI: 10.1158/1078-0432.ccr-19-3416] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Clinical trials with immune checkpoint inhibition in sarcomas have demonstrated minimal response. Here, we interrogated the tumor microenvironment (TME) of two contrasting soft-tissue sarcomas (STS), rhabdomyosarcomas and undifferentiated pleomorphic sarcomas (UPS), with differing genetic underpinnings and responses to immune checkpoint inhibition to understand the mechanisms that lead to response. EXPERIMENTAL DESIGN Utilizing fresh and formalin-fixed, paraffin-embedded tissue from patients diagnosed with UPS and rhabdomyosarcomas, we dissected the TME by using IHC, flow cytometry, and comparative transcriptomic studies. RESULTS Our results demonstrated both STS subtypes to be dominated by tumor-associated macrophages and infiltrated with immune cells that localized near the tumor vasculature. Both subtypes had similar T-cell densities, however, their in situ distribution diverged. UPS specimens demonstrated diffuse intratumoral infiltration of T cells, while rhabdomyosarcomas samples revealed intratumoral T cells that clustered with B cells near perivascular beds, forming tertiary lymphoid structures (TLS). T cells in UPS specimens were comprised of abundant CD8+ T cells exhibiting high PD-1 expression, which might represent the tumor reactive repertoire. In rhabdomyosarcomas, T cells were limited to TLS, but expressed immune checkpoints and immunomodulatory molecules which, if appropriately targeted, could help unleash T cells into the rest of the tumor tissue. CONCLUSIONS Our work in STS revealed an immunosuppressive TME dominated by myeloid cells, which may be overcome with activation of T cells that traffic into the tumor. In rhabdomyosarcomas, targeting T cells found within TLS may be key to achieve antitumor response.
Collapse
Affiliation(s)
- Lingling Chen
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Teniola Oke
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | - Gady Cojocaru
- Discovery Research, Computational Research & Development, Compugen Ltd
| | - Ada J Tam
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Richard L Blosser
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Jessica Swailes
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - John A Ligon
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Andriana Lebid
- Division of Immunology and Hematopoiesis, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carol Morris
- Department of Orthopaedic Surgery and Oncology, Johns Hopkins University, Baltimore, MD
| | - Adam Levin
- Department of Orthopaedic Surgery and Oncology, Johns Hopkins University, Baltimore, MD
| | - Daniel S Rhee
- Department of Pediatric Surgery, Johns Hopkins University, Baltimore, MD
| | - Fabian M Johnston
- Department of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan B Greer
- Department of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christian F Meyer
- Department of Medical Oncology, The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Brian H Ladle
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Elizabeth D Thompson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth A Montgomery
- Department of Gastrointestinal and Liver Pathology, Johns Hopkins University, Baltimore, MD
| | - Woonyoung Choi
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David J McConkey
- The Greenberg Bladder Cancer Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Drew M Pardoll
- Division of Immunology and Hematopoiesis, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicolas J Llosa
- Departement of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
17
|
Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, Roselló S, Roda D, Huerta M, Cervantes A, Fleitas T. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev 2020; 86:102015. [PMID: 32248000 DOI: 10.1016/j.ctrv.2020.102015] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) represents the fifth cause of cancer-related death worldwide. Molecular biology has become a central area of research in GC and there are currently at least three major classifications available to elucidate the mechanisms that drive GC oncogenesis. Further, tumor microenvironment seems to play a crucial role, and tumor-associated macrophages (TAMs) are emerging as key players in GC development. TAMs are cells derived from circulating chemokine- receptor-type 2 (CCR2) inflammatory monocytes in blood and can be divided into two main types, M1 and M2 TAMs. M2 TAMs play an important role in tumor progression, promoting a pro-angiogenic and immunosuppressive signal in the tumor. The diffuse GC subtype, in particular, seems to be strongly characterized by an immuno-suppressive and pro-angiogenic phenotype. No molecular targets in this subgroup have yet been identified. There is an urgent need to understand the molecular pathways and tumor microenvironment features in the GC molecular subtypes. The role of anti-angiogenics and checkpoint inhibitors has recently been clinically validated in GC. Both ramucirumab, a fully humanized IgG1 monoclonal anti-vascular endothelial growth factor receptor 2 (VEGFR2) antibody, and checkpoint inhibitors in Epstein Bar Virus (EBV) and Microsatellite Instable (MSI) subtypes, have proved beneficial in advanced GC. Nevertheless, there is a need to identify predictive markers of response to anti-angiogenics and immunotherapy in clinical practice for a personalized treatment approach. The importance of M2 TAMs in development of solid tumors is currently gaining increasing interest. In this literature review we analyze immune microenvironment composition and signaling related to M1 and M2 TAMs in GC as well as its potential role as a therapeutic target.
Collapse
Affiliation(s)
- V Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - J Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - N Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - F Gimeno-Valiente
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - C Martínez-Ciarpaglini
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain; Department of Pathology, INCLIVA Biomedical Research Institute, Spain
| | - M Cabeza-Segura
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - S Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - D Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - M Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - A Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - T Fleitas
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain.
| |
Collapse
|
18
|
Gouveia-Fernandes S. Monocytes and Macrophages in Cancer: Unsuspected Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:161-185. [PMID: 32130699 DOI: 10.1007/978-3-030-34025-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The behavior of cancer is undoubtedly affected by stroma. Macrophages belong to this microenvironment and their presence correlates with reduced survival in most cancers. After a tumor-induced "immunoediting", these monocytes/macrophages, originally the first line of defense against tumor cells, undergo a phenotypic switch and become tumor-supportive and immunosuppressive.The influence of these tumor-associated macrophages (TAMs) on cancer is present in all traits of carcinogenesis. These cells participate in tumor initiation and growth, migration, vascularization, invasion and metastasis. Although metastasis is extremely clinically relevant, this step is always reliant on the angiogenic ability of tumors. Therefore, the formation of new blood vessels in tumors assumes particular importance as a limiting step for disease progression.Herein, the once unsuspected roles of macrophages in cancer will be discussed and their importance as a promising strategy to treat this group of diseases will be reminded.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Mir MA, Mehraj U. Double-crosser of the Immune System: Macrophages in Tumor Progression and Metastasis. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666190611122818] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are the phagocytic sentinel cells of our body, with high plasticity required to maintain homeostasis. This incredibly diverse set of cells, in response to various environmental stimuli such as cytokines and other factors, constantly alters their functional state/phenotype. They undergo polarization not only into conventional M1/M2 axis but also undergo a diverse spectrum of macrophage subtypes which play critical roles in various immune functions and homeostasis. In the tumor microenvironment, monocytes polarize along with the alternatively activated macrophages AAM or M2 macrophages associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Tumor-Associated Macrophage (TAM) infiltration has long been associated with poor prognosis and therefore represents potential diagnostic and prognostic biomarkers in solid tumors. Inhibiting the recruitment of monocytes into the tumor microenvironment and targeted deletion of TAMs have shown promising results. Targeting the TAMs towards M1-like macrophages has also demonstrated to be an efficient way to prevent tumor progression and metastasis. Here in this article, we review how TAMs orchestrate different steps in tumor progression and metastasis and the opportunities to target them in the quest for cancer prevention and treatment. Further, we explore how chemotherapies and immunotherapies can target TAM reprogramming and depletion to serve as a strategy for the control of various types of cancers in the future.
