1
|
Wang S, Wu H, Zhang Y, Sun G, Qian W, Qu F, Zhang X, Hu J. Transcriptome Reveals the Regulation of Exogenous Auxin Inducing Rooting of Non-Rooting Callus of Tea Cuttings. Int J Mol Sci 2024; 25:8080. [PMID: 39125650 PMCID: PMC11311428 DOI: 10.3390/ijms25158080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly. We conducted this study to elucidate the regulatory mechanism of exogenous auxin-induced adventitious root (AR) formation of such cuttings. The transcriptional expression profile of non-rooting tea calluses in response to exogenous IBA and NAA was analyzed using ONT RNA Seq technology. In total, 56,178 differentially expressed genes (DEGs) were detected, and most of genes were significantly differentially expressed after 12 h of exogenous auxin treatment. Among these DEGs, we further identified 80 DEGs involved in the auxin induction pathway and AR formation. Specifically, 14 auxin respective genes (ARFs, GH3s, and AUX/IAAs), 3 auxin transporters (AUX22), 19 auxin synthesis- and homeostasis-related genes (cytochrome P450 (CYP450) and calmodulin-like protein (CML) genes), and 44 transcription factors (LOB domain-containing protein (LBDs), SCARECROW-LIKE (SCL), zinc finger protein, WRKY, MYB, and NAC) were identified from these DEGs. Moreover, we found most of these DEGs were highly up-regulated at some stage before AR formation, suggesting that they may play a potential role in the AR formation of tea plant cuttings. In summary, this study will provide a theoretical foundation to deepen our understanding of the molecular mechanism of AR formation in tea cuttings induced by auxin during propagation time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (S.W.); (H.W.); (Y.Z.); (G.S.); (W.Q.); (F.Q.); (X.Z.)
| |
Collapse
|
2
|
Dou H, Sun J, Wang T, Bi S, Feng X, Sun H, Quan J. Transcriptomic profiling and discovery of key transcription factors involved in adventitious roots formation from root cuttings of mulberry. BMC Genomics 2024; 25:693. [PMID: 39009981 PMCID: PMC11251115 DOI: 10.1186/s12864-024-10593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
ARs plays a crucial role in plant morphogenesis and development. The limited and inefficient rooting of scions poses a significant challenge to the efficiency and quality of clonal propagation of forest trees in silvicultural practices. Building on previous research conducted by our team, we found that applying IBA at a concentration of 1000 mg/L significantly enhanced mulberry rooting. This study aims to uncover the molecular mechanisms underlying this effect by analyzing RNA sequencing data from mulberry phloem before and after treatment with IBA over time intervals of 10, 20, 30, and 40 days. We identified 5226 DEGs, which were then classified into GO terms and KEGG pathways, showing significant enrichment in hormone signaling processes. Using WGCNA, we identified eight co-expression modules, two of which were significantly correlated with the IBA treatment. Additionally, 18 transcription factors that potentially facilitate ARs formation in mulberry were identified, and an exploratory analysis on the cis-regulatory elements associated with these transcription factors was conducted. The findings of this study provide a comprehensive understanding of the mechanisms of ARs in mulberry and offer theoretical support for the discovery and utilization of exceptional genetic resources within the species.
Collapse
Affiliation(s)
- Hao Dou
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiajia Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Wang
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuwen Bi
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xi Feng
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huijuan Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jin'e Quan
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Zhang H, Chen B, Zhao X, Hu J, Dong Z, Xiao H, Yuan Y, Guo F, Wang Y, Ni D, Wang P. Novel insights into the role of leaf in the cutting process of Camellia sinensis using physiological, biochemical and transcriptome analyses. TREE PHYSIOLOGY 2023; 43:2031-2045. [PMID: 37742093 DOI: 10.1093/treephys/tpad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/12/2023] [Indexed: 09/25/2023]
Abstract
Cuttage is the preferred approach for rapid propagation of many species including tea plant (Camellia sinensis). Leaf serves as a key part of nodal cutting, but there is a lack of systematic research on its role in the cutting process. In this study, 24 tea cultivars were employed to prove the necessity of leaf and light during cuttage. Further leaf physiological parameters found that lower net photosynthesis rate probably promoted rooting. Phytohormone content detection showed that auxin content and composition pattern were related to rooting ability. Leaf transcriptome analyses of cuttings from a representative easy-to-root cultivar (cv. Echa 10) revealed that genes involved in carbohydrate metabolism, signal transduction, metabolite biosynthesis and transportation were differentially expressed during the rooting process. CsTSA1, CsYUC10, CsAUX1s, CsPIN3 and CsPIN5 were selected as the candidate genes, which possibly regulate the rooting of nodal cuttings. These results illustrate the necessity of the leaf in cuttage and provide molecular evidence that leaf is an important place for signal transduction, metabolite synthesis and transport during the rooting process.
