1
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Hegarty S, Hardcastle N, Korte J, Kron T, Everitt S, Rahim S, Hegi-Johnson F, Franich R. Please Place Your Seat in the Full Upright Position: A Technical Framework for Landing Upright Radiation Therapy in the 21 st Century. Front Oncol 2022; 12:821887. [PMID: 35311128 PMCID: PMC8929673 DOI: 10.3389/fonc.2022.821887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Delivering radiotherapy to patients in an upright position can allow for increased patient comfort, reduction in normal tissue irradiation, or reduction of machine size and complexity. This paper gives an overview of the requirements for the delivery of contemporary arc and modulated radiation therapy to upright patients. We explore i) patient positioning and immobilization, ii) simulation imaging, iii) treatment planning and iv) online setup and image guidance. Treatment chairs have been designed to reproducibly position seated patients for treatment and can be augmented by several existing immobilisation systems or promising emerging technologies such as soft robotics. There are few solutions for acquiring CT images for upright patients, however, cone beam computed tomography (CBCT) scans of upright patients can be produced using the imaging capabilities of standard Linacs combined with an additional patient rotation device. While these images will require corrections to make them appropriate for treatment planning, several methods indicate the viability of this approach. Treatment planning is largely unchanged apart from translating gantry rotation to patient rotation, allowing for a fixed beam with a patient rotating relative to it. Rotation can be provided by a turntable during treatment delivery. Imaging the patient with the same machinery as used in treatment could be advantageous for online plan adaption. While the current focus is using clinical linacs in existing facilities, developments in this area could also extend to lower-cost and mobile linacs and heavy ion therapy.
Collapse
Affiliation(s)
- Sarah Hegarty
- School of Science, RMIT University, Melbourne, VIC, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Biomedical Engineering, School of Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Sarah Everitt
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia.,Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sulman Rahim
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Fiona Hegi-Johnson
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rick Franich
- School of Science, RMIT University, Melbourne, VIC, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Bazyar S, O’Brien ET, Benefield T, Roberts VR, Kumar RJ, Gupta GP, Zhou O, Lee YZ. Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator. Cancers (Basel) 2021; 14:155. [PMID: 35008319 PMCID: PMC8750301 DOI: 10.3390/cancers14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Radiation Oncology, University of Maryland, Maryland, MD 21201, USA;
| | - Edward Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | - Thad Benefield
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | | | - Rashmi J. Kumar
- Medical Scientist Training Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gaorav P. Gupta
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Yueh Z. Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
4
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
5
|
Steel H, Brüningk SC, Box C, Oelfke U, Bartzsch SH. Quantification of Differential Response of Tumour and Normal Cells to Microbeam Radiation in the Absence of FLASH Effects. Cancers (Basel) 2021; 13:3238. [PMID: 34209502 PMCID: PMC8268803 DOI: 10.3390/cancers13133238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Microbeam radiotherapy (MRT) is a preclinical method of delivering spatially-fractionated radiotherapy aiming to improve the therapeutic window between normal tissue complication and tumour control. Previously, MRT was limited to ultra-high dose rate synchrotron facilities. The aim of this study was to investigate in vitro effects of MRT on tumour and normal cells at conventional dose rates produced by a bench-top X-ray source. Two normal and two tumour cell lines were exposed to homogeneous broad beam (BB) radiation, MRT, or were separately irradiated with peak or valley doses before being mixed. Clonogenic survival was assessed and compared to BB-estimated surviving fractions calculated by the linear-quadratic (LQ)-model. All cell lines showed similar BB sensitivity. BB LQ-model predictions exceeded the survival of cell lines following MRT or mixed beam irradiation. This effect was stronger in tumour compared to normal cell lines. Dose mixing experiments could reproduce MRT survival. We observed a differential response of tumour and normal cells to spatially fractionated irradiations in vitro, indicating increased tumour cell sensitivity. Importantly, this was observed at dose rates precluding the presence of FLASH effects. The LQ-model did not predict cell survival when the cell population received split irradiation doses, indicating that factors other than local dose influenced survival after irradiation.
Collapse
Affiliation(s)
- Harriet Steel
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Sarah C. Brüningk
- Machine Learning & Computational Biology, Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
- Swiss Institute for Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Carol Box
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Uwe Oelfke
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Stefan H. Bartzsch
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany;
- Helmholtz Centre Munich, Institute for Radiation Medicine, Ingolstädter Landstraße 1, 85764 Munich, Germany
| |
Collapse
|
6
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
7
|
Pellicioli P, Donzelli M, Davis JA, Estève F, Hugtenburg R, Guatelli S, Petasecca M, Lerch MLF, Bräuer-Krisch E, Krisch M. Study of the X-ray radiation interaction with a multislit collimator for the creation of microbeams in radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:392-403. [PMID: 33650550 DOI: 10.1107/s1600577520016811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10-30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.
Collapse
Affiliation(s)
- P Pellicioli
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| | - M Donzelli
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| | - J A Davis
- School of Physics, University of Wollongong, Wollongong, Australia
| | - F Estève
- STROBE - Synchrotron Radiation for Biomedicine, Grenoble, France
| | - R Hugtenburg
- Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - S Guatelli
- School of Physics, University of Wollongong, Wollongong, Australia
| | - M Petasecca
- School of Physics, University of Wollongong, Wollongong, Australia
| | - M L F Lerch
- School of Physics, University of Wollongong, Wollongong, Australia
| | - E Bräuer-Krisch
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| | - M Krisch
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| |
Collapse
|
8
|
Day LRJ, Donzelli M, Pellicioli P, Smyth LML, Barnes M, Bartzsch S, Crosbie JC. A commercial treatment planning system with a hybrid dose calculation algorithm for synchrotron radiotherapy trials. Phys Med Biol 2021; 66:055016. [PMID: 33373979 DOI: 10.1088/1361-6560/abd737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synchrotron Radiotherapy (SyncRT) is a preclinical radiation treatment which delivers synchrotron x-rays to cancer targets. SyncRT allows for novel treatments such as Microbeam Radiotherapy, which has been shown to have exceptional healthy tissue sparing capabilities while maintaining good tumour control. Veterinary trials in SyncRT are anticipated to take place in the near future at the Australian Synchrotron's Imaging and Medical Beamline (IMBL). However, before veterinary trials can commence, a computerised treatment planning system (TPS) is required, which can quickly and accurately calculate the synchrotron x-ray dose through patient CT images. Furthermore, SyncRT TPS's must be familiar and intuitive to radiotherapy planners in order to alleviate necessary training and reduce user error. We have paired an accurate and fast Monte Carlo (MC) based SyncRT dose calculation algorithm with EclipseTM, the most widely implemented commercial TPS in the clinic. Using EclipseTM, we have performed preliminary SyncRT trials on dog cadavers at the IMBL, and verified calculated doses against dosimetric measurement to within 5% for heterogeneous tissue-equivalent phantoms. We have also performed a validation of the TPS against a full MC simulation for constructed heterogeneous phantoms in EclipseTM, and showed good agreement for a range of water-like tissues to within 5%-8%. Our custom EclipseTM TPS for SyncRT is ready to perform live veterinary trials at the IMBL.
