1
|
Qiu CW, Ma Y, Wang QQ, Fu MM, Li C, Wang Y, Wu F. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism. PLANT PHYSIOLOGY 2023; 193:389-409. [PMID: 37300541 DOI: 10.1093/plphys/kiad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qing-Qing Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
2
|
Sun T, Zhang J, Zhang Q, Li X, Li M, Yang Y, Zhou J, Wei Q, Zhou B. Transcriptional and metabolic responses of apple to different potassium environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1131708. [PMID: 36968411 PMCID: PMC10036783 DOI: 10.3389/fpls.2023.1131708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Potassium (K) is one of the most important macronutrients for plant development and growth. The influence mechanism of different potassium stresses on the molecular regulation and metabolites of apple remains largely unknown. In this research, physiological, transcriptome, and metabolite analyses were compared under different K conditions in apple seedlings. The results showed that K deficiency and excess conditions influenced apple phenotypic characteristics, soil plant analytical development (SPAD) values, and photosynthesis. Hydrogen peroxide (H2O2) content, peroxidase (POD) activity, catalase (CAT) activity, abscisic acid (ABA) content, and indoleacetic acid (IAA) content were regulated by different K stresses. Transcriptome analysis indicated that there were 2,409 and 778 differentially expressed genes (DEGs) in apple leaves and roots under K deficiency conditions in addition to 1,393 and 1,205 DEGs in apple leaves and roots under potassium excess conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the DEGs were involved in flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction metabolite biosynthetic processes in response to different K conditions. There were 527 and 166 differential metabolites (DMAs) in leaves and roots under low-K stress as well as 228 and 150 DMAs in apple leaves and roots under high-K stress, respectively. Apple plants regulate carbon metabolism and the flavonoid pathway to respond to low-K and high-K stresses. This study provides a basis for understanding the metabolic processes underlying different K responses and provides a foundation to improve the utilization efficiency of K in apples.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Horticulture, China Agricultural University, Beijing, China
| | - Junke Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xingliang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Minji Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuzhang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jia Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qinping Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Beibei Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
Transcriptome and Metabolome Reveal the Molecular Mechanism of Barley Genotypes Underlying the Response to Low Nitrogen and Resupply. Int J Mol Sci 2023; 24:ijms24054706. [PMID: 36902137 PMCID: PMC10003240 DOI: 10.3390/ijms24054706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nitrogen is one of the most important mineral elements for plant growth and development. Excessive nitrogen application not only pollutes the environment, but also reduces the quality of crops. However, are few studies on the mechanism of barley tolerance to low nitrogen at both the transcriptome and metabolomics levels. In this study, the nitrogen-efficient genotype (W26) and the nitrogen-sensitive genotype (W20) of barley were treated with low nitrogen (LN) for 3 days and 18 days, then treated with resupplied nitrogen (RN) from 18 to 21 days. Later, the biomass and the nitrogen content were measured, and RNA-seq and metabolites were analyzed. The nitrogen use efficiency (NUE) of W26 and W20 treated with LN for 21 days was estimated by nitrogen content and dry weight, and the values were 87.54% and 61.74%, respectively. It turned out to have a significant difference in the two genotypes under the LN condition. According to the transcriptome analysis, 7926 differentially expressed genes (DEGs) and 7537 DEGs were identified in the leaves of W26 and W20, respectively, and 6579 DEGs and 7128 DEGs were found in the roots of W26 and W20, respectively. After analysis of the metabolites, 458 differentially expressed metabolites (DAMs) and 425 DAMs were found in the leaves of W26 and W20, respectively, and 486 DAMs and 368 DAMs were found in the roots of W26 and W20, respectively. According to the KEGG joint analysis of DEGs and DAMs, it was discovered that glutathione (GSH) metabolism was the pathway of significant enrichment in the leaves of both W26 and W20. In this study, the metabolic pathways of nitrogen metabolism and GSH metabolism of barley under nitrogen were constructed based on the related DAMs and DEGs. In leaves, GSH, amino acids, and amides were the main identified DAMs, while in roots, GSH, amino acids, and phenylpropanes were mainly found DAMs. Finally, some nitrogen-efficient candidate genes and metabolites were selected based on the results of this study. The responses of W26 and W20 to low nitrogen stress were significantly different at the transcriptional and metabolic levels. The candidate genes that have been screened will be verified in future. These data not only provide new insights into how barley responds to LN, but also provide new directions for studying the molecular mechanisms of barley under abiotic stress.
Collapse
|
4
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Comparative Omics Analysis of Brassica napus Roots Subjected to Six Individual Macronutrient Deprivations Reveals Deficiency-Specific Genes and Metabolomic Profiles. Int J Mol Sci 2021; 22:ijms222111679. [PMID: 34769110 PMCID: PMC8584284 DOI: 10.3390/ijms222111679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of Brassica napus roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations. Significantly, comparative transcriptomic analysis allowed the definition of a subset of 3282, 2011, 6325, 1384, 439, and 5157 differentially expressed genes (DEGs) specific to N, Mg, P, S, K, and Ca deprivations, respectively. Surprisingly, gene ontology term enrichment analysis performed on this subset of specific DEGs highlighted biological processes that are common to a number of these macronutrient deprivations, illustrating the complexity of nutrient interactions. In addition, a set of 38 biochemical compounds that discriminated the macronutrient deprivations was identified using a metabolic approach. The opportunity to use these specific DEGs and/or biochemical compounds as potential molecular indicators to diagnose macronutrient deficiency is discussed.
