1
|
Jurado-Martín I, Tomás-Cortázar J, Hou Y, Sainz-Mejías M, Mysior MM, Sadonès O, Huebner J, Romero-Saavedra F, Simpson JC, Baugh JA, McClean S. Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ. NPJ Vaccines 2024; 9:204. [PMID: 39468053 PMCID: PMC11519640 DOI: 10.1038/s41541-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes severe nosocomial infections in susceptible individuals due to the emergence of multidrug-resistant strains. There are no approved vaccines against P. aeruginosa infections nor candidates in active clinical development, highlighting the need for novel candidates and strategies. Using a cell-blot proteomic approach, we reproducibly identified 49 proteins involved in interactions with human lung epithelial cells across four P. aeruginosa strains. Among these were cell division protein FtsZ and outer membrane protein OpmH. Escherichia coli BL21 cells overexpressing recombinant FtsZ or rOpmH showed a 66- and 15-fold increased ability to attach to 16HBE14o- cells, further supporting their involvement in host cell attachment. Both antigens led to proliferation of NK and CD8+ cytotoxic T cells, significant increases in the production of IFN-γ, IL-17A, TNF and IL-4 in immunised mice and elicited strong antigen-specific serological IgG1 and IgG2c responses. Immunisation with FtsZ significantly reduced bacterial burden in the lungs by 1.9-log CFU and dissemination to spleen by 1.8-log CFU. The protective antigen candidate, FtsZ, would not have been identified by traditional approaches relying on either virulence mechanisms or sequence-based predictions, opening new avenues in the development of an anti-P. aeruginosa vaccine.
Collapse
Affiliation(s)
- Irene Jurado-Martín
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Yueran Hou
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maite Sainz-Mejías
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Margaritha M Mysior
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Océane Sadonès
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
López-Rodríguez JC, Barral P. Mucosal associated invariant T cells: Powerhouses of the lung. Immunol Lett 2024; 269:106910. [PMID: 39128630 DOI: 10.1016/j.imlet.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The lungs face constant environmental challenges from harmless molecules, airborne pathogens and harmful agents that can damage the tissue. The lungs' immune system includes numerous tissue-resident lymphocytes that contribute to maintain tissue homeostasis and to the early initiation of immune responses. Amongst tissue-resident lymphocytes, Mucosal Associated Invariant T (MAIT) cells are present in human and murine lungs and emerging evidence supports their contribution to immune responses during infections, chronic inflammatory disorders and cancer. This review explores the mechanisms underpinning MAIT cell functions in the airways, their impact on lung immunity and the potential for targeting pulmonary MAIT cells in a therapeutic context.
Collapse
Affiliation(s)
- J C López-Rodríguez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| | - P Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Lin X, Wang Y, He Y. Mucosal-associated invariant T cells in infectious diseases of respiratory system: recent advancements and applications. J Inflamm (Lond) 2024; 21:6. [PMID: 38419084 PMCID: PMC10902946 DOI: 10.1186/s12950-024-00376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an atypical subset of T lymphocytes, which have a highly conserved semi-constant αβ chain of T-cell receptor (TCR) and recognize microbe-derived vitamin B metabolites via major histocompatibility complex class I related-1 molecule (MR1). MAIT cells get activated mainly through unique TCR-dependent and TCR-independent pathways, and express multiple functional and phenotypic traits, including innate-like functionality, T helper (Th) 1 cell immunity, Th 17 cell immunity, and tissue homing. Given the functions, MAIT cells are extensively reported to play a key role in mucosal homeostasis and infectious diseases. In the current work, we review the basic characteristics of MAIT cells and their roles in mucosal homeostasis and development of respiratory infectious diseases as well as their potential therapeutic targets.