Collapse
Affiliation(s)
- Manzoor Ahmed Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
20
|
Löffler J, Sass FA, Filter S, Rose A, Ellinghaus A, Duda GN, Dienelt A. Compromised Bone Healing in Aged Rats Is Associated With Impaired M2 Macrophage Function. Front Immunol 2019; 10:2443. [PMID: 31681320 PMCID: PMC6813416 DOI: 10.3389/fimmu.2019.02443] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Fracture repair is initiated by a multitude of immune cells and induction of an inflammatory cascade. Alterations in the early healing response due to an aged adaptive immune system leads to impaired bone repair, delayed healing or even formation of non-union. However, immuno-senescence is not limited to the adaptive immunity, but is also described for macrophages, main effector cells from the innate immune system. Beside regulation of pro- and anti-inflammatory signaling, macrophages contribute to angiogenesis and granulation tissue maturation. Thus, it seems likely that an altered macrophage function due to aging may affect bone repair at various stages and contribute to age related deficiencies in bone regeneration. To prove this hypothesis, we analyzed the expression of macrophage markers and angiogenic factors in the early bone hematoma derived from young and aged osteotomized Spraque Dawley rats. We detected an overall reduced expression of the monocyte/pan-macrophage markers CD14 and CD68 in aged rats. Furthermore, the analysis revealed an impaired expression of anti-inflammatory M2 macrophage markers in hematoma from aged animals that was connected to a diminished revascularization of the bone callus. To verify that the age related disturbed bone regeneration was due to a compromised macrophage function, CD14+ macrophage precursors were transplanted locally into the osteotomy gap of aged rats. Transplantation rescued bone regeneration partially after 6 weeks, demonstrated by a significantly induced deposition of new bone tissue, reduced fibrosis and significantly improved callus vascularization.
Collapse
Affiliation(s)
- Julia Löffler
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - F Andrea Sass
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Filter
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Rose
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Wald N, Martignier C, Tillé L, Homicsko K, Damsky W, Maby-El Hajjami H, Klaman I, Danenberg E, Ioannidou K, Kandalaft L, Coukos G, Hoves S, Ries CH, Fuertes Marraco SA, Foukas PG, De Palma M, Speiser DE. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 2019; 10:10/436/eaan3311. [PMID: 29643229 DOI: 10.1126/scitranslmed.aan3311] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/15/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
Colony-stimulating factor 1 (CSF1) is a key regulator of monocyte/macrophage differentiation that sustains the protumorigenic functions of tumor-associated macrophages (TAMs). We show that CSF1 is expressed in human melanoma, and patients with metastatic melanoma have increased CSF1 in blood compared to healthy subjects. In tumors, CSF1 expression correlated with the abundance of CD8+ T cells and CD163+ TAMs. Human melanoma cell lines consistently produced CSF1 after exposure to melanoma-specific CD8+ T cells or T cell-derived cytokines in vitro, reflecting a broadly conserved mechanism of CSF1 induction by activated CD8+ T cells. Mining of publicly available transcriptomic data sets suggested co-enrichment of CD8+ T cells with CSF1 or various TAM-specific markers in human melanoma, which was associated with nonresponsiveness to programmed cell death protein 1 (PD1) checkpoint blockade in a smaller patient cohort. Combination of anti-PD1 and anti-CSF1 receptor (CSF1R) antibodies induced the regression of BRAFV600E -driven, transplant mouse melanomas, a result that was dependent on the effective elimination of TAMs. Collectively, these data implicate CSF1 induction as a CD8+ T cell-dependent adaptive resistance mechanism and show that simultaneous CSF1R targeting may be beneficial in melanomas refractory to immune checkpoint blockade and, possibly, other T cell-based therapies.
Collapse
Affiliation(s)
- Natalie J Neubert
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natacha Bordry
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Noémie Wald
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Christophe Martignier
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Laure Tillé
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Krisztian Homicsko
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - William Damsky
- Departments of Dermatology and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hélène Maby-El Hajjami
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Irina Klaman
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Esther Danenberg
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Lana Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - George Coukos
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - Sabine Hoves
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Carola H Ries
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Silvia A Fuertes Marraco
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Periklis G Foukas
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), CH-1005 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Daniel E Speiser
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland.
| |
Collapse
|
22
|
Abstract
Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.
Collapse
|
23
|
Eser Ocak P, Ocak U, Tang J, Zhang JH. The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cell Oncol (Dordr) 2019; 42:423-447. [PMID: 30993541 DOI: 10.1007/s13402-019-00447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Caveolin-1 (cav-1) is the major structural protein of caveolae, the flask-shaped invaginations of the plasma membrane mainly involved in cell signaling. Today, cav-1 is believed to play a role in a variety of disease processes including cancer, owing to the variations of its expression in association with tumor progression, invasive behavior, metastasis and therapy resistance. Since first detected in the brain, a number of studies has particularly focused on the role of cav-1 in the various steps of brain tumorigenesis. In this review, we discuss the different roles of cav-1 and its contributions to the molecular mechanisms underlying the pathobiology and natural behavior of brain tumors including glial, non-glial and metastatic subtypes. These contributions could be attributed to its co-localization with important players in tumorigenesis within the lipid-enriched domains of the plasma membrane. In that regard, the ability of cav-1 to interact with various cell signaling molecules as well as the impact of caveolae depletion on important pathways acting in brain tumor pathogenesis are noteworthy. We also discuss conversant causes hampering the treatment of malignant glial tumors such as limited transport of chemotherapeutics across the blood tumor barrier and resistance to chemoradiotherapy, by focusing on the molecular fundamentals involving cav-1 participation. CONCLUSIONS Cav-1 has the potential to pivot the molecular basis underlying the pathobiology of brain tumors, particularly the malignant glial subtype. In addition, the regulatory effect of cav-1-dependent and caveola-mediated transcellular transport on the permeability of the blood tumor barrier could be of benefit to overcome the restricted transport across brain barriers when applying chemotherapeutics. The association of cav-1 with tumors of the brain other than malignant gliomas deserves to be underlined, as well given the evidence suggesting its potential in predicting tumor grade and recurrence rates together with determining patient prognosis in oligodendrogliomas, ependymomas, meningiomas, vestibular schwannomas and brain metastases.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
24
|
Abstract