Collapse
Affiliation(s)
- L R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - M Donzelli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France.,Institute of Cancer Research, London, United Kingdom
| | - P Pellicioli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France.,Inserm UA7 STROBE, Grenoble Alps University, Grenoble, France.,Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - L M L Smyth
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - M Barnes
- School of Science, RMIT University, Melbourne, Australia.,Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Australian Synchrotron, Imaging and Medical Beamline, Melbourne, Australia
| | - S Bartzsch
- Institute of Cancer Research, London, United Kingdom.,Technical University of Munich, Munich, Germany
| | - J C Crosbie
- School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
9
|
Liu R, Higley KA, Swat MH, Chaplain MAJ, Powathil GG, Glazier JA. Development of a coupled simulation toolkit for computational radiation biology based on Geant4 and CompuCell3D. Phys Med Biol 2021; 66:045026. [PMID: 33339019 DOI: 10.1088/1361-6560/abd4f9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Understanding and designing clinical radiation therapy is one of the most important areas of state-of-the-art oncological treatment regimens. Decades of research have gone into developing sophisticated treatment devices and optimization protocols for schedules and dosages. In this paper, we presented a comprehensive computational platform that facilitates building of the sophisticated multi-cell-based model of how radiation affects the biology of living tissue. We designed and implemented a coupled simulation method, including a radiation transport model, and a cell biology model, to simulate the tumor response after irradiation. The radiation transport simulation was implemented through Geant4 which is an open-source Monte Carlo simulation platform that provides many flexibilities for users, as well as low energy DNA damage simulation physics, Geant4-DNA. The cell biology simulation was implemented using CompuCell3D (CC3D) which is a cell biology simulation platform. In order to couple Geant4 solver with CC3D, we developed a 'bridging' module, RADCELL, that extracts tumor cellular geometry of the CC3D simulation (including specification of the individual cells) and ported it to the Geant4 for radiation transport simulation. The cell dose and cell DNA damage distribution in multicellular system were obtained using Geant4. The tumor response was simulated using cell-based tissue models based on CC3D, and the cell dose and cell DNA damage information were fed back through RADCELL to CC3D for updating the cell properties. By merging two powerful and widely used modeling platforms, CC3D and Geant4, we delivered a novel tool that can give us the ability to simulate the dynamics of biological tissue in the presence of ionizing radiation, which provides a framework for quantifying the biological consequences of radiation therapy. In this introductory methods paper, we described our modeling platform in detail and showed how it can be applied to study the application of radiotherapy to a vascularized tumor.
Collapse
Affiliation(s)
- Ruirui Liu
- School of Nuclear Science and Engineering, Oregon State University, 100 Radiation Center, Corvallis, OR 97331, United States of America.,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Kathryn A Higley
- School of Nuclear Science and Engineering, Oregon State University, 100 Radiation Center, Corvallis, OR 97331, United States of America
| | - Maciej H Swat
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Mark A J Chaplain
- School of Mathematics and Statistics, Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, Fife, United Kingdom
| | - Gibin G Powathil
- Department of Mathematics, College of Science, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - James A Glazier
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
10
|
Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters-A preclinical study in a Fischer 344 rat model. PLoS One 2020; 15:e0229053. [PMID: 32569277 PMCID: PMC7307781 DOI: 10.1371/journal.pone.0229053] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To identify key dosimetric parameters that have close associations with tumor treatment response and body weight change in SFRT treatments with a large range of spatial-fractionation scale at dose rates of several Gy/min. Methods Six study arms using uniform tumor radiation, half-tumor radiation, 2mm beam array radiation, 0.3mm minibeam radiation, and an untreated arm were used. All treatments were delivered on a 320kV x-ray irradiator. Forty-two female Fischer 344 rats with fibrosarcoma tumor allografts were used. Dosimetric parameters studied are peak dose and width, valley dose and width, peak-to-valley-dose-ratio (PVDR), volumetric average dose, percentage volume directly irradiated, and tumor- and normal-tissue EUD. Animal survival, tumor volume change, and body weight change (indicative of treatment toxicity) are tested for association with the dosimetric parameters using linear regression and Cox Proportional Hazards models. Results The dosimetric parameters most closely associated with tumor response are tumor EUD (R2 = 0.7923, F-stat = 15.26*; z-test = -4.07***), valley (minimum) dose (R2 = 0.7636, F-stat = 12.92*; z-test = -4.338***), and percentage tumor directly irradiated (R2 = 0.7153, F-stat = 10.05*; z-test = -3.837***) per the linear regression and Cox Proportional Hazards models, respectively. Tumor response is linearly proportional to valley (minimum) doses and tumor EUD. Average dose (R2 = 0.2745, F-stat = 1.514 (no sig.); z-test = -2.811**) and peak dose (R2 = 0.04472, F-stat = 0.6874 (not sig.); z-test = -0.786 (not sig.)) show the weakest associations to tumor response. Only the uniform radiation arm did not gain body weight post-radiation, indicative of treatment toxicity; however, body weight change in general shows weak association with all dosimetric parameters except for valley (minimum) dose (R2 = 0.3814, F-stat = 13.56**), valley width (R2 = 0.2853, F-stat = 8.783**), and peak width (R2 = 0.2759, F-stat = 8.382**). Conclusions For a single-fraction SFRT at conventional dose rates, valley, not peak, dose is closely associated with tumor treatment response and thus should be used for treatment prescription. Tumor EUD, valley (minimum) dose, and percentage tumor directly irradiated are the top three dosimetric parameters that exhibited close associations with tumor response.