Collapse
Affiliation(s)
- Xue Lin
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqi He
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Chengalroyen MD. Current Perspectives and Challenges of MAIT Cell-Directed Therapy for Tuberculosis Infection. Pathogens 2023; 12:1343. [PMID: 38003807 PMCID: PMC10675005 DOI: 10.3390/pathogens12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a distinct population of non-conventional T cells that have been preserved through evolution and possess properties of both innate and adaptive immune cells. They are activated through the recognition of antigens presented by non-polymorphic MR1 proteins or, alternately, can be stimulated by specific cytokines. These cells are multifaceted and exert robust antimicrobial activity against bacterial and viral infections, direct the immune response through the modulation of other immune cells, and exhibit a specialized tissue homeostasis and repair function. These distinct characteristics have instigated interest in MAIT cell biology for immunotherapy and vaccine development. This review describes the current understanding of MAIT cell activation, their role in infections and diseases with an emphasis on tuberculosis (TB) infection, and perspectives on the future use of MAIT cells in immune-mediated therapy.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
5
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555301. [PMID: 37693561 PMCID: PMC10491194 DOI: 10.1101/2023.08.30.555301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism, physiology and MAIT cell recognition, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Oregon, USA
- Portland VA Medical Center, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
6
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Howson LJ, Bryant VL. Insights into mucosal associated invariant T cell biology from human inborn errors of immunity. Front Immunol 2022; 13:1107609. [PMID: 36618406 PMCID: PMC9813737 DOI: 10.3389/fimmu.2022.1107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lauren J. Howson
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Lauren J. Howson,
| | - Vanessa L. Bryant
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Abstract
Mucosal Associated Invariant T cells (MAIT) exert potent antimicrobial activity through direct recognition of metabolite-MR1 complexes and indirect activation by inflammatory cytokines. Additionally, via licensing of antigen presenting cells, MAIT cells orchestrate humoral and cellular adaptive immunity. Our recent understanding of molecular mechanisms of MAIT cell activation, and of the signals required to differentiate them in polarised subsets, pave the way for harnessing their functionality through small molecules or adoptive cell therapy.
Collapse
Affiliation(s)
- Mariolina Salio
- Immunocore LTD, 92 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, United Kingdom.
| |
Collapse
|
11
|
Pseudomonas Aeruginosa Lung Infection Subverts Lymphocytic Responses through IL-23 and IL-22 Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23158427. [PMID: 35955566 PMCID: PMC9369422 DOI: 10.3390/ijms23158427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, particularly in hospital patients undergoing ventilation and in individuals with cystic fibrosis. Although we and others have investigated mechanisms used by P.a to subvert innate immunity, relatively less is known about the potential strategies used by this bacterium to fight the adaptive immune system and, in particular, T cells. Here, using RAG KO (devoid of ‘classical’ αβ and γδ TCR T lymphocytes) and double RAG γC KO mice (devoid of T, NK and ILC cells), we demonstrate that the lymphocytic compartment is important to combat P.a (PAO1 strain). Indeed, we show that PAO1 load was increased in double RAG γC KO mice. In addition, we show that PAO1 down-regulates IL-23 and IL-22 protein accumulation in the lungs of infected mice while up-regulating their RNA production, thereby pointing towards a specific post-transcriptional regulatory mechanism not affecting other inflammatory mediators. Finally, we demonstrate that an adenovirus-mediated over-expression of IL-1, IL-23 and IL-7 induced lung neutrophil and lymphocytic influx and rescued mice against P.a-induced lethality in all WT, RAG γC KO and RAG γC KO RAG-deficient mice, suggesting that this regimen might be of value in ‘locally immunosuppressed’ individuals such as cystic fibrosis patients.
Collapse
|
12
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
13
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
14
|
Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection. Nat Commun 2021; 12:4355. [PMID: 34272362 PMCID: PMC8285429 DOI: 10.1038/s41467-021-24570-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.
