1
|
Zhao Y, Xiong H, Luo Y, Hu B, Wang J, Tang X, Wang Y, Shi X, Zhang Y, Rennenberg H. Long-term nitrogen fertilization alters the partitioning of amino acids between citrus leaves and fruits. FRONTIERS IN PLANT SCIENCE 2025; 15:1516000. [PMID: 39872200 PMCID: PMC11769974 DOI: 10.3389/fpls.2024.1516000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
Introduction The growth of evergreen fruit trees is influenced by the interaction of soil nitrogen (N) and leaf amino acid contents. However, information on free amino acid contents in leaves of fruiting and non-fruiting branches during long-term N fertilizer application remains scarce. Methods Here, a four-year field experiment (2018-2021) in a citrus orchard revealed consistently lower total N and amino acid contents in leaves of fruiting compared to non-fruiting branches. Results and discussion Appropriate N fertilizer application increased free amino acid and total N contents in leaves of both types of branches and fruits, but excessive amounts led to decreases. Correlation analysis showed that, in the early stage of fruit development, leaves on both types of branches can meet the N requirements of the fruit (R²=0.77 for fruiting, R²=0.82 for non-fruiting). As fruits entered the swelling stage, a significant positive correlation emerged between fruiting branch leaves and fruit total N content (R²=0.68), while the R² for leaves on non-fruiting branches dropped to 0.47, indicating a shift in N supply towards leaves on fruiting branches. Proline and arginine are the most abundant amino acids in these leaves. At fruit maturity, these amino acids account for more than half of the total amino acids in the fruit (29.0% for proline and 22.2% for arginine), highlighting their crucial role in fruit development. Further research is needed to investigate amino acid transport and distribution mechanisms between citrus leaves and fruits.
Collapse
Affiliation(s)
- Yuanlai Zhao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Huaye Xiong
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yayin Luo
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xiaodong Tang
- Changshou District Agricultural Technology Research Service Center, Chongqing, China
| | - Yuehong Wang
- Hechuan District Grain and Oil Development Guidance Station, Chongqing, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Beijing Changping Soil Quality National Observation and Research Station, Beijing, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Beijing Changping Soil Quality National Observation and Research Station, Beijing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee, Freiburg, Germany
| |
Collapse
|
2
|
Killiny N, Jones SE. A Transmission Assay of ' Candidatus Liberibacter asiaticus' Using Citrus Phloem Sap and Topical Feeding to Its Insect Vector, Diaphorina citri. PHYTOPATHOLOGY 2024; 114:2176-2181. [PMID: 38916945 DOI: 10.1094/phyto-05-24-0171-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
'Candidatus Liberibacter asiaticus', the putative causal agent of citrus greening disease, is transmitted by the Asian citrus psyllid, Diaphorina citri, in a propagative, circulative, and persistent manner. Unfortunately, 'Ca. L. asiaticus' is not yet available in pure culture to carry out Koch's postulates and to confirm its etiology. When a pure culture is available, an assay to test its infectivity in both the insect vector and the plant host will be crucial. Herein, we described a transmission assay based on the use of phloem sap extracted from infected citrus plants and topical feeding to D. citri nymphs. Phloem sap was collected by centrifugation, diluted with 0.1 M phosphate buffer pH 7.4 containing 20% (wt/vol) sucrose and 0.1% ascorbic acid (wt/vol) as an antioxidant, and delivered to third through fifth instar nymphs by placing droplets on the mouthparts. Nymphs unfolded the stylets and acquired the phloem sap containing the bacterial pathogen. Nymphs were then placed onto Citrus macrophylla seedlings (10 nymphs per seedling) for an inoculation period of 2 weeks. A transmission rate of up to 80% was recorded at 6 months postinoculation. The method could be a powerful tool to test the transmissibility of the bacterial pathogen after various treatments to reduce the viability of the bacteria or to block its transmission. In addition, it might be a potent assay to achieve Koch's postulates if a pure culture of 'Ca. L. asiaticus' becomes available.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Shelley E Jones
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
3
|
Yunindanova MB, Putri SP, Novarianto H, Fukusaki E. Characteristics of kopyor coconut (Cocos nucifera L.) using sensory analysis and metabolomics-based approach. J Biosci Bioeng 2024; 138:44-53. [PMID: 38614830 DOI: 10.1016/j.jbiosc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/15/2024]
Abstract
Kopyor is a coconut with unique characteristics from Indonesia, one of the largest coconut producers in the world. Kopyor is an edible mature coconut with soft endosperm. Although this fruit is one of the most popular coconuts in the world, there are limited studies on its properties, including its sensory attributes and metabolite profiles. This study investigates the characteristics of kopyor using sensory evaluation, a widely targeted metabolomics approach, and multivariate analysis. The liquid (water) and solid (flesh) endosperms were collected as the samples. The results showed that kopyor has characteristics that distinguish it from normal mature and young coconuts. Kopyor water has a milky, creamy, nutty, bitter, and astringent taste with an oily aftertaste and mouthfeel. Kopyor flesh is soft and moist and gives a sandy mouth feel. This study analyzed the sensory attributes of the kopyor endosperm for the first time and compared it with those of normal mature and young coconuts. A gas chromatography mass spectrometry analysis showed that kopyor contained wider variety of metabolites than normal coconuts of the same age. Based on the differential analysis and orthogonal projections to latent structures-regression, kopyor water was characterized by the accumulation of flavor-related metabolites, such as amino acids and organic acids, which contributed to its sensory complexity. This study solidified the effects of maturation and endosperm type on metabolite accumulation in kopyor endosperm. This pioneering information will lead to the future use of kopyor and other unique coconuts worldwide for food, contributing to the sustainability of the coconut industry.
Collapse
Affiliation(s)
- Mercy Bientri Yunindanova
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Study Program of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir Sutami No. 36A, Jebres, Surakarta City, Central Java 57126, Indonesia
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hengky Novarianto
- National Research and Innovation Agency (BRIN), Jl. Pingkan Matindas No. 92, Dendengan Dalam, Kec. Tikala, Kota Manado, Sulawesi Utara 95127, Indonesia
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Paul S, Mitra A. Histochemical, metabolic and ultrastructural changes in leaf patelliform nectaries explain extrafloral nectar synthesis and secretion in Clerodendrum chinense. ANNALS OF BOTANY 2024; 133:621-642. [PMID: 38366151 PMCID: PMC11037555 DOI: 10.1093/aob/mcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Extrafloral nectaries are nectar-secreting structures present on vegetative parts of plants which provide indirect defences against herbivore attack. Extrafloral nectaries in Clerodendrum chinense are patelliform-shaped specialized trichomatous structures. However, a complete understanding of patelliform extrafloral nectaries in general, and of C. chinense in particular, has not yet been established to provide fundamental insight into the cellular physiological machinery involved in nectar biosynthesis and secretory processes. METHODS We studied temporal changes in the morphological, anatomical and ultrastructural features in the architectures of extrafloral nectaries. We also compared metabolite profiles of extrafloral nectar, nectary tissue, non-nectary tissue and phloem sap. Further, both in situ histolocalization and normal in vitro activities of enzymes related to sugar metabolism were examined. KEY RESULTS Four distinct tissue regions in the nectar gland were revealed from histochemical characterization, among which the middle nectariferous tissue was found to be the metabolically active region, while the intermediate layer was found to be lipid-rich. Ultrastructural study showed the presence of a large number of mitochondria along with starch-bearing chloroplasts in the nectariferous region. However, starch depletion was noted with progressive maturation of nectaries. Metabolite analysis revealed compositional differences among nectar, phloem sap, nectary and non-nectary tissue. Invertase activity was higher in secretory stages and localized in nectariferous tissue and adjacent region. CONCLUSIONS Our study suggests extrafloral nectar secretion in C. chinense to be both eccrine and merocrine in nature. A distinct intermediate lipid-rich layer that separates the epidermis from nectary parenchyma was revealed, which possibly acts as a barrier to water flow in nectar. This study also revealed a distinction between nectar and phloem sap, and starch could act as a nectar precursor, as evidenced from enzymatic and ultrastructural studies. Thus, our findings on changing architecture of extrafloral nectaries with temporal secretion revealed a cell physiological process involved in nectar biosynthesis and secretion.