Collapse
|
11
|
Chicilo F, Hanson AL, Geisler FH, Belev G, Edgar A, Ramaswami KO, Chapman D, Kasap SO. Dose profiles and x-ray energy optimization for microbeam radiation therapy by high-dose, high resolution dosimetry using Sm-doped fluoroaluminate glass plates and Monte Carlo transport simulation. Phys Med Biol 2020; 65:075010. [PMID: 32242527 DOI: 10.1088/1361-6560/ab7361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbeam radiation therapy (MRT) utilizes highly collimated synchrotron generated x-rays to create narrow planes of high dose radiation for the treatment of tumors. Individual microbeams have a typical width of 30-50 µm and are separated by a distance of 200-500 µm. The dose delivered at the center of the beam is lethal to cells in the microbeam path, on the order of hundreds of Grays (Gy). The tissue between each microbeam is spared and helps aid in the repair of adjacent damaged tissue. Radiation interactions within the peak of the microbeam, such as the photoelectric effect and incoherent (atomic Compton) scattering, cause some dose to be delivered to the valley areas adjacent to the microbeams. As the incident x-ray energy is modified, radiation interactions within a material change and affect the probability of interactions, as well as the directionality and energy of ionizing particles (electrons) that deposit energy in the valley regions surrounding the microbeam peaks. It is crucial that the valley dose between microbeams be minimal to maintain the effectiveness of MRT. Using a monochromatic x-ray source with x-ray energies ranging from 30 to 150 keV, a detailed investigation into the effect of incident x-ray energy on the dose profiles of microbeams was performed using samarium doped fluoroaluminate (FA) glass as the medium. All dosimetric measurements were carried out using a purpose-built fluorescence confocal microscope dosimetric technique that used Sm-doped FA glass plates as the irradiated medium. Dose profiles are measured over a very a wide range of x-ray energies at micrometer resolution and dose distribution in the microbeam are mapped. The measured microbeam profiles at different energies are compared with the MCNP6 radiation transport code, a general transport code which can calculate the energy deposition of electrons as they pass through a given material. The experimentally measured distributions can be used to validate the results for electron energy deposition in fluoroaluminate glass. Code validation is necessary for using transport codes in future treatment planning for MRT and other radiation therapies. It is shown that simulated and measured micro beam-profiles are in good agreement, and micrometer level changes can be observed using this high-resolution dosimetry technique. Full width at 10% of the maximum peak (FW@10%) was used to quantify the microbeam width. Experimental measurements on FA glasses and simulations on the dependence of the FW@10% at various energies are in good agreement. Simulations on energy deposited in water indicate that FW@10% reaches a local minimum around energies 140 keV. In addition, variable slit width experiments were carried out at an incident x-ray energy of 100 keV in order to determine the effect of the narrowing slit width on the delivered peak dose. The microbeam width affects the peak dose, which decreases with the width of the microbeam. Experiments suggest that a typical microbeam width for MRT is likely to be between 20-50 µm based on this work.
Collapse
Affiliation(s)
- F Chicilo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dombrowsky AC, Burger K, Porth AK, Stein M, Dierolf M, Günther B, Achterhold K, Gleich B, Feuchtinger A, Bartzsch S, Beyreuther E, Combs SE, Pfeiffer F, Wilkens JJ, Schmid TE. A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:111-120. [PMID: 31655869 DOI: 10.1007/s00411-019-00816-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.
Collapse
Affiliation(s)
- Annique C Dombrowsky
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Karin Burger
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Ann-Kristin Porth
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Marlon Stein
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Benedikt Günther
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Stephanie E Combs
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- German Consortium for Translational Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (dktk), Technical University Munich, 81675, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiobiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Thomas E Schmid
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany.
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
13
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys Med 2019; 65:227-237. [DOI: 10.1016/j.ejmp.2019.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
|
15
|
Potez M, Fernandez-Palomo C, Bouchet A, Trappetti V, Donzelli M, Krisch M, Laissue J, Volarevic V, Djonov V. Synchrotron Microbeam Radiation Therapy as a New Approach for the Treatment of Radioresistant Melanoma: Potential Underlying Mechanisms. Int J Radiat Oncol Biol Phys 2019; 105:1126-1136. [PMID: 31461675 DOI: 10.1016/j.ijrobp.2019.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 01/30/2023]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT) is a method that spatially distributes the x-ray beam into several microbeams of very high dose (peak dose), regularly separated by low-dose intervals (valley dose). MRT selectively spares normal tissues, relative to conventional (uniform broad beam [BB]) radiation therapy. METHODS AND MATERIALS To evaluate the effect of MRT on radioresistant melanoma, B16-F10 murine melanomas were implanted into mice ears. Tumors were either treated with MRT (407.6 Gy peak; 6.2 Gy valley dose) or uniform BB irradiation (6.2 Gy). RESULTS MRT induced significantly longer tumor regrowth delay than did BB irradiation. A significant 24% reduction in blood vessel perfusion was observed 5 days after MRT, and the cell proliferation index was significantly lower in melanomas treated by MRT compared with BB. MRT provoked a greater induction of senescence in melanoma cells. Bio-Plex analyses revealed enhanced concentration of monocyte-attracting chemokines in the MRT group: MCP-1 at D5, MIP-1α, MIP-1β, IL12p40, and RANTES at D9. This was associated with leukocytic infiltration at D9 after MRT, attributed mainly to CD8 T cells, natural killer cells, and macrophages. CONCLUSIONS In light of its potential to disrupt blood vessels that promote infiltration of the tumor by immune cells and its induction of senescence, MRT could be a new therapeutic approach for radioresistant melanoma.