Collapse
|
15
|
Wen X, Zhang X, Nian S, Wei G, Guo X, Yu H, Xie X, Ye Y, Yuan Q. Title of article: Mucosal-associated invariant T cells in lung diseases. Int Immunopharmacol 2021; 94:107485. [PMID: 33647824 PMCID: PMC7909906 DOI: 10.1016/j.intimp.2021.107485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Xue Wen
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xingli Zhang
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Gang Wei
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Xiang Xie
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
16
|
Balfour A, Schutz C, Goliath R, Wilkinson KA, Sayed S, Sossen B, Kanyik JP, Ward A, Ndzhukule R, Gela A, Lewinsohn DM, Lewinsohn DA, Meintjes G, Shey M. Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Front Immunol 2021; 12:648216. [PMID: 33828558 PMCID: PMC8019701 DOI: 10.3389/fimmu.2021.648216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: MAIT cells are non-classically restricted T lymphocytes that recognize and rapidly respond to microbial metabolites or cytokines and have the capacity to kill bacteria-infected cells. Circulating MAIT cell numbers generally decrease in patients with active TB and HIV infection, but findings regarding functional changes differ. Methods: We conducted a cross-sectional study on the effect of HIV, TB, and HIV-associated TB (HIV-TB) on MAIT cell frequencies, activation and functional profile in a high TB endemic setting in South Africa. Blood was collected from (i) healthy controls (HC, n = 26), 24 of whom had LTBI, (ii) individuals with active TB (aTB, n = 36), (iii) individuals with HIV infection (HIV, n = 50), 37 of whom had LTBI, and (iv) individuals with HIV-associated TB (HIV-TB, n = 26). All TB participants were newly diagnosed and sampled before treatment, additional samples were also collected from 18 participants in the aTB group after 10 weeks of TB treatment. Peripheral blood mononuclear cells (PBMC) stimulated with BCG-expressing GFP (BCG-GFP) and heat-killed (HK) Mycobacterium tuberculosis (M.tb) were analyzed using flow cytometry. MAIT cells were defined as CD3+ CD161+ Vα7.2+ T cells. Results: Circulating MAIT cell frequencies were depleted in individuals with HIV infection (p = 0.009). MAIT cells showed reduced CD107a expression in aTB (p = 0.006), and reduced IFNγ expression in aTB (p < 0.001) and in HIV-TB (p < 0.001) in response to BCG-GFP stimulation. This functional impairment was coupled with a significant increase in activation (defined by HLA-DR expression) in resting MAIT cells from HIV (p < 0.001), aTB (p = 0.019), and HIV-TB (p = 0.005) patients, and higher HLA-DR expression in MAIT cells expressing IFNγ in aTB (p = 0.009) and HIV-TB (p = 0.002) after stimulation with BCG-GFP and HK-M.tb. After 10 weeks of TB treatment, there was reversion in the observed functional impairment in total MAIT cells, with increases in CD107a (p = 0.020) and IFNγ (p = 0.010) expression. Conclusions: Frequencies and functional profile of MAIT cells in response to mycobacterial stimulation are significantly decreased in HIV infected persons, active TB and HIV-associated TB, with a concomitant increase in MAIT cell activation. These alterations may reduce the capacity of MAIT cells to play a protective role in the immune response to these two pathogens.
