1
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
2
|
Lener D, Noflatscher M, Kirchmair E, Bauer A, Holfeld J, Gollmann-Tepeköylü C, Kirchmair R, Theurl M. The angiogenic neuropeptide catestatin exerts beneficial effects on human coronary vascular cells and cardiomyocytes. Peptides 2023; 168:171077. [PMID: 37567254 DOI: 10.1016/j.peptides.2023.171077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Myocardial infarction (MI) induces irreversible tissue damage, eventually leading to heart failure. Exogenous induction of angiogenesis positively influences ventricular remodeling after MI. Recently, we could show that therapeutic angiogenesis by the neuropeptide catestatin (CST) restores perfusion in the mouse hind limb ischemia model by the induction of angio-, arterio- and vasculogenesis. Thus, we assumed that CST might exert beneficial effects on cardiac cells. METHODS/RESULTS To test the effect of CST on cardiac angiogenesis in-vitro matrigel assays with human coronary artery endothelial cells (HCAEC) were performed. CST significantly mediated capillary like tube formation comparable to vascular endothelial growth factor (VEGF), which was used as positive control. Interestingly, blockade of bFGF resulted in abrogation of observed effects. Moreover, CST induced proliferation of HCAEC and human coronary artery smooth muscle cells (HCASMC) as determined by BrdU-incorporation. Similar to the matrigel assay blockade of bFGF attenuated the effect. Consistent with these findings western blot assays revealed a bFGF-dependent phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 by CST in these cell lines. Finally, CST protected human cardiomyocytes in-vitro from apoptosis. CONCLUSION CST might qualify as potential candidate for therapeutic angiogenesis in MI.
Collapse
Affiliation(s)
- Daniela Lener
- Medical University of Innsbruck, University Hospital of Innsbruck, Division of Cardiology and Angiology, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Maria Noflatscher
- Medical University of Innsbruck, University Hospital of Innsbruck, Division of Cardiology and Angiology, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Elke Kirchmair
- Medical University of Innsbruck, Department of Cardiac Surgery, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Axel Bauer
- Medical University of Innsbruck, University Hospital of Innsbruck, Division of Cardiology and Angiology, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Johannes Holfeld
- Medical University of Innsbruck, Department of Cardiac Surgery, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Can Gollmann-Tepeköylü
- Medical University of Innsbruck, Department of Cardiac Surgery, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Rudolf Kirchmair
- Medical University of Innsbruck, University Hospital of Innsbruck, Division of Cardiology and Angiology, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Markus Theurl
- Medical University of Innsbruck, University Hospital of Innsbruck, Division of Cardiology and Angiology, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Zalewska E, Kmieć P, Sworczak K. Role of Catestatin in the Cardiovascular System and Metabolic Disorders. Front Cardiovasc Med 2022; 9:909480. [PMID: 35665253 PMCID: PMC9160393 DOI: 10.3389/fcvm.2022.909480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Catestatin is a multifunctional peptide that is involved in the regulation of the cardiovascular and immune systems as well as metabolic homeostatis. It mitigates detrimental, excessive activity of the sympathetic nervous system by inhibiting catecholamine secretion. Based on in vitro and in vivo studies, catestatin was shown to reduce adipose tissue, inhibit inflammatory response, prevent macrophage-driven atherosclerosis, and regulate cytokine production and release. Clinical studies indicate that catestatin may influence the processes leading to hypertension, affect the course of coronary artery diseases and heart failure. This review presents up-to-date research on catestatin with a particular emphasis on cardiovascular diseases based on a literature search.