Collapse
Affiliation(s)
- Shobhon Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur – 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur – 721 302, India
| |
Collapse
|
5
|
Jiménez-López D, Xoconostle-Cázares B, Calderón-Pérez B, Vargas-Hernández BY, Núñez-Muñoz LA, Ramírez-Pool JA, Ruiz-Medrano R. Evolutionary and Structural Analysis of PP16 in Viridiplantae. Int J Mol Sci 2024; 25:2839. [PMID: 38474088 DOI: 10.3390/ijms25052839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several β-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Brenda Yazmín Vargas-Hernández
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| |
Collapse
|
6
|
Xiong H, Luo Y, Zhao H, Wang J, Hu B, Yan C, Yao T, Zhang Y, Shi X, Rennenberg H. Integrated proteome and physiological traits reveal interactive mechanisms of new leaf growth and storage protein degradation with mature leaves of evergreen citrus trees. TREE PHYSIOLOGY 2024; 44:tpae001. [PMID: 38195893 DOI: 10.1093/treephys/tpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Yayin Luo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Chengquan Yan
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
7
|
Zhang J, Sun K, Wang Y, Qian W, Sun L, Shen J, Ding Z, Fan K. Integrated metabolomic and transcriptomic analyses reveal the molecular mechanism of amino acid transport between source and sink during tea shoot development. PLANT CELL REPORTS 2024; 43:28. [PMID: 38177567 DOI: 10.1007/s00299-023-03110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 01/06/2024]
Abstract
KEY MESSAGE The weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development. Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.
Collapse
Affiliation(s)
- Jie Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kangwei Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
8
|
Shu B, Xie X, Dai J, Liu L, Cai X, Wu Z, Lin J. Host plant-induced changes in metabolism and osmotic regulation gene expression in Diaphorina citri adults. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104599. [PMID: 38072187 DOI: 10.1016/j.jinsphys.2023.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a worldwide citrus pest. It transmits the pathogen Candidatus Liberibacter spp. of Huanglongbing (HLB), causing severe economic losses to the citrus industry. Severalgenera of plants in the Rutaceae family are the hosts of D. citri. However, the impact of these hosts on the metabolism and osmotic regulation gene expression of the pest remains unexplored. In this study, the contents of total sugars, sucrose, fructose, and glucose in young shoots, old leaves, and young leaves of 'Shatangju' mandarin and Murraya exotica were analyzed. Metabolomic analysis found that sucrose and trehalose were more abundant in the gut samples of D. citri adults fed on M. exotica when compared to what's in 'Shatangju' mandarin. A total of six aquaporin genes were identified in D. citri through the genome and transcriptome data. Subsequently, the expression patterns of these genes were investigated with respect to their developmental stage and tissue specificity. Additionally, the expression levels of osmotic regulation and trehalose metabolism genes in adults fed on different plants were evaluated. Our results provide useful information on the transfer of sugar between plants and D. citri. Our results preliminary revealed the sugar metabolism regulation mechanism in D. citri adults.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinyi Xie
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
9
|
Nehela Y, Killiny N. Gamma-Aminobutyric Acid Supplementation Boosts the Phytohormonal Profile in ' Candidatus Liberibacter asiaticus'-Infected Citrus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3647. [PMID: 37896110 PMCID: PMC10609878 DOI: 10.3390/plants12203647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The devastating citrus disease, Huanglongbing (HLB), is associated with 'Candidatus Liberibacter sp.' and transmitted by citrus psyllids. Unfortunately, HLB has no known sustainable cure yet. Herein, we proposed γ-aminobutyric acid (GABA) as a potential eco-friendly therapeutic solution to HLB. Herein, we used GC/MS-based targeted metabolomics combined with gene expression to investigate the role of GABA in citrus response against HLB and to better understand its relationship(s) with different phytohormones. GABA supplementation via root drench boosts the accumulation of endogenous GABA in the leaves of both healthy and 'Ca. L. asiaticus'-infected trees. GABA accumulation benefits the activation of a multi-layered defensive system via modulating the phytohormone levels and regulating the expression of their biosynthesis genes and some pathogenesis-related proteins (PRs) in both healthy and 'Ca. L. asiaticus'-infected plants. Moreover, our findings showed that GABA application stimulates auxin biosynthesis in 'Ca. L. asiaticus'-infected plants via the activation of the indole-3-pyruvate (I3PA) pathway, not via the tryptamine (TAM)-dependent pathway, to enhance the growth of HLB-affected trees. Likewise, GABA accumulation was associated with the upregulation of SA biosynthesis genes, particularly the PAL-dependent route, resulting in higher SA levels that activated CsPR1, CsPR2, CsPR5, and CsWRKY70, which are prominent to activation of the SA-mediated pathway. Additionally, higher GABA levels were correlated with an enhanced JA profile and linked with both CsPR3 and CsPR4, which activates the JA-mediated pathway. Collectively, our findings suggest that exogenous GABA application might be a promising alternative and eco-friendly strategy that helps citrus trees battle HLB.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
10
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Broussard L, Abadie C, Lalande J, Limami AM, Lothier J, Tcherkez G. Phloem Sap Composition: What Have We Learnt from Metabolomics? Int J Mol Sci 2023; 24:ijms24086917. [PMID: 37108078 PMCID: PMC10139104 DOI: 10.3390/ijms24086917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot-root coordination of plant growth and development.
Collapse
Affiliation(s)
- Louis Broussard
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Dandlen SA, Da Silva JP, Miguel MG, Duarte A, Power DM, Marques NT. Quick Decline and Stem Pitting Citrus tristeza virus Isolates Induce a Distinct Metabolomic Profile and Antioxidant Enzyme Activity in the Phloem Sap of Two Citrus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1394. [PMID: 36987082 PMCID: PMC10051153 DOI: 10.3390/plants12061394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Susana A. Dandlen
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P. Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M. Power
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Natália Tomás Marques
- CEOT—Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Tavares CS, Bonning BC. Mpp51Aa1 toxicity to Diaphorina citri nymphs demonstrated using a new, long-term bioassay method. J Invertebr Pathol 2022; 195:107845. [DOI: 10.1016/j.jip.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
14
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
15
|
Cheng B, Wang C, Chen F, Yue L, Cao X, Liu X, Yao Y, Wang Z, Xing B. Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar application of selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153712. [PMID: 35149065 DOI: 10.1016/j.scitotenv.2022.153712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
A selenium (Se)-nanoenabled agriculture strategy was established in this work to improve crop yield and quality. The results demonstrated that Se engineering nanomaterials (Se ENMs, 10 mg·L-1) were absorbed and translocated in cherry radish (Raphanus sativus L. var. radculus pers) from shoots to taproots after foliar application. RNA-Seq and metabolomic results indicated that the glucolysis, pyruvate and tricarboxylic acid (TCA) cycle metabolism pathways were accelerated by exposure to Se ENMs, resulting in increased production of flavonoids (3.2-fold), amino acids (1.4-fold), and TCA (2.5-fold) compared with the control. Moreover, Se content was enhanced by 5.4 and 2.6 times in pericarp and pulp upon Se ENMs exposure, respectively, which was more efficient (2.2 and 1.1 times) than SeO32- treatment. Additionally, the yield of cherry radish was increased by 67.6% under Se ENMs, whereas SeO32- exposure only led to an increase of 7.4%. Therefore, the application of Se ENMs could reduce the amount of fertilizer used to minimize the environmental impact in agriculture while improve crop production and quality. These findings highlighted the significant potential of Se ENMs-enabled agriculture practices as an eco-friendly and sustainable crop strategy.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yusong Yao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Chardon F, De Marco F, Marmagne A, Le Hir R, Vilaine F, Bellini C, Dinant S. Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153707. [PMID: 35550522 DOI: 10.1016/j.jplph.2022.153707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.