Collapse
Affiliation(s)
- Avuyonke Balfour
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Charlotte Schutz
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Sumaya Sayed
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Bianca Sossen
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Kanyik
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Rhandzu Ndzhukule
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - David M Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deborah A Lewinsohn
- Division of Infectious Diseases, Department of Paediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Graeme Meintjes
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Liu J, Nan H, Brutkiewicz RR, Casasnovas J, Kua KL. Sex discrepancy in the reduction of mucosal-associated invariant T cells caused by obesity. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:299-309. [PMID: 33332759 PMCID: PMC7860596 DOI: 10.1002/iid3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 01/07/2023]
Abstract
Introduction Gut microbiota has been reported to contribute to obesity and the pathology of obesity‐related diseases but the underlying mechanisms are largely unknown. Mucosal‐associated invariant T (MAIT) cells are a unique subpopulation of T cells characterized by the expression of a semi‐invariant T cell receptor (TCR) α chain (Vα19 in mice; Vα7.2 in humans). The expansion and maturation of MAIT cells require the gut microbiota and antigen‐presenting molecule MR1, suggesting that MAIT cells may play a unique role in bridging gut microbiota, obesity, and obesity‐associated inflammation. Methods The levels of human MAIT cells from obese patients, as well as mouse MAIT cells from obese mouse models, were determined by flow cytometry. By comparing to controls, we analyzed the change of MAIT cells in obese subjects. Results We found obese patients had fewer circulating MAIT cells than healthy‐weight donors and the difference was more distinct in male patients. Consistently, male mice (but not female mice) have shown reduced MAIT cells in the liver and adipose tissue after a 10‐week Western diet compared to mice on a control diet. We also explored the possibility of utilizing high‐throughput technology (i.e., quantitative polymerase chain reaction [qPCR]), other than flow cytometry, to determine the expression levels of the invariant TCR of human MAIT cells. But a minimal correlation (R2 = 0.23, p = .11) was observed between qPCR and flow cytometry data. Conclusion Our study suggests that there is a sex discrepancy in the impact of obesity on MAIT cells: MAIT cells in male (but not female) humans and male mice are reduced by obesity.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
19
|
Pavlovic M, Gross C, Chili C, Secher T, Treiner E. MAIT Cells Display a Specific Response to Type 1 IFN Underlying the Adjuvant Effect of TLR7/8 Ligands. Front Immunol 2020; 11:2097. [PMID: 33013883 PMCID: PMC7509539 DOI: 10.3389/fimmu.2020.02097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells constitute a highly conserved subset of effector T cells with innate-like recognition of a wide array of bacteria and fungi in humans. Harnessing the potential of these cells could represent a major advance as a new immunotherapy approach to fight difficult-to-treat bacterial infections. However, despite recent advances in the design of potent agonistic ligands for MAIT cells, it has become increasingly evident that adjuvants are required to elicit potent antimicrobial effector functions by these cells, such as IFNγ production and cytotoxicity. Indeed, TCR triggering alone elicits mostly barrier repair functions in MAIT cells, whereas an inflammatory milieu is required to drive the antibacterial functions. Cytokines such as IL-7, IL-12 and IL-18, IL-15 or more recently type 1 IFN all display an apparently similar ability to synergize with TCR stimulation to induce IFNγ production and/or cytotoxic functions in vitro, but their mechanisms of action are not well established. Herein, we show that MAIT cells feature a build-in mechanism to respond to IFNα. We confirm that IFNα acts directly and specifically on MAIT cells and synergizes with TCR/CD3 triggering to induce maximum cytokine production and cytotoxic functions. We provide evidences suggesting that the preferential activation of the Stat4 pathway is involved in the high sensitivity of MAIT cells to IFNα stimulation. Finally, gene expression data confirm the specific responsiveness of MAIT cells to IFNα and pinpoints specific pathways that could be the target of this cytokine. Altogether, these data highlight the potential of IFNα-inducing adjuvants to maximize MAIT cells responsiveness to purified ligands in order to induce potent anti-infectious responses.