Collapse
Affiliation(s)
- Marine Potez
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Bern, Switzerland; Synchrotron Radiation for Biomedicine, INSERM UA7, 71 rue des Martyrs, 38000 Grenoble, France
| | | | - Mattia Donzelli
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, Grenoble, France; Joint Department of Physics, The Institute of Cancer Research and the Royal Marsden Hospital, London, United Kingdom
| | - Michael Krisch
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, Grenoble, France
| | - Jean Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Vladislav Volarevic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Eling L, Bouchet A, Nemoz C, Djonov V, Balosso J, Laissue J, Bräuer-Krisch E, Adam JF, Serduc R. Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer. Radiother Oncol 2019; 139:56-61. [PMID: 31307824 DOI: 10.1016/j.radonc.2019.06.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
This paper reviews the current state of the art of an emerging form of radiosurgery dedicated to brain tumour treatment and which operates at very high dose rate (kGy·s-1). Microbeam Radiation Therapy uses synchrotron-generated X-rays which triggered normal tissue sparing partially mediated by FLASH effect.
Collapse
Affiliation(s)
- Laura Eling
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | - Audrey Bouchet
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | | | | | | | | | | | - Jean Francois Adam
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | - Raphael Serduc
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France.
| |
Collapse
|
17
|
Hall C, Lewis R. Synchrotron radiation biomedical imaging and radiotherapy: from the UK to the Antipodes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180240. [PMID: 31030651 DOI: 10.1098/rsta.2018.0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Although the general public might think of 'X-rays' as they are applied to imaging (radiography) and for the treatment of disease (radiotherapy), the use of synchrotron radiation (SR) X-ray beams in these areas of science was a minor activity 50 years ago. The largest gains in science from SR were seen to be in those areas where signals were weakest in laboratory instruments, such as X-ray diffraction and spectroscopy. As the qualities of SR X-rays were explored and more areas of science adopted SR-based methods, this situation changed. About 30 years ago, the clinical advantages of using SR X-ray beams for radiography, radiotherapy and clinical diagnostics started to be investigated. In the UK, a multi-disciplinary group, consisting of clinicians, medical physicists and other scientists working mainly with the Synchrotron Radiation Source (SRS) in Cheshire, started to investigate techniques for diagnosis and potentially a cure for certain cancers. This preliminary work influenced the design of new facilities being constructed around the world, in particular the Imaging and Medical Beam Line on the Australian Synchrotron in Melbourne. Two authors moved from the UK to Australia to participate in this exciting venture. The following is a personal view of some of the highlights of the early-year SRS work, following through to the current activities on the new facility in Australia. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.
Collapse
Affiliation(s)
- Christopher Hall
- 1 ANSTO Australian Synchrotron , Clayton, Victoria 3168 , Australia
- 3 Department of Medical Imaging and Radiation Sciences, Monash University , Clayton, Victoria 3600 , Australia
| | - Robert Lewis
- 2 Scott Automation , Tullamarine, Victoria 3043 , Australia
- 3 Department of Medical Imaging and Radiation Sciences, Monash University , Clayton, Victoria 3600 , Australia
- 4 Department of Medical Imaging, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
18
|
Synchrotron microbeam radiotherapy evokes a different early tumor immunomodulatory response to conventional radiotherapy in EMT6.5 mammary tumors. Radiother Oncol 2019; 133:93-99. [PMID: 30935588 DOI: 10.1016/j.radonc.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Synchrotron microbeam radiation therapy (MRT) is a new, evolving form of radiotherapy that has potential for clinical application. Several studies have shown in preclinical models that synchrotron MRT achieves equivalent tumor control to conventional radiotherapy (CRT) but with significantly reduced normal tissue damage. METHODS To explore differences between these two modalities, we assessed the immune cell infiltrate into EMT6.5 mammary tumors after CRT and MRT. RESULTS CRT induced marked increases in tumor-associated macrophages and neutrophils while there were no increases in these populations following MRT. In contrast, there were higher numbers of T cells in the MRT treated tumors. There were also increased levels of CCL2 by immunohistochemistry in tumors subjected to CRT, but not to MRT. Conversely, we found that MRT induced higher levels of pro-inflammatory genes in tumors than CRT. CONCLUSION Our data are the first to demonstrate substantial differences in macrophage, neutrophil and T cell numbers in tumors following MRT versus CRT, providing support for the concept that MRT evokes a different immunomodulatory response in tumors compared to CRT.
Collapse
|
19
|
Lobachevsky PN, Ventura J, Giannakandropoulou L, Forrester H, Palazzolo JS, Haynes NM, Stevenson AW, Hall CJ, Mason J, Pollakis G, Pateras IS, Gorgoulis V, Terzoudi GI, Hamilton JA, Sprung CN, Georgakilas AG, Martin OA. A Functional Immune System Is Required for the Systemic Genotoxic Effects of Localized Irradiation. Int J Radiat Oncol Biol Phys 2018; 103:1184-1193. [PMID: 30529375 DOI: 10.1016/j.ijrobp.2018.11.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Nontargeted effects of ionizing radiation, by which unirradiated cells and tissues are also damaged, are a relatively new paradigm in radiobiology. We recently reported radiation-induced abscopal effects (RIAEs) in normal tissues; namely, DNA damage, apoptosis, and activation of the local and systemic immune responses in C57BL6/J mice after irradiation of a small region of the body. High-dose-rate, synchrotron-generated broad beam or multiplanar x-ray microbeam radiation therapy was used with various field sizes and doses. This study explores components of the immune system involved in the generation of these abscopal effects. METHODS AND MATERIALS The following mice with various immune deficiencies were irradiated with the microbeam radiation therapy beam: (1) SCID/IL2γR-/- (NOD SCID gamma, NSG) mice, (2) wild-type C57BL6/J mice treated with an antibody-blocking macrophage colony-stimulating factor 1 receptor, which depletes and alters the function of macrophages, and (3) chemokine ligand 2/monocyte chemotactic protein 1 null mice. Complex DNA damage (ie, DNA double-strand breaks), oxidatively induced clustered DNA lesions, and apoptotic cells in tissues distant from the irradiation site were measured as RIAE endpoints and compared with those in wild-type C57BL6/J mice. RESULTS Wild-type mice accumulated double-strand breaks, oxidatively induced clustered DNA lesions, and apoptosis, enforcing our RIAE model. However, these effects were completely or partially abrogated in mice with immune disruption, highlighting the pivotal role of the immune system in propagation of systemic genotoxic effects after localized irradiation. CONCLUSIONS These results underline the importance of not only delineating the best strategies for tumor control but also mitigating systemic radiation toxicity.