Collapse
|
4
|
Husková Z, Kikerlová S, Sadowski J, Alánová P, Sedláková L, Papoušek F, Neckář J. Increased Endogenous Activity of the Renin-Angiotensin System Reduces Infarct Size in the Rats with Early Angiotensin II-dependent Hypertension which Survive the Acute Ischemia/Reperfusion Injury. Front Pharmacol 2021; 12:679060. [PMID: 34122103 PMCID: PMC8193500 DOI: 10.3389/fphar.2021.679060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 01/13/2023] Open
Abstract
We investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls. The early phase of ANG II-dependent hypertension was induced by five-days (5 days) dietary indole-3-carbinol administration. Cardiac hypertrophy, ANG II and ANG 1-7 levels, protein expression of their receptors and enzymes were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury, and infarct size and ventricular arrhythmias were assessed. Induced rats developed marked cardiac hypertrophy accompanied by elevated ANG levels. Ischemia/reperfusion mortality was significantly higher in induced than noninduced rats (52.1 and 25%, respectively). The blockade of AT1 receptors with losartan significantly increased survival rate in both groups. Myocardial infarct size was significantly reduced after 5 days induction (by 11%), without changes after losartan treatment. In conclusion, we confirmed improved cardiac tolerance to ischemia/reperfusion injury in hypertensive cardiohypertrophied rats and found that activation of AT1 receptors by locally produced ANG II in the heart was not the mechanism underlying infarct size reduction.
Collapse
Affiliation(s)
- Zuzana Husková
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Petra Alánová
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Sedláková
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Neckář
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Retraction: Catestatin Increases the Expression of Anti-Apoptotic and Pro-Angiogenetic Factors in the Post-Ischemic Hypertrophied Heart of SHR. PLoS One 2021; 16:e0246900. [PMID: 33539473 PMCID: PMC7861425 DOI: 10.1371/journal.pone.0246900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
7
|
Chu SY, Peng F, Wang J, Liu L, Meng L, Zhao J, Han XN, Ding WH. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides 2020; 123:170200. [PMID: 31730792 DOI: 10.1016/j.peptides.2019.170200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Apoptosis induced by oxidative stress is one of the most important cardiomyocytes losses during ischemia-reperfusion (I/R). Catestatin (CST) has been demonstrated to have the anti-oxidative capacity in vitro. We hypothesized that CST intervention could reduce apoptosis of cardiomyocytes induced by oxidative stress in I/R. In Langendorff-perfused rat heart global I/R model, CST was introduced at the reperfusion stage. In comparison to the control group, CST led to preservation on activities of superoxide dismutase and glutathione peroxidase, improvement of hemodynamics, and reduced infarction area in reperfused myocardium. The protection of CST was also shown by less apoptotic cardiomyocytes in TUNEL staining, less caspase-3 activation, and increased phosphorylation of protein kinase B (PKB/Akt) in Western blot. To further demonstrate the benefits of CST and explore the possible underlying mechanism, H2O2-challenged primary-cultured neonatal rat cardiomyocytes were used to simulate the oxidative-stressed scenario. CST incubation with the H2O2-challenged cardiomyocytes led to reduction of apoptosis, which was demonstrated by less Hoechst 33342 positive staining of nuclei, less caspase-3 activation, and DNA fragmentation. The effect of CST was abrogated by pretreatment of the cardiomyocytes with the PI3K inhibitor LY294002. Furthermore, Akt activation and the anti-apoptosis effect of CST were abolished by pretreatment of the cardiomyocytes with β2 receptor inhibitor ICI118551. Thus, the salvage of oxidative-stress-induced apoptotic cardiomyocytes in I/R by CST might involve activation β2 receptor and regulation of PI3K/Akt signaling in reperfusion injury salvage kinase (RISK) pathway.