Collapse
Affiliation(s)
- Marion Pavlovic
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Christelle Gross
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Chahinaize Chili
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Thomas Secher
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Emmanuel Treiner
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France.,Paul Sabatier University Toulouse III, Toulouse, France.,Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
20
|
Pisarska MM, Dunne MR, O'Shea D, Hogan AE. Interleukin‐17 producing mucosal associated invariant T cells ‐ emerging players in chronic inflammatory diseases? Eur J Immunol 2020; 50:1098-1108. [DOI: 10.1002/eji.202048645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Marta M. Pisarska
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
| | - Margaret R. Dunne
- Trinity Translational Medicine Institute, Department of SurgerySt James's Hospital Dublin Ireland
- Trinity St James's Cancer InstituteSt James's Hospital Dublin Dublin Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| | - Andrew E. Hogan
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| |
Collapse
|
21
|
Coakley JD, Breen EP, Moreno-Olivera A, Al-Harbi AI, Melo AM, O’Connell B, McManus R, Doherty DG, Ryan T. Innate Lymphocyte Th1 and Th17 Responses in Elderly Hospitalised Patients with Infection and Sepsis. Vaccines (Basel) 2020; 8:vaccines8020311. [PMID: 32560376 PMCID: PMC7350237 DOI: 10.3390/vaccines8020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background: the role of innate immunity in human sepsis must be fully clarified to identify potential avenues for novel immune adjuvant sepsis therapies. Methods: A prospective observational study was performed including patients with sepsis (septic group), infection without sepsis (infection group), and healthy controls (control group) in the setting of acute medical wards and intensive care units in a 1000-bed university hospital. A total of 42 patients with sepsis, 30 patients with infection, and 30 healthy controls were studied. The differentiation states of circulating mucosal associated invariant T (MAIT) cells and Natural Killer T (NKT) cells were characterised as naive (CD45RA+, CD197+), central memory (CD45RA−, CD197+), effector memory (CD45RA−, CD197−), or terminally differentiated (CD45RA+, CD197−). The differentiation states of circulating gamma-delta T lymphocytes were characterised as naive (CD45RA+, CD27+), central memory (CD45RA−, CD27+), effector memory (CD45RA−, CD27−), or terminally differentiated (CD45RA+, CD27−). The expression of IL-12 and IL-23 receptors, the transcription factors T-Bet and RORγt, and interferon-γ and IL-17a were analysed. Results: MAIT cell counts were lower in the septic group (p = 0.002) and the infection group (p < 0.001) than in the control group. The MAIT cell T-Bet expression in the infection group was greater than in the septic group (p = 0.012). The MAIT RORγt expression in the septic group was lower than in the control group (p = 0.003). The NK cell counts differed in the three groups (p < 0.001), with lower Natural Killer (NK) cell counts in the septic group (p < 0.001) and in the infection group (p = 0.001) than in the control group. The NK cell counts increased in the septic group in the 3 weeks following the onset of sepsis (p = 0.028). In lymphocyte stimulation experiments, fewer NK cells expressed T-Bet in the septic group than in the infection group (p = 0.002), and fewer NK cells expressed IFN-γ in the septic group than in the control group (p = 0.002). The NKT cell counts were lower in the septic group than both the control group (p = 0.05) and the infection group (p = 0.04). Fewer NKT cells expressed T-Bet in the septic group than in the infection group (p = 0.004). Fewer NKT cells expressed RORγt in the septic group than in the control group (p = 0.003). Fewer NKT cells expressed IFN-γ in the septic group than in both the control group (p = 0.002) and the infection group (p = 0.036). Conclusion: The clinical presentation of infection and or sepsis in patients is linked with a mosaic of changes in the innate lymphocyte Th1 and Th17 phenotypes. The manipulation of the innate lymphocyte phenotype offers a potential avenue for immune modulation in patients with sepsis.
Collapse
Affiliation(s)
- John Davis Coakley
- St James’s Hospital Intensive Care Unit, James’s Street, Dublin 8, Ireland;
- Correspondence:
| | - Eamon P. Breen
- Trinity Translational Medicine Institute, St James’s Hospital, Dublin 8, Ireland;
| | - Ana Moreno-Olivera
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Alhanouf I. Al-Harbi
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Ashanty M. Melo
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Brian O’Connell
- Department of Clinical Microbiology, St James’s Hospital, James’s Street, Dublin 8, Ireland;
| | - Ross McManus
- Molecular Medicine, Trinity Translational Medicine Institute, Department of Clinical Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland;
| | - Derek G. Doherty
- Department of Immunology, Trinity Translational Medicine Institute, Dublin 8, Ireland; (A.M.-O.); (A.I.A.-H.); (A.M.M.); (D.G.D.)