Collapse
Affiliation(s)
- Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Federica De Marco
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Vilaine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Catherine Bellini
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France; Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
17
|
Srivastava AK, Das AK, Jagannadham PTK, Bora P, Ansari FA, Bhate R. Bioprospecting Microbiome for Soil and Plant Health Management Amidst Huanglongbing Threat in Citrus: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:858842. [PMID: 35557712 PMCID: PMC9088001 DOI: 10.3389/fpls.2022.858842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms have dynamic and complex interactions with their hosts. Diverse microbial communities residing near, on, and within the plants, called phytobiome, are an essential part of plant health and productivity. Exploiting citrus-associated microbiomes represents a scientific approach toward sustained and environment-friendly module of citrus production, though periodically exposed to several threats, with Huanglongbing (HLB) predominantly being most influential. Exploring the composition and function of the citrus microbiome, and possible microbial redesigning under HLB disease pressure has sparked renewed interest in recent times. A concise account of various achievements in understanding the citrus-associated microbiome, in various niche environments viz., rhizosphere, phyllosphere, endosphere, and core microbiota alongside their functional attributes has been thoroughly reviewed and presented. Efforts were also made to analyze the actual role of the citrus microbiome in soil fertility and resilience, interaction with and suppression of invading pathogens along with native microbial communities and their consequences thereupon. Despite the desired potential of the citrus microbiota to counter different pathogenic diseases, utilizing the citrus microbiome for beneficial applications at the field level is yet to be translated as a commercial product. We anticipate that advancement in multiomics technologies, high-throughput sequencing and culturing, genome editing tools, artificial intelligence, and microbial consortia will provide some exciting avenues for citrus microbiome research and microbial manipulation to improve the health and productivity of citrus plants.
Collapse
Affiliation(s)
- Anoop Kumar Srivastava
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | - Ashis Kumar Das
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | | | - Popy Bora
- Department of Plant Pathology, Assam Agricultural University, Jorhat, India
| | - Firoz Ahmad Ansari
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | - Ruchi Bhate
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| |
Collapse
|
18
|
Extraction of cucumber phloem sap based on the capillary-air pressure principle. Biotechniques 2022; 72:233-243. [PMID: 35410484 DOI: 10.2144/btn-2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Changes in the substances in phloem sap can effectively reflect the nutritional status of cucumber plants during their growth. Because of the limitations of the time-consuming and complex operations of existing phloem sap extraction methods, the authors proposed a new extraction method based on the capillary-air pressure principle and designed a new sap sampling device. To examine the feasibility of the new sampling device, sap sampled from the same plant with the new method and the common EDTA method was analyzed by gas-phase mass spectrometry. The data showed that the number of substances in the sap sampled using capillary-air pressure was higher than that observed using the EDTA method. The concentration of substances sampled using capillary-air pressure was much higher than that observed using EDTA.
Collapse
|
19
|
Tavares CS, Mishra R, Ghobrial PN, Bonning BC. Composition and abundance of midgut surface proteins in the Asian citrus psyllid, Diaphorina citri. J Proteomics 2022; 261:104580. [DOI: 10.1016/j.jprot.2022.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
20
|
Gerlin L, Cottret L, Escourrou A, Genin S, Baroukh C. A multi-organ metabolic model of tomato predicts plant responses to nutritional and genetic perturbations. PLANT PHYSIOLOGY 2022; 188:1709-1723. [PMID: 34907432 PMCID: PMC8896645 DOI: 10.1093/plphys/kiab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Predicting and understanding plant responses to perturbations require integrating the interactions between nutritional sources, genes, cell metabolism, and physiology in the same model. This can be achieved using metabolic modeling calibrated by experimental data. In this study, we developed a multi-organ metabolic model of a tomato (Solanum lycopersicum) plant during vegetative growth, named Virtual Young TOmato Plant (VYTOP) that combines genome-scale metabolic models of leaf, stem and root and integrates experimental data acquired from metabolomics and high-throughput phenotyping of tomato plants. It is composed of 6,689 reactions and 6,326 metabolites. We validated VYTOP predictions on five independent use cases. The model correctly predicted that glutamine is the main organic nutrient of xylem sap. The model estimated quantitatively how stem photosynthetic contribution impacts exchanges between the different organs. The model was also able to predict how nitrogen limitation affects vegetative growth and the metabolic behavior of transgenic tomato lines with altered expression of core metabolic enzymes. The integration of different components, such as a metabolic model, physiological constraints, and experimental data, generates a powerful predictive tool to study plant behavior, which will be useful for several other applications, such as plant metabolic engineering or plant nutrition.
Collapse
Affiliation(s)
- Léo Gerlin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Antoine Escourrou
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
21
|
Nehela Y, Killiny N. Not Just a Cycle: Three gab Genes Enable the Non-Cyclic Flux Toward Succinate via GABA Shunt in ' Candidatus Liberibacter asiaticus'-Infected Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:200-214. [PMID: 34775834 DOI: 10.1094/mpmi-09-21-0241-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the mitochondria retain all required enzymes for an intact tricarboxylic acid (TCA) cycle, plants might shift the cyclic flux from the TCA cycle to an alternative noncyclic pathway via γ-aminobutyric acid (GABA) shunt under specific physiological conditions. We hypothesize that several genes may ease this noncyclic flux and contribute to the citrus response to the phytopathogenic bacterium 'Candidatus Liberibacter asiaticus', the causal agent of Huanglongbing in citrus. To test this hypothesis, we used multiomics techniques (metabolomics, fluxomics, and transcriptomics) to investigate the potential roles of putative gab homologies from Valencia sweet orange (Citrus sinensis). Our findings showed that 'Ca. L. asiaticus' significantly increased the endogenous GABA and succinate content but decreased ketoglutarate in infected citrus plants. Citrus genome harbors three putative gab genes, including amino-acid permease (also known as GABA permease; CsgabP), GABA transaminase (CsgabT), and succinate-semialdehyde dehydrogenase (also known as GABA dehydrogenase; CsgabD). The transcript levels of CsgabP, CsgabT, and CsgabD were upregulated in citrus leaves upon the infection with 'Ca. L. asiaticus' and after the exogenous application of GABA or deuterium-labeled GABA isotope (GABA-D6). Moreover, our finding showed that exogenously applied GABA is quickly converted to succinate and fed into the TCA cycle. Likewise, the fluxomics study showed that GABA-D6 is rapidly metabolized to succinate-D4. Our work proved that GABA shunt and three predicated gab genes from citrus, support the upstream noncyclic flux toward succinate rather than an intact TCA cycle and contribute to citrus defense responses to 'Ca. L. asiaticus'.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
22
|
Othibeng K, Nephali L, Myoli A, Buthelezi N, Jonker W, Huyser J, Tugizimana F. Metabolic Circuits in Sap Extracts Reflect the Effects of a Microbial Biostimulant on Maize Metabolism under Drought Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040510. [PMID: 35214843 PMCID: PMC8877938 DOI: 10.3390/plants11040510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/17/2023]
Abstract
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology remains enigmatic. Thus, this study is a metabolomics work to unravel metabolic circuits in sap extracts from maize plants treated with a microbial biostimulant, under normal and drought conditions. The biostimulant, which was a consortium of different Bacilli strains, was applied at the planting stage, followed by drought stress application. The maize sap extracts were collected at 5 weeks after emergence, and the extracted metabolites were analyzed on liquid chromatography-mass spectrometry platforms. The acquired data were mined using chemometrics and bioinformatics tools. The results showed that under both well-watered and drought stress conditions, the application of the biostimulant led to differential changes in the profiles of amino acids, hormones, TCA intermediates, phenolics, steviol glycosides and oxylipins. These metabolic changes spanned several biological pathways and involved a high correlation of the biochemical as well as structural metabolic relationships that coordinate the maize metabolism. The hypothetical model, postulated from this study, describes metabolic events induced by the microbial biostimulant for growth promotion and enhanced defences. Such understanding of biostimulant-induced changes in maize sap pinpoints to the biochemistry and molecular mechanisms that govern the biostimulant-plant interactions, which contribute to ongoing efforts to generate actionable knowledge of the molecular and physiological mechanisms that define modes of action of biostimulants.
Collapse
Affiliation(s)
- Kgalaletso Othibeng
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Lerato Nephali
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Akhona Myoli
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Nombuso Buthelezi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Willem Jonker
- International Research and Development Division, Omnia Group, Johannesburg 2021, South Africa; (W.J.); (J.H.)
| | - Johan Huyser
- International Research and Development Division, Omnia Group, Johannesburg 2021, South Africa; (W.J.); (J.H.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
- International Research and Development Division, Omnia Group, Johannesburg 2021, South Africa; (W.J.); (J.H.)