Collapse
Affiliation(s)
- Song-Yun Chu
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Fen Peng
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China; Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Jie Wang
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Lin Liu
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Lei Meng
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Jing Zhao
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Xiao-Ning Han
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China
| | - Wen-Hui Ding
- Department of Cardiology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
8
|
Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Med Chem 2019; 11:1501-1511. [DOI: 10.4155/fmc-2018-0585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cardiac function critically depends on an adequate myocardial oxygenation and on a correct coronary blood flow. Endothelial, hormonal and extravascular factors work together generating a fine balance between oxygen supply and oxygen utilization through the coronary circulation. Among the regulatory factors that contribute to the coronary tone, increasing attention is paid to the cardiac endocrines, such as chromogranin A, a prohormone for many biologically active peptides, including vasostatin and catestatin. In this review, we will summarize the available evidences about the coronary effects of these molecules, and their putative mechanism of action. Laboratory and clinical data on chromogranin A and its derived fragments will be analyzed in relation to the scenario of the endocrine heart, and of its putative clinical perspectives.
Collapse
|
9
|
Rocca C, Scavello F, Colombo B, Gasparri AM, Dallatomasina A, Granieri MC, Amelio D, Pasqua T, Cerra MC, Tota B, Corti A, Angelone T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity. FASEB J 2019; 33:7734-7747. [PMID: 30973759 DOI: 10.1096/fj.201802707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Francesco Scavello
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Barbara Colombo
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Gasparri
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Alice Dallatomasina
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Daniela Amelio
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Maria Carmela Cerra
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Bruno Tota
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Angelo Corti
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
10
|
Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol 2018; 9:2199. [PMID: 30337922 PMCID: PMC6180191 DOI: 10.3389/fimmu.2018.02199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that inflammatory diseases and cancers are influenced by cleavage products of the pro-hormone chromogranin A (CgA), such as the 21-amino acids long catestatin (CST). The goal of this review is to provide an overview of the anti-inflammatory effects of CST and its mechanism of action. We discuss evidence proving that CST and its precursor CgA are crucial for maintaining metabolic and immune homeostasis. CST could reduce inflammation in various mouse models for diabetes, colitis and atherosclerosis. In these mouse models, CST treatment resulted in less infiltration of immune cells in affected tissues, although in vitro monocyte migration was increased by CST. Both in vivo and in vitro, CST can shift macrophage differentiation from a pro- to an anti-inflammatory phenotype. Thus, the concept is emerging that CST plays a role in tissue homeostasis by regulating immune cell infiltration and macrophage differentiation. These findings warrant studying the effects of CST in humans and make it an interesting therapeutic target for treatment and/or diagnosis of various metabolic and immune diseases.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gina Dunkel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara J T Nicolasen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, United States.,Department of Medicine, University of California at San Diego, La Jolla, CA, United States
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
The morphological and functional significance of the NOS/NO system in the respiratory, osmoregulatory, and contractile organs of the African lungfish. Acta Histochem 2018; 120:654-666. [PMID: 30195500 DOI: 10.1016/j.acthis.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review aims to summarize the changes of the NOS/NO system which occur in the lungs, gills, kidney, heart, and myotomal muscle of air breathing fish of the genus Protopterus, i.e. P. dolloi and P. annectens, in relation to the switch from freshwater to aestivation, and vice-versa. The modifications of NOS and its partners Akt and Hsp-90, and HIF-1α, detected by immunohistochemical and molecular biology methods, are discussed together with the apoptosis rate, evaluated by TUNEL. We hypothesize that these molecular components are key elements of the stress-induced signal transduction/integration networks which allow the lungfish to overcome the dramatic environmental challenges experienced at the beginning, during, and at the end of the dry season.