Research over the last decades has provided strong evidence for the pivotal role of the tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T cell-mediated immunosurveillance. Conversely, tumor blood and lymphatic vessel growth is in part regulated by the immune system, with infiltrating innate as well as adaptive immune cells providing both immunosuppressive and various angiogenic signals. Thus, tumor angiogenesis and escape of immunosurveillance are two cancer hallmarks that are tightly linked and interregulated by cell constituents from compartments secreting both chemokines and cytokines. In this review, we discuss the implication and regulation of innate and adaptive immune cells in regulating blood and lymphatic angiogenesis in tumor progression and metastases. Moreover, we also highlight novel therapeutic approaches that target the tumor vasculature as well as the immune compartment to sustain and improve therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Massimiliano Mazzone
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
| | - Gabriele Bergers
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, San Francisco, California 94158, USA;
| |
Collapse
|
25
|
Twum DY, Colligan SH, Hoffend NC, Katsuta E, Cortes Gomez E, Hensen ML, Seshadri M, Nemeth MJ, Abrams SI. IFN regulatory factor-8 expression in macrophages governs an antimetastatic program. JCI Insight 2019; 4:e124267. [PMID: 30728331 PMCID: PMC6413790 DOI: 10.1172/jci.insight.124267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
High macrophage infiltration in cancer is associated with reduced survival in animal models and in patients. This reflects a shift in the macrophage response from a tumor-suppressive to tumor-supportive program governed by transcriptional events regulated by the inflammatory milieu. Although several transcription factors are known to drive a prometastatic program, those that govern an antimetastatic program are less understood. IFN regulatory factor-8 (IRF8) is integral for macrophage responses against infections. Using a genetic loss-of-function approach, we tested the hypothesis that IRF8 expression in macrophages governs their capacity to inhibit metastasis. We found that: (a) metastasis was significantly increased in mice with IRF8-deficient macrophages; (b) IRF8-deficient macrophages displayed a program enriched for genes associated with metastasis; and (c) lower IRF8 expression correlated with reduced survival in human breast and lung cancer, as well as melanoma, with high or low macrophage infiltration. Thus, a macrophagehiIRF8hi signature was more favorable than a macrophagehiIRF8lo signature. The same held true for a macrophageloIRF8hi vs. a macrophageloIRF8lo signature. These data suggest that incorporating IRF8 expression levels within a broader macrophage signature or profile strengthens prognostic merit. Overall, to our knowledge, our findings reveal a previously unrecognized role for IRF8 in macrophage biology to control metastasis or predict outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael J. Nemeth
- Department of Immunology
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, USA
| | | |
Collapse
|
26
|
Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 2019; 106:259-274. [PMID: 30720887 DOI: 10.1002/jlb.mr0218-056rr] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages represent a heterogeneous group of cells, capable of carrying out distinct functions in a variety of organs and tissues. Even within individual tissues, their functions can vary with location. Tumor-associated macrophages (TAMs) specialize into three major subtypes that carry out multiple tasks simultaneously. This is especially true in the context of metastasis, where TAMs establish most of the cellular and molecular prerequisites for successful cancer cell dissemination and seeding to the secondary site. Perivascular TAMs operate in the perivascular niche, where they promote tumor angiogenesis and aid in the assembly of intravasation sites called tumor microenvironment of metastasis (TMEM). Streaming TAMs co-migrate with tumor cells (irrespective of the perivascular niche) and promote matrix remodeling, tumor cell invasiveness, and an immunosuppressive local microenvironment. Premetastatic TAMs are recruited to the premetastatic niche, where they can assist in tumor cell extravasation, seeding, and metastatic colonization. The dynamic interplay between TAMs and tumor cells can also modify the ability of the latter to resist cytotoxic chemotherapy (a phenotype known as environment-mediated drug resistance) and induce chemotherapy-mediated pro-metastatic microenvironmental changes. These observations suggest that future therapeutics should be designed to target TAMs with the aim of suppressing the metastatic potential of tumors and rendering chemotherapy more efficient.
Collapse
Affiliation(s)
- Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pathology, Montefiore Medical Center, Bronx, New York, USA
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
27
|
Ireland LV, Mielgo A. Macrophages and Fibroblasts, Key Players in Cancer Chemoresistance. Front Cell Dev Biol 2018; 6:131. [PMID: 30356656 PMCID: PMC6189297 DOI: 10.3389/fcell.2018.00131] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is routinely used in cancer treatment to eliminate primary and metastatic tumor cells. However, tumors often display or develop resistance to chemotherapy. Mechanisms of chemoresistance can be either tumor cell autonomous or mediated by the tumor surrounding non-malignant cells, also known as stromal cells, which include fibroblasts, immune cells, and cells from the vasculature. Therapies targeting cancer cells have shown limited effectiveness in tumors characterized by a rich tumor stroma. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are the most abundant non-cancerous cells in the tumor stroma and have emerged as key players in cancer progression, metastasis and resistance to therapies. This review describes the recent advances in our understanding of how CAFs and TAMs confer chemoresistance to tumor cells and discusses the therapeutic opportunities of combining anti-tumor with anti-stromal therapies. The continued elucidation of the mechanisms by which TAMs and CAFs mediate resistance to therapies will allow the development of improved combination treatments for cancer patients.
Collapse
Affiliation(s)
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
28
|
Coelho AL, Gomes MP, Catarino RJ, Rolfo C, Medeiros RM, Araújo AM. CSF-1 and Ang-2 serum levels - prognostic and diagnostic partners in non-small cell lung cancer. ESMO Open 2018; 3:e000349. [PMID: 30094067 PMCID: PMC6069916 DOI: 10.1136/esmoopen-2018-000349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background Lung cancer is the most incident and lethal form of cancer, with late diagnosis as a major determinant of its bad prognosis. Immunotherapies targeting immune checkpoints improve survival, but positive results encompass only 30%–40% of the patients, possibly due to alternative pathways to immunosuppression, including tumour-associated macrophages (TAM). Colony stimulating factor-1 (CSF-1) is implicated in TAM differentiation and recruitment to tumours and in tumour angiogenesis, through a special setting of Tie-2-expressing macrophages, which respond to angiopoietin-2 (Ang-2). We evaluated the role of serum levels of CSF-1 in non-small cell lung cancer (NSCLC) prognosis and whether these could serve as biomarkers for NSCLC detection, along with Ang-2. Participants and methods We prospectively studied an unselected cohort of 145 patients with NSCLC and a group of 30 control individuals. Serum levels of Ang-2 and CSF-1 were measured by ELISA prior to treatment. Results Serum levels of CSF-1 and Ang-2 are positively correlated (p<0.000001). Individuals with high serum levels of CSF-1 have a 17-fold risk for NSCLC presence and patients with combined High Ang-2/CSF-1 serum levels present a 5-fold increased risk of having NSCLC. High Ang-2/CSF-1 phenotype is also associated with worst prognosis in NSCLC. Conclusions Combined expression of CSF-1 and Ang-2 seems to contribute to worst prognosis in NSCLC and it is worthy to understand the basis of this unexplored partnership. Moreover, we think CSF-1 could be included as a biomarker in NSCLC screening protocols that can improve the positive predictive value of the current screening modalities, increase overall cost effectiveness and potentially improve lung cancer survival.