Collapse
|
6
|
Transcriptome Analysis of Two Near-Isogenic Lines with Different NUE under Normal Nitrogen Conditions in Wheat. BIOLOGY 2021; 10:biology10080787. [PMID: 34440020 PMCID: PMC8389668 DOI: 10.3390/biology10080787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary High nitrogen use efficiency (NUE) in wheat (Triticum aestivum L.) is the key to ensure high yield and reduce pollution. Understanding the physiological and molecular changes that regulate NUE is important for the breeding of high-NUE wheat varieties. Carbon and nitrogen metabolism are the basic metabolic pathways in plants. It becomes important to reveal the underlying molecular mechanisms related to carbon and nitrogen metabolism, which may be helpful to improve NUE. In this paper, two wheat near-isogenic lines (NILs) with contrasting NUE were performed RNA-Sequencing (RNA-Seq) to identify candidate genes associated with carbon/nitrogen metabolism under normal nitrogen conditions. Our research may provide new insights into the comprehensive understanding of the molecular mechanism underlying NUE. Abstract Nitrogen (N) is an essential nutrient element for crop productivity. Unfortunately, the nitrogen use efficiency (NUE) of crop plants gradually decreases with the increase of the N application rate. Nevertheless, little has been known about the molecular mechanisms of differences in NUE among genotypes of wheat. In this study, we used RNA-Sequencing (RNA-Seq) to compare the transcriptome profiling of flag leaves at the stage of anthesis in wheat NILs (1Y, high-NUE, and 1W, low-NUE) under normal nitrogen conditions (300 kg N ha−1, corresponding to 1.6 g N pot−1). We identified 7023 DEGs (4738 upregulated and 2285 downregulated) in the comparison between lines 1Y and 1W. The responses of 1Y and 1W to normal N differed in the transcriptional regulatory mechanisms. Several genes belonging to the GS and GOGAT gene families were upregulated in 1Y compared with 1W, and the enhanced carbon metabolism might lead 1Y to produce more C skeletons, metabolic energy, and reductants for nitrogen metabolism. A subset of transcription factors (TFs) family members, such as ERF, WRKY, NAC, and MYB, were also identified. Collectively, these identified candidate genes provided new information for a further understanding of the genotypic difference in NUE.
Collapse
|
7
|
Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA. Hydrogen sulfide (H 2S) and potassium (K +) synergistically induce drought stress tolerance through regulation of H +-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. PLANT CELL REPORTS 2021; 40:1543-1564. [PMID: 34142217 DOI: 10.1007/s00299-021-02731-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Exogenous potassium (K+) and endogenous hydrogen sulfide (H2S) synergistically alleviate drought stress through regulating H+-ATPase activity, sugar metabolism and redox homoeostasis in tomato seedlings. Present work evaluates the role of K+ in the regulation of endogenous H2S signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to drought stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K+ content which was associated with reduced H+-ATPase activity. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K+ channel blocker) suggests that exogenous K+ stimulated H+-ATPase activity that further regulated endogenous K+ content in tomato seedlings subjected to drought stress. Moreover, reduction in H+-ATPase activity by hypotaurine (HT; H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K+ content enhanced the biosynthesis of H2S through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K+ effectively neutralized drought stress by regulating sugar metabolism and redox homoeostasis that resulted in osmotic adjustment, as witnessed by reduced water loss, and improved hydration level of the stressed seedlings. The integrative role of endogenous H2S in K+ homeostasis was validated using HT and TEA which weakened the protection against drought stress induced impairments. In conclusion, exogenous K+ and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K+ homeostasis. Thus, present work reveals that K+ and H2S crosstalk is essential for modulation of drought stress tolerance in tomato seedlings.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Riyadh A Basahi
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Ibrahim A A Almohisen
- Department of Biology, Faculty of Science and Humanities, Shaqra University, Shaqra, P. O. Box 33, Quwayiyah, 11961, Saudi Arabia
| |
Collapse
|
8
|
Yang D, Li F, Yi F, Eneji AE, Tian X, Li Z. Transcriptome Analysis Unravels Key Factors Involved in Response to Potassium Deficiency and Feedback Regulation of K + Uptake in Cotton Roots. Int J Mol Sci 2021; 22:3133. [PMID: 33808570 PMCID: PMC8003395 DOI: 10.3390/ijms22063133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
To properly understand cotton responses to potassium (K+) deficiency and how its shoot feedback regulates K+ uptake and root growth, we analyzed the changes in root transcriptome induced by low K+ (0.03 mM K+, lasting three days) in self-grafts of a K+ inefficient cotton variety (CCRI41/CCRI41, scion/rootstock) and its reciprocal grafts with a K+ efficient variety (SCRC22/CCRI41). Compared with CCRI41/CCRI41, the SCRC22 scion enhanced the K+ uptake and root growth of CCRI41 rootstock. A total of 1968 and 2539 differently expressed genes (DEGs) were identified in the roots of CCRI41/CCRI41 and SCRC22/CCRI41 in response to K+ deficiency, respectively. The overlapped and similarly (both up- or both down-) regulated DEGs in the two grafts were considered the basic response to K+ deficiency in cotton roots, whereas the DEGs only found in SCRC22/CCRI41 (1954) and those oppositely (one up- and the other down-) regulated in the two grafts might be the key factors involved in the feedback regulation of K+ uptake and root growth. The expression level of four putative K+ transporter genes (three GhHAK5s and one GhKUP3) increased in both grafts under low K+, which could enable plants to cope with K+ deficiency. In addition, two ethylene response factors (ERFs), GhERF15 and GhESE3, both down-regulated in the roots of CCRI41/CCRI41 and SCRC22/CCRI41, may negatively regulate K+ uptake in cotton roots due to higher net K+ uptake rate in their virus-induced gene silencing (VIGS) plants. In terms of feedback regulation of K+ uptake and root growth, several up-regulated DEGs related to Ca2+ binding and CIPK (CBL-interacting protein kinases), one up-regulated GhKUP3 and several up-regulated GhNRT2.1s probably play important roles. In conclusion, these results provide a deeper insight into the molecular mechanisms involved in basic response to low K+ stress in cotton roots and feedback regulation of K+ uptake, and present several low K+ tolerance-associated genes that need to be further identified and characterized.