Collapse
Affiliation(s)
- Pavel N Lobachevsky
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Ventura
- University of Melbourne Department of Obstetrics & Gynaecology and Royal Women's Hospital
| | - Lina Giannakandropoulou
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Helen Forrester
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Jason S Palazzolo
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicole M Haynes
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Andrew W Stevenson
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia; Australian Synchrotron, Clayton, Victoria, Australia
| | | | - Joel Mason
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Gerasimos Pollakis
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Institute for Cancer Sciences and Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia I Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St. Albans, Victoria, Australia
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Olga A Martin
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Guardiola C, Prezado Y, Roulin C, Bergs JW. Effect of X-ray minibeam radiation therapy on clonogenic survival of glioma cells. Clin Transl Radiat Oncol 2018; 13:7-13. [PMID: 30211325 PMCID: PMC6134191 DOI: 10.1016/j.ctro.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
The goal is to compare, in vitro, the efficiency of minibeam radiotherapy (MBRT) and standard RT in inducing clonogenic cell death in glioma cell lines. With this aim, we report on the first in vitro study performed in an X-ray Small Animal Radiation Research Platform (SARRP) modified for minibeam irradiations. F98 rat and U87 human glioma cells were irradiated with either an array of minibeams (MB) or with conventional homogeneous beams (broad beam, BB). A specially designed multislit collimator was used to generate the minibeams with a with of a center-to-center distance of 1465 (±10) μm, and a PVDR value of 12.4 (±2.3) measured at 1 cm depth in a water phantom. Cells were either replated for clonogenic assay directly (immediate plating, IP) or 24 h after irradiation (delayed plating, DP) to assess the effect of potentially lethal damage repair (PLDR) on cell survival. Our hypothesis is that with MBRT, a similar level of clonogenic cell death can be reached compared to standard RT, when using equal mean radiation doses. To prove this, we performed dose escalations to determine the minimum integrated dose needed to reach a similar level of clonogenic cell death for both treatments. We show that this minimum dose can vary per cell line: in F98 cells a dose of 19 Gy was needed to obtain similar levels of clonogenic survival, whereas in U87 cells there was still a slightly increased survival with MB compared to BB 19 Gy treatment. The results suggest also an impairment of DNA damage repair in F98 cells as there is no difference in clonogenic cell survival between immediately and delayed plated cells for each dose and irradiation mode. For U87 cells, a small IP-DP effect was observed in the case of BB irradiation up to a dose of 17 Gy. However, at 19 Gy BB, as well as for the complete dose range of MB irradiation, U87 cells did not show a difference in clonogenic survival between IP and DP. We therefore speculate that MBRT might influence PLDR. The current results show that X-ray MBRT is a promising method for treatment of gliomas: future preclinical and clinical studies should aim at reaching a minimum radiation (valley) dose for effective eradication of gliomas with increased sparing of normal tissues compared to standard RT.
Collapse
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Christophe Roulin
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Judith W.J. Bergs
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| |
Collapse
|
21
|
Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci Rep 2018; 8:12044. [PMID: 30104646 PMCID: PMC6089899 DOI: 10.1038/s41598-018-30543-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/30/2018] [Indexed: 11/09/2022] Open
Abstract
Synchrotron radiation can facilitate novel radiation therapy modalities such as microbeam radiation therapy (MRT) and high dose-rate synchrotron broad-beam radiation therapy (SBBR). Both of these modalities have unique physical properties that could be exploited for an improved therapeutic effect. While pre-clinical studies report promising normal tissue sparing phenomena, systematic toxicity data are still required. Our objective was to characterise the toxicity of SBBR and MRT and to calculate equivalent doses of conventional radiation therapy (CRT). A dose-escalation study was performed on C57BLJ/6 mice using total body and partial body irradiations. Dose-response curves and TD50 values were subsequently calculated using PROBIT analysis. For SBBR at dose-rates of 37 to 41 Gy/s, we found no evidence of a normal tissue sparing effect relative to CRT. Our findings also show that the MRT valley dose, rather than the peak dose, best correlates with CRT doses for acute toxicity. Importantly, longer-term weight tracking of irradiated animals revealed more pronounced growth impairment following MRT compared to both SBBR and CRT. Overall, this study provides the first in vivo dose-equivalence data between MRT, SBBR and CRT and presents systematic toxicity data for a range of organs that can be used as a reference point for future pre-clinical work.
Collapse
|
22
|
Smyth LM, Rogers PAW, Crosbie JC, Donoghue JF. Characterization of Diffuse Intrinsic Pontine Glioma Radiosensitivity using Synchrotron Microbeam Radiotherapy and Conventional Radiation Therapy In Vitro. Radiat Res 2018; 189:146-155. [PMID: 29364085 DOI: 10.1667/rr4633.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation therapy is a promising preclinical radiotherapy modality that has been proposed as an alternative to conventional radiation therapy for diseases such as diffuse intrinsic pontine glioma (DIPG), a devastating pediatric tumor of the brainstem. The primary goal of this study was to characterize and compare the radiosensitivity of two DIPG cell lines (SF7761 and JHH-DIPG-1) to microbeam and conventional radiation. We hypothesized that these DIPG cell lines would exhibit differential responses to each radiation modality. Single cell suspensions were exposed to microbeam (112, 250, 560, 1,180 Gy peak dose) or conventional (2, 4, 6 and 8 Gy) radiation to produce clonogenic cell-survival curves. Apoptosis induction and the cell cycle were also analyzed five days postirradiation using flow cytometry. JHH-DIPG-1 cells displayed greater radioresistance than SF7761 to both microbeam and conventional radiation, with higher colony formation and increased accumulation of G2/M-phase cells. Apoptosis was significantly increased in SF7761 cells compared to JHH-DIPG-1 after microbeam irradiation, demonstrating cell-line specific differential radiosensitivity to microbeam radiation. Additionally, biologically equivalent doses to microbeam and conventional radiation were calculated based on clonogenic survival, furthering our understanding of the response of cancer cells to these two radiotherapy modalities.