Collapse
Affiliation(s)
- Hong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Binrui Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhijie Dong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanwen Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Pu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Liu K, Zhao Y, Zhao DG. Transcriptome analysis reveals the effect of acidic environment on adventitious root differentiation in Camellia sinensis. PLANT MOLECULAR BIOLOGY 2023; 113:205-217. [PMID: 37973765 DOI: 10.1007/s11103-023-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
The generation of adventitious roots (ARs) is the key to the success of cuttings. The appropriate environment for AR differentiation in tea plants is acidic. However, the mechanism is unclear. In this study, pH 4.5 was suitable condition for the differentiation of AR in tea plants. At the base of cuttings, the root primordia differentiated ARs more rapidly at pH 4.5 than pH 7.0, and nine AR differentiation-related genes were found to be differentially expressed in 30 days, the result was also validated by qRT-PCR. The promoter regions of these genes contained auxin and brassinosteroid response elements. The expression levels of several genes which were involved in auxin and brassinosteroid synthesis as well as signaling at pH 4.5 compared to pH 7.0 occurred differential expression. Brassinolide (BL) and indole-3-acetic acid (IAA) could affect the differentiation of ARs under pH 4.5 and pH 7.0. By qRT-PCR analysis of genes during ARs generation, BL and IAA inhibited and promoted the expression of CsIAA14 gene, respectively, to regulate auxin signal transduction. Meanwhile, the expression levels of CsKNAT4, CsNAC2, CsNAC100, CsWRKY30 and CsLBD18 genes were up-regulated upon auxin treatment and were positively correlated with ARs differentiation.This study showed that pH 4.5 was the most suitable environment for the root primordia differentiation of AR in tea plant. Proper acidic pH conditions promoted auxin synthesis and signal transduction. The auxin initiated the expression of AR differentiation-related genes, and promoted its differentiated. BL was involved in ARs formation and elongation by regulating auxin signal transduction.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China
| | - Yichen Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
| | - De-Gang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
5
|
Ai Y, Qian X, Wang X, Chen Y, Zhang T, Chao Y, Zhao Y. Uncovering early transcriptional regulation during adventitious root formation in Medicago sativa. BMC PLANT BIOLOGY 2023; 23:176. [PMID: 37016323 PMCID: PMC10074720 DOI: 10.1186/s12870-023-04168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) as an important legume plant can quickly produce adventitious roots (ARs) to form new plants by cutting. But the regulatory mechanism of AR formation in alfalfa remains unclear. RESULTS To better understand the rooting process of alfalfa cuttings, plant materials from four stages, including initial separation stage (C stage), induction stage (Y stage), AR primordium formation stage (P stage) and AR maturation stage (S stage) were collected and used for RNA-Seq. Meanwhile, three candidate genes (SAUR, VAN3 and EGLC) were selected to explore their roles in AR formation. The numbers of differentially expressed genes (DEGs) of Y-vs-C (9,724) and P-vs-Y groups (6,836) were larger than that of S-vs-P group (150), indicating highly active in the early AR formation during the complicated development process. Pathways related to cell wall and sugar metabolism, root development, cell cycle, stem cell, and protease were identified, indicating that these genes were involved in AR production. A large number of hormone-related genes associated with the formation of alfalfa ARs have also been identified, in which auxin, ABA and brassinosteroids are thought to play key regulatory roles. Comparing with TF database, it was found that AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, C2H2, bZIP, GRAS played a major regulatory role in the production of ARs of alfalfa. Furthermore, three identified genes showed significant promotion effect on AR formation. CONCLUSIONS Stimulation of stem basal cells in alfalfa by cutting induced AR production through the regulation of various hormones, transcription factors and kinases. This study provides new insights of AR formation in alfalfa and enriches gene resources in crop planting and cultivation.
Collapse
Affiliation(s)
- Ye Ai
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Xu Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Wang
- Beijing Tide Pharmaceutical Co., Ltd, Beijing, 100176, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, 010021, China.
| |
Collapse
|
6
|
Zhao Y, Chen Y, Jiang C, Lu MZ, Zhang J. Exogenous hormones supplementation improve adventitious root formation in woody plants. Front Bioeng Biotechnol 2022; 10:1009531. [PMID: 36177185 PMCID: PMC9513251 DOI: 10.3389/fbioe.2022.1009531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Jin Zhang, , orcid.org/0000-0002-8397-5078
| |
Collapse
|
7
|
Li J, Zhu J, Li H, Ma J, Chen P, Zhou Y. The Effects of NAA on the Tuberous Root Yield and Quality of Rehmannia glutinosa and Its Regulatory Mechanism by Transcriptome and Metabolome Profiling. Curr Issues Mol Biol 2022; 44:3291-3311. [PMID: 35892713 PMCID: PMC9394425 DOI: 10.3390/cimb44080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Naphthylacetic acid (NAA) was used to increase the tuberous root yield of Rehmannia glutinosa, but the differences between its NAA-treated and control tuberous roots (NT and CG) and the regulatory mechanism of NAA effect remain unclear. In order to investigate them, NTs and CGs were used as materials, and both yield-related indices were measured; the metabolomics and transcriptomics were used to capture differentially accumulated metabolites (DAM) and to validate them via mining differentially expressed genes (DEGs), respectively. The effects of NAA treatment: increased NT mass per plant by 21.14%, through increasing the number of roots and increasing the mean root diameter; increased catalpol content by 1.2234% (p < 0.05); up-regulated 11DAMs and 596DEGs; and down-regulated 18 DAMs and 517DEGs. In particular, we discovered that NAA regulated its DAMs and biomass via 10 common metabolic pathways, and that the number of NAA-down-regulated DAMs was more than that of NAA-up-regulated DAMs in its tuberous root. Furthermore, HPLC validated the changes of several DAMs and 15 DEGs (4CL, ARF, CCoAOMT, ARGOS, etc.) associated with the yield increase and DAMs were verified by RT-qPCR. This study provided some valuable resources, such as tuberous root indices, key genes, and DAMs of Rehmannia glutinosa in response to NAA for distinguishing the CGs from NTs, and novel insights into the regulatory mechanism of NAA effects on both at the transcriptomic and metabolomic levels, so it will lay a theoretical foundation for NAA-regulated plant yield and quality, and provide references for prohibiting the uses of NAA as a swelling agent in medicinal tuber plants in China.