Collapse
Affiliation(s)
- Ana Luísa Coelho
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Centre (CI-IPOP), Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; LPCC Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal; Oncology Research Group, UMIB-Unit for Multidisciplinary Research in Biomedicine, Porto, Portugal
| | - Mónica Patrícia Gomes
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Centre (CI-IPOP), Porto, Portugal; LPCC Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal; Oncology Research Group, UMIB-Unit for Multidisciplinary Research in Biomedicine, Porto, Portugal
| | - Raquel Jorge Catarino
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Centre (CI-IPOP), Porto, Portugal; Oncology Research Group, UMIB-Unit for Multidisciplinary Research in Biomedicine, Porto, Portugal
| | - Christian Rolfo
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Antwerp University Hospital, Edegem, Belgium; Centre of Oncological Research (CORE), Antwerp University, Edegem, Belgium
| | - Rui Manuel Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Centre (CI-IPOP), Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; LPCC Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - António Manuel Araújo
- Oncology Research Group, UMIB-Unit for Multidisciplinary Research in Biomedicine, Porto, Portugal; Department of Medical Oncology, Centro Hospitalar do Porto, Porto, Portugal; ICBAS-UP-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, Katou S, Schierle K, Robson SC, Splith K, Wiltberger G, Reutzel-Selke A, Jonas S, Pascher A, Bahra M, Pratschke J, Schmelzle M. Angiogenic miRNAs, the angiopoietin axis and related TIE2-expressing monocytes affect outcomes in cholangiocarcinoma. Oncotarget 2018; 9:29921-29933. [PMID: 30042823 PMCID: PMC6057457 DOI: 10.18632/oncotarget.25699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Tumour angiogenesis is modulated on both an epigenetic and protein level and has potential implications for immune cell responses. However, the importance of related angiogenic biomarkers in cholangiocarcinoma (CCA) is unknown. This study assessed human CCA samples for the expression of angiogenesis-associated microRNAs, angiopoietins (Angs) and monocytes expressing the Ang-receptor, TIE2, with regards to prognostic significance after liver resection. Methods Angiogenic miRNAs were analysed in frozen samples of intrahepatic CCA (iCC; n = 43) and hilar CCA (HC; n = 45). Ang-1 and Ang-2, as well as TIE2-expressing monocytes (TEMs), were detected in paraffin-embedded iCC sections (n = 88). MiRNA expression and the abundance of TEMs and Angs were correlated with clinicopathological characteristics and survival. Results MiR-126 was downregulated in 76.7% of all CCA samples, with high relative expression associated with smaller tumours and reduced lymph node metastasis. High Ang-1 expression was associated with less lymphangiosis carcinomatosa and better histological grading (all p < 0.05). The absence of TEMs in iCC correlated with elevated CA19-9 levels. High relative miR-126 and low miR-128 levels were associated with improved survival in iCC and HC, respectively (all p < 0.05). High miR-126, low miR-128 and TEMs were independent prognostic factors for recurrence-free and overall survival (all p < 0.05). Conclusions These results suggest that angiogenic miRNAs, Angs and TEMs are of prognostic value in CCA. In addition to the possible functional links between angiogenic miRNA expression profiles, Angs and immune-cell responses by TEMs, these data have clinical implications as novel diagnostic tools.
Collapse
Affiliation(s)
- Georgi Atanasov
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Corinna Dietel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Linda Feldbrügge
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Christian Benzing
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andreas Brandl
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Shadi Katou
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Simon C Robson
- The Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Katrin Splith
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Wiltberger
- Department of General, Visceral and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Jonas
- Department of General and Visceral Surgery, 310Klinik Nürnberg, Nürnberg, Germany
| | - Andreas Pascher
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Bahra
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Mahlbacher G, Curtis LT, Lowengrub J, Frieboes HB. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer 2018; 6:10. [PMID: 29382395 PMCID: PMC5791333 DOI: 10.1186/s40425-017-0313-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Background Immuno-oncotherapy has emerged as a promising means to target cancer. In particular, therapeutic manipulation of tumor-associated macrophages holds promise due to their various and sometimes opposing roles in tumor progression. It is established that M1-type macrophages suppress tumor progression while M2-types support it. Recently, Tie2-expressing macrophages (TEM) have been identified as a distinct sub-population influencing tumor angiogenesis and vascular remodeling as well as monocyte differentiation. Methods This study develops a modeling framework to evaluate macrophage interactions with the tumor microenvironment, enabling assessment of how these interactions may affect tumor progression. M1, M2, and Tie2 expressing variants are integrated into a model of tumor growth representing a metastatic lesion in a highly vascularized organ, such as the liver. Behaviors simulated include M1 release of nitric oxide (NO), M2 release of growth-promoting factors, and TEM facilitation of angiogenesis via Angiopoietin-2 and promotion of monocyte differentiation into M2 via IL-10. Results The results show that M2 presence leads to larger tumor growth regardless of TEM effects, implying that immunotherapeutic strategies that lead to TEM ablation may fail to restrain growth when the M2 represents a sizeable population. As TEM pro-tumor effects are less pronounced and on a longer time scale than M1-driven tumor inhibition, a more nuanced approach to influence monocyte differentiation taking into account the tumor state (e.g., under chemotherapy) may be desirable. Conclusions The results highlight the dynamic interaction of macrophages within a growing tumor, and, further, establish the initial feasibility of a mathematical framework that could longer term help to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Grace Mahlbacher
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA
| | - Louis T Curtis
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA
| | - John Lowengrub
- Department of Mathematics, University of California, 540H Rowland Hall, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40208, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
31
|
Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan XL. Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 2018; 7:50735-50754. [PMID: 27191744 PMCID: PMC5226617 DOI: 10.18632/oncotarget.9383] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment is replete with cells that evolve with and provide support to tumor cells during the transition to malignancy. The hijacking of the immune system in the pancreatic tumor microenvironment is suggested to contribute to the failure to date to produce significant improvements in pancreatic cancer survival by various chemotherapeutics. Regulatory T cells, myeloid derived suppressor cells, and fibroblasts, all of which constitute a complex ecology microenvironment, can suppress CD8+ T cells and NK cells, thus inhibiting effector immune responses. Tumor-associated macrophages (TAM) are versatile immune cells that can express different functional programs in response to stimuli in tumor microenvironment at different stages of pancreatic cancer development. TAM have been implicated in suppression of anti-tumorigenic immune responses, promotion of cancer cell proliferation, stimulation of tumor angiogenesis and extracellular matrix breakdown, and subsequent enhancement of tumor invasion and metastasis. Many emerging agents that have demonstrated efficacy in combating other types of tumors via modulation of macrophages in tumor microenvironments are, however, only marginally studied for pancreatic cancer prevention and treatment. A better understanding of the paradoxical roles of TAM in pancreatic cancer may pave the way to novel preventive and therapeutic approaches. Here we give an overview of the recruitment and differentiation of macrophages, TAM and pancreatic cancer progression and prognosis, as well as the potential preventive and therapeutic targets that interact with TAM for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Edmund C Lattime
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mark N Stein
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
32
|
Croci DO, Mendez-Huergo SP, Cerliani JP, Rabinovich GA. Immune-Mediated and Hypoxia-Regulated Programs: Accomplices in Resistance to Anti-angiogenic Therapies. Handb Exp Pharmacol 2018; 249:31-61. [PMID: 28405776 DOI: 10.1007/164_2017_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In contrast to mechanisms taking place during resistance to chemotherapies or other targeted therapies, compensatory adaptation to angiogenesis blockade does not imply a mutational alteration of genes encoding drug targets or multidrug resistance mechanisms but instead involves intrinsic or acquired activation of compensatory angiogenic pathways. In this article we highlight hypoxia-regulated and immune-mediated mechanisms that converge in endothelial cell programs and preserve angiogenesis in settings of vascular endothelial growth factor (VEGF) blockade. These mechanisms involve mobilization of myeloid cell populations and activation of cytokine- and chemokine-driven circuits operating during intrinsic and acquired resistance to anti-angiogenic therapies. Particularly, we focus on findings underscoring a role for galectins and glycosylated ligands in promoting resistance to anti-VEGF therapies and discuss possible strategies to overcome or attenuate this compensatory pathway. Finally, we highlight emerging evidence demonstrating the interplay between immunosuppressive and pro-angiogenic programs in the tumor microenvironment (TME) and discuss emerging combinatorial anticancer strategies aimed at simultaneously potentiating antitumor immune responses and counteracting aberrant angiogenesis.