Collapse
Affiliation(s)
- Doudou Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar 540271, Nigeria
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Chen X, Zhao B, Ji C, Zhu B, Wang R. Transcriptome profiling analysis of two contrasting barley genotypes in general combining ability for yield traits. BRAZILIAN JOURNAL OF BOTANY 2021; 44:117-123. [DOI: 10.1007/s40415-020-00696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 09/01/2023]
|
10
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
11
|
Feng X, Liu W, Cao F, Wang Y, Zhang G, Chen ZH, Wu F. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6587-6600. [PMID: 32766860 DOI: 10.1093/jxb/eraa354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the major cationic inorganic nutrient utilized for osmotic regulation, cell growth, and enzyme activation in plants. Inwardly rectifying K+ channel 1 (AKT1) is the primary channel for root K+ uptake in plants, but the function of HvAKT1 in barley plants under drought stress has not been fully elucidated. In this study, we conducted evolutionary bioinformatics, biotechnological, electrophysiological, and biochemical assays to explore molecular mechanisms of HvAKT1 in response to drought in barley. The expression of HvAKT1 was significantly up-regulated by drought stress in the roots of XZ5-a drought-tolerant wild barley genotype. We isolated and functionally characterized the plasma membrane-localized HvAKT1 using Agrobacterium-mediated plant transformation and Barley stripe mosaic virus-induced gene silencing of HvAKT1 in barley. Evolutionary bioinformatics indicated that the K+ selective filter in AKT1 originated from streptophyte algae and is evolutionarily conserved in land plants. Silencing of HvAKT1 resulted in significantly decreased biomass and suppressed K+ uptake in root epidermal cells under drought treatment. Disruption of HvAKT1 decreased root H+ efflux, H+-ATPase activity, and nitric oxide (NO) synthesis, but increased hydrogen peroxide (H2O2) production in the roots under drought stress. Furthermore, we observed that overexpression of HvAKT1 improves K+ uptake and increases drought resistance in barley. Our results highlight the importance of HvAKT1 for root K+ uptake and its pleiotropic effects on root H+-ATPase, and H2O2 and NO in response to drought stress, providing new insights into the genetic basis of drought tolerance and K+ nutrition in barley.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Zhao Y, Sun R, Liu H, Liu X, Xu K, Xiao K, Zhang S, Yang X, Xue C. Multi-Omics Analyses Reveal the Molecular Mechanisms Underlying the Adaptation of Wheat ( Triticum aestivum L.) to Potassium Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:588994. [PMID: 33123186 PMCID: PMC7573229 DOI: 10.3389/fpls.2020.588994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 05/25/2023]
Abstract
Potassium (K) is essential for regulating plant growth and mediating abiotic stress responses. Elucidating the biological mechanism underlying plant responses to K-deficiency is crucial for breeding new cultivars with improved K uptake and K utilization efficiency. In this study, we evaluated the extent of the genetic variation among 543 wheat accessions differing in K-deficiency tolerance at the seedling and adult plant stages. Two accessions, KN9204 and BN207, were identified as extremely tolerant and sensitive to K-deficiency, respectively. The accessions were exposed to normal and K-deficient conditions, after which their roots underwent ionomic, transcriptomic, and metabolomic analyses. Under K-deficient conditions, KN9204 exhibited stronger root growth and maintained higher K concentrations than BN207. Moreover, 19,440 transcripts and 162 metabolites were differentially abundant in the roots of both accessions according to transcriptomic and metabolomic analyses. An integrated analysis of gene expression and metabolite profiles revealed that substantially more genes, including those related to ion homeostasis, cellular reactive oxygen species homeostasis, and the glutamate metabolic pathway, were up-regulated in KN9204 than in BN207 in response to low-K stress. Accordingly, these candidate genes have unique regulatory roles affecting plant K-starvation tolerance. These findings may be useful for further clarifying the molecular changes underlying wheat root adaptations to K deprivation.
Collapse
|
13
|
Transcriptome Analysis Reveals Differences in Key Genes and Pathways Regulating Carbon and Nitrogen Metabolism in Cotton Genotypes under N Starvation and Resupply. Int J Mol Sci 2020; 21:ijms21041500. [PMID: 32098345 PMCID: PMC7073098 DOI: 10.3390/ijms21041500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023] Open
Abstract
Nitrogen (N) is the most important limiting factor for cotton production worldwide. Genotype-dependent ability to cope with N shortage has been only partially explored in cotton, and in this context, the comparison of molecular responses of cotton genotypes with different nitrogen use efficiency (NUE) is of particular interest to dissect the key molecular mechanisms underlying NUE. In this study, we employed Illumina RNA-Sequencing to determine the genotypic difference in transcriptome profile using two cotton genotypes differing in NUE (CCRI-69, N-efficient, and XLZ-30, N-inefficient) under N starvation and resupply treatments. The results showed that a large genetic variation existed in differentially expressed genes (DEGs) related to amino acid, carbon, and nitrogen metabolism between CCRI-69 and XLZ-30. Further analysis of metabolic changes in cotton genotypes under N resupply showed that nitrogen metabolism and aromatic amino acid metabolism pathways were mainly enriched in CCRI-69 by regulating carbon metabolism pathways such as starch and sucrose metabolism, glycolysis/gluconeogenesis, and pentose phosphate pathway. Additionally, we performed an expression network analysis of genes related to amino acid, carbon, and nitrogen metabolism. In total, 75 and 33 genes were identified as hub genes in shoots and roots of cotton genotypes, respectively. In summary, the identified hub genes may provide new insights into coordinating carbon and nitrogen metabolism and improving NUE in cotton.
Collapse
|
14
|
Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica 2020; 148:55-68. [PMID: 32078720 DOI: 10.1007/s10709-020-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Barley shrunken endosperm mutants have been extensively reported. However, knowledge of the underlying molecular mechanisms of these mutants remains limited. Here, a pair of near isogenic lines (normal endosperm: Bowman and shrunken endosperm: sex1) was subjected to transcriptome analysis to identify mRNAs and lncRNAs related to endosperm development to further dissect its mechanism of molecular regulation. A total of 2123 (1140 up- and 983 down-regulated) unique differentially expressed genes (DEGs) were detected. Functional analyses showed that these DEGs were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, and plant hormone signal transduction. A total of 343 unique target genes were identified for 57 differentially expressed lncRNAs (DE lncRNAs). These DE lncRNAs were mainly involved in glycerophospholipid metabolism, starch and sucrose metabolism, hormone signal transduction, and stress response. In addition, key lncRNAs were identified by constructing a co-expression network of the target genes of DE lncRNAs. Transcriptome results suggested that mRNA and lncRNA played a critical role in endosperm development. The shrunken endosperm in barley seems to be closely related to plant hormone signal transduction, starch and sucrose metabolism, and cell apoptosis. This study provides a foundation for fine mapping, elucidates the molecular mechanism of shrunken endosperm mutants, and also provides a reference for further studies of lncRNAs during the grain development of plants.