- Correspondence: or ; Tel.: +27-011-559-7784
| |
Collapse
|
23
|
Padgett-Pagliai KA, Pagliai FA, da Silva DR, Gardner CL, Lorca GL, Gonzalez CF. Osmotic stress induces long-term biofilm survival in Liberibacter crescens. BMC Microbiol 2022; 22:52. [PMID: 35148684 PMCID: PMC8832773 DOI: 10.1186/s12866-022-02453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Citrus greening, also known as Huanglongbing (HLB), is a devastating citrus plant disease caused predominantly by Liberibacter asiaticus. While nearly all Liberibacter species remain uncultured, here we used the culturable L. crescens BT-1 as a model to examine physiological changes in response to the variable osmotic conditions and nutrient availability encountered within the citrus host. Similarly, physiological responses to changes in growth temperature and dimethyl sulfoxide concentrations were also examined, due to their use in many of the currently employed therapies to control the spread of HLB. Sublethal heat stress was found to induce the expression of genes related to tryptophan biosynthesis, while repressing the expression of ribosomal proteins. Osmotic stress induces expression of transcriptional regulators involved in expression of extracellular structures, while repressing the biosynthesis of fatty acids and aromatic amino acids. The effects of osmotic stress were further evaluated by quantifying biofilm formation of L. crescens in presence of increasing sucrose concentrations at different stages of biofilm formation, where sucrose-induced osmotic stress delayed initial cell attachment while enhancing long-term biofilm viability. Our findings revealed that exposure to osmotic stress is a significant contributing factor to the long term survival of L. crescens and, possibly, to the pathogenicity of other Liberibacter species.
Collapse
Affiliation(s)
- Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Danilo R da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA.
| |
Collapse
|
24
|
Calderón-Pérez B, Ramírez-Pool JA, Núñez-Muñoz LA, Vargas-Hernández BY, Camacho-Romero A, Lara-Villamar M, Jiménez-López D, Xoconostle-Cázares B, Ruiz-Medrano R. Engineering Macromolecular Trafficking Into the Citrus Vasculature. FRONTIERS IN PLANT SCIENCE 2022; 13:818046. [PMID: 35178061 PMCID: PMC8844563 DOI: 10.3389/fpls.2022.818046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The plant vasculature is a central organ for long-distance transport of nutrients and signaling molecules that coordinate vegetative and reproductive processes, and adaptation response mechanisms to biotic and abiotic stress. In angiosperms, the sieve elements are devoid of nuclei, thus depending on the companion cells for the synthesis of RNA and proteins, which constitute some of the systemic signals that coordinate these processes. Massive analysis approaches have identified proteins and RNAs that could function as long-range signals in the phloem translocation stream. The selective translocation of such molecules could occur as ribonucleoprotein complexes. A key molecule facilitating this movement in Cucurbitaceae is the phloem protein CmPP16, which can facilitate the movement of RNA and other proteins into the sieve tube. The CmPP16 ortholog in Citrus CsPP16 was characterized in silico to determine its potential capacity to associate with other mobile proteins and its enrichment in the vascular tissue. The systemic nature of CsPP16 was approached by evaluating its capacity to provide phloem-mobile properties to antimicrobial peptides (AMPs), important in the innate immune defense. The engineering of macromolecular trafficking in the vasculature demonstrated the capacity to mobilize translationally fused peptides into the phloem stream for long-distance transport. The translocation into the phloem of AMPs could mitigate the growth of Candidatus Liberibacter asiaticus, with important implications for crop defense; this system also opens the possibility of translocating other molecules to modulate traits, such as plant growth, defense, and plant productivity.
Collapse
|
25
|
Merfa MV, Fischer ER, de Souza E Silva M, Francisco CS, Della Coletta-Filho H, de Souza AA. Probing the Application of OmpA-Derived Peptides to Disrupt the Acquisition of ' Candidatus Liberibacter asiaticus' by Diaphorina citri. PHYTOPATHOLOGY 2022; 112:163-172. [PMID: 34818904 DOI: 10.1094/phyto-06-21-0252-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria 'Candidatus Liberibacter asiaticus' (CLas) and 'Candidatus Liberibacter americanus' (CLam) are associated with HLB in Brazil but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid [ACP]) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel, more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison with CLas, suggesting a possible role in host interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides, aiming to evaluate acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5, and Pep6 in artificial diet significantly reduced the acquisition of CLas, whereas increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas, and sweet orange plants stably absorbed and maintained this peptide for as long as 3 months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.
Collapse
Affiliation(s)
- Marcus Vinícius Merfa
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Eduarda Regina Fischer
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza E Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | | | | | - Alessandra Alves de Souza
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| |
Collapse
|
26
|
Killiny N. Generous Hosts: ' Candidatus Liberibacter asiaticus' Growth in Madagascar Periwinkle ( Catharanthus roseus) Highlights Its Nutritional Needs. PHYTOPATHOLOGY 2022; 112:89-100. [PMID: 34598662 DOI: 10.1094/phyto-05-21-0200-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
'Candidatus Liberibacter asiaticus', the putative causal agent of citrus greening, is not available in pure culture yet. In addition to trees of citrus and citrus relatives, 'Ca. L. asiaticus' can grow in Madagascar periwinkle (Catharanthus roseus). Using gas chromatography-mass spectrometry, we compared the phloem sap composition in sweet orange 'Valencia' (Citrus sinensis) and periwinkle plants after the infection with 'Ca. L. asiaticus'. Interestingly, in contrast to our previous studies of total leaf metabolites, we found that, compared with uninfected phloem sap, the organic acids implicated in the tricarboxylic acid cycle (TCA) cycle including citrate, isocitrate, succinate, fumarate, and malate were reduced significantly in the infected phloem saps of both species. As a result of the reduction of organic acids content, the pH of infected phloem saps was increased. We hypothesize that the bacterial growth induces the mitochondrial TCA cycle in parenchyma cells to produce more of these compounds to be used as a bacterial carbon source. Once these compounds reach a low level in the phloem sap, the bacterium may send a signal, yet to be identified, to initiate a feedback loop to further induce the TCA cycle. Phloem blockage might be another reason behind the reduced translocation of TCA cycle intermediates within the phloem. The net result, localized availability of organic acids, likely benefits bacterial growth and may explain the unequal distribution of 'Ca. L. asiaticus' within infected trees. These findings may help in designing media for the pure culturing of 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
27
|
Killiny N. Made for Each Other: Vector-Pathogen Interfaces in the Huanglongbing Pathosystem. PHYTOPATHOLOGY 2022; 112:26-43. [PMID: 34096774 DOI: 10.1094/phyto-05-21-0182-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus greening, or huanglongbing (HLB), currently is the most destructive disease of citrus. HLB disease is putatively caused by the phloem-restricted α-proteobacterium 'Candidatus Liberibacter asiaticus'. This bacterium is transmitted primarily by the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Most animal pathogens are considered pathogenic to their insect vectors, whereas the relationships between plant pathogens and their insect vectors are variable. Lately, the relationship of 'Ca. L. asiaticus' with its insect vector, D. citri, has been well investigated at the molecular, biochemical, and biological levels in many studies. Herein, the findings concerning this relationship are discussed and molecular features of the acquisition of 'Ca. L. asiaticus' from the plant host and its growth and circulation within D. citri, as well as its transmission to plants, are presented. In addition, the effects of 'Ca. L. asiaticus' on the energy metabolism (respiration, tricarboxylic acid cycle, and adenosine triphosphate production), metabolic pathways, immune system, endosymbionts, and detoxification enzymes of D. citri are discussed together with other impacts such as shorter lifespan, altered feeding behavior, and higher fecundity. Overall, although 'Ca. L. asiaticus' has significant negative effects on its insect vector, it increases its vector fitness, indicating that it develops a mutualistic relationship with its vector. This review will help in understanding the specific interactions between 'Ca. L. asiaticus' and its psyllid vector in order to design innovative management strategies.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
28
|
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ' Candidatus Liberibacter asiaticus' in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. PHYTOPATHOLOGY 2022; 112:131-144. [PMID: 34340531 DOI: 10.1094/phyto-06-21-0228-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phloem-restricted, insect-transmitted bacterium 'Candidatus Liberibacter asiaticus' (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.