Collapse
Affiliation(s)
- Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina.
| | - Santiago P Mendez-Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Zhang W, Zhao X, Xiao Y, Chen J, Han P, Zhang J, Fu H, James Kang Y. The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia. Metallomics 2017; 8:654-62. [PMID: 26852735 DOI: 10.1039/c5mt00332f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Depressed capillary density is associated with myocardial ischemic infarction, in which hypoxia-inducible factor 1α (HIF-1α) is increased. The present study was undertaken to examine changes in the angiogenic factors whose expression is regulated by HIF-1 and their relation to the depressed capillary density in the Rhesus monkey model of myocardial ischemic infarction. Male Rhesus monkeys 2-3 years old were subjected to myocardial ischemia by permanent ligation of left anterior descending (LAD) artery leading to the development of myocardial infarction. Eight weeks after LAD ligation, copper concentrations, myocardial histological changes and capillary density were examined, along with Western blot and immunohistochemical analysis of angiogenic factors and detection of HIF-1 activity. Capillary density was significantly decreased but the concentrations of HIF-1α and HIF-1β were significantly increased in the infarct area. However, the levels of mRNA and protein for VEGF and VEGFR1 were significantly decreased. Other HIF-1 regulated angiogenic factors, including Tie-2, Ang-1 and FGF-1, were also significantly depressed, but vascular destabilizing factor Ang-2 was significantly increased. Copper concentrations were depressed in the infarct area. Copper-independent HIF-1 activity was increased shown by the elevated mRNA level of IGF-2, a HIF-1 target gene. Removal of copper by a copper chelator, tetraethylenepentamine, from primary cultures of neonatal rat cardiomyocytes also suppressed the expression of HIF-1 regulated VEGF and BNIP3, but not IGF-2. The data suggest that under ischemic conditions, copper loss suppressed the expression of critical angiogenic genes regulated by HIF-1, but did not affect copper-independent HIF-1 activation of gene expression. This copper-dependent dysregulation of angiogenic gene expression would contribute to the pathogenesis of myocardial ischemic infarction.
Collapse
Affiliation(s)
- Wenjing Zhang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Xinmei Zhao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Jianmin Chen
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Pengfei Han
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Jingyao Zhang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Haiying Fu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China. and Department of Pharmacology and Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
34
|
Abstract
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Collapse
|
35
|
Effects of Mahuang ( Herba Ephedra Sinica ) and Wuweizi ( Fructus Schisandrae Chinensis ) medicated serum on chemotactic migration of alveolar macrophages and inters regions macrophages in rats. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30313-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Schäfer C, Ascui G, Ribeiro CH, López M, Prados-Rosales R, González PA, Bueno SM, Riedel CA, Baena A, Kalergis AM, Carreño LJ. Innate immune cells for immunotherapy of autoimmune and cancer disorders. Int Rev Immunol 2017; 36:315-337. [PMID: 28933579 DOI: 10.1080/08830185.2017.1365145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modulation of the immune system has been widely targeted for the treatment of several immune-related diseases, such as autoimmune disorders and cancer, due to its crucial role in these pathologies. Current available therapies focus mainly on symptomatic treatment and are often associated with undesirable secondary effects. For several years, remission of disease and subsequently recovery of immune homeostasis has been a major goal for immunotherapy. Most current immunotherapeutic strategies are aimed to inhibit or potentiate directly the adaptive immune response by modulating antibody production and B cell memory, as well as the effector potential and memory of T cells. Although these immunomodulatory approaches have shown some success in the clinic with promising therapeutic potential, they have some limitations related to their effectiveness in disease models and clinical trials, as well as elevated costs. In the recent years, a renewed interest has emerged on targeting innate immune cells for immunotherapy, due to their high plasticity and ability to exert a potent and extremely rapid response, which can influence the outcome of the adaptive immune response. In this review, we discuss the immunomodulatory potential of several innate immune cells, as well as they use for immunotherapy, especially in autoimmunity and cancer.