Collapse
|
8
|
Wang Y, Pang D, Ruan L, Liang J, Zhang Q, Qian Y, Zhang Y, Bai P, Wu L, Cheng H, Cui Q, Wang L, Wei K. Integrated transcriptome and hormonal analysis of naphthalene acetic acid-induced adventitious root formation of tea cuttings (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:319. [PMID: 35787241 PMCID: PMC9251942 DOI: 10.1186/s12870-022-03701-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tea plant breeding or cultivation mainly involves propagation via cuttings, which not only ensures the inheritance of the excellent characteristics of the mother plant but also facilitates mechanized management. The formation of adventitious root (AR) determines the success of cutting-based propagation, and auxin is an essential factor involved in this process. To understand the molecular mechanism underlying AR formation in nodal tea cuttings, transcriptome and endogenous hormone analysis was performed on the stem bases of red (mature)- and green (immature)-stem cuttings of 'Echa 1 hao' tea plant as affected by a pulse treatment with naphthalene acetic acid (NAA). RESULTS In this study, NAA significantly promoted AR formation in both red- and green-stem cuttings but slightly reduced callus formation. External application of NAA reduced the levels of endogenous indole-3-acetic acid (IAA) and cytokinin (TZR, trans-zeatin riboside). The number of DEGs (NAA vs. CK) identified in the green-stem cuttings was significantly higher than that in the red-stem cuttings, which corresponded to a higher rooting rate of green-stem cuttings under the NAA treatment. A total of 82 common DEGs were identified as being hormone-related and involved in the auxin, cytokinin, abscisic acid, ethylene, salicylic acid, brassinosteroid, and jasmonic acid pathways. The negative regulation of NAA-induced IAA and GH3 genes may explain the decrease of endogenous IAA. NAA reduced endogenous cytokinin levels and further downregulated the expression of cytokinin signalling-related genes. By the use of weighted gene co-expression network analysis (WGCNA), several hub genes, including three [cellulose synthase (CSLD2), SHAVEN3-like 1 (SVL1), SMALL AUXIN UP RNA (SAUR21)] that are highly related to root development in other crops, were identified that might play important roles in AR formation in tea cuttings. CONCLUSIONS NAA promotes the formation of AR of tea cuttings in coordination with endogenous hormones. The most important endogenous AR inductor, IAA, was reduced in response to NAA. DEGs potentially involved in NAA-mediated AR formation of tea plant stem cuttings were identified via comparative transcriptome analysis. Several hub genes, such as CSLD2, SVL1 and SAUR21, were identified that might play important roles in AR formation in tea cuttings.
Collapse
Affiliation(s)
- Yongxin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Dandan Pang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, 666201, China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Jinbo Liang
- Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi, 445000, China
| | - Qiang Zhang
- Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yinhong Qian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Peixian Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Qingmei Cui
- Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi, 445000, China.
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| |
Collapse
|
9
|
Self-Incompatibility of Camellia weiningensis Y.K. Li. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study compared the pollen tube growth, fruit setting, and seed setting characteristics of Camellia weiningensis Y.K. Li. under self- and cross-pollination to identify its self-incompatibility characteristics and types. C. weiningensis pollen tube growth was observed by fluorescence and scanning electron microscopy, and a field experiment with manual pollination verified fruit and seed setting characteristics. Both self- and cross-pollinated pollen germinated from the stigma. At 72 h after cross-pollination, the pollen tube reached the style base, with tube growth showing a slow-fast-slow pattern. The tube growth speed was maximal, 343.36 μm·h−1, at 12–24 h after pollination. For self-pollination, the pollen did not germinate on the stigma 4 h before pollination. At 12–24 h after pollination, the growth rate was maximal at 263.36 μm·h−1. At 96 h, a small amount of pollen reached the style base and stagnated. The pollen tube end showed callose reactions, such as abnormal swelling, distortion, and brightness. In the field experiment, the fruit setting rate under cross-pollination was 68.5%, while that under self-pollination was 15.3%. When the fruit grew to maturity, the growth dynamics of the transverse and longitudinal diameters showed a “slow-fast-slow”, S-shaped curve. The number of aborted selfed and outcrossed seeds was 13.9 and 4.7, respectively. Thus, C. weiningensis showed self-incompatibility. The self-incompatibility reaction occurred at the style base and represented prezygotic self-incompatibility. The self-incompatibility of C. weiningensis is one of the main reasons for its low seed setting rate, which should be fully considered in cross breeding.