Collapse
Affiliation(s)
- Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
29
|
Santos-Ortega Y, Flynt A. Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. Methods Mol Biol 2022; 2360:253-277. [PMID: 34495520 PMCID: PMC8959005 DOI: 10.1007/978-1-0716-1633-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
30
|
Zhang LH, Ren SL, Su ZQ, Xu PP, Ou D, Wang LJ, Sang W, Qiu BL. Impact of Huanglongbing Pathogen Infection on the Amino Acid Composition in Both Citrus Plants and the Asian Citrus Psyllid. Front Physiol 2021; 12:777908. [PMID: 34955890 PMCID: PMC8703012 DOI: 10.3389/fphys.2021.777908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri is the main vector of the pathogen Candidatus Liberibacter asiaticus (CLas), which is the causal agent of citrus Huanglongbing disease. Feeding by both ACP nymphs and adults on host plants allows them to obtain nutrition. Therefore, the nutritional content within the plant phloem is of much importance for the development and reproduction of ACP. The infection by pathogenic microbiomes may affect the amino acid contents of their host plants and then indirectly affect the biology of sap-feeding insects. In this study, we investigated the amino acid contents and their proportions in both CLas-infected and CLas-free citrus plants, ACP adults, and also in honeydew produced by ACP nymphs. Results showed that infection by CLas had a large impact on the amino acid species and proportion in all the tested target plants, ACP adults, and in the honeydew of ACP nymphs. The content of total amino acids in CLas-infected citrus was much higher than that of CLas-free citrus. However, CLas infection significantly reduced the proportion of essential amino acids (EAAs) in these plants. When feeding on CLas-infected citrus plants, ACP adults absorbed less total amino acids than those adults feeding on healthy plants, but the proportion of EAAs was significantly higher when they fed on CLas-infected citrus plants. The proportion of EAAs also significantly increased in the honeydew secreted by ACP nymphs that fed on CLas-infected citrus plants. However, EAA detection in the honeydew of ACP nymphs indicated that the utilization rate of EAAs by CLas positive ACP nymphs was reduced. Our study has revealed that CLas infection significantly affects the contents, proportion, and utilization efficiency of different amino acids in citrus plants, ACP adults, and nymphs, leading to a developmental pattern of ACP that is more conducive to CLas transmission.
Collapse
Affiliation(s)
- Li-He Zhang
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Su-Li Ren
- Airport Management College, Guangzhou Civil Aviation College, Guangzhou, China
| | - Zheng-Qin Su
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pei-Ping Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Da Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li-Jun Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wen Sang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
31
|
Silencing of Aquaporin Homologue Accumulates Uric Acid and Decreases the Lifespan of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). INSECTS 2021; 12:insects12100931. [PMID: 34680700 PMCID: PMC8539622 DOI: 10.3390/insects12100931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The use of RNA interference has become increasingly popular for investigating insect physiology, testing the functionality of insect genes and as a potential control strategy. Hemiptera include many vectors for destructive plant diseases. A major characteristic of the order of Hemiptera is feeding on the phloem sap of their plant hosts. Phloem feeders face high osmotic stress between the gut lumen and hemolymph due to the high level of sucrose in phloem sap. Targeting the osmoregulation mechanisms in Diaphorina citri Kuwayama, which transmits ‘Candidatus Liberibacter asiaticus’, the putative causal agent of Huanglongbing in citrus may lead to an effective control strategy. Herein we downregulate the expression of aquaporin, representing a major mechanism of osmoregulation, by RNA interference. Abstract The Asian citrus psyllid, Diaphorina citri Kuwayama is devastating the citrus industry worldwide. It transmits ‘Candidatus Liberibacter asiaticus’, the pathogen of Huanglongbing in citrus. RNA interference is an excellent tool for functional genomics and for screening target genes for pest control. Herein, we silenced the aquaporin (AQP) gene (DcAQP) homologue in D. citri to study its functionality and whether it could be a good target for a control strategy. AQP is an integral membrane channel protein that aids in the rapid flux of water and other small solutes that move across the lipid membrane. In Hemiptera, it is well established that AQP plays important roles in adjusting to physiological challenges including (1) regulating osmotic stress between the gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; (2) avoiding or preventing dehydration and desiccation; and (3) surviving at elevated temperatures. The dsRNA-DcAQP was applied twice to nymphs of the 4th and 5th instars through a soaking technique. Silencing AQP caused a significant increase in nymph mortality. Emerged adults showed malformations and a shorter lifespan. Silencing DcAQP provoked alterations in some metabolites and increased the uric acid content in emerged adults. DcAQP could be a useful target to control D. citri.
Collapse
|
32
|
Effects of Salinity and Abscisic Acid on Lipid Transfer Protein Accumulation, Suberin Deposition and Hydraulic Conductance in Pea Roots. MEMBRANES 2021; 11:membranes11100762. [PMID: 34677528 PMCID: PMC8537554 DOI: 10.3390/membranes11100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Lipid transfer proteins (LTPs) participate in many important physiological processes in plants, including adaptation to stressors, e.g., salinity. Here we address the mechanism of this protective action of LTPs by studying the interaction between LTPs and abscisic acid (ABA, a "stress" hormone) and their mutual participation in suberin deposition in root endodermis of salt-stressed pea plants. Using immunohistochemistry we show for the first time NaCl induced accumulation of LTPs and ABA in the cell walls of phloem paralleled by suberin deposition in the endoderm region of pea roots. Unlike LTPs which were found localized around phloem cells, ABA was also present within phloem cells. In addition, ABA treatment resulted in both LTP and ABA accumulation in phloem cells and promoted root suberization. These results suggested the importance of NaCl-induced accumulation of ABA in increasing the abundance of LTPs and of suberin. Using molecular modeling and fluorescence spectroscopy we confirmed the ability of different plant LTPs, including pea Ps-LTP1, to bind ABA. We therefore hypothesize an involvement of plant LTPs in ABA transport (unloading from phloem) as part of the salinity adaptation mechanism.
Collapse
|
33
|
Detection of Oxytetracycline in Citrus Phloem and Xylem Saps Using Europium-Based Method. Antibiotics (Basel) 2021; 10:antibiotics10091036. [PMID: 34572618 PMCID: PMC8469136 DOI: 10.3390/antibiotics10091036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oxytetracycline (OTC) has been used for the control of several plant diseases and was recently approved for the control of Huanglongbing, the citrus greening disease. Huanglongbing is caused by the phloem limited ‘Candidatus Liberibacter asiaticus’. Determination of OTC in the xylem and phloem of citrus plants is of great interest as they are the main routes of translocation in citrus. In addition, the determination of the level of OTC in the phloem sap is necessary for the control of the ‘Ca. L. asiaticus’ pathogen, which resides in the phloem. Herein, we demonstrated that the level of OTC in the citrus phloem and xylem saps obtained using the centrifugation method can be successfully measured using the europium (Eu) method directly or with cleanup by solid-phase extraction (SPE). Recovery of OTC from spiked sap samples purified by solid-phase extraction (SPE) was higher than 90%, while recovery from saps without SPE cleanup were nearly 100%. The ‘Ca. L. asiaticus’-infected leaf and phloem sap samples showed higher inhibition of the fluorescence intensity of the OTC standard compared to non-infected control leaf and phloem samples. In agreement with this finding, the levels of phenols and flavonoids in ‘Ca. L. asiaticus’-infected leaves were higher than those controls and were shown to interfere with the Eu method. Therefore, the SPE cleanup step only improved OTC recovery from leaf samples containing the interfering compounds. The Eu method was then used to determine OTC levels in the phloem and xylem sap of OTC-treated plants, and the results were similar whether measured directly or after SPE. Visualization under ultraviolet light (400 nm) showed the presence of OTC in citrus xylem and phloem saps with and without the use of SPE.
Collapse
|
34
|
Selvaraj G, Santos-Garcia D, Mozes-Daube N, Medina S, Zchori-Fein E, Freilich S. An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci. FEMS Microbiol Ecol 2021; 97:6348090. [PMID: 34379764 DOI: 10.1093/femsec/fiab117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 01/12/2023] Open
Abstract
Metabolic conversions allow organisms to produce essential metabolites from the available nutrients in an environment, frequently requiring metabolic exchanges among co-inhabiting organisms. Here, we applied genomic-based simulations for exploring tri-trophic interactions among the sap-feeding insect whitefly (Bemisia tabaci), its host-plants, and symbiotic bacteria. The simplicity of this ecosystem allows capturing the interacting organisms (based on genomic data) and the environmental content (based on metabolomics data). Simulations explored the metabolic capacities of insect-symbiont combinations under environments representing natural phloem. Predictions were correlated with experimental data on the dynamics of symbionts under different diets. Simulation outcomes depict a puzzle of three-layer origins (plant-insect-symbionts) for the source of essential metabolites across habitats and stratify interactions enabling the whitefly to feed on diverse hosts. In parallel to simulations, natural and artificial feeding experiments provide supporting evidence for an environment-based effect on symbiont dynamics. Based on simulations, a decrease in the relative abundance of a symbiont can be associated with a loss of fitness advantage due to an environmental excess in amino-acids whose production in a deprived environment used to depend on the symbiont. The study demonstrates that genomic-based predictions can bridge environment and community dynamics and guide the design of symbiont manipulation strategies.