Collapse
Affiliation(s)
- L M Smyth
- a University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia.,b Epworth Radiation Oncology, Epworth HealthCare, Richmond 3121, Australia
| | - P A W Rogers
- a University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia
| | - J C Crosbie
- c School of Science, RMIT University, Melbourne 3001, Australia.,d William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne 3004, Australia; and
| | - J F Donoghue
- a University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia.,c School of Science, RMIT University, Melbourne 3001, Australia.,e Hudson Institute of Medical Research, Monash University, Clayton 3168, Australia
| |
Collapse
|
23
|
Livingstone J, Stevenson AW, Häusermann D, Adam JF. Experimental optimisation of the X-ray energy in microbeam radiation therapy. Phys Med 2017; 45:156-161. [PMID: 29472081 DOI: 10.1016/j.ejmp.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/30/2022] Open
Abstract
Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broadbeam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40-120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the microbeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90-120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.
Collapse
Affiliation(s)
- Jayde Livingstone
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia.
| | - Andrew W Stevenson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Daniel Häusermann
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Jean-François Adam
- Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble-Alpes, Grenoble, France; Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
24
|
Stevenson AW. Interpreting ionisation-chamber measurements as a function of wiggler field at a synchrotron source. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa8e0f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Meyer J, Stewart RD, Smith D, Eagle J, Lee E, Cao N, Ford E, Hashemian R, Schuemann J, Saini J, Marsh S, Emery R, Dorman E, Schwartz J, Sandison G. Biological and dosimetric characterisation of spatially fractionated proton minibeams. Phys Med Biol 2017; 62:9260-9281. [PMID: 29053105 DOI: 10.1088/1361-6560/aa950c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bazyar S, Inscoe CR, O’Brian ET, Zhou O, Lee YZ. Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies. ACTA ACUST UNITED AC 2017; 62:8924-8942. [DOI: 10.1088/1361-6560/aa926b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source. PLoS One 2017; 12:e0186005. [PMID: 29049300 PMCID: PMC5648152 DOI: 10.1371/journal.pone.0186005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 μm slit size and a spacing of 350 μm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation.
Collapse
|
28
|
Bazyar S, Inscoe CR, Benefield T, Zhang L, Lu J, Zhou O, Lee YZ. Neurocognitive sparing of desktop microbeam irradiation. Radiat Oncol 2017; 12:127. [PMID: 28800740 PMCID: PMC5554005 DOI: 10.1186/s13014-017-0864-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Normal tissue toxicity is the dose-limiting side effect of radiotherapy. Spatial fractionation irradiation techniques, like microbeam radiotherapy (MRT), have shown promising results in sparing the normal brain tissue. Most MRT studies have been conducted at synchrotron facilities. With the aim to make this promising treatment more available, we have built the first desktop image-guided MRT device based on carbon nanotube x-ray technology. In the current study, our purpose was to evaluate the effects of MRT on the rodent normal brain tissue using our device and compare it with the effect of the integrated equivalent homogenous dose. METHODS Twenty-four, 8-week-old male C57BL/6 J mice were randomly assigned to three groups: MRT, broad-beam (BB) and sham. The hippocampal region was irradiated with two parallel microbeams in the MRT group (beam width = 300 μm, center-to-center = 900 μm, 160 kVp). The BB group received the equivalent integral dose in the same area of their brain. Rotarod, marble burying and open-field activity tests were done pre- and every month post-irradiation up until 8 months to evaluate the cognitive changes and potential irradiation side effects on normal brain tissue. The open-field activity test was substituted by Barnes maze test at 8th month. A multilevel model, random coefficients approach was used to evaluate the longitudinal and temporal differences among treatment groups. RESULTS We found significant differences between BB group as compared to the microbeam-treated and sham mice in the number of buried marble and duration of the locomotion around the open-field arena than shams. Barnes maze revealed that BB mice had a lower capacity for spatial learning than MRT and shams. Mice in the BB group tend to gain weight at the slower pace than shams. No meaningful differences were found between MRT and sham up until 8-month follow-up using our measurements. CONCLUSIONS Applying MRT with our newly developed prototype compact CNT-based image-guided MRT system utilizing the current irradiation protocol can better preserve the integrity of normal brain tissue. Consequently, it enables applying higher irradiation dose that promises better tumor control. Further studies are required to evaluate the full extent effects of this novel modality.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, 350 Chapman Hall, 4Chapel Hill, NC, 27599, USA.