Collapse
|
15
|
He Y, Li R, Lin F, Xiong Y, Wang L, Wang B, Guo J, Hu C. Transcriptome Changes Induced by Different Potassium Levels in Banana Roots. PLANTS (BASEL, SWITZERLAND) 2019; 9:E11. [PMID: 31861661 PMCID: PMC7020221 DOI: 10.3390/plants9010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Potassium plays an important role in enhancing plant resistance to biological and abiotic stresses and improving fruit quality. To study the effect of potassium nutrient levels on banana root growth and its regulation mechanism, four potassium concentrations were designed to treat banana roots from no potassium to high potassium. The results indicated that K2 (3 mmol/L K2SO4) treatment was a relatively normal potassium concentration for the growth of banana root, and too high or too low potassium concentration was not conducive to the growth of banana root. By comparing the transcriptome data in each treatment in pairs, 4454 differentially expressed genes were obtained. There were obvious differences in gene function enrichment in root systems treated with different concentrations of potassium. Six significant expression profiles (profile 0, 1, 2, 7, 9 and 13) were identified by STEM analysis. The hub genes were FKF1, HsP70-1, NRT1/PTR5, CRY1, and ZIP11 in the profile 0; CYP51 in profile 1; SOS1 in profile 7; THA, LKR/SDH, MCC, C4H, CHI, F3'H, 2 PR1s, BSP, TLP, ICS, RO, chitinase and peroxidase in profile 9. Our results provide a comprehensive and systematic analysis of the gene regulation network in banana roots under different potassium stress.
Collapse
Affiliation(s)
- Yingdui He
- College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China;
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.L.); (Y.X.); (L.W.); (B.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Ruimei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Fei Lin
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.L.); (Y.X.); (L.W.); (B.W.)
| | - Ying Xiong
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.L.); (Y.X.); (L.W.); (B.W.)
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Lixia Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.L.); (Y.X.); (L.W.); (B.W.)
| | - Bizun Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.L.); (Y.X.); (L.W.); (B.W.)
| | - Jianchun Guo
- College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China;
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chengxiao Hu
- College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
16
|
Long L, Ma X, Ye L, Zeng J, Chen G, Zhang G. Root plasticity and Pi recycling within plants contribute to low-P tolerance in Tibetan wild barley. BMC PLANT BIOLOGY 2019; 19:341. [PMID: 31382871 PMCID: PMC6683381 DOI: 10.1186/s12870-019-1949-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Barley is a low phosphorus (P) demand cereal crop. Tibetan wild barley, as a progenitor of cultivated barley, has revealed outstanding ability of tolerance to low-P stress. However, the underlying mechanisms of low-P adaption and the relevant genetic controlling are still unclear. RESULTS We identified low-P tolerant barley lines in a doubled-haploid (DH) population derived from an elite Tibetan wild barley accession and a high-yield cultivar. The tolerant lines revealed greater root plasticity in the terms of lateral root length, compared to low-P sensitive lines, in response to low-P stress. By integrating the QTLs associated with root length and root transcriptomic profiling, candidate genes encoding isoflavone reductase, nitrate reductase, nitrate transporter and transcriptional factor MYB were identified. The differentially expressed genes (DEGs) involved the growth of lateral root, Pi transport within cells as well as from roots to shoots contributed to the differences between low-P tolerant line L138 and low-P sensitive lines L73 in their ability of P acquisition and utilization. CONCLUSIONS The plasticity of root system is an important trait for barley to tolerate low-P stress. The low-P tolerance in the elite DH line derived from a cross of Tibetan wild barley and cultivated barley is characterized by enhanced growth of lateral root and Pi recycling within plants under low-P stress.
Collapse
Affiliation(s)
- Lizhi Long
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Xinyi Ma
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Lingzhen Ye
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Jianbin Zeng
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Guang Chen
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Guoping Zhang
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| |
Collapse
|
17
|
Quan X, Zeng J, Chen G, Zhang G. Transcriptomic analysis reveals adaptive strategies to chronic low nitrogen in Tibetan wild barley. BMC PLANT BIOLOGY 2019; 19:68. [PMID: 30744569 PMCID: PMC6371475 DOI: 10.1186/s12870-019-1668-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/31/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Development of crop cultivars with high low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) is imperative for sustainable agriculture development. Tibetan wild barley is rich in genetic diversity and may provide elite genes for LN tolerance improvement. Little has been known about transcriptional responses of the wild barley to chronic LN stress. RESULTS In this study, transcriptomic profiling of two Tibetan wild barley genotypes, LN- tolerant XZ149 and LN-sensitive XZ56 has been conducted using RNA-Seq to reveal the genotypic difference in response to chronic LN stress. A total of 520 differentially expressed genes (DEGs) were identified in the two genotypes at 12 d after LN stress, and these DEGs could be mainly mapped to 49 metabolism pathways. Chronic LN stress lead to genotype-dependent responses, and the responsive pattern in favor of root growth and stress tolerance may be the possible mechanisms of the higher chronic LN tolerance in XZ149. CONCLUSION There was a distinct difference in transcriptional profiling between the two wild barley genotypes in response to chronic LN stress. The identified new candidate genes related to LN tolerance may cast a light on the development of cultivars with LN tolerance.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People’s Republic of China
| | - Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Guang Chen
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
18
|
Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K. Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Genes (Basel) 2018; 9:E594. [PMID: 30501128 PMCID: PMC6316690 DOI: 10.3390/genes9120594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Khao Dawk Mali 105 (KDML105) rice is one of the most important crops of Thailand. It is a challenging task to identify the genes responding to salinity in KDML105 rice. The analysis of the gene co-expression network has been widely performed to prioritize significant genes, in order to select the key genes in a specific condition. In this work, we analyzed the two-state co-expression networks of KDML105 rice under salt-stress and normal grown conditions. The clustering coefficient was applied to both networks and exhibited significantly different structures between the salt-stress state network and the original (normal-grown) network. With higher clustering coefficients, the genes that responded to the salt stress formed a dense cluster. To prioritize and select the genes responding to the salinity, we investigated genes with small partners under normal conditions that were highly expressed and were co-working with many more partners under salt-stress conditions. The results showed that the genes responding to the abiotic stimulus and relating to the generation of the precursor metabolites and energy were the great candidates, as salt tolerant marker genes. In conclusion, in the case of the complexity of the environmental conditions, gaining more information in order to deal with the co-expression network provides better candidates for further analysis.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok 10800, Thailand.