Collapse
|
10
|
Xu L, Deng ZN, Wu KC, Malviya MK, Solanki MK, Verma KK, Pang T, Li YJ, Liu XY, Kashyap BK, Dessoky ES, Wang WZ, Huang HR. Transcriptome Analysis Reveals a Gene Expression Pattern That Contributes to Sugarcane Bud Propagation Induced by Indole-3-Butyric Acid. FRONTIERS IN PLANT SCIENCE 2022; 13:852886. [PMID: 35371161 PMCID: PMC8969426 DOI: 10.3389/fpls.2022.852886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Sugarcane is a cash crop that plays an integral part in the sugar industry. The Sustainable Sugarcane Initiative (SSI) has been adopted globally, ensuring enough and aiming for more yield, helping increase disease-free sugarcane cultivation. Single-bud seeds could be the best approach for sugarcane cultivation. Indole-3-butyric acid (IBA) is a rooting agent utilized significantly in seedling propagation. Greenhouse experiment results discovered the significant growth promotion in sugarcane seedlings and accumulation of plant hormones at 100 ppm IBA. Next, we performed transcriptomic analysis of sugarcane buds using RNA sequencing and compared their gene expression during root development due to affect of IBA (100 ppm). A total of 113,475 unigenes were annotated with an average length of 836 bp (N50 = 1,536). The comparative RNA-seq study between the control (CK) and IBA-treated (T) buds showed significant differentially expressed unigenes (494 upregulated and 2086 downregulated). The IBA influenced major biological processes including metabolic process, the cellular process, and single-organism process. For cellular component category, cell, cell part, organelle, membrane, and organelle part were mainly affected. In addition, catalytic activity and binding were primarily affected in the molecular function categories. Furthermore, the expression of genes related to plant hormones and signaling pathways was analyzed by qRT-PCR, which was consistent with the RNA-seq expression profile. This study provides new insights into the IBA response to the bud sprouting in sugarcane based on RNA sequencing, and generated information could help further research on breeding improvement of sugarcane.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhi-Nian Deng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kai-Chao Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tian Pang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yi-Jie Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Yan Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Eldessoky S. Dessoky
- Department of Plant Genetic Transformation, Agriculture Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Wei-Zan Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai-Rong Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Area, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
11
|
Li X, Shen F, Xu X, Zheng Q, Wang Y, Wu T, Li W, Qiu C, Xu X, Han Z, Zhang X. An HD-ZIP transcription factor, MxHB13, integrates auxin-regulated and juvenility-determined control of adventitious rooting in Malus xiaojinensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1663-1680. [PMID: 34218490 DOI: 10.1111/tpj.15406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Adventitious root (AR) formation is a critical factor in the vegetative propagation of forestry and horticultural plants. Competence for AR formation declines in many species during the miR156/SPL-mediated vegetative phase change. Auxin also plays a regulatory role in AR formation. In apple rootstock, both high miR156 expression and exogenous auxin application are prerequisites for AR formation. However, the mechanism by which the miR156/SPL module interacts with auxin in controlling AR formation is unclear. In this paper, leafy cuttings of juvenile (Mx-J) and adult (Mx-A) phase Malus xiaojinensis were used in an RNA-sequencing experiment. The results revealed that numerous genes involved in phytohormone signaling, carbohydrate metabolism, cell dedifferentiation, and reactivation were downregulated in Mx-A cuttings in response to indole butyric acid treatment. Among the differentially expressed genes, an HD-ZIP transcription factor gene, MxHB13, was found to be under negative regulation of MdSPL26 by directly binding to MxHB13 promoter. MxTIFY9 interacts with MxSPL26 and may play a role in co-repressing the expression of MxHB13. The expression of MxTIFY9 was induced by exogenous indole butyric acid. MxHB13 binds to the promoter of MxABCB19-2 and positively affects the expression. A model is proposed in which MxHB13 links juvenility-limited and auxin-limited AR recalcitrance mechanisms in Mx-A.
Collapse
Affiliation(s)
- Xu Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaozhao Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qingbo Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Chen K, Guo B, Yu C, Chen P, Chen J, Gao G, Wang X, Zhu A. Comparative Transcriptome Analysis Provides New Insights into the Molecular Regulatory Mechanism of Adventitious Root Formation in Ramie ( Boehmeria nivea L.). PLANTS 2021; 10:plants10010160. [PMID: 33467608 PMCID: PMC7830346 DOI: 10.3390/plants10010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The occurrence of adventitious roots is necessary for the survival of cuttings. In this study, comparative transcriptome analysis between two ramie (Boehmeria nivea L.) varieties with different adventitious root (AR) patterns was performed by mRNA-Seq before rooting (control, CK) and 10 days water-induced adventitious rooting (treatment, T) to reveal the regulatory mechanism of rooting. Characterization of the two ramie cultivars, Zhongzhu No 2 (Z2) and Huazhu No 4 (H4), indicated that Z2 had a high adventitious rooting rate but H4 had a low rooting rate. Twelve cDNA libraries of the two varieties were constructed, and a total of 26,723 genes were expressed. In the non-water culture condition, the number of the distinctive genes in H4 was 2.7 times of that in Z2, while in the water culture condition, the number of the distinctive genes in Z2 was nearly 2 times of that in H4. A total of 4411 and 5195 differentially expressed genes (DEGs) were identified in the comparison of H4CK vs. H4T and Z2CK vs. Z2T, respectively. After the water culture, more DEGs were upregulated in Z2, but more DEGs were downregulated in H4. Gene ontology (GO) functional analysis of the DEGs indicated that the polysaccharide metabolic process, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall macromolecule metabolic process, and photosystem GO terms were distinctively significantly enriched in H4. Simultaneously, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis, photosynthesis antenna proteins, and starch and sucrose metabolism pathways were distinctively significantly enriched in H4. Moreover, KEGG analysis showed that jasmonic acid (JA) could interact with ethylene to regulate the occurrence and number of AR in Z2. This study reveals the transcriptomic divergence of two ramie varieties with high and low adventitious rooting rates, and provides insights into the molecular regulatory mechanism of AR formation in ramie.