| | - Thomas Ryan
- St James’s Hospital Intensive Care Unit, James’s Street, Dublin 8, Ireland;
| |
Collapse
|
22
|
Pomaznoy M, Kuan R, Lindvall M, Burel JG, Seumois G, Vijayanand P, Taplitz R, Gilman RH, Saito M, Lewinsohn DM, Sette A, Peters B, Lindestam Arlehamn CS. Quantitative and Qualitative Perturbations of CD8 + MAITs in Healthy Mycobacterium tuberculosis-Infected Individuals. Immunohorizons 2020; 4:292-307. [PMID: 32499216 PMCID: PMC7543048 DOI: 10.4049/immunohorizons.2000031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
CD8 T cells are considered important contributors to the immune response against Mycobacterium tuberculosis, yet limited information is currently known regarding their specific immune signature and phenotype. In this study, we applied a cell population transcriptomics strategy to define immune signatures of human latent tuberculosis infection (LTBI) in memory CD8 T cells. We found a 41-gene signature that discriminates between memory CD8 T cells from healthy LTBI subjects and uninfected controls. The gene signature was dominated by genes associated with mucosal-associated invariant T cells (MAITs) and reflected the lower frequency of MAITs observed in individuals with LTBI. There was no evidence for a conventional CD8 T cell–specific signature between the two cohorts. We, therefore, investigated MAITs in more detail based on Vα7.2 and CD161 expression and staining with an MHC-related protein 1 (MR1) tetramer. This revealed two distinct populations of CD8+Vα7.2+CD161+ MAITs: MR1 tetramer+ and MR1 tetramer−, which both had distinct gene expression compared with memory CD8 T cells. Transcriptomic analysis of LTBI versus noninfected individuals did not reveal significant differences for MR1 tetramer+ MAITs. However, gene expression of MR1 tetramer− MAITs showed large interindividual diversity and a tuberculosis-specific signature. This was further strengthened by a more diverse TCR-α and -β repertoire of MR1 tetramer− cells as compared with MR1 tetramer+. Thus, circulating memory CD8 T cells in subjects with latent tuberculosis have a reduced number of conventional MR1 tetramer+ MAITs as well as a difference in phenotype in the rare population of MR1 tetramer− MAITs compared with uninfected controls.
Collapse
Affiliation(s)
- Mikhail Pomaznoy
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Rebecca Kuan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Mikaela Lindvall
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Julie G Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | | | - Randy Taplitz
- Division of Infectious Diseases, University of California San Diego, La Jolla, CA 92093
| | - Robert H Gilman
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205.,Universidad Peruana Caytano Hereida, Lima 15102, Peru
| | - Mayuko Saito
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205.,Department of Virology, Tohuku University Graduate School of Medicine, Sendai 9808575, Japan
| | - David M Lewinsohn
- Department of Medicine, VA Portland Health Care System, Portland, OR 97239.,Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | | |
Collapse
|
23
|
Sia WR, Boulouis C, Gulam MY, Kwa ALH, Sandberg JK, Leeansyah E. Quantification of Human MAIT Cell-Mediated Cellular Cytotoxicity and Antimicrobial Activity. Methods Mol Biol 2020; 2098:149-165. [PMID: 31792821 DOI: 10.1007/978-1-0716-0207-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mucosa-associated invariant T (MAIT) cells represent the most abundant population of antimicrobial T cells in humans. When encountering cells infected with riboflavin-producing bacteria, this innate-like T cell population rapidly release a plethora of pro-inflammatory cytokines, mediates antimicrobial activity, and kill infected cells. Here, we describe methodological approaches and protocols to measure their cytotoxicity and antimicrobial effector function using multi-color flow cytometry-based and standard microbiological techniques. We provide specific guidance on protocols and describe potential pitfalls for each of the presented methodologies. Finally, we discuss potential applications and current limitations of our approaches to the study of human MAIT cell antimicrobial properties.