| | - Christina R Inscoe
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Thad Benefield
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Lei Zhang
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Jianping Lu
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yueh Z Lee
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, 350 Chapman Hall, 4Chapel Hill, NC, 27599, USA. .,Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, USA. .,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA. .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, USA. .,Department of Radiology, The University of North Carolina at Chapel Hill, CB#7510, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
29
|
Les promesses du haut débit de dose en radiothérapie. Bull Cancer 2017; 104:380-384. [DOI: 10.1016/j.bulcan.2017.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 11/24/2022]
|
30
|
Song J, Fan X, Zhao Z, Chen M, Chen W, Wu F, Zhang D, Chen L, Tu J, Ji J. 125I brachytherapy of locally advanced non-small-cell lung cancer after one cycle of first-line chemotherapy: a comparison with best supportive care. Onco Targets Ther 2017; 10:1345-1352. [PMID: 28280369 PMCID: PMC5338930 DOI: 10.2147/ott.s129903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The objective of this study was to assess the efficacy of computed tomography (CT)-guided 125I brachytherapy alone in improving the survival and quality of life of patients with unresectable locally advanced non-small-cell lung cancer (NSCLC) after one cycle of first-line chemotherapy. PATIENTS AND METHODS Sixteen patients with locally advanced NSCLC were treated with CT-guided 125I brachytherapy after one cycle of first-line chemotherapy (group A). Sixteen patients who received only best supportive care (group B) were matched up with the patients in group A. Primary end point included survival, and secondary end point included assessment of safety, effectiveness of CT-guided 125I brachytherapy, and improvement in the quality of life. RESULTS The two groups were well balanced in terms of age, disease histology, tumor stage, tumor location, and performance status (P>0.05). The median follow-up time was 16 months (range, 3-30). The total tumor response rate was 75.0% in group A, which was significantly higher than that in group B (0.0%) (P<0.01). The median progression-free survival time was 4.80 months for patients in group A and 1.35 months for patients in group B (P<0.001). Kaplan-Meier survival analysis showed that the median survival time of group A was 9.4±0.3 months versus 8.4±0.1 months in group B (P=0.013). Tumor-related symptoms of patients were significantly relieved, and the quality of life was markedly improved in group A than in group B. CONCLUSION CT-guided 125I brachytherapy improved the survival of patients with locally advanced NSCLC and quality of life after one cycle of first-line chemotherapy compared with best supportive care.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Xiaoxi Fan
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Zhongwei Zhao
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Minjiang Chen
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Weiqian Chen
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Fazong Wu
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Dengke Zhang
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Li Chen
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Jianfei Tu
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Jiansong Ji
- Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Poole CM, Day LRJ, Rogers PAW, Crosbie JC. Synchrotron microbeam radiotherapy in a commercially available treatment planning system. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5f1a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Stevenson AW, Crosbie JC, Hall CJ, Häusermann D, Livingstone J, Lye JE. Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL). JOURNAL OF SYNCHROTRON RADIATION 2017; 24:110-141. [PMID: 28009552 DOI: 10.1107/s1600577516015563] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
A critical early phase for any synchrotron beamline involves detailed testing, characterization and commissioning; this is especially true of a beamline as ambitious and complex as the Imaging & Medical Beamline (IMBL) at the Australian Synchrotron. IMBL staff and expert users have been performing precise experiments aimed at quantitative characterization of the primary polychromatic and monochromatic X-ray beams, with particular emphasis placed on the wiggler insertion devices (IDs), the primary-slit system and any in vacuo and ex vacuo filters. The findings from these studies will be described herein. These results will benefit IMBL and other users in the future, especially those for whom detailed knowledge of the X-ray beam spectrum (or `quality') and flux density is important. This information is critical for radiotherapy and radiobiology users, who ultimately need to know (to better than 5%) what X-ray dose or dose rate is being delivered to their samples. Various correction factors associated with ionization-chamber (IC) dosimetry have been accounted for, e.g. ion recombination, electron-loss effects. A new and innovative approach has been developed in this regard, which can provide confirmation of key parameter values such as the magnetic field in the wiggler and the effective thickness of key filters. IMBL commenced operation in December 2008 with an Advanced Photon Source (APS) wiggler as the (interim) ID. A superconducting multi-pole wiggler was installed and operational in January 2013. Results are obtained for both of these IDs and useful comparisons are made. A comprehensive model of the IMBL has been developed, embodied in a new computer program named spec.exe, which has been validated against a variety of experimental measurements. Having demonstrated the reliability and robustness of the model, it is then possible to use it in a practical and predictive manner. It is hoped that spec.exe will prove to be a useful resource for synchrotron science in general, and for hard X-ray beamlines, whether they are based on bending magnets or insertion devices, in particular. In due course, it is planned to make spec.exe freely available to other synchrotron scientists.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jeffrey C Crosbie
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Christopher J Hall
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Daniel Häusermann
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jayde Livingstone
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jessica E Lye
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
33
|
Pelliccia D, Crosbie JC, Larkin KG. Phase contrast image guidance for synchrotron microbeam radiotherapy. Phys Med Biol 2016; 61:5942-55. [DOI: 10.1088/0031-9155/61/16/5942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Donzelli M, Bräuer-Krisch E, Nemoz C, Brochard T, Oelfke U. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17. Med Phys 2016; 43:3157-3167. [PMID: 27277061 DOI: 10.1118/1.4950724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 02/11/2024] Open
Abstract
PURPOSE Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. METHODS This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. RESULTS Using four external fiducial markers of 1.7 mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2 mm can be achieved with an angular deviation of less than 2(∘). Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1 mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. CONCLUSIONS The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.
Collapse
Affiliation(s)
- Mattia Donzelli
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France and The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, United Kingdom
| | - Elke Bräuer-Krisch
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France
| | - Christian Nemoz
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France
| | - Thierry Brochard
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France
| | - Uwe Oelfke
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, United Kingdom
| |
Collapse
|
35
|
Smyth LML, Senthi S, Crosbie JC, Rogers PAW. The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol 2016; 92:302-11. [DOI: 10.3109/09553002.2016.1154217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lloyd M. L. Smyth
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
- Epworth Radiation Oncology, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Sashendra Senthi
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jeffrey C. Crosbie
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter A. W. Rogers
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Ibahim MJ, Yang Y, Crosbie JC, Stevenson A, Cann L, Paiva P, Rogers PA. Eosinophil-Associated Gene Pathways but not Eosinophil Numbers are Differentially Regulated between Synchrotron Microbeam Radiation Treatment and Synchrotron Broad-Beam Treatment by 48 Hours Postirradiation. Radiat Res 2015; 185:60-8. [PMID: 26720800 DOI: 10.1667/rr14115.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation treatment (MRT) is a preclinical radiotherapy technique with considerable clinical promise, although some of the underlying radiobiology of MRT is still not well understood. In recently reported studies, it has been suggested that MRT elicits a different tumor immune profile compared to broad-beam treatment (BB). The aim of this study was to investigate the effects of synchrotron MRT and BB on eosinophil-associated gene pathways and eosinophil numbers within and around the tumor in the acute stage, 48 h postirradiation. Balb/C mice were inoculated with EMT6.5 mouse mammary tumors and irradiated with microbeam radiation (112 and 560 Gy) and broad-beam radiation (5 and 9 Gy) at equivalent doses determined from a previous in vitro study. After tumors were collected 24 and 48 h postirradiation, RNA was extracted and quantitative PCR performed to assess eosinophil-associated gene expression. Immunohistochemistry was performed to detect two known markers of eosinophils: eosinophil-associated ribonucleases (EARs) and eosinophil major basic protein (MBP). We identified five genes associated with eosinophil function and recruitment (Ear11, Ccl24, Ccl6, Ccl9 and Ccl11) and all of them, except Ccl11, were differentially regulated in synchrotron microbeam-irradiated tumors compared to broad-beam-irradiated tumors. However, immunohistochemical localization demonstrated no significant differences in the number of EAR- and MBP-positive eosinophils infiltrating the primary tumor after MRT compared to BB. In conclusion, our work demonstrates that the effects of MRT on eosinophil-related gene pathways are different from broad-beam radiation treatment at doses previously demonstrated to be equivalent in an in vitro study. However, a comparison of the microenvironments of tumors, which received MRT and BB, 48 h after exposure showed no difference between them with respect to eosinophil accumulation. These findings contribute to our understanding of the role of differential effects of MRT on the tumor immune response.