Collapse
|
12
|
Spadaccio C, Nenna A, Nappi F, Barbato R, Greco SM, Nusca A, Sommariva L, Chello M. Single-territory incomplete surgical revascularization improves regional wall motion of remote ventricular areas: results from a propensity-matched study. J Geriatr Cardiol 2018; 15:479-485. [PMID: 30364760 PMCID: PMC6198266 DOI: 10.11909/j.issn.1671-5411.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
OBJECTIVE Basic science studies demonstrated a general intramyocardial angiogenetic response potentially responsible for the creation of a microvascular neocapillaries network assisting myocardial function. We hypothesized that the benefit provided by the reperfusion of left anterior descending (LAD) territories and the biological angiogenetic drive triggered by the revascularization could translate in a global improvement in ventricular contractility, not restricted to the grafted area. METHODS High-risk patients with multivessel coronary artery disease and preoperative wall motion abnormalities were retrospectively analyzed to compare outcomes and regional ventricular function of those who received optimal medical therapy (OMT) versus those who underwent off-pump coronary artery bypass grafting (OPCABG) and received an incomplete myocardial revascularization using left internal mammary artery (LIMA) on LAD (OPCABG group). From January 2007 to December 2014, 206 patients (OMT, n = 136, OPCABG, n = 70) were propensity-score matched to have 70 matched pairs. Variables included in propensity score analyses were ejection fraction (EF), left ventricular end diastolic volume (LVEDVi), EuroSCORE II. Primary endpoint was the variation in the global wall motion score index (ΔWMSI) as evaluated by transthoracic echocardiography. Follow up was completed at 3 years from surgery or hospital discharge. RESULTS Regional analysis of ventricular function revealed a regional WMSI improvement in the OPCABG group not only for LAD territories but also for non-LAD regions, associated with a reduction in the negative left ventricular ischemic remodeling, compared to patients discharged in optimal medical therapy. Global ΔWMSI was negative in OPCABG group (-3.4 ± 2.8%) and positive in the OMT group (5.9 ± 3.1%), indicating a better wall motion score for OPCAB patients. Surprisingly, regional WMSI improved also in non-grafted territories in the off-pump CABG group with a delta value of -3.7 ± 5.3% for left circumflex artery (LCX) area and -3.5 ± 5.4% for right coronary artery (RCA) area. CONCLUSIONS In patients with multivessel coronary artery disease, LIMA-to-LAD grafting is associated with an improvement in the WMSI involving also the surrounding non-LAD ungrafted segments and with the attenuation of negative global and regional ischemic ventricular remodeling.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, United Kingdom
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, Saint Denis, Paris, France
| | - Raffaele Barbato
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Annunziata Nusca
- Department of Cardiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
13
|
Hahnova K, Brabcova I, Neckar J, Weissova R, Svatonova A, Novakova O, Zurmanova J, Kalous M, Silhavy J, Pravenec M, Kolar F, Novotny J. β-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia. J Physiol Sci 2018; 68:441-454. [PMID: 28567570 PMCID: PMC10717553 DOI: 10.1007/s12576-017-0546-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2017] [Indexed: 01/24/2023]
Abstract
The β-adrenergic signaling pathways and antioxidant defence mechanisms play important roles in maintaining proper heart function. Here, we examined the effect of chronic normobaric hypoxia (CNH, 10% O2, 3 weeks) on myocardial β-adrenergic signaling and selected components of the antioxidant system in spontaneously hypertensive rats (SHR) and in a conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischemia-resistant Brown Norway strain. Our investigations revealed some intriguing differences between the two strains at the level of β-adrenergic receptors (β-ARs), activity of adenylyl cyclase (AC) and monoamine oxidase A (MAO-A), as well as distinct changes after CNH exposure. The β2-AR/β1-AR ratio was significantly higher in SHR-mtBN than in SHR, apparently due to increased expression of β2-ARs. Adaptation to hypoxia elevated β2-ARs in SHR and decreased the total number of β-ARs in SHR-mtBN. In parallel, the ability of isoprenaline to stimulate AC activity was found to be higher in SHR-mtBN than that in SHR. Interestingly, the activity of MAO-A was notably lower in SHR-mtBN than in SHR, and it was markedly elevated in both strains after exposure to hypoxia. In addition to that, CNH markedly enhanced the expression of catalase and aldehyde dehydrogenase-2 in both strains, and decreased the expression of Cu/Zn superoxide dismutase in SHR. Adaptation to CNH intensified oxidative stress to a similar extent in both strains and elevated the IL-10/TNF-α ratio in SHR-mtBN only. These data indicate that alterations in the mitochondrial genome can result in peculiar changes in myocardial β-adrenergic signaling, MAO-A activity and antioxidant defence and may, thus, affect the adaptive responses to hypoxia.