Collapse
Affiliation(s)
- Gopinath Selvaraj
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel.,Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Netta Mozes-Daube
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Einat Zchori-Fein
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shiri Freilich
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
35
|
Ray DM, Savage JA. Seasonal changes in temperate woody plant phloem anatomy and physiology: implications for long-distance transport. AOB PLANTS 2021; 13:plab028. [PMID: 34234934 PMCID: PMC8255074 DOI: 10.1093/aobpla/plab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Seasonal changes in climate are accompanied by shifts in carbon allocation and phenological changes in woody angiosperms, the timing of which can have broad implications for species distributions, interactions and ecosystem processes. During critical transitions from autumn to winter and winter to spring, physiological and anatomical changes within the phloem could impose a physical limit on the ability of woody angiosperms to transport carbon and signals. There is a paucity of the literature that addresses tree (floral or foliar) phenology, seasonal phloem anatomy and seasonal phloem physiology together, so our knowledge of how carbon transport could fluctuate seasonally, especially in temperate climates is limited. We review phloem phenology focussing on how sieve element anatomy and phloem sap flow could affect carbon availability throughout the year with a focus on winter. To investigate whether flow is possible in the winter, we construct a simple model of phloem sap flow and investigate how changes to the sap concentration, pressure gradient and sieve plate pores could influence flow during the winter. Our model suggests that phloem transport in some species could occur year-round, even in winter, but current methods for measuring all the parameters surrounding phloem sap flow make it difficult to test this hypothesis. We highlight outstanding questions that remain about phloem functionality in the winter and emphasize the need for new methods to address gaps in our knowledge about phloem function.
Collapse
Affiliation(s)
- Dustin M Ray
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55811, USA
| |
Collapse
|
36
|
Zhou T, Yue CP, Liu Y, Zhang TY, Huang JY, Hua YP. Multiomics reveal pivotal roles of sodium translocation and compartmentation in regulating salinity resistance in allotetraploid rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5687-5708. [PMID: 33989425 DOI: 10.1093/jxb/erab215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
The large size and complexity of the allotetraploid rapeseed (Brassica napus) genome present huge challenges for understanding salinity resistance in this important crop. In this study, we identified two rapeseed genotypes with significantly different degrees of salinity resistance and examined the underlying mechanisms using an integrated analysis of phenomics, ionomics, genomics, and transcriptomics. Under salinity, a higher accumulation of osmoregulation substances and better root-system architecture was observed in the resistant genotype, H159, than in the sensitive one, L339. A lower shoot Na+ concentration and a higher root vacuolar Na+ concentration indicated lower root-to-shoot translocation and higher compartmentation in H159 than in L339. Whole-genome re-sequencing (WGRS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport. Combining ionomics with transcriptomics identified plasma membrane-localized BnaC2.HKT1;1 and tonoplast-localized BnaC5.NHX2 as the central factors regulating differential root xylem unloading and vacuolar sequestration of Na+ between the two genotypes. Identification of polymorphisms by WGRS and PCR revealed two polymorphic MYB-binding sites in the promoter regions that might determine the differential gene expression of BnaC2.HKT1;1 and BnaC5.NHX2. Our multiomics approach thus identified core transporters involved in Na+ translocation and compartmentation that regulate salinity resistance in rapeseed. Our results may provide elite gene resources for the improvement of salinity resistance in this crop, and our multiomics approach can be applied to other similar studies.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Killiny N, Nehela Y, George J, Rashidi M, Stelinski LL, Lapointe SL. Phytoene desaturase-silenced citrus as a trap crop with multiple cues to attract Diaphorina citri, the vector of Huanglongbing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110930. [PMID: 34034878 DOI: 10.1016/j.plantsci.2021.110930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 05/26/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive diseases in citrus worldwide. Unfortunately, HLB has no cure and management relies on insecticides to reduce populations of the vector, Diaphorina citri Kuwayama (Hemiptera: Liviidae). We propose an attract-and-kill strategy using a trap crop as an alternative to vector control to reduce transmission of the pathogen, 'Candidatus Liberibacter asiaticus'. We evaluated vector response to phytoene desaturase-silenced citrus trees using virus-induced gene silencing technology. Citrus tristeza virus (CTV) was used to produce a phytoene desaturase-silenced citrus (CTV-tPDS) that expresses visual, olfactory, and gustatory cues to attract D. citri. We found that D. citri were more attracted to CTV-tPDS plants with noticeably better fecundity and overall population fitness than on control plants. Moreover, rearing D. citri on CTV-tPDS plants significantly increased their survival probability compared with those reared on control plants. CTV-tPDS plants possessed reduced content of both carotenoid and chlorophyll pigments resulting in a consistent photobleached phenotype on citrus leaves which provided a sufficient close-range visual attractant to stimulate D. citri landing. Additionally, CTV-tPDS plants exhibited an enriched profile of volatile organic compounds (VOCs), which offered adequate olfactory cues to attract psyllid from long-range. Finally, CTV-tPDS plants exhibited an enriched metabolite content of phloem sap and leaves which offered appropriate gustatory cues that influenced probing/feeding behavior. We believe that introducing CTV-tPDS plants (as a trap crop) to D. citri-infested orchards will attract and congregate psyllids to facilitate their removal from the target crop with insecticides or by other means. This new strategy could be deployed relatively quickly and economically to HLB-impacted citrus industries. Moreover, it is an eco-friendly strategy because it should partially reduce the input of chemical insecticides ameliorating the indirect cost of HLB infection.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, 31512 Tanta, Egypt
| | - Justin George
- United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL, 34945, USA; United States Department of Agriculture, Agricultural Research Service, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Mahnaz Rashidi
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Stephen L Lapointe
- United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| |
Collapse
|
38
|
de Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A, Reinders A, Ward JM, Oparka K, Vendrell M. A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:7715-7720. [PMID: 38505234 PMCID: PMC10946860 DOI: 10.1002/ange.202016802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.
Collapse
Affiliation(s)
| | - Kirsten Knox
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University ofEdinburghUK
| | - Martin Lee
- Cancer Research (UK) Edinburgh CentreThe University of EdinburghUK
| | - William J. Tipping
- EaStCHEM School of ChemistryThe University of EdinburghUK
- Centre for Molecular NanometrologyUniversity of StrathclydeUK
| | - Ailsa Geddis
- Centre for Inflammation ResearchThe University ofEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | - Anke Reinders
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - John M. Ward
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - Karl Oparka
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University ofEdinburghUK
| |
Collapse
|
39
|
de Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A, Reinders A, Ward JM, Oparka K, Vendrell M. A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism. Angew Chem Int Ed Engl 2021; 60:7637-7642. [PMID: 33491852 PMCID: PMC8048481 DOI: 10.1002/anie.202016802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/20/2022]
Abstract
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.
Collapse
Affiliation(s)
| | - Kirsten Knox
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University ofEdinburghUK
| | - Martin Lee
- Cancer Research (UK) Edinburgh CentreThe University of EdinburghUK
| | - William J. Tipping
- EaStCHEM School of ChemistryThe University of EdinburghUK
- Centre for Molecular NanometrologyUniversity of StrathclydeUK
| | - Ailsa Geddis
- Centre for Inflammation ResearchThe University ofEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | - Anke Reinders
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - John M. Ward
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - Karl Oparka
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University ofEdinburghUK
| |
Collapse
|
40
|
Gao P, Kasama T, Godonoga M, Ogawa A, Sone C, Komine M, Endo Y, Koide T, Miyake R. A needle-type micro-sampling device for collecting nanoliter sap sample from plants. Anal Bioanal Chem 2021; 413:3081-3091. [PMID: 33733702 DOI: 10.1007/s00216-021-03246-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
In plant research, measuring the physiological parameters of plants is vital for understanding the behavior and response of plants to changes in the external environment. Plant sap analysis provides an approach for elucidating the physiological condition of plants. However, to facilitate accurate sap analysis, a sampling device capable of collecting sap samples from plants is required. In this paper, a minimally invasive, needle-type micro-sampling device capable of collecting nanoliter (~ 91 nL) quantities of sap from plants is described. The developed micro-sampling system showed great reproducibility (3%) in experiments designed to assess sampling performance. As a proof of concept, sap samples were collected continuously from target plants with the micro-sampling system, and the dynamic changes in potassium ions, plant hormones and sugar levels inside plants were analyzed. The results demonstrated the feasibility of the micro-sampling device and its potential for developing a measurement system for plant research in the future.