Collapse
Affiliation(s)
- Wan Rong Sia
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Caroline Boulouis
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Yaaseen Gulam
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Andrea Lay Hoon Kwa
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Johan K Sandberg
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol 2019; 20:1110-1128. [PMID: 31406380 DOI: 10.1038/s41590-019-0444-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Lamichhane R, Schneider M, de la Harpe SM, Harrop TW, Hannaway RF, Dearden PK, Kirman JR, Tyndall JD, Vernall AJ, Ussher JE. TCR- or Cytokine-Activated CD8+ Mucosal-Associated Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune Responses. Cell Rep 2019; 28:3061-3076.e5. [DOI: 10.1016/j.celrep.2019.08.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
|
26
|
Anil N. Mucosal-associated invariant T cells: new players in CF lung disease? Inflamm Res 2019; 68:633-638. [PMID: 31201438 DOI: 10.1007/s00011-019-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
The past decade has witnessed a surge in research centered around exploring the role of the enigmatic innate immune-like lymphocyte MAIT cell in human disease. Recent evidence has led to the elucidation of its role as a potent defender at mucosal surfaces including lungs due to its capacity to mount a formidable immediate response to bacterial pathogens. MAIT cells have a unique attribute of recognizing microbial ligands in conjunction with non-classical MHC-related protein MR1. Recent studies have demonstrated their contribution in the pathogenesis of chronic pulmonary disorders including asthma and chronic obstructive pulmonary disease. Several cellular players including innate immune cells are active contributors in the immune imbalance present in cystic fibrosis(CF) lung. This immune dysregulation serves as a central pivot in disease pathogenesis, responsible for causing immense structural damage in the CF lung. The present review focuses on understanding the role of MAIT cells in CF lung disease. Future studies directed at understanding the possible relationship between MAIT cells and regulatory T cells (Tregs) in CF lung disease could unravel a holistic picture where a combination of antimicrobial effects of MAIT cells and anti-inflammatory effects of Tregs could be exploited in synergy to alleviate the rapid deterioration of lung function in CF lung disease due to the underlying complex interplay between persistent infection and inflammation.
Collapse
Affiliation(s)
- Nidhi Anil
- Centre For Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India.
| |
Collapse
|
27
|
MR1-dependent antigen presentation. Semin Cell Dev Biol 2019; 84:58-64. [PMID: 30449535 DOI: 10.1016/j.semcdb.2017.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022]
Abstract
MR1 is a non-classical class I molecule that is highly conserved among mammals. Though discovered in 1995, only recently have MR1 ligands and antigens for MR1-restricted T cells been described. Unlike the traditional class I molecules HLA-A, -B, and -C, little MR1 is on the cell surface. Rather, MR1 resides in discrete intracellular vesicles and the endoplasmic reticulum, and can present non-peptidic small molecules such as those found in the riboflavin biosynthesis pathway. Since mammals do not synthesize riboflavin, MR1 can serve as a sensor of the microbial metabolome and could be key to the early detection of intracellular infection. This review will summarize the current understanding of MR1-dependent antigen presentation.
Collapse
|
28
|
Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol 2018; 11:1591-1605. [PMID: 30115998 PMCID: PMC6279574 DOI: 10.1038/s41385-018-0072-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023]
Abstract
Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.
Collapse
|
29
|
D’Souza C, Chen Z, Corbett AJ. Revealing the protective and pathogenic potential of MAIT cells. Mol Immunol 2018; 103:46-54. [DOI: 10.1016/j.molimm.2018.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
|
30
|
Hartmann N, Harriff MJ, McMurtrey CP, Hildebrand WH, Lewinsohn DM, Kronenberg M. Role of MAIT cells in pulmonary bacterial infection. Mol Immunol 2018; 101:155-159. [PMID: 29940408 PMCID: PMC6138534 DOI: 10.1016/j.molimm.2018.06.270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells represent a population of innate T cells that is highly abundant in humans. MAIT cells recognize metabolites of the microbial vitamin B pathway that are presented by the major histocompatibility complex (MHC) class I-related protein MR1. Upon bacterial infection, activated MAIT cells produce diverse cytokines and cytotoxic effector molecules and accumulate at the site of infection, thus, MAIT cells have been shown to be protective against various bacterial infections. Here, we summarize the current knowledge of the role of MAIT cells in bacterial pulmonary infection models.