Collapse
Affiliation(s)
- Klara Hahnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iveta Brabcova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Weissova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Svatonova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kalous
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
14
|
Chromogranins: from discovery to current times. Pflugers Arch 2017; 470:143-154. [PMID: 28875377 DOI: 10.1007/s00424-017-2027-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.
Collapse
|
15
|
Ottesen AH, Carlson CR, Louch WE, Dahl MB, Sandbu RA, Johansen RF, Jarstadmarken H, Bjørås M, Høiseth AD, Brynildsen J, Sjaastad I, Stridsberg M, Omland T, Christensen G, Røsjø H. Glycosylated Chromogranin A in Heart Failure: Implications for Processing and Cardiomyocyte Calcium Homeostasis. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003675. [PMID: 28209766 DOI: 10.1161/circheartfailure.116.003675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/11/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chromogranin A (CgA) levels have previously been found to predict mortality in heart failure (HF), but currently no information is available regarding CgA processing in HF and whether the CgA fragment catestatin (CST) may directly influence cardiomyocyte function. METHODS AND RESULTS CgA processing was characterized in postinfarction HF mice and in patients with acute HF, and the functional role of CST was explored in experimental models. Myocardial biopsies from HF, but not sham-operated mice, demonstrated high molecular weight CgA bands. Deglycosylation treatment attenuated high molecular weight bands, induced a mobility shift, and increased shorter CgA fragments. Adjusting for established risk indices and biomarkers, circulating CgA levels were found to be associated with mortality in patients with acute HF, but not in patients with acute exacerbation of chronic obstructive pulmonary disease. Low CgA-to-CST conversion was also associated with increased mortality in acute HF, thus, supporting functional relevance of impaired CgA processing in cardiovascular disease. CST was identified as a direct inhibitor of CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) activity, and CST reduced CaMKIIδ-dependent phosphorylation of phospholamban and the ryanodine receptor 2. In line with CaMKIIδ inhibition, CST reduced Ca2+ spark and wave frequency, reduced Ca2+ spark dimensions, increased sarcoplasmic reticulum Ca2+ content, and augmented the magnitude and kinetics of cardiomyocyte Ca2+ transients and contractions. CONCLUSIONS CgA-to-CST conversion in HF is impaired because of hyperglycosylation, which is associated with clinical outcomes in acute HF. The mechanism for increased mortality may be dysregulated cardiomyocyte Ca2+ handling because of reduced CaMKIIδ inhibition.
Collapse
Affiliation(s)
- Anett Hellebø Ottesen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Cathrine R Carlson
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - William E Louch
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Mai Britt Dahl
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Ragnhild A Sandbu
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Rune Forstrøm Johansen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Hilde Jarstadmarken
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Magnar Bjørås
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Arne Didrik Høiseth
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Jon Brynildsen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Ivar Sjaastad
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Mats Stridsberg
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Torbjørn Omland
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Geir Christensen
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.)
| | - Helge Røsjø
- From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., C.R.C., W.E.L., R.A.S., H.J., I.S., G.C.); Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway and Institute for Clinical Medicine, University of Oslo, Norway (M.B.D., R.A.S.); Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway, and University of Oslo, Norway (R.F.J., M.B.); Department of Medical Sciences, Uppsala University, Sweden (M.S.).