Collapse
|
13
|
Li A, Lakshmanan P, He W, Tan H, Liu L, Liu H, Liu J, Huang D, Chen Z. Transcriptome Profiling Provides Molecular Insights into Auxin-Induced Adventitious Root Formation in Sugarcane ( Saccharum spp. Interspecific Hybrids) Microshoots. PLANTS 2020; 9:plants9080931. [PMID: 32717893 PMCID: PMC7465322 DOI: 10.3390/plants9080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
Adventitious root (AR) formation was enhanced following the treatment of sugarcane microshoots with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) combined, suggesting that auxin is a positive regulator of sugarcane microshoot AR formation. The transcriptome profile identified 1737 and 1268 differentially expressed genes (DEGs) in the basal tissues (5 mm) of sugarcane microshoots treated with IBA+NAA compared to nontreated control on the 3rd and 7th days post-auxin or water treatment (days post-treatment—dpt), respectively. To understand the molecular changes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. This analysis showed that DEGs associated with the pathways were associated with plant hormone signaling, flavonoid and phenylpropanoid biosyntheses, cell cycle, and cell wall modification, and transcription factors could be involved in sugarcane microshoot AR formation. Furthermore, qRT–PCR analysis was used to validate the expression patterns of nine genes associated with root formation and growth, and the results were consistent with the RNA-seq results. Finally, a hypothetical hormonal regulatory working model of sugarcane microshoot AR formation is proposed. Our results provide valuable insights into the molecular processes associated with auxin-induced AR formation in sugarcane.
Collapse
Affiliation(s)
- Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Weizhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Hongwei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Limin Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Hongjian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Junxian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Zhongliang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| |
Collapse
|
14
|
Liu ZW, Li H, Liu JX, Wang Y, Zhuang J. Integrative transcriptome, proteome, and microRNA analysis reveals the effects of nitrogen sufficiency and deficiency conditions on theanine metabolism in the tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2020; 7:65. [PMID: 32377356 PMCID: PMC7192918 DOI: 10.1038/s41438-020-0290-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is associated with amino acid metabolism in higher plants. Theanine is an important amino acid in tea plants. To explore the relationship between theanine metabolism and N conditions, we examined the differentially expressed genes (DEGs), proteins (DEPs), and microRNAs (DEMs) involved in theanine metabolism in tea plant shoots and roots under N sufficiency and deficiency conditions. Transcriptome, proteome, and microRNA analyses were performed on tea plant shoots and roots under N sufficiency and deficiency conditions. The contents of theanine, expression levels of genes involved in theanine metabolism, contents of proteinogenic amino acids, and activity of enzymes were analyzed. The DEP-DEG correlation pairs and negative DEM-DEG interactions related to theanine metabolism were identified based on correlation analyses. The expression profiles of DEGs and negative DEM-DEG pairs related to theanine biosynthesis were consistent with the sequencing results. Our results suggest that the molecular and physiological mechanism of theanine accumulation is significantly affected by N sufficiency and deficiency conditions. The DEGs, DEPs, and DEMs and the activity of the enzymes involved in theanine biosynthesis might play vital roles in theanine accumulation under N sufficiency and deficiency conditions in the shoots and roots of tea plants.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hui Li
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu Wang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
15
|
An H, Zhang J, Xu F, Jiang S, Zhang X. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.). BMC PLANT BIOLOGY 2020; 20:182. [PMID: 32334538 PMCID: PMC7183619 DOI: 10.1186/s12870-020-02398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/15/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation. RESULTS Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14,970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes (ARFs and SAURs), 13 transcription factors (LOB domain-containing protein (LBDs)), 6 auxin transporters (AUX22, LAX3/5 and PIN-like 6 (PIL6s)) and 6 rooting-associated genes (root meristem growth factor 9 (RGF9), lateral root primordium 1 (LRP1s), and dormancy-associated protein homologue 3 (DRMH3)). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation. CONCLUSIONS The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.
Collapse
Affiliation(s)
- Haishan An
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Jiaying Zhang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Fangjie Xu
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Shuang Jiang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
| | - Xueying Zhang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
16
|
Larskaya I, Gorshkov O, Mokshina N, Trofimova O, Mikshina P, Klepikova A, Gogoleva N, Gorshkova T. Stimulation of adventitious root formation by the oligosaccharin OSRG at the transcriptome level. PLANT SIGNALING & BEHAVIOR 2019; 15:1703503. [PMID: 31851577 PMCID: PMC7012187 DOI: 10.1080/15592324.2019.1703503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 05/26/2023]
Abstract
Oligosaccharins, which are biologically active oligosaccharide fragments of cell wall polysaccharides, may regulate the processes of growth and development as well as the response to stress factors. We characterized the effect of the oligosaccharin that stimulates rhizogenesis (OSRG) on the gene expression profile in the course of IAA-induced formation of adventitious roots in hypocotyl explants of buckwheat (Fagopyrum esculentum Moench.). The transcriptomes at two stages of IAA-induced root primordium formation (6 h and 24 h after induction) were compared after either treatment with auxin alone or joint treatment with auxin and OSRG. The set of differentially expressed genes indicated the special importance of oligosaccharin at the early stage of auxin-induced adventitious root formation. The list of genes with altered mRNA abundance in the presence of oligosaccharin included those, which Arabidopsis homologs encode proteins directly involved in the response to auxin as well as proteins that contribute to redox regulation, detoxification of various compounds, vesicle trafficking, and cell wall modification. The obtained results contribute to understanding the mechanism of adventitious root formation and demonstrate that OSRG is involved in fine-tuning of ROS and auxin regulatory modes involved in root development.