| | - Chidchanok Chokrathok
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Panita Chutimanukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Supachitra Chadchawan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G. A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. PLANT & CELL PHYSIOLOGY 2018; 59:1976-1989. [PMID: 29917153 DOI: 10.1093/pcp/pcy116] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/10/2018] [Indexed: 05/21/2023]
Abstract
Our previous studies showed that high salt tolerance in Tibetan wild barley accessions was associated with HvHKT1;1, a member of the high-affinity potassium transporter family. However, molecular mechanisms of HvHKT1;1 for salt tolerance and its roles in K+/Na+ homeostasis remain to be elucidated. Functional characterization of HvHKT1;1 was conducted in the present study. NaCl-induced transcripts of HvHKT1;1 were significantly higher in the roots of Tibetan wild barley XZ16 relative to other genotypes, being closely associated with its higher biomass and lower tissue Na+ content under salt stress. Heterologous expression of HvHKT1;1 in Saccharomyces cerevisiae (yeast) and Xenopus laevis oocytes showed that HvHKT1;1 had higher selectivity for Na+ over K+ and other monovalent cations. HvHKT1;1 was found to be localized at the cell plasma membrane of root stele and epidermis. Knock-down of HvHKT1;1 in barley led to higher Na+ accumulation in both roots and leaves, while overexpression of HvHKT1;1 in salt-sensitive Arabidopsis hkt1-4 and sos1-12 loss-of-function lines resulted in significantly less shoot and root Na+ accumulation. Additionally, microelectrode ion flux measurements and root elongation assay revealed that the transgenic Arabidopsis plants exhibited a remarkable capacity for regulation of Na+, K+, Ca2+ and H+ homeostasis under salt stress. These results indicate that HvHKT1;1 is critical in radial root Na+ transport, which eventually reduces shoot Na+ accumulation. Additionally, HvHKT1;1 may be indirectly involved in retention of K+ and Ca2+ in root cells, which also improves plant salt tolerance.
Collapse
Affiliation(s)
- Yong Han
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shuya Yin
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Huang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xuelong Wu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianbin Zeng
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaohui Liu
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Long Qiu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology and School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Zhong-Hua Chen
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Guoping Zhang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Zeng J, Quan X, He X, Cai S, Ye Z, Chen G, Zhang G. Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC PLANT BIOLOGY 2018; 18:187. [PMID: 30200885 PMCID: PMC6131769 DOI: 10.1186/s12870-018-1404-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Potassium (K) deficiency in arable land is one of the most important factors affecting crop productivity. Development of low K (LK) tolerant crop cultivars is regarded as a best economic and effective approach for solving the issue of LK. In previous studies, we found a wider variation of LK tolerance in the Tibetan wild barley accessions than cultivated barley. However, the mechanism of LK tolerance in wild barley is still elusive. RESULTS In this study, two wild barley genotypes (XZ153, LK tolerant and XZ141, LK sensitive) and one cultivar (LuDaoMai, LK tolerant) was used to investigate metabolome changes in response to LK stress. Totally 57 kinds of metabolites were identified in roots and leaves of three genotypes at 16 d after LK treatment. In general, accumulation of amino acids and sugars was enhanced in both roots and leaves, while organic acids were reduced under LK stress compared to the control. Meanwhile, the concentrations of the negatively charged amino acids (Asp and Glu) and most organic acids was reduced in both roots and leaves, but more positively charged amino acids (Lys and Gln) were increased in three genotypes under LK. XZ153 had less reduction than other two genotypes in biomass and chlorophyll content under LK stress and showed greater antioxidant capacity as reflected by more synthesis of active oxygen scavengers. Higher LK tolerance of XZ153 may also be attributed to its less carbohydrate consumption and more storage of glucose and other sugars, thus providing more energy for plant growth under LK stress. Moreover, phenylpropanoid metabolic pathway mediated by PAL differed among three genotypes, which is closely associated with the genotypic difference in LK tolerance. CONCLUSIONS LK tolerance in the wild barley is attributed to more active phenylpropanoid metabolic pathway mediated by PAL, energy use economy by reducing carbohydrate consumption and storage of glucose and other sugars, and higher antioxidant defense ability under LK stress.
Collapse
Affiliation(s)
- Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan He
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Shengguan Cai
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhilan Ye
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Guang Chen
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
21
|
Zhao X, Liu Y, Liu X, Jiang J. Comparative Transcriptome Profiling of Two Tomato Genotypes in Response to Potassium-Deficiency Stress. Int J Mol Sci 2018; 19:ijms19082402. [PMID: 30110976 PMCID: PMC6121555 DOI: 10.3390/ijms19082402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023] Open
Abstract
Tomato is a crop that requires a sufficient supply of potassium (K) for optimal productivity and quality. K+-deficiency stress decreases tomato yield and quality. To further delve into the mechanism of the response to K+-deficiency and to screen out low-K+ tolerant genes in tomatoes, BGISEQ-500-based RNA sequencing was performed using two tomato genotypes (low-K+ tolerant JZ34 and low-K+ sensitive JZ18). We identified 1936 differentially expressed genes (DEGs) in JZ18 and JZ34 at 12 and 24 h after K+-deficiency treatment. According to the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses, the DEGs that changed significantly primarily included transcription factors, transporters, kinases, oxidative stress proteins, and hormone signaling-and glycometabolism-related genes. The experimental results confirmed the induced expression of the responsive genes in the low-K+ signaling pathway. The largest group of DEGs comprised up to 110 oxidative stress-related genes. In total, 19 ethylene response factors (ERFs) demonstrated differential expression between JZ18 and JZ34 in response to K+-deficiency. Furthermore, we confirmed 20 DEGs closely related to K+-deficiency stress by quantitative RT-PCR (qRT-PCR), some of which affected the root configuration, these DEGs could be further studied for use as molecular targets to explore novel approaches, and to acquire more effective K acquisition efficiencies for tomatoes. A hypothesis involving possible cross-talk between phytohormone signaling cues and reactive oxygen species (ROS) leading to root growth in JZ34 is proposed. The results provide a comprehensive foundation for the molecular mechanisms involved in the response of tomatoes to low K+ stress.