| |
Collapse
|
16
|
Zhang YJ, Wu MJ, Yu H, Liu J. Emulsified isoflurane postconditioning improves survival and neurological outcomes in a rat model of cardiac arrest. Exp Ther Med 2017; 14:65-72. [PMID: 28672894 PMCID: PMC5488531 DOI: 10.3892/etm.2017.4446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/10/2017] [Indexed: 02/05/2023] Open
Abstract
Emulsified isoflurane (EIso) has a protective effect against ischemia/reperfusion (I/R) injury in animal models. However, the protective effects of EIso on global cerebral I/R injury remain unclear. The present study aimed to investigate whether EIso postconditioning was able to improve survival and neurological outcomes in a rat model of cardiac arrest (CA). Rats were randomly divided into five groups, namely the control, EIso-2ml, EIso-4ml, isoflurane (Iso) and emulsion (E) groups. All rats were resuscitated by a standardized method following 6 min of asphyxia. Furthermore, all interventions were administered immediately following the return of spontaneous circulation (ROSC). The animal survival was recorded daily, and evaluations of behavioral and brain morphology were assessed at 1 and 7 days after ROSC. The results showed that EIso treatment increased the survival rate 7 days after ROSC, with a 41.7% 7-day survival in the EIso-2ml group, 66.7% in the EIso-4ml group and 50% in the Iso group compared with 33.3% survival in the control and E groups. Moreover, the neural deficit score and memory function were improved in the EIso-4ml group, and this treatment also ameliorated brain hippocampal cell injury and apoptosis. In addition, a better brain protective effect was observed in the EIso-4ml group compared with the EIso-2ml, Iso and E groups. In summary, the data of the present study suggest that EIso postconditioning improved the survival and neurological outcomes following CA in a dose-dependent manner.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng-Jun Wu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
18
|
Catestatin-A Novel Predictor of Left Ventricular Remodeling After Acute Myocardial Infarction. Sci Rep 2017; 7:44168. [PMID: 28397784 PMCID: PMC5387721 DOI: 10.1038/srep44168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/01/2017] [Indexed: 01/29/2023] Open
Abstract
Catestatin was discovered as a potent inhibitor of catecholamine secretion and plays important roles in the cardiovascular system. Our previous study demonstrates a close relationship between catestatin levels and prognosis of ST-elevation myocardial infarction (STEMI). Using the same population, the goal of this study is to investigate the ability of catestatin to predict left ventricular (LV) remodeling in STEMI patients. 72 patients and 30 controls were included. Catestatin was sampled after admission to the emergency room (ER), at day3 (D3), and day7 (D7) after STEMI. Echocardiography was performed at D3 and after 65 months for evaluation of LVEDD, EF, IVS, LVPW, E, A, E’, E/A, and E/E’. The changes of these parameters from D3 to 65 months were used to reflect the changes of ventricular structure and function. We found that plasma catestatin levels at D3 were highly correlated with the changes of LVEDD, EF, E, A, E’, E/A, as well as E/E’. Patients with higher catestatin levels developed worse ventricular function during the follow-up period. Single-point catestatin was effective to predict LVEDD change. And concurrently increasing catestatin and NT-proBNP levels predicted the highest risk of LV remodeling. This study suggests an important prognostic information of catestatin on LV remodeling.
Collapse
|
19
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
20
|
Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne) 2017; 8:20. [PMID: 28228748 PMCID: PMC5296320 DOI: 10.3389/fendo.2017.00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.