Collapse
Affiliation(s)
- Irina Larskaya
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oksana Trofimova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Anna Klepikova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
17
|
Li FD, Tong W, Xia EH, Wei CL. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics 2019; 20:553. [PMID: 31694521 PMCID: PMC6836513 DOI: 10.1186/s12859-019-3166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tea is the oldest and among the world’s most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. Results We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. Conclusions The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.
Collapse
Affiliation(s)
- Fang-Dong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.,School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
18
|
Wei K, Ruan L, Wang L, Cheng H. Auxin-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis. Int J Mol Sci 2019; 20:E4817. [PMID: 31569758 PMCID: PMC6801801 DOI: 10.3390/ijms20194817] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/01/2023] Open
Abstract
Adventitious root (AR) formation is essential for the successful propagation of Camellia sinensis and auxins play promotive effects on this process. Nowadays, the mechanism of auxin-induced AR formation in tea cuttings is widely studied. However, a lack of global view of the underlying mechanism has largely inhibited further studies. In this paper, recent advances including endogenous hormone changes, nitric oxide (NO) and hydrogen peroxide (H2O2) signals, secondary metabolism, cell wall reconstruction, and mechanisms involved in auxin signaling are reviewed. A further time course analysis of transcriptome changes in tea cuttings during AR formation is also suggested to deepen our understanding. The purpose of this paper is to offer an overview on the most recent developments especially on those key aspects affected by auxins and that play important roles in AR formation in tea plants.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| |
Collapse
|
19
|
Wei K, Wang L, Zhang Y, Ruan L, Li H, Wu L, Xu L, Zhang C, Zhou X, Cheng H, Edwards R. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:825-840. [PMID: 30447121 DOI: 10.1111/tpj.14161] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Cultivars of purple tea (Camellia sinensis) that accumulate anthocyanins in place of catechins are currently attracting global interest in their use as functional health beverages. RNA-seq of normal (LJ43) and purple Zijuan (ZJ) cultivars identified the transcription factor CsMYB75 and phi (F) class glutathione transferase CsGSTF1 as being associated with anthocyanin hyperaccumulation. Both genes mapped as a quantitative trait locus (QTL) to the purple bud leaf color (BLC) trait in F1 populations, with CsMYB75 promoting the expression of CsGSTF1 in transgenic tobacco (Nicotiana tabacum). Although CsMYB75 elevates the biosynthesis of both catechins and anthocyanins, only anthocyanins accumulate in purple tea, indicating selective downstream regulation. As glutathione transferases in other plants are known to act as transporters (ligandins) of flavonoids, directing them for vacuolar deposition, the role of CsGSTF1 in selective anthocyanin accumulation was investigated. In tea, anthocyanins accumulate in multiple vesicles, with the expression of CsGSTF1 correlated with BLC, but not with catechin content, in diverse germplasm. Complementation of the Arabidopsis tt19-8 mutant, which is unable to express the orthologous ligandin AtGSTF12, restored anthocyanin accumulation, but did not rescue the transparent testa phenotype, confirming that CsGSTF1 did not function in catechin accumulation. Consistent with a ligandin function, transient expression of CsGSTF1 in Nicotiana occurred in the nucleus, cytoplasm and membrane. Furthermore, RNA-Seq of the complemented mutants exposed to 2% sucrose as a stress treatment showed unexpected roles for anthocyanin accumulation in affecting the expression of genes involved in redox responses, phosphate homeostasis and the biogenesis of photosynthetic components, as compared with non-complemented plants.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Hailin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Liyi Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Chengcai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Xiaogui Zhou
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Robert Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
20
|
Unraveling the Roles of Regulatory Genes during Domestication of Cultivated Camellia: Evidence and Insights from Comparative and Evolutionary Genomics. Genes (Basel) 2018; 9:genes9100488. [PMID: 30308953 PMCID: PMC6211025 DOI: 10.3390/genes9100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the increasing power of DNA sequencing, the genomics-based approach is becoming a promising resolution to dissect the molecular mechanism of domestication of complex traits in trees. Genus Camellia possesses rich resources with a substantial value for producing beverage, ornaments, edible oil and more. Currently, a vast number of genetic and genomic research studies in Camellia plants have emerged and provided an unprecedented opportunity to expedite the molecular breeding program. In this paper, we summarize the recent advances of gene expression and genomic resources in Camellia species and focus on identifying genes related to key economic traits such as flower and fruit development and stress tolerances. We investigate the genetic alterations and genomic impacts under different selection programs in closely related species. We discuss future directions of integrating large-scale population and quantitative genetics and multiple omics to identify key candidates to accelerate the breeding process. We propose that future work of exploiting the genomic data can provide insights related to the targets of domestication during breeding and the evolution of natural trait adaptations in genus Camellia.
Collapse
|
21
|
Fattorini L, Veloccia A, Della Rovere F, D’Angeli S, Falasca G, Altamura MM. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC PLANT BIOLOGY 2017; 17:121. [PMID: 28693423 PMCID: PMC5504571 DOI: 10.1186/s12870-017-1071-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. RESULTS Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. CONCLUSIONS Altogether, results showed that IBA induced AR-formation by conversion into IAA involving NO activity, and by a positive action on IAA-transport and ASA1/ASB1-mediated IAA-biosynthesis. Results are important for applications aimed to overcome rooting recalcitrance in species of economic value, but mainly for helping to understand IBA involvement in the natural process of adventitious rooting.