Collapse
Affiliation(s)
- Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States
| | - Melanie J Harriff
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, OR, 97239, United States; VA Portland Health Care System, Portland, OR, 97239, United States
| | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73140, United States; Pure MHC, Oklahoma City, OK, 73104, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73140, United States; Pure MHC, Oklahoma City, OK, 73104, United States
| | - David M Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, OR, 97239, United States; VA Portland Health Care System, Portland, OR, 97239, United States
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States; Division of Biology, University of California San Diego, La Jolla, CA, 92037, United States.
| |
Collapse
|
31
|
Meermeier EW, Harriff MJ, Karamooz E, Lewinsohn DM. MAIT cells and microbial immunity. Immunol Cell Biol 2018; 96:607-617. [PMID: 29451704 PMCID: PMC6045460 DOI: 10.1111/imcb.12022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells, the most abundant T-cell subset in humans, are increasingly being recognized for their importance in microbial immunity. MAIT cells accumulate in almost every mucosal tissue examined, including the lung, liver and intestinal tract, where they can be activated through T-cell receptor (TCR) triggering as well as cytokine stimulation in response to a host of microbial products. In this review, we specifically discuss MAIT cell responses to bacterial and fungal infections, with a focus on responses that are both MR1-dependent and -independent, the evidence for diversity in MAIT TCR usage in response to discrete microbial products, protective immunity induced by MAIT cells, and MAIT cell antimicrobial functions in the context of these infections.
Collapse
Affiliation(s)
- Erin W Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| | - Melanie J Harriff
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| | - David M Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| |
Collapse
|
32
|
Lepore M, Mori L, De Libero G. The Conventional Nature of Non-MHC-Restricted T Cells. Front Immunol 2018; 9:1365. [PMID: 29963057 PMCID: PMC6010553 DOI: 10.3389/fimmu.2018.01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
The definition “unconventional T cells” identifies T lymphocytes that recognize non-peptide antigens presented by monomorphic antigen-presenting molecules. Two cell populations recognize lipid antigens and small metabolites presented by CD1 and MR1 molecules, respectively. A third cell population expressing the TCR Vγ9Vδ2 is stimulated by small phosphorylated metabolites. In the recent past, we have learnt a lot about the selection, tissue distribution, gene transcription programs, mode of expansion after antigen recognition, and persistence of these cells. These studies depict their functions in immune homeostasis and diseases. Current investigations are revealing that unconventional T cells include distinct sub-populations, which display unexpected similarities to classical MHC-restricted T cells in terms of TCR repertoire diversity, antigen specificity variety, functional heterogeneity, and naïve-to-memory differentiation dynamic. This review discusses the latest findings with a particular emphasis on these T cells, which appear to be more conventional than previously appreciated, and with the perspective of using CD1 and MR1-restricted T cells in vaccination and immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Shey MS, Balfour A, Wilkinson KA, Meintjes G. Contribution of APCs to mucosal-associated invariant T cell activation in infectious disease and cancer. Innate Immun 2018; 24:192-202. [PMID: 29631470 PMCID: PMC6139754 DOI: 10.1177/1753425918768695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
APCs such as monocytes and dendritic cells are among the first cells to recognize
invading pathogens and initiate an immune response. The innate response can
either eliminate the pathogen directly, or through presentation of Ags to T
cells, which can help to clear the infection. Mucosal-associated invariant T
(MAIT) cells are among the unconventional T cells whose activation does not
involve the classical co-