Collapse
Affiliation(s)
- Carolina Schäfer
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Gabriel Ascui
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Carolina H Ribeiro
- b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Mercedes López
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Rafael Prados-Rosales
- c Centro de Investigaciones Cooperativas en Biociencias (CIC bioGUNE) , Bilbao , Spain
| | - Pablo A González
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,e Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Universidad Andrés Bello , Santiago , Chile
| | - Andrés Baena
- f Departamento de Microbiología y Parasitología, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | - Alexis M Kalergis
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile.,g Departamento de Endocrinología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leandro J Carreño
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| |
Collapse
|
37
|
Bhaskaran N, Ghosh SK, Yu X, Qin S, Weinberg A, Pandiyan P, Ye F. Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017; 16:1611-1621. [PMID: 28750175 DOI: 10.1080/15384101.2017.1356509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors. Here we report that KSHV infection of endothelial cells induces additional cytokines including interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-13 (IL-13) that drive monocytes to differentiate and polarize into TAMs. The KSHV-induced TAMs not only express TAM-specific markers such as CD-163 and legumain (LGMN) but also display a gene expression profile with characteristic features of viral infection. More importantly, KSHV-induced TAMs enhance tumor growth in nude mice. These results are consistent with the strong presence of TAMs in Kaposi's sarcoma (KS) tumors. Therefore, KSHV infection of endothelial cells generates a local microenvironment that not only promotes the recruitment of monocytes but also induces their differentiation and polarization into TAMs. These findings reveal a new mechanism of KSHV contribution to KS tumor development.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Santosh K Ghosh
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Xiaolan Yu
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Hubei Collaborative Innovation Center for Green Transformation of Bio-resource , College of Life Sciences, Hubei University , Wuhan , Hubei , China
| | - Sanhai Qin
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Aaron Weinberg
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Pushpa Pandiyan
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Fengchun Ye
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
38
|
Abstract
Tumor-associated macrophages (TAMs), representing most of the leukocyte population in solid tumors, demonstrate great phenotypic heterogeneity and diverse functional capabilities under the influence of the local tumor microenvironment. These anti-inflammatory and protumorigenic macrophages modulate the local microenvironment to facilitate tumor growth and metastasis. In this review, we examine the origin of TAMs and the complex regulatory networks within the tumor microenvironment that facilitate the polarization of TAMs toward a protumoral phenotype. More extensively, we evaluate the mechanisms by which TAMs mediate angiogenesis, metastasis, chemotherapeutic resistance and immune evasion. Lastly, we will highlight novel interventional strategies targeting TAMs in preclinical studies and in early clinical trials that have significant potential in improving efficacy of current chemotherapeutic and/or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Amy J Petty
- Division of Hematologic Malignancies & Cellular Therapy, Department of Medicine, Duke University Medical Center, Box 103005, Durham, NC 27710, USA
| | - Yiping Yang
- Division of Hematologic Malignancies & Cellular Therapy, Department of Medicine, Duke University Medical Center, Box 103005, Durham, NC 27710, USA.,Department of Immunology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
39
|
Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia. Cell Death Dis 2017; 8:e2849. [PMID: 28569789 PMCID: PMC5520910 DOI: 10.1038/cddis.2017.253] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023]
Abstract
Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’ (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition.
Collapse
|
40
|
Burnett A, Gomez I, De Leon DD, Ariaans M, Progias P, Kammerer RA, Velasco G, Marron M, Hellewell P, Ridger V. Angiopoietin-1 enhances neutrophil chemotaxis in vitro and migration in vivo through interaction with CD18 and release of CCL4. Sci Rep 2017; 7:2332. [PMID: 28539655 PMCID: PMC5443761 DOI: 10.1038/s41598-017-02216-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 01/04/2023] Open
Abstract
Angiopoietins are a family of growth factors that are ligands for the tyrosine kinase receptor, Tie2. Angiopoietin 1 (Ang-1) is agonistic for Tie2, plays a key role in blood vessel maturation and stability and has been shown to possess anti-inflammatory properties. However, Tie2 expression has been demonstrated on human neutrophils and the observation that neutrophils migrate in response to Ang-1 in vitro has confounded research into its exact role in inflammation as well as its potential use as a therapeutic agent. We used a mouse model of peritoneal neutrophilic inflammation to determine if Ang-1 could stimulate neutrophil migration in vivo. Tie2 expression was demonstrated on mouse neutrophils. In addition, recombinant human Ang-1 induced significant chemotaxis of isolated mouse neutrophils in a Tie2- and CD18-dependent manner. Subsequently, co-immunoprecipitation of Ang-1 and CD18 demonstrated their interaction. Intraperitoneal injection of an engineered angiopoietin-1, MAT.Ang-1, induced significant neutrophil migration into the peritoneum and a significant increase in the levels of CCL4 in peritoneal lavage fluid. Depletion of resident peritoneal macrophages prior to, or concomitant injections of an anti-CCL4 antibody with MAT.Ang-1 resulted in a significant reduction in neutrophil recruitment. These data indicate a pro-inflammatory role for Ang-1 with respect to neutrophil recruitment.
Collapse
Affiliation(s)
- Amanda Burnett
- Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health. University of Sheffield, Sheffield, UK
| | - Ingrid Gomez
- Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health. University of Sheffield, Sheffield, UK
| | - David Davila De Leon
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Mark Ariaans
- Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health. University of Sheffield, Sheffield, UK
| | - Pavlos Progias
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Marie Marron
- Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health. University of Sheffield, Sheffield, UK
| | - Paul Hellewell
- College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Victoria Ridger
- Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health. University of Sheffield, Sheffield, UK.
| |
Collapse
|
41
|
Li C, Liu T, Bazhin AV, Yang Y. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia. J Cell Physiol 2017; 232:2312-2322. [PMID: 27935039 DOI: 10.1002/jcp.25726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Tumor angiogenesis has become a promising target for anti-tumor therapy. Unfortunately, the somewhat inevitable occurrence of resistance has limited the efficacy of anti-angiogenic therapy. In addition to their well-established role in immune suppression, bone marrow-derived myeloid cells actively contribute to tumor angiogenesis. More importantly, myeloid cells constitute one of the major mechanisms of resistance to angiogenesis inhibition. As the most pervasive feature in tumor microenvironment, hypoxia is able to initiate both pro-angiogenic and immunosuppressive capacities of myeloid cells. Tumor adapts to hypoxic stress primarily through signaling mediated by hypoxic inducible factors (HIFs) and consequently utilizes hypoxia to its own advantage. In this regard, hypoxia orchestrates both angiogenesis and immune evasion to support tumor growth. In this article, we will review available information on the sabotaging role of myeloid cells in anti-angiogenic therapy. We will also discuss how hypoxia coordinates the dual-role cellular and molecular participants in microenvironment to maximize the efficiency of angiogenesis and immunosuppression to promote tumor progression. J. Cell. Physiol. 232: 2312-2322, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Turrini R, Pabois A, Xenarios I, Coukos G, Delaloye JF, Doucey MA. TIE-2 expressing monocytes in human cancers. Oncoimmunology 2017; 6:e1303585. [PMID: 28507810 PMCID: PMC5414874 DOI: 10.1080/2162402x.2017.1303585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAM) are well known as a key player in the tumor microenvironment, which support cancer progression. More recently, a lineage of monocytes characterized by the expression of the TIE-2/Tek angiopoietin receptor identified a subset of circulating and tumor-associated monocytes endowed with proangiogenic activity. TIE-2 expressing monocytes (TEM) were found both in humans and mice. Here, we review the phenotypes and functions of TEM reported so far in human cancer and their potential use as markers of cancer progression and metastasis. Finally, we discuss the therapeutic approaches currently used or proposed to target TEM.