Collapse
Affiliation(s)
- L. Fattorini
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - A. Veloccia
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - F. Della Rovere
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - S. D’Angeli
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - G. Falasca
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - M. M. Altamura
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
22
|
Quan J, Meng S, Guo E, Zhang S, Zhao Z, Yang X. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust. BMC Genomics 2017; 18:179. [PMID: 28209181 PMCID: PMC5314683 DOI: 10.1186/s12864-017-3554-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/03/2017] [Indexed: 11/15/2022] Open
Abstract
Background Indole-3-butyric acid (IBA) is applied to the cuttings of various plant species to induce formation of adventitious roots (ARs) in commercial settings. Tetraploid black locust is an attractive ornamental tree that is drought resistant, sand tolerant, can prevent sand erosion and has various commercial uses. To further elucidate the mechanisms of AR formation, we used Illumina sequencing to analyze transcriptome dynamics and differential gene expression at four developmental stages in control (CK) and IBA-treated groups. Results The short reads were assembled into 127,038 unitranscripts and 101,209 unigenes, with average lengths of 986 and 852 bp. In total, 10,181 and 14,924 differentially expressed genes (DEGs) were detected in the CK and IBA-treated groups, respectively. Comparison of the four consecutive developmental stages showed that 282 and 260 DEGs were shared between IBA-treated and CK, suggesting that IBA treatment increased the number of DEGs. We observed 1,721 up-regulated and 849 down-regulated genes in CI vs. II, 849 up-regulated and 836 down-regulated genes in CC vs. IC, 881 up-regulated and 631 down-regulated genes in CRP vs. IRP, and 5,626 up-regulated and 4,932 down-regulated genes in CAR vs. IAR, of which 25 up-regulated DEGs were common to four pairs, and these DEGs were significantly up-regulated at AR. These results suggest that substantial changes in gene expression are associated with adventitious rooting. GO functional category analysis indicated that IBA significantly up- or down-regulated processes associated with regulation of transcription, transcription of DNA dependent, integral to membrane and ATP binding during the development process. KEGG pathway enrichment indicated that glycolysis/gluconeogenesis, cysteine and methionine metabolism, photosynthesis, nucleotide sugar metabolism, and lysosome were the pathways most highly regulated by IBA. We identified a number of differentially regulated unigenes, including 12 methionine-related genes and 12 ethylene-related genes, associated with the KEGG pathway cysteine and methionine metabolism. The GO enrichment, pathway mapping, and gene expression profile analyses revealed molecular traits for root induction and initiation. Conclusion Our study presents a global view of the transcriptomic profiles of tetraploid black locust cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3554-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jine Quan
- The Environment and Ecology Key Laboratory of of Education Ministry in West China, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China.,Department of Forestry, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Seng Meng
- The Environment and Ecology Key Laboratory of of Education Ministry in West China, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| | - Erhui Guo
- Department of Forestry, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Sheng Zhang
- The Environment and Ecology Key Laboratory of of Education Ministry in West China, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China
| | - Zhong Zhao
- The Environment and Ecology Key Laboratory of of Education Ministry in West China, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China.
| | - Xitian Yang
- The Environment and Ecology Key Laboratory of of Education Ministry in West China, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, China. .,Department of Forestry, Henan Agricultural University, Zhengzhou, Henan Province, China.
| |
Collapse
|
23
|
Wei K, Zhang Y, Wu L, Li H, Ruan L, Bai P, Zhang C, Zhang F, Xu L, Wang L, Cheng H. Gene expression analysis of bud and leaf color in tea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:310-318. [PMID: 27362295 DOI: 10.1016/j.plaphy.2016.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 05/22/2023]
Abstract
Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Hailin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Peixian Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Chengcai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Fen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyi Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
24
|
Li SW, Shi RF, Leng Y, Zhou Y. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 2016; 17:43. [PMID: 26755210 PMCID: PMC4709940 DOI: 10.1186/s12864-016-2372-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. RESULTS The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. CONCLUSIONS The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P. R. China.
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yan Leng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yuan Zhou
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| |
Collapse
|
25
|
Druege U, Franken P, Hajirezaei MR. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings. FRONTIERS IN PLANT SCIENCE 2016; 7:381. [PMID: 27064322 PMCID: PMC4814496 DOI: 10.3389/fpls.2016.00381] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/13/2016] [Indexed: 04/14/2023]
Abstract
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.
Collapse
Affiliation(s)
- Uwe Druege
- Department Plant Propagation, Leibniz Institute of Vegetable and Ornamental CropsErfurt, Germany
- *Correspondence:
| | - Philipp Franken
- Department Plant Propagation, Leibniz Institute of Vegetable and Ornamental CropsErfurt, Germany
| | - Mohammad R. Hajirezaei
- Department of Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
26
|
Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0352-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Villacorta-Martín C, Sánchez-García AB, Villanova J, Cano A, van de Rhee M, de Haan J, Acosta M, Passarinho P, Pérez-Pérez JM. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics 2015; 16:789. [PMID: 26467528 PMCID: PMC4606512 DOI: 10.1186/s12864-015-2003-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022] Open
Abstract
Background Adventitious root (AR) formation is a critical step in vegetative propagation of most ornamental plants, such as carnation. AR formation from stem cuttings is usually divided into several stages according to physiological and metabolic markers. Auxin is often applied exogenously to promote the development of ARs on stem cuttings of difficult-to-root genotypes. Results By whole transcriptome sequencing, we identified the genes involved in AR formation in carnation cuttings and in response to exogenous auxin. Their expression profiles have been analysed through RNA-Seq during a time-course experiment in the stem cutting base of two cultivars with contrasting efficiencies of AR formation. We explored the kinetics of root primordia formation in these two cultivars and in response to exogenously-applied auxin through detailed histological and physiological analyses. Conclusions Our results provide, for the first time, a number of molecular, histological and physiological markers that characterize the different stages of AR formation in this species and that could be used to monitor adventitious rooting on a wide collection of carnation germplasm with the aim to identify the best-rooting cultivars for breeding purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2003-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain.