Collapse
Affiliation(s)
- Panpan Gao
- Microfluidic Integrated Circuits Research Laboratory, Department of Bioengineering, School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Toshihiro Kasama
- Microfluidic Integrated Circuits Research Laboratory, Department of Bioengineering, School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Maia Godonoga
- Microfluidic Integrated Circuits Research Laboratory, Department of Bioengineering, School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Atsushi Ogawa
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Chiharu Sone
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Masashi Komine
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Yoshishige Endo
- Microfluidic Integrated Circuits Research Laboratory, Department of Bioengineering, School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Tetsushi Koide
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, Hiroshima, 739-0046, Japan
| | - Ryo Miyake
- Microfluidic Integrated Circuits Research Laboratory, Department of Bioengineering, School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan.
| |
Collapse
|
41
|
Gallinger J, Zikeli K, Zimmermann MR, Görg LM, Mithöfer A, Reichelt M, Seemüller E, Gross J, Furch ACU. Specialized 16SrX phytoplasmas induce diverse morphological and physiological changes in their respective fruit crops. PLoS Pathog 2021; 17:e1009459. [PMID: 33765095 PMCID: PMC8023467 DOI: 10.1371/journal.ppat.1009459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/06/2021] [Accepted: 03/07/2021] [Indexed: 11/19/2022] Open
Abstract
The host-pathogen combinations-Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.
Collapse
Affiliation(s)
- Jannicke Gallinger
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Dossenheim, Germany
| | - Kerstin Zikeli
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Dossenheim, Germany
| | - Matthias R. Zimmermann
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Louisa M. Görg
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Dossenheim, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Erich Seemüller
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Dossenheim, Germany
| | - Jürgen Gross
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Dossenheim, Germany
| | - Alexandra C. U. Furch
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
42
|
Franco JY, Thapa SP, Pang Z, Gurung FB, Liebrand TWH, Stevens DM, Ancona V, Wang N, Coaker G. Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Mol Cell Proteomics 2020; 19:1936-1952. [PMID: 32883801 PMCID: PMC7710146 DOI: 10.1074/mcp.ra120.002075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.
Collapse
Affiliation(s)
- Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California, USA.
| |
Collapse
|
43
|
Nehela Y, Killiny N. Melatonin Is Involved in Citrus Response to the Pathogen Huanglongbing via Modulation of Phytohormonal Biosynthesis. PLANT PHYSIOLOGY 2020; 184:2216-2239. [PMID: 32843523 PMCID: PMC7723116 DOI: 10.1104/pp.20.00393] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/06/2020] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB) is a devastating citrus disease worldwide that is putatively caused by Candidatus Liberibacter asiaticus and transmitted by Diaphorina citri Melatonin is a ubiquitously distributed auxin-like metabolite found in both prokaryotes and eukaryotes. In this study, we used integrative metabolomic and transcriptomic approaches to investigate the potential role of melatonin in citrus response against HLB and to understand the relationships between melatonin and the stress-associated phytohormones at molecular and metabolic levels. Melatonin was detected in the leaves of Valencia sweet orange (Citrus sinensis) after derivatization with N-methyl-N-trimethylsilyltrifluoroacetamide using a targeted gas chromatography-mass spectrometry running in selective ion monitoring mode-based method. Ca. L. asiaticus infection and D. citri infestation significantly increased endogenous melatonin levels in Valencia sweet orange leaves and upregulated the expression of its biosynthetic genes (CsTDC, CsT5H, CsSNAT, CsASMT, and CsCOMT). However, infection with Ca. L. asiaticus had a greater effect than did infestation with D. citri Melatonin induction was positively correlated with salicylic acid content, but not that of trans-jasmonic acid. Moreover, melatonin supplementation enhanced the endogenous contents of the stress-associated phytohormones (salicylates, auxins, trans-jasmonic acid, and abscisic acid) and the transcript levels of their biosynthetic genes. Furthermore, melatonin supplementation diminished the Ca. L. asiaticus titer within the infected leaves, which suggests that melatonin might play an antibacterial role against this bacterium and gram-negative bacteria in general. These findings provide a better understanding of the melatonin-mediated defensive response against HLB via modulation of multiple hormonal pathways. Understanding the role of melatonin in citrus defense to HLB may provide a novel therapeutic strategy to mitigate the disease.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, 31512 Tanta, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850
| |
Collapse
|
44
|
Ma C, Borgatta J, Hudson BG, Tamijani AA, De La Torre-Roche R, Zuverza-Mena N, Shen Y, Elmer W, Xing B, Mason SE, Hamers RJ, White JC. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. NATURE NANOTECHNOLOGY 2020; 15:1033-1042. [PMID: 33077964 DOI: 10.1038/s41565-020-00776-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Customized Cu3(PO4)2 and CuO nanosheets and commercial CuO nanoparticles were investigated for micronutrient delivery and suppression of soybean sudden death syndrome. An ab initio thermodynamics approach modelled how material morphology and matrix effects control the nutrient release. Infection reduced the biomass and photosynthesis by 70.3 and 60%, respectively; the foliar application of nanoscale Cu reversed this damage. Disease-induced changes in the antioxidant enzyme activity and fatty acid profile were also alleviated by Cu amendment. The transcription of two dozen defence- and health-related genes correlates a nanoscale Cu-enhanced innate disease response to reduced pathogenicity and increased growth. Cu-based nanosheets exhibited a greater disease suppression than that of CuO nanoparticles due to a greater leaf surface affinity and Cu dissolution, as determined computationally and experimentally. The findings highlight the importance and tunability of nanomaterial properties, such as morphology, composition and dissolution. The early seedling foliar application of nanoscale Cu to modulate nutrition and enhance immunity offers a great potential for sustainable agriculture.