Collapse
Affiliation(s)
- Riccardo Turrini
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Angélique Pabois
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Marie-Agnès Doucey
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Elliott LA, Doherty GA, Sheahan K, Ryan EJ. Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity. Front Immunol 2017; 8:86. [PMID: 28220123 PMCID: PMC5292650 DOI: 10.3389/fimmu.2017.00086] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Our current understanding of human tumor-resident myeloid cells is, for the most part, based on a large body of work in murine models or studies enumerating myeloid cells in patient tumor samples using immunohistochemistry (IHC). This has led to the establishment of the theory that, by and large, tumor-resident myeloid cells are either “protumor” M2 macrophages or myeloid-derived suppressor cells (MDSC). This concept has accelerated our understanding of myeloid cells in tumor progression and enabled the elucidation of many key regulatory mechanisms involved in cell recruitment, polarization, and activation. On the other hand, this paradigm does not embrace the complexity of the tumor-resident myeloid cell phenotype (IHC can only measure 1 or 2 markers per sample) and their possible divergent function in the hostile tumor microenvironment. Here, we examine the criteria that define human tumor-infiltrating myeloid cell subsets and provide a comprehensive and critical review of human myeloid cell nomenclature in cancer. We also highlight new evidence characterizing their contribution to cancer pathogenesis based on evidence derived from clinical studies drawing comparisons with murine studies where necessary. We then review the mechanisms in which myeloid cells are regulated by tumors in humans and how these are being targeted therapeutically.
Collapse
Affiliation(s)
- Louise A Elliott
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| |
Collapse
|
44
|
Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, Manos MP, Lawrence D, McDermott D, Severgnini M, Zhou J, Gjini E, Lako A, Lipschitz M, Pak CJ, Abdelrahman S, Rodig S, Hodi FS. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer Immunol Res 2016; 5:17-28. [PMID: 28003187 DOI: 10.1158/2326-6066.cir-16-0206] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023]
Abstract
Immune checkpoint therapies targeting CTLA-4 and PD-1 have proven effective in cancer treatment. However, the identification of biomarkers for predicting clinical outcomes and mechanisms to overcome resistance remain as critical needs. Angiogenesis is increasingly appreciated as an immune modulator with potential for combinatorial use with checkpoint blockade. Angiopoietin-2 (ANGPT2) is an immune target in patients and is involved in resistance to anti-VEGF treatment with the monoclonal antibody bevacizumab. We investigated the predictive and prognostic value of circulating ANGPT2 in metastatic melanoma patients receiving immune checkpoint therapy. High pretreatment serum ANGPT2 was associated with reduced overall survival in CTLA-4 and PD-1 blockade-treated patients. These treatments also increased serum ANGPT2 in many patients early after treatment initiation, whereas ipilimumab plus bevacizumab treatment decreased serum concentrations. ANGPT2 increases were associated with reduced response and/or overall survival. Ipilimumab increased, and ipilimumab plus bevacizumab decreased, tumor vascular ANGPT2 expression in a subset of patients, which was associated with increased and decreased tumor infiltration by CD68+ and CD163+ macrophages, respectively. In vitro, bevacizumab blocked VEGF-induced ANGPT2 expression in tumor-associated endothelial cells, whereas ANGPT2 increased PD-L1 expression on M2-polarized macrophages. Treatments elicited long-lasting and functional antibody responses to ANGPT2 in a subset of patients receiving clinical benefit. Our findings suggest that serum ANGPT2 may be considered as a predictive and prognostic biomarker for immune checkpoint therapy and may contribute to treatment resistance via increasing proangiogenic and immunosuppressive activities in the tumor microenvironment. Targeting ANGPT2 provides a rational combinatorial approach to improve the efficacy of immune therapy. Cancer Immunol Res; 5(1); 17-28. ©2016 AACR.
Collapse
Affiliation(s)
- Xinqi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaoyun Liao
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Courtney Connelly
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Erin M Connolly
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Michael P Manos
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Donald Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Mariano Severgnini
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jun Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Evisa Gjini
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ana Lako
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mikel Lipschitz
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Christine J Pak
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sara Abdelrahman
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Scott Rodig
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Schneider H, Szabo E, Machado RAC, Broggini-Tenzer A, Walter A, Lobell M, Heldmann D, Süssmeier F, Grünewald S, Weller M. Novel TIE-2 inhibitor BAY-826 displays in vivo efficacy in experimental syngeneic murine glioma models. J Neurochem 2016; 140:170-182. [PMID: 27787897 DOI: 10.1111/jnc.13877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
Targeting the vascular endothelial growth factor signaling axis in glioblastoma inevitably leads to tumor recurrence and a more aggressive phenotype. Therefore, other angiogenic pathways, like the angiopoietin/tunica interna endothelial cell kinase (TIE) signaling axis, have become additional targets for therapeutic intervention. Here, we explored whether targeting the receptor tyrosine kinase TIE-2 using a novel, highly potent, orally available small molecule TIE-2 inhibitor (BAY-826) improves tumor control in syngeneic mouse glioma models. BAY-826 inhibits TIE-2 phosphorylation in vitro and in vivo as demonstrated by suppression of Angiopoietin-1- or Na3 VO4 -induced TIE-2 phosphorylation in glioma cells or extracts of lungs from BAY-826-treated mice. There was a trend toward prolonged survival upon single-agent treatment in two of four models (SMA-497 and SMA-540) and there was a significant survival benefit in one model (SMA-560). Co-treatment with BAY-826 and irradiation was ineffective in one model (SMA-497), but provided synergistic prolongation of survival in another (SMA-560). Decreased vessel densities and increased leukocyte infiltration were observed, but might be independent processes as the effect was also observed in single treatment modalities. These data demonstrate that TIE-2 inhibition may improve tumor response to treatment in highly vascularized tumors such as glioblastoma.
Collapse
Affiliation(s)
- Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emese Szabo
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Raquel A C Machado
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Angela Broggini-Tenzer
- Laboratory for Molecular Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Walter
- GTRG Oncology II, Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | - Mario Lobell
- Medicinal Chemistry, Drug Discovery, Bayer Pharma AG, Wuppertal, Germany
| | - Dieter Heldmann
- GTRG Oncology II, Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | - Frank Süssmeier
- Medicinal Chemistry, Drug Discovery, Bayer Pharma AG, Wuppertal, Germany
| | - Sylvia Grünewald
- GTRG Oncology II, Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Center for Neuroscience, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
ILs-3, 6 and 11 increase, but ILs-10 and 24 decrease stemness of human prostate cancer cells in vitro. Oncotarget 2016; 6:42687-703. [PMID: 26528857 PMCID: PMC4767463 DOI: 10.18632/oncotarget.5883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are associated with cancer recurrence and metastasis. Prostate cancer cells often metastasize to the bone with a complex microenvironment of cytokines favoring cell survival. In this study, the cell stemness influence of a group of interleukins including IL-3, 6, 10, 11 and 24 on human prostate cancer cell lines LNCaP and PC-3 was explored in vitro. Sulforhodamine B(SRB) and 5-ethynyl-2′-deoxyuridine (EdU) assays were applied to examine the effect on cell proliferation, and wound healing and transwell assays were used for migration and invasion studies, in addition to colony formation, Western blotting and flowcytometry for the expression of stemness factors and chemotherapy sensitivity. We observed that ILs-3, 6 and 11 stimulated while ILs-10 and 24 inhibited the growth, invasion and migration of both cell lines. Interestingly, ILs-3, 6 and 11 significantly promoted colony formation and increased the expression of SOX2, CD44 and ABCG2 in both prostate cancer cell lines. However, ILs-10 and 24 showed the opposite effect on the expression of these factors. In line with the above findings, treatment with either IL-3 or IL-6 or IL-11 decreased the chemosensitivity to docetaxel while treatment with either IL-10 or IL-24 increased the sensitivity of docetaxel chemotherapy. In conclusion, our results suggest that ILs-3, 6 and 11 function as tumor promoters while ILs-10 and 24 function as tumor suppressors in the prostate cancer cell lines PC-3 and LNCaP in vitro, and such differences may attribute to their different effect on the stemness of PCa cells.