| | - Miranda van de Rhee
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Jorn de Haan
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Manuel Acosta
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain.
| | - Paul Passarinho
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | | |
Collapse
|
28
|
Galeano E, Vasconcelos TS, Vidal M, Mejia-Guerra MK, Carrer H. Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC PLANT BIOLOGY 2015; 15:221. [PMID: 26369560 PMCID: PMC4570228 DOI: 10.1186/s12870-015-0599-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/02/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, Tectona grandis is one of the most valuable trees in the world and no transcript dataset related to secondary xylem is available. Considering how important the secondary xylem and sapwood transition from young to mature trees is, little is known about the expression differences between those successional processes and which transcription factors could regulate lignin biosynthesis in this tropical tree. Although MYB transcription factors are one of the largest superfamilies in plants related to secondary metabolism, it has not yet been characterized in teak. These results will open new perspectives for studies of diversity, ecology, breeding and genomic programs aiming to understand deeply the biology of this species. RESULTS We present a widely expressed gene catalog for T. grandis using Illumina technology and the de novo assembly. A total of 462,260 transcripts were obtained, with 1,502 and 931 genes differentially expressed for stem and branch secondary xylem, respectively, during age transition. Analysis of stem and branch secondary xylem indicates substantial similarity in gene ontologies including carbohydrate enzymes, response to stress, protein binding, and allowed us to find transcription factors and heat-shock proteins differentially expressed. TgMYB1 displays a MYB domain and a predicted coiled-coil (CC) domain, while TgMYB2, TgMYB3 and TgMYB4 showed R2R3-MYB domain and grouped with MYBs from several gymnosperms and flowering plants. TgMYB1, TgMYB4 and TgCES presented higher expression in mature secondary xylem, in contrast with TgMYB2, TgHsp1, TgHsp2, TgHsp3, and TgBi whose expression is higher in young lignified tissues. TgMYB3 is expressed at lower level in secondary xylem. CONCLUSIONS Expression patterns of MYB transcription factors and heat-shock proteins in lignified tissues are dissimilar when tree development was evaluated, obtaining more expression of TgMYB1 and TgMYB4 in lignified tissues of 60-year-old trees, and more expression in TgHsp1, TgHsp2, TgHsp3 and TgBi in stem secondary xylem of 12-year-old trees. We are opening a door for further functional characterization by reverse genetics and marker-assisted selection with those genes. Investigation of some of the key regulators of lignin biosynthesis in teak, however, could be a valuable step towards understanding how rigidity of teak wood and extractives content are different from most other woods. The obtained transcriptome data represents new sequences of T. grandis deposited in public databases, representing an unprecedented opportunity to discover several related-genes associated with secondary xylem such as transcription factors and stress-related genes in a tropical tree.
Collapse
Affiliation(s)
- Esteban Galeano
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Tarcísio Sales Vasconcelos
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mabel Vidal
- CAPS Computational Biology Laboratory (CCBL), Center for Applied Plant Sciences, Ohio State University, 206 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio, 43210, United States.
| | - Maria Katherine Mejia-Guerra
- CAPS Computational Biology Laboratory (CCBL), Center for Applied Plant Sciences, Ohio State University, 206 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio, 43210, United States.
| | - Helaine Carrer
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
29
|
Wei K, Wang L, Zhang C, Wu L, Li H, Zhang F, Cheng H. Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis. PLoS One 2015; 10:e0137925. [PMID: 26367395 PMCID: PMC4569414 DOI: 10.1371/journal.pone.0137925] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/23/2015] [Indexed: 12/15/2022] Open
Abstract
The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3′H and F3′5′H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3′H and F3′5′H genes (including CsF3′5′H1, CsF3′H1, CsF3′H2 and CsF3′H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3′H and F3′5′H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3′H genes and a F3′5′H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea.
Collapse
Affiliation(s)
- Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyuan Wang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengcai Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyun Wu
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hailin Li
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Fen Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- * E-mail:
| |
Collapse
|
30
|
Li SW, Shi RF, Leng Y. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq. PLoS One 2015; 10:e0132969. [PMID: 26177103 PMCID: PMC4503682 DOI: 10.1371/journal.pone.0132969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal molecular traits for root induction and initiation. This study provides a platform for functional genomic research with this species.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Yan Leng
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| |
Collapse
|
31
|
Wei K, Wang L, Zhang C, Wu L, Li H, Zhang F, Cheng H. Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis. PLoS One 2015. [PMID: 26367395 DOI: 10.1371/journal.pgen.00137925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3'H and F3'5'H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3'H and F3'5'H genes (including CsF3'5'H1, CsF3'H1, CsF3'H2 and CsF3'H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3'H and F3'5'H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3'H genes and a F3'5'H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea.
Collapse
Affiliation(s)
- Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyuan Wang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengcai Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyun Wu
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hailin Li
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Fen Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| |
Collapse
|