Collapse
Affiliation(s)
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, VA San Diego Healthcare System, San Diego, CA, USA
- *Correspondence: Sushil K. Mahata,
| |
Collapse
|
21
|
|
22
|
Peng F, Chu S, Ding W, Liu L, Zhao J, Cui X, Li R, Wang J. The predictive value of plasma catestatin for all-cause and cardiac deaths in chronic heart failure patients. Peptides 2016; 86:112-117. [PMID: 27771336 DOI: 10.1016/j.peptides.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Catestatin (CST) is a proteolytic fragment of Chromogranin A with a broad spectrum of activities in the cardiovascular system. The level of plasma CST increases in chronic heart failure patients, but its potential relationship to patient prognosis is unknown. In this study, we measured plasma CST levels in 202 chronic heart failure patients and followed them for a median of 52.5 months. The plasma CST level was higher in patients with all-cause death and cardiac death than in survivors. According to univariate COX regression, higher plasma CST levels predicted increased risk of all-cause and cardiac death. After adjustment for other confounding factors, plasma CST was an independent risk factor for both outcomes, and the hazard ratios (HRs) were 1.84 (95% CI: 1.02-3.32, p=0.042) and 2.41 (95% CI: 1.26-4.62, p=0.008) for all-cause death and cardiac death, respectively. The new risk-predictive model considering CST was superior to the previous model for both outcomes by ANOVA and likelihood ratio tests (p=0.040 and p=0.008, respectively). Concurrent increases in plasma BNP (B-type natriuretic peptide) and CST levels predicted the highest risk for both all-cause and cardiac deaths [HR=5.18 (95% CI: 1.94-13.87, p=0.001) and HR=9.19 (95% CI: 2.75-30.78, p<0.001), respectively]. Large-scale studies are needed to further assess the value of plasma CST in predicting heart failure prognosis.
Collapse
Affiliation(s)
- Fen Peng
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| | - Songyun Chu
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| | - Wenhui Ding
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China.
| | - Lin Liu
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| | - Jing Zhao
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| | - Xiaojing Cui
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| | - Renxu Li
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| | - Jie Wang
- Department of Cardiology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing, 100034, PR China
| |
Collapse
|
23
|
Spadaccio C, Nappi F, Nenna A, Beattie G, Chello M, Sutherland FWH. Is it time to change how we think about incomplete coronary revascularization? Int J Cardiol 2016; 224:295-298. [PMID: 27665400 DOI: 10.1016/j.ijcard.2016.09.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/04/2016] [Accepted: 09/15/2016] [Indexed: 01/17/2023]
Abstract
The optimal degree of revascularization for patients with chronic multivessel coronary artery disease remains an unsolved issue. Intuitively, complete revascularization decreases cardiovascular events and improves outcomes compared to incomplete procedures, but in recent years the concept of incomplete revascularization moved from a sub-optimal or a defective treatment towards the most appropriate revascularization technique in some categories of patients. A reasonable level of incomplete anatomic revascularization has been shown to be safe and achievable with both percutaneous (PCI) and surgical procedures (CABG), despite with different long-term outcomes. What are the mechanisms underlying the clinical benefits of an incomplete revascularization and what are the factors explaining the discrepancy in the long-term clinical outcomes between the two modes of revascularization PCI and CABG? The biological consequences of coronary reperfusion might provide valuable hints in this context and at the same time cast new light on the way we think about incomplete revascularization.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK.
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gwyn Beattie
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fraser W H Sutherland
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
| |
Collapse
|
24
|
Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci Rep 2015; 5:16590. [PMID: 26567709 PMCID: PMC4645123 DOI: 10.1038/srep16590] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Catestatin (CST) is a catecholamine secretion inhibiting peptide as non-competitive inhibitor of nicotinic acetylcholine receptor. CST play a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. Cardiomyocytes endogenously produced CST and its expression was reduced after I/R. CST pretreatment decreased apoptosis especially endoplasmic reticulum (ER) stress response during I/R. The protection of CST was confirmed in H9c2 cardiomyoblasts under Anoxia/reoxygenation (A/R). In contrast, siRNA-mediated knockdown of CST exaggerated ER stress induced apoptosis. The protective effects of CST were blocked by extracellular signal-regulated kinases 1/2 (ERK1/2) inhibitor PD90895 and phosphoinositide 3-kinase (PI3 K) inhibitor wortmannin. CST also increased ERK1/2 and protein kinase B (Akt) phosphorylation and which was blocked by atropine and selective type 2 muscarinic acetylcholine (M2) receptor, but not type 1 muscarinic acetylcholine (M1) receptor antagonist. Receptor binding assay revealed that CST competitively bound to the M2 receptor with a 50% inhibitory concentration of 25.7 nM. Accordingly, CST inhibited cellular cAMP stimulated by isoproterenol or forskolin, and which was blocked by selective M2 receptor antagonist. Our findings revealed that CST binds to M2 receptor, then activates ERK1/2 and PI3 K/Akt pathway to inhibit ER stress-induced cell apoptosis resulting in attenuation cardiac I/R injury.