Collapse
|
47
|
Nazir T, Taha N, Islam A, Abraham S, Mahmood A, Mustafa M. Monocytopenia; Induction by Vinorelbine, Cisplatin and Doxorubicin in Breast, Non-Small Cell Lung and Cervix Cancer Patients. Int J Health Sci (Qassim) 2016; 10:542-547. [PMID: 27833519 PMCID: PMC5085349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The neoplasm is still a potential threat for breast, Non-Small Cell Lung (NSCL) and cervix cancer patients. Those gradually invade into other body organs, inducing complex pathological complications. Whereas, the anticancer drugs suppress the bone marrow, resulting serious hematological toxicities. Thus, the monocytic toxicity may the chance of infections, particularly in AID's patients. OBJECTIVE We aimed this retrospective study to investigate the monocytopenia induced by vinorelbine following chemotherapy in cancer patients. PATIENTS AND METHOD A total 60 adult cancer patients were divided into two groups; Group-1 patients received the treatment of Vinorelbine alone while group 2 patients received Vinorelbine based combination chemotherapy. RESULT The overall comparison of mean monocyte count (×103 per μl) with time showed a significant statistical difference (p value <0.001) for G-I and no significant difference for G-II (p value <0.08). The independent comparison of mean values for two groups at every week confirms the non-significant statistical difference during all of the five weeks (p values 0.551, 0.112, 0.559, 0.372, 0.468 respectively). In addition of that, the comparison of mean values observed before therapy with that of week 4 (after therapy) showed significant difference in G-I (p value <0.001) and non-significant in G-II (p value 0.053). CONCLUSION Monocytopenia is induced in both of the chemotherapy protocols allows the clinical oncologists and consultant physicians to select either of the chemotherapy protocol. The therapeutic efficacy should constitute the intervening consideration to treat the breast, cervix and NSCL (Non-Small Cell Lung's) cancers.
Collapse
Affiliation(s)
- Taha Nazir
- Biochemistry, Chemical Pathology, Molecular Biology Research Group, UMC&RC, University of Sargodha, Sargodha 40100 Pakistan. ; Intellectual Consortium of Drug Discovery & Technology Development Inc., 937-Northumerland Ave, Saskatoon SK S7L3E4 Canada
| | - Nida Taha
- Intellectual Consortium of Drug Discovery & Technology Development Inc., 937-Northumerland Ave, Saskatoon SK S7L3E4 Canada
| | - Azahrul Islam
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 USA.
| | - Suraj Abraham
- INRS 531, boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Adeel Mahmood
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, PO; 45550, Pakistan.
| | - Mazhar Mustafa
- Operations Manager, Emirates Medical Services, Fujairah, UAE
| |
Collapse
|
48
|
Ross M, Tormey P, Ingram L, Simpson R, Malone E, Florida-James G. A 10 km time trial running bout acutely increases the number of angiogenic T cells in the peripheral blood compartment of healthy males. Exp Physiol 2016; 101:1253-1264. [DOI: 10.1113/ep085771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Mark Ross
- School of Life, Sport and Social Sciences; Edinburgh Napier University; Edinburgh UK
| | - Peter Tormey
- School of Life, Sport and Social Sciences; Edinburgh Napier University; Edinburgh UK
| | - Lesley Ingram
- School of Life, Sport and Social Sciences; Edinburgh Napier University; Edinburgh UK
| | - Richard Simpson
- Department of Health and Human Performance; University of Houston; Houston TX USA
| | - Eva Malone
- School of Life, Sport and Social Sciences; Edinburgh Napier University; Edinburgh UK
| | - Geraint Florida-James
- School of Life, Sport and Social Sciences; Edinburgh Napier University; Edinburgh UK
| |
Collapse
|
49
|
Li Y, Zheng Y, Li T, Wang Q, Qian J, Lu Y, Zhang M, Bi E, Yang M, Reu F, Yi Q, Cai Z. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget 2016; 6:24218-29. [PMID: 26155942 PMCID: PMC4695181 DOI: 10.18632/oncotarget.4523] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
We previously showed that macrophages (MΦs) infiltrate the bone marrow (BM) of patients with myeloma and may play a role in drug resistance. This study analyzed chemokines expressed by myeloma BM that are responsible for recruiting monocytes to the tumor bed. We found that chemokines CCL3, CCL14, and CCL2 were highly expressed by myeloma and BM cells, and the levels of CCL14 and CCL3 in myeloma BM positively correlated with the percentage of BM-infiltrating MΦs. In vitro, these chemokines were responsible for chemoattracting human monocytes to tumor sites and in vivo for MΦ infiltration into myeloma-bearing BM in the 5TGM1 mouse model. Surprisingly, we also found that these chemokines stimulated MΦ in vitro proliferation induced by myeloma cells and in vivo in a human myeloma xenograft SCID mouse model. The chemokines also activated normal MΦ polarization and differentiation into myeloma-associated MΦs. Western blot analysis revealed that these chemokines promoted growth and survival signaling in MΦs via activating the PI3K/Akt and ERK MAPK pathways and c-myc expression. Thus, this study provides novel insight into the mechanism of MΦ infiltration of BM and also potential targets for improving the efficacy of chemotherapy in myeloma.
Collapse
Affiliation(s)
- Yi Li
- Bone Marrow Transplantation Center, Department of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuhuan Zheng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Hematology, Sichuan University, West China School of Medicine, Chengdu, Sichuan, China
| | - Tianshu Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Qiang Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jianfei Qian
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yong Lu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingjun Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Enguang Bi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maojie Yang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Frederic Reu
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Abstract
The role of tumor-associated macrophages (TAMs) in cancer is often correlated with poor prognosis, even though this statement should be interpreted with care, as the effects of macrophages primarily depend on their localization within the tumor. This versatile cell type orchestrates a broad spectrum of biological functions and exerts very complex and even opposing functions on cell death, immune stimulation or suppression, and angiogenesis, resulting in an overall pro- or antitumoral effect. We are only beginning to understand the environmental cues that contribute to transient retention of macrophages in a specific phenotype. It has become clear that hypoxia shapes and induces specific macrophage phenotypes that serve tumor malignancy, as hypoxia promotes immune evasion, angiogenesis, tumor cell survival, and metastatic dissemination. Additionally, TAMs in the hypoxic niches within the tumor are known to mediate resistance to several anticancer treatments and to promote cancer relapse. Thus, a careful characterization and understanding of this macrophage differentiation state is needed in order to efficiently tailor cancer therapy.
Collapse
|