Collapse
Affiliation(s)
- Xiaoming Zhao
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
- College of Agriculture, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yang Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xin Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jing Jiang
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
22
|
Hu L, Xie Y, Fan S, Wang Z, Wang F, Zhang B, Li H, Song J, Kong L. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:276-293. [PMID: 29807601 DOI: 10.1016/j.plantsci.2018.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 05/13/2023]
Abstract
Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse.
Collapse
Affiliation(s)
- Ling Hu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yan Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fahong Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jie Song
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
23
|
Ren P, Meng Y, Li B, Ma X, Si E, Lai Y, Wang J, Yao L, Yang K, Shang X, Wang H. Molecular Mechanisms of Acclimatization to Phosphorus Starvation and Recovery Underlying Full-Length Transcriptome Profiling in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:500. [PMID: 29720989 PMCID: PMC5915550 DOI: 10.3389/fpls.2018.00500] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/03/2018] [Indexed: 05/18/2023]
Abstract
A lack of phosphorus (P) in plants can severely constrain growth and development. Barley, one of the earliest domesticated crops, is extensively planted in poor soil around the world. To date, the molecular mechanisms of enduring low phosphorus, at the transcriptional level, in barley are still unclear. In the present study, two different barley genotypes (GN121 and GN42)-with contrasting phosphorus efficiency-were used to reveal adaptations to low phosphorus stress, at three time points, at the morphological, physiological, biochemical, and transcriptome level. GN121 growth was less affected by phosphorus starvation and recovery than that of GN42. The biomass and inorganic phosphorus concentration of GN121 and GN42 declined under the low phosphorus-induced stress and increased after recovery with normal phosphorus. However, the range of these parameters was higher in GN42 than in GN121. Subsequently, a more complete genome annotation was obtained by correcting with the data sequenced on Illumina HiSeq X 10 and PacBio RSII SMRT platform. A total of 6,182 and 5,270 differentially expressed genes (DEGs) were identified in GN121 and GN42, respectively. The majority of these DEGs were involved in phosphorus metabolism such as phospholipid degradation, hydrolysis of phosphoric enzymes, sucrose synthesis, phosphorylation/dephosphorylation and post-transcriptional regulation; expression of these genes was significantly different between GN121 and GN42. Specifically, six and seven DEGs were annotated as phosphorus transporters in roots and leaves, respectively. Furthermore, a putative model was constructed relying on key metabolic pathways related to phosphorus to illustrate the higher phosphorus efficiency of GN121 compared to GN42 under low phosphorus conditions. Results from this study provide a multi-transcriptome database and candidate genes for further study on phosphorus use efficiency (PUE).
Collapse
Affiliation(s)
- Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yong Lai
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huajun Wang
| |
Collapse
|
24
|
Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, Guo L, Qian Q, Xue D. Transcriptome Analysis of Rice Seedling Roots in Response to Potassium Deficiency. Sci Rep 2017; 7:5523. [PMID: 28717149 PMCID: PMC5514036 DOI: 10.1038/s41598-017-05887-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Rice is one of the most important food crops in the world, and its growth, development, yield, and grain quality are susceptible to a deficiency of the macronutrient potassium (K+). The molecular mechanism for K+ deficiency tolerance remains poorly understood. In this study, K+ deficient conditions were employed to investigate the resulting changes in the transcriptome of rice seedling roots. Using ribonucleic acid sequencing (RNA-Seq) and analysis, a total of 805 differentially expressed genes were obtained, of which 536 genes were upregulated and 269 were downregulated. Gene functional classification showed that the expression of genes involved in nutrient transport, protein kinases, transcription processes, and plant hormones were particularly altered in the roots. Although these changes were significant, the expression of most genes remained constant even in K+-deficient conditions. Interestingly, when our RNA-Seq results were compared to public microarray data, we found that most of the genes that were differentially expressed in low K+ conditions also exhibited changes in expression in other environmental stress conditions.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou, China.,Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jun Cui
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiahui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
25
|
Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics 2016; 17:885. [PMID: 27821044 PMCID: PMC5100228 DOI: 10.1186/s12864-016-3200-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromium (Cr) being multifarious industrial used element, is considered a potential environmental threat. Cr found to be a prospective water and soil pollutant, and thus it is a current area of concern. Oilseed rape (Brassica napus L.) is well known as a major source of edible oil around the globe. Due to its higher growth, larger biomass and capability to uptake toxic materials B. napus is considered a potential candidate plant against unfavorable conditions. To date, no study has been done that described the Cr and GSH mechanism at RNA-Seq level. RESULTS Both digital gene expression (DGE) and transcriptome profile analysis (TPA) approaches had opened new insights to uncover the several number of genes related to Cr stress and GSH alleviating mechanism in two leading cultivars (ZS 758 and Zheda 622) of B. napus plants. Data showed that Cr inhibited KEGG pathways i.e. stilbenoid, diarlyheptanoid and gingerol biosynthesis; limonene and pentose degradation and glutathione metabolism in ZS 758; and ribosome and glucosinolate biosynthesis in Zheda-622. On the other hand, vitamin B6, tryptophan, sulfur, nitrogen and fructose and manose metabolisms were induced in ZS 758, and zeatin biosynthesis, linoleic acid metabolism, arginine and proline metabolism, and alanine, asparate and glutamate metabolism pathways in Zheda 622. Cr increased the TFs that were related to hydralase activity, antioxidant activity, catalytic activity phosphatase and pyrophosphatase activity in ZS 758, and vitamin binding and oxidoreductase activity in Zheda 622. Cr also up-regulated the promising proteins related to intracellular membrane bounded organelles, nitrile hyrdatase activity, cytoskeleton protein binding and stress response. It also uncovered, a novel Cr-responsive protein (CL2535.Contig1_All) that was statistically increased as compared to control and GSH treated plants. Exogenously applied GSH successfully not only recovered the changes in metabolic pathways but also induced cysteine and methionine metabolism in ZS 758 and ubiquinone and other terpenoid-quinone biosynthesis pathways in Zheda 622. Furthermore, GSH increased the level of TFs i.e. the gene expression of antioxidant and catalytic activities, iron ion binding and hydrolase activity as compared with Cr. Moreover, results pointed out a novel GSH responsive protein (CL827.Contig3_All) whose expression was found to be significantly increased when compared than Cr stress. Results further delineated that GSH induced TFs such as glutathione disulphide oxidoreducatse and aminoacyl-tRNA ligase activity, and beta glucosidase activity in ZS 758. Similarly in Zheda 622, GSH induced the TFs for instance DNA binding and protein dimerization activity. GSH also highlighted the proteins that were involved in transportation, photosynthesis process, RNA polymerase activity, and against the metal toxicity. These results indicated that cultivar ZS 758 had better metabolism and showed higher tolerance against Cr toxicity. CONCLUSION The responses of ZS 758 and Zheda 622 differed considerably at both physiological and transcriptional level. Moreover, RNA-Seq method explored the hazardous behavior of Cr as well as GSH up-regulating mechanism by activating plant metabolism, stress responsive genes, TFs and protein encyclopedia.