Collapse
Affiliation(s)
- Chuanxin Ma
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI, USA
- The Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jaya Borgatta
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Blake Geoffrey Hudson
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Iowa, Iowa City, IA, USA
| | - Ali Abbaspour Tamijani
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Iowa, Iowa City, IA, USA
| | - Roberto De La Torre-Roche
- The Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Nubia Zuverza-Mena
- The Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yu Shen
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI, USA
- The Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Wade Elmer
- The Center for Sustainable Nanotechnology, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Sara Elizabeth Mason
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Iowa, Iowa City, IA, USA
| | - Robert John Hamers
- The Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Jason Christopher White
- The Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| |
Collapse
|
45
|
Killiny N, Jones SE, Hijaz F, Kishk A, Santos-Ortega Y, Nehela Y, Omar AA, Yu Q, Gmitter FG, Grosser JW, Dutt M. Metabolic Profiling of Hybrids Generated from Pummelo and Citrus latipes in Relation to Their Attraction to Diaphorina citri, the Vector of Huanglongbing. Metabolites 2020; 10:metabo10120477. [PMID: 33255226 PMCID: PMC7760127 DOI: 10.3390/metabo10120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
The citrus industry at present is severely affected by huanglongbing disease (HLB). HLB is caused by the supposed bacterial pathogen “Candidatus Liberibacter asiaticus” and is transmitted by the insect vector, the Asian citrus psyllid, Diaphorina citri Kuwayama. Developing new citrus hybrids to improve HLB management is much needed. In this study, we investigated the metabolomic profiles of three new hybrids produced from the cross of C2-5-12 Pummelo (Citrus maxima (L.) Osbeck) × pollen from Citrus latipes. The hybrids were selected based on leaf morphology and seedling vigor. The selected hybrids exhibited compact and upright tree architecture as seen in C. latipes. Hybrids were verified by simple sequence repeat markers, and were subjected to metabolomic analysis using gas chromatography-mass spectrometry. The volatile organic compounds (VOCs) and polar metabolites profiling also showed that the new hybrids were different from their parents. Interestingly, the levels of stored VOCs in hybrid II were higher than those observed in its parents and other hybrids. The level of most VOCs released by hybrid II was also higher than that released from its parents. Additionally, the preference assay showed that hybrid II was more attractive to D. citri than its parents and other hybrids. The leaf morphology, compact and upright architecture of hybrid II, and its attraction to D. citri suggest that it could be used as a windbreak and trap tree for D. citri (double duty), once its tolerance to HLB disease is confirmed. Our results showed that metabolomic analysis could be successfully used to understand the biochemical mechanisms controlling the interaction of D. citri with its host plants.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
- Correspondence: ; Tel.: +863-956-8833; Fax: +863-956-4631
| | - Shelley E. Jones
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
| | - Faraj Hijaz
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
| | - Abdelaziz Kishk
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Yulica Santos-Ortega
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
| | - Yasser Nehela
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Ahmad A. Omar
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
- Biochemistry Department, College of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Qibin Yu
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| | - Fred G. Gmitter
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| | - Jude W. Grosser
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| | - Manjul Dutt
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| |
Collapse
|
46
|
Nasim Z, Fahim M, Gawarecka K, Susila H, Jin S, Youn G, Ahn JH. Role of AT1G72910, AT1G72940, and ADR1-LIKE 2 in Plant Immunity under Nonsense-Mediated mRNA Decay-Compromised Conditions at Low Temperatures. Int J Mol Sci 2020; 21:E7986. [PMID: 33121126 PMCID: PMC7663611 DOI: 10.3390/ijms21217986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar 25120, Pakistan;
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| |
Collapse
|
47
|
Pang Z, Zhang L, Coaker G, Ma W, He SY, Wang N. Citrus CsACD2 Is a Target of Candidatus Liberibacter Asiaticus in Huanglongbing Disease. PLANT PHYSIOLOGY 2020; 184:792-805. [PMID: 32759268 PMCID: PMC7536665 DOI: 10.1104/pp.20.00348] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/27/2020] [Indexed: 05/06/2023]
Abstract
Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (Las), is one of the most destructive citrus diseases worldwide, yet how Las causes HLB is poorly understood. Here we show that a Las-secreted protein, SDE15 (CLIBASIA_04025), suppresses plant immunity and promotes Las multiplication. Transgenic expression of SDE15 in Duncan grapefruit (Citrus × paradisi) suppresses the hypersensitive response induced by Xanthomonas citri ssp. citri (Xcc) and reduces the expression of immunity-related genes. SDE15 also suppresses the hypersensitive response triggered by the Xanthomonas vesicatoria effector protein AvrBsT in Nicotiana benthamiana, suggesting that it may be a broad-spectrum suppressor of plant immunity. SDE15 interacts with the citrus protein CsACD2, a homolog of Arabidopsis (Arabidopsis thaliana) ACCELERATED CELL DEATH 2 (ACD2). SDE15 suppression of plant immunity is dependent on CsACD2, and overexpression of CsACD2 in citrus suppresses plant immunity and promotes Las multiplication, phenocopying overexpression of SDE15. Identification of CsACD2 as a susceptibility target has implications in genome editing for novel plant resistance against devastating HLB.
Collapse
Affiliation(s)
- Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred, Florida 33850
| | - Li Zhang
- MSU-DOE Plant Research Laboratory, Plant Resilient Institute, Michigan State University, East Lansing, Michigan 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, California 95616
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Sheng-Yang He
- MSU-DOE Plant Research Laboratory, Plant Resilient Institute, Michigan State University, East Lansing, Michigan 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred, Florida 33850
| |
Collapse
|
48
|
Görg LM, Gallinger J, Gross J. The phytopathogen ‘Candidatus Phytoplasma mali’ alters apple tree phloem composition and affects oviposition behavior of its vector Cacopsylla picta. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00326-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractApple proliferation disease is caused by the phloem-dwelling bacterium ‘Candidatus Phytoplasma mali’, inducing morphological changes in its host plant apple, such as witches’ broom formation. Furthermore, it triggers physiological alterations like emission of volatile organic compounds or phytohormone levels in the plant. In our study, we assessed phytoplasma-induced changes in the phloem by sampling phloem sap from infected and non-infected apple plants. In infected plants, the soluble sugar content increased and the composition of phloem metabolites differed significantly between non-infected and infected plants. Sugar and sugar alcohol levels increased in diseased plants, while organic and amino acid content remained constant. As ‘Ca. P. mali’ is vectored by the phloem-feeding insect Cacopsylla picta (Foerster, 1848), we assessed whether the insect–plant interaction was affected by ‘Ca. P. mali’ infection of the common host plant Malus domestica Borkh. Binary-choice oviposition bioassays between infected and non-infected apple leaves revealed C. picta’s preference for non-infected leaves. It is assumed and discussed that the changes in vector behavior are attributable to plant-mediated effects of the phytoplasma infection.
Collapse
|
49
|
Adhikary R, Kundu S, Maiti PK, Mitra PK, Mandal S, Mandal V. Effect of different stimuli on twitching behavior of endophytic bacteria isolated from Loranthus sp. Jacq. Antonie van Leeuwenhoek 2020; 113:1489-1505. [PMID: 32789713 DOI: 10.1007/s10482-020-01458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Bacteria need to adopt to different behavioral tuning depending on the dynamic eco-physiological conditions they are exposed to. One of these adaptive strategies is the use of motility. Here we report the twitching motility response of four endophytic isolates of Bacillus sp. when exposed to different eco-physiological stimuli like different nutrient sources, and mechanical and chemical antagonists on solid surfaces. These endophytic bacteria were isolated from different parts of a hemiparasite Loranthus sp. Jacq. (Loranthaceae) growing on economically important mango trees. The results show that the twitching motility of these bacteria was more when exposed to organic acids, metals salts (among nutrients) and mechanical shearing (stress) than the other factors. Their motility is not affected by surface lubrication or EPS production, but instead is influenced by shear-sensitive structures and affinity to metal ions. Further molecular studies are needed to elucidate the basis of this twitching behaviour on solid surfaces.
Collapse
Affiliation(s)
| | - Smriti Kundu
- University of Gour Banga, Malda, West Bengal, India
| | | | | | | | | |
Collapse
|
50
|
Gallinger J, Gross J. Phloem Metabolites of Prunus Sp. Rather than Infection with Candidatus Phytoplasma Prunorum Influence Feeding Behavior of Cacopsylla pruni Nymphs. J Chem Ecol 2020; 46:756-770. [PMID: 31965396 PMCID: PMC7429536 DOI: 10.1007/s10886-020-01148-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 10/29/2022]
Abstract
Phytoplasmas are specialized small bacteria restricted to the phloem tissue and spread by hemipterans feeding on plant sieve tube elements. As for many other plant pathogens, it is known that phytoplasmas alter the chemistry of their hosts. Most research on phytoplasma-plant interactions focused on the induction of plant volatiles and phytohormones. Little is known about the influence of phytoplasma infections on the nutritional composition of phloem and consequences on vector behavior and development. The plum psyllid Cacopsylla pruni transmits 'Candidatus Phytoplasma prunorum', the causing agent of European Stone Fruit Yellows (ESFY). While several Prunus species are susceptible for psyllid feeding, they show different responses to the pathogen. We studied the possible modulation of plant-insect interactions by bacteria-induced changes in phloem sap chemistry. Therefore, we sampled phloem sap from phytoplasma-infected and non-infected Prunus persica and Prunus insititia plants, which differ in their susceptibility to ESFY and psyllid feeding. Furthermore, the feeding behavior and development of C. pruni nymphs was compared on infected and non-infected P. persica and P. insititia plants. Phytoplasma infection did not affect phloem consumption by C. pruni nymphs nor their development time. In contrast, the study revealed significant differences between P. insititia and P. persica in terms of both phloem chemistry and feeding behavior of C. pruni nymphs. Phloem feeding phases were four times longer on P. insititia than on P. persica, resulting in a decreased development time and higher mortality of vector insects on P. persica plants. These findings explain the low infestation rates of peach cultivars with plum psyllids commonly found in field surveys.
Collapse
Affiliation(s)
- Jannicke Gallinger
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Dossenheim, Germany
- Plant Chemical Ecology, Technical University of Darmstadt, Schnittspahnstr. 4, 64287, Darmstadt, Germany
| | - Jürgen Gross
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Dossenheim, Germany.
- Plant Chemical Ecology, Technical University of Darmstadt, Schnittspahnstr. 4, 64287, Darmstadt, Germany.
| |
Collapse
|