Collapse
Affiliation(s)
- M J Ibahim
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia;,b Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | - Y Yang
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - J C Crosbie
- c School of Applied Sciences, RMIT University, Melbourne, Victoria 3001, Australia;,d William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - A Stevenson
- e The Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia; and.,f CSIRO Materials Science and Engineering, Clayton, Victoria 3168, Australia
| | - L Cann
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - P Paiva
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - P A Rogers
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
37
|
Xiang Z, Li G, Liu Z, Huang J, Zhong Z, Sun L, Li C, Zhang F. 125I Brachytherapy in Locally Advanced Nonsmall Cell Lung Cancer After Progression of Concurrent Radiochemotherapy. Medicine (Baltimore) 2015; 94:e2249. [PMID: 26656370 PMCID: PMC5008515 DOI: 10.1097/md.0000000000002249] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To investigate the safety and effectiveness of computed tomography (CT)-guided I seed implantation for locally advanced nonsmall cell lung cancer (NSCLC) after progression of concurrent radiochemotherapy (CCRT).We reviewed 78 locally advanced NSCLC patients who had each one cycle of first-line CCRT but had progressive disease identified from January 2006 to February 2015 at our institution. A total of 37 patients with 44 lesions received CT-guided percutaneous I seed implantation and second-line chemotherapy (group A), while 41 with 41 lesions received second-line chemotherapy (group B).Patients in group A and B received a total of 37 and 41 first cycle of CCRT treatment. The median follow-up was 19 (range 3-36) months. After the second treatment, the total response rate (RR) in tumor response accounted for 63.6% in group A, which was significantly higher than that of group B (41.5%) (P = 0.033). The median progression-free survival time (PFST) was 8.00 ± 1.09 months and 5.00 ± 0.64 months in groups A and B (P = 0.011). The 1-, 2-, and 3-year overall survival (OS) rates for group A were 56.8%, 16.2%, and 2.7%, respectively. For group B, OS rates were 36.6%, 9.8%, and 2.4%, respectively. The median OS time was 14.00 ± 1.82 months and 10.00 ± 1.37 months for groups A and B, respectively (P = 0.059). Similar toxicity reactions were found in both groups. Tumor-related clinical symptoms were significantly reduced and the patients' quality of life was obviously improved.CT-guided I seed implantation proved to be potentially beneficial in treating localized advanced NSCLC; it achieved good local control rates and relieved clinical symptoms without increasing side effects.
Collapse
Affiliation(s)
- Zhanwang Xiang
- From the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center (ZX, GL, JH, ZZ, LS, CL, FZ), and Guangzhou Women and Children Health Care Center, Guangzhou, China (ZL)
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yuan H, Zhang L, Frank JE, Inscoe CR, Burk LM, Hadsell M, Lee YZ, Lu J, Chang S, Zhou O. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study. Radiat Res 2015; 184:322-33. [PMID: 26305294 DOI: 10.1667/rr13919.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.
Collapse
Affiliation(s)
- Hong Yuan
- a Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lei Zhang
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jonathan E Frank
- b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina R Inscoe
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Laurel M Burk
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Mike Hadsell
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yueh Z Lee
- a Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,e Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sha Chang
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,e Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,f Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
39
|
Yang Y, Crosbie JC, Paiva P, Ibahim M, Stevenson A, Rogers PAW. In vitro study of genes and molecular pathways differentially regulated by synchrotron microbeam radiotherapy. Radiat Res 2015; 182:626-39. [PMID: 25409126 DOI: 10.1667/rr13778.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this study was to identify genes and molecular pathways differentially regulated by synchrotron-generated microbeam radiotherapy (MRT) versus conventional broadbeam radiotherapy (CRT) in vitro using cultured EMT6.5 cells. We hypothesized (based on previous findings) that gene expression and molecular pathway changes after MRT are different from those seen after CRT. We found that at 24 h postirradiation, MRT exerts a broader regulatory effect on multiple pathways than CRT. MRT regulated those pathways involved in gene transcription, translation initiation, macromolecule metabolism, oxidoreductase activity and signaling transduction in a different manner compared to CRT. We also found that MRT/CRT alone, or when combined with inflammatory factor lipopolysaccharide, upregulated expression of Ccl2, Ccl5 or Csf2, which are involved in host immune cell recruitment. Our findings demonstrated differences in the molecular pathway for MRT versus CRT in the cultured tumor cells, and were consistent with the idea that radiation plays a role in recruiting tumor-associated immune cells to the tumor. Our results also suggest that a combination of MRT/CRT with a treatment targeting CCL2 or CSF2 could repress the tumor-associated immune cell recruitment, delay tumor growth and/or metastasis and yield better tumor control than radiation alone.
Collapse
Affiliation(s)
- Yuqing Yang
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|