Collapse
Affiliation(s)
- Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany
| | - Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1070-85. [PMID: 26311018 PMCID: PMC11389173 DOI: 10.1111/pbi.12454] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 05/20/2023]
Abstract
Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production.
Collapse
Affiliation(s)
- Marta Brozynska
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
27
|
Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:206. [PMID: 26955376 PMCID: PMC4768371 DOI: 10.3389/fpls.2016.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8'-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars.
Collapse
Affiliation(s)
- Seyed A. Hosseini
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad R. Hajirezaei
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Christiane Seiler
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nese Sreenivasulu
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
28
|
Li L, Xu L, Wang X, Pan G, Lu L. De novo characterization of the alligator weed (Alternanthera philoxeroides) transcriptome illuminates gene expression under potassium deprivation. J Genet 2016; 94:95-104. [PMID: 25846881 DOI: 10.1007/s12041-015-0493-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As one of the three macronutrients, potassium participates in many physiological processes in plant life cycle. Recently, potassium-dependent transcriptome analysis has been reported in Arabidopsis, rice and soybean. Alligator weed is well known, particularly for its strong ability to accumulate potassium. However, the molecular mechanism that underlies potassium starvation responses has not yet been described. In this study, we used Illumina (Solexa) sequencing technology to analyse the root transcriptome information of alligator weed under low potassium stress. Further analysis suggested that 9253 differentially expressed genes (DEGs) were upregulated, and 2138 DEGs were downregulated after seven days of potassium deficiency. These factors included 121 transcription factors, 108 kinases, 136 transporters and 178 genes that were related to stress. Twelve transcription factors were randomly selected for further analysis. The expression level of each transcription factor was confirmed by quantitative RT-PCR, and the results of this secondary analysis were consistent with the results of Solexa sequencing. Enrichment analysis indicated that 10,993 DEGs were assigned to 54 gene ontology terms and 123 KEGG pathways. Approximately 24% of DEGs belong to the metabolic, ribosome and biosynthesis of secondary metabolite KEGG pathways. Our results provide a comprehensive analysis of the gene regulatory network of alligator weed under low potassium stress, and afford a valuable resource for genetic and genomic research on plant potassium deficiency.
Collapse
Affiliation(s)
- Liqin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 625014, People's Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Wang X, Wu D, Yang Q, Zeng J, Jin G, Chen ZH, Zhang G, Dai F. Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling. FRONTIERS IN PLANT SCIENCE 2016; 7:106. [PMID: 26904070 PMCID: PMC4744895 DOI: 10.3389/fpls.2016.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 05/19/2023]
Abstract
Low temperature is a major abiotic stress affecting crop growth and productivity. A better understanding of low temperature tolerance mechanisms is imperative for developing the crop cultivars with improved tolerance. We herein performed an Illumina RNA-sequencing experiment using two barley genotypes differing in freezing tolerance (Nure, tolerant and Tremois, sensitive), to determine the transcriptome profiling and genotypic difference under mild freezing shock treatment after a very short acclimation for gene induction. A total of 6474 differentially expressed genes, almost evenly distributed on the seven chromosomes, were identified. The key DEGs could be classified into six signaling pathways, i.e., Ca(2+) signaling, PtdOH signaling, CBFs pathway, ABA pathway, jasmonate pathway, and amylohydrolysis pathway. Expression values of DEGs in multiple signaling pathways were analyzed and a hypothetical model of mild freezing shock tolerance mechanism was proposed. Expression and sequence profile of HvCBFs cluster within Frost resistance-H2, a major quantitative trait locus on 5H being closely related to low temperature tolerance in barley, were further illustrated, considering the crucial role of HvCBFs on freezing tolerance. It may be concluded that multiple signaling pathways are activated in concert when barley is exposed to mild freezing shock. The pathway network we presented may provide a platform for further exploring the functions of genes involved in low temperature tolerance in barley.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Dai
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, Zhejiang UniversityHangzhou, China
| |
Collapse
|
30
|
Quan X, Zeng J, Ye L, Chen G, Han Z, Shah JM, Zhang G. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC PLANT BIOLOGY 2016; 16:30. [PMID: 26817455 PMCID: PMC4728812 DOI: 10.1186/s12870-016-0721-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/21/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Nitrogen (N) is the most common limiting factor for crop productivity worldwide. An effective approach to solve N deficiency is to develop low N (LN) tolerant crop cultivars. Tibetan annual wild barley is well-known for its wide genetic diversity and high tolerance to poor soil fertility. Up to date, no study has been done to illustrate the mechanism of LN tolerance underlying the wild barley at transcriptional level. RESULTS In this study, we employed Illumina RNA-Sequencing to determine the genotypic difference in transcriptome profile using two Tibetan wild barley genotypes differing in LN tolerance (XZ149, tolerant and XZ56, sensitive). A total of 1469 differentially expressed genes (DEGs) were identified in the two genotypes at 6 h and 48 h after LN treatment. Genetic difference existed in DEGs between XZ149 and XZ56, including transporters, transcription factors (TFs), kinases, antioxidant stress and hormone signaling related genes. Meanwhile, 695 LN tolerance-associated DEGs were mainly mapped to amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and involved in transporter activity, antioxidant activities, and other gene ontology (GO). XZ149 had a higher capability of N absorption and use efficiency under LN stress than XZ56. The higher expression of nitrate transporters and energy-saving assimilation pattern could be attributed to its more N uptake and higher LN tolerance. In addition, auxin (IAA) and ethylene (ETH) response pathways may be also related to the genotypic difference in LN tolerance. CONCLUSION The responses of XZ149 and XZ56 to LN stress differed dramatically at transcriptional level. The identified candidate genes related to LN tolerance may provide new insights into comprehensive understanding of the genotypic difference in N utilization and LN tolerance.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Lingzhen Ye
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Guang Chen
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Zhigang Han
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Jawad Munawar Shah
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Zeng J, He X, Quan X, Cai S, Han Y, Nadira UA, Zhang G. Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley. J Proteomics 2015; 126:1-11. [DOI: 10.1016/j.jprot.2015.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/11/2015] [Accepted: 05/20/2015] [Indexed: 02/02/2023]
|
32
|
Zeng Q, Ling Q, Fan L, Li Y, Hu F, Chen J, Huang Z, Deng H, Li Q, Qi Y. Transcriptome profiling of sugarcane roots in response to low potassium stress. PLoS One 2015; 10:e0126306. [PMID: 25955765 PMCID: PMC4425431 DOI: 10.1371/journal.pone.0126306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/31/2015] [Indexed: 02/04/2023] Open
Abstract
Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.