Collapse
|
25
|
Correlation of plasma catestatin level and the prognosis of patients with acute myocardial infarction. PLoS One 2015; 10:e0122993. [PMID: 25848973 PMCID: PMC4388679 DOI: 10.1371/journal.pone.0122993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/26/2015] [Indexed: 01/29/2023] Open
Abstract
Catestatin is a peptide which is a potent inhibitor of catecholamine secretion and played essential functions in the cardiovascular system. Previous research found that dramatic changes of catestatin were associated with hemodynamics in acute myocardial infarction (AMI) during the first week after the AMI symptoms onset, but whether catestatin is also involved in the pathophysiological progression after AMI and then a predictor for outcomes is not clear. The aim of this study is to determine the correlation of plasma catestatin levels at different time points and the prognosis of AMI. 100 participants recruited were all patients with AMI, all of who received successful primary percutaneous coronary intervention (PCI) within 12h from the AMI symptom onset in our center; the concentrations of plasma catestatin were evaluated from blood samples of those 100 participants. Subsequent 65 months' follow-up was performed after discharging to evaluate cardiac adverse events and the association between catestatin levels and prognosis of AMI was examined. We confirmed the dramatic change of catestatin concentrations in the first week of AMI, and the levels of catestatin on D3 were much higher in adverse events group than those in non-adverse events group (p<0.0001), but the ratio of D7/D3 was significantly lower. In addition, the Kaplan-Meier analysis showed that the groups in which the levels on D3 were higher (p<0.0001) and the ratios of D7/D3 were lower (p<0.0001), patients trended to be more susceptive to adverse events after AMI. Furthermore, according to the analysis, we surmised catestatin level on D3 as an appropriate predictor for outcomes in patients with AMI with good specificity as well as sensitivity. All of the evidence confirmed that catestatin plays an important role in the progress of AMI, and may act as a promising target for prognostic prediction.
Collapse
|
26
|
Tota B, Angelone T, Cerra MC. The surging role of Chromogranin A in cardiovascular homeostasis. Front Chem 2014; 2:64. [PMID: 25177680 PMCID: PMC4132265 DOI: 10.3389/fchem.2014.00064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
Together with Chromogranin B and Secretogranins, Chromogranin A (CGA) is stored in secretory (chromaffin) granules of the diffuse neuroendocrine system and released with noradrenalin and adrenalin. Co-stored within the granule together with neuropeptideY, cardiac natriuretic peptide hormones, several prohormones and their proteolytic enzymes, CGA is a multifunctional protein and a major marker of the sympatho-adrenal neuroendocrine activity. Due to its partial processing to several biologically active peptides, CGA appears an important pro-hormone implicated in relevant modulatory actions on endocrine, cardiovascular, metabolic, and immune systems through both direct and indirect sympatho-adrenergic interactions. As a part of this scenario, we here illustrate the emerging role exerted by the full-length CGA and its three derived fragments, i.e., Vasostatin 1, catestatin and serpinin, in the control of circulatory homeostasis with particular emphasis on their cardio-vascular actions under both physiological and physio-pathological conditions. The Vasostatin 1- and catestatin-induced cardiodepressive influences are achieved through anti-beta-adrenergic-NO-cGMP signaling, while serpinin acts like beta1-adrenergic agonist through AD-cAMP-independent NO signaling. On the whole, these actions contribute to widen our knowledge regarding the sympatho-chromaffin control of the cardiovascular system and its highly integrated “whip-brake” networks.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria Arcavacata di Rende (CS), Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria Arcavacata di Rende (CS), Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria Arcavacata di Rende (CS), Italy
| |
Collapse
|