Collapse
Affiliation(s)
- Qiaoying Zeng
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qiuping Ling
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Lina Fan
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Yu Li
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Fei Hu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Jianwen Chen
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Haihua Deng
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qiwei Li
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
- * E-mail: (YQ); (QL)
| | - Yongwen Qi
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
- * E-mail: (YQ); (QL)
| |
Collapse
|
33
|
Cai Z, Jiang X, Pan Y, Chen L, Zhang L, Zhu K, Cai Y, Ling Y, Chen F, Xu X, Chen M. Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet. BMC Genomics 2015; 16:59. [PMID: 25887406 PMCID: PMC4328429 DOI: 10.1186/s12864-015-1283-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies have indicated that low serum testosterone levels are associated with increased risk of developing hepatic steatosis; however, the mechanisms mediating this phenomenon have not been fully elucidated. To gain insight into the role of testosterone in modulating hepatic steatosis, we investigated the effects of testosterone on the development of hepatic steatosis in pigs fed a high-fat and high-cholesterol (HFC) diet and profiled hepatic gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Results Serum testosterone levels were significantly decreased in CM pigs, and testosterone replacement attenuated castration-induced testosterone deficiency. CM pigs showed increased liver injury accompanied by increased hepatocellular steatosis, inflammation, and elevated serum alanine aminotransferase levels compared with IM pigs. Moreover, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were markedly increased in CM pigs. Testosterone replacement decreased serum and hepatic lipid levels and improved liver injury in CM pigs. Compared to IM and CMT pigs, CM pigs had lower serum levels of superoxide dismutase but higher levels of malondialdehyde. Gene expression analysis revealed that upregulated genes in the livers of CM pigs were mainly enriched for genes mediating immune and inflammatory responses, oxidative stress, and apoptosis. Surprisingly, the downregulated genes mainly included those that regulate metabolism-related processes, including fatty acid oxidation, steroid biosynthesis, cholesterol and bile acid metabolism, and glucose metabolism. KEGG analysis showed that metabolic pathways, fatty acid degradation, pyruvate metabolism, the tricarboxylic acid cycle, and the nuclear factor-kappaB signaling pathway were the major pathways altered in CM pigs. Conclusions This study demonstrated that testosterone deficiency aggravated hypercholesterolemia and hepatic steatosis in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, enhanced immune and inflammatory responses, oxidative stress, and apoptosis may contribute to the increased hepatic steatosis induced by testosterone deficiency and an HFC diet. These results deepened our understanding of the molecular mechanisms of testosterone deficiency-induced hepatic steatosis and provided a foundation for future investigations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoling Jiang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Yongming Pan
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liang Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lifan Zhang
- College of Animal Science, Nanjing Agricultural University, Nanjing, 310058, China.
| | - Keyan Zhu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yueqin Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Ling
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fangming Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoping Xu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Minli Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
34
|
Schachtman DP. The Role of Ethylene in Plant Responses to K(+) Deficiency. FRONTIERS IN PLANT SCIENCE 2015; 6:1153. [PMID: 26734048 PMCID: PMC4686690 DOI: 10.3389/fpls.2015.01153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 05/08/2023]
Abstract
Potassium is an essential macronutrient that is involved in regulating turgor, in driving plant growth, and in modulating enzyme activation. The changes in root morphology, root function, as well as cellular and molecular responses to low potassium conditions have been studied in the model plant Arabidopsis and in other plant species. In Arabidopsis ethylene plays a key role in roots in the transduction of the low potassium signal, which results in altered root function and growth. The first clues regarding the role of ethylene were detected through transcriptional profiling experiments showing changes in the expression of genes related to ethylene biosynthesis. Later it was shown that ethylene plays a foundational early role in the many responses observed in Arabidopsis. One of the most striking findings is the link between ethylene and reactive oxygen species (ROS) production, which is part of the signal transduction pathway in K(+) deprived plants. This mini-review will summarize what is known about the role ethylene plays in response to low potassium in Arabidopsis and other plant species.
Collapse
|
35
|
Nussbaumer T, Kugler KG, Schweiger W, Bader KC, Gundlach H, Spannagl M, Poursarebani N, Pfeifer M, Mayer KFX. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes. BMC PLANT BIOLOGY 2014; 14:348. [PMID: 25491094 PMCID: PMC4266971 DOI: 10.1186/s12870-014-0348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/24/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. DESCRIPTION We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. CONCLUSIONS This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.
Collapse
Affiliation(s)
- Thomas Nussbaumer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Karl G Kugler
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Wolfgang Schweiger
- />Institute for Biotechnology in Plant Production, IFA-Tulln, University of
Natural Resources and Life Sciences, A-3430 Tulln, Austria
| | - Kai C Bader
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Heidrun Gundlach
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Manuel Spannagl
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Naser Poursarebani
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Matthias Pfeifer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Klaus FX Mayer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| |
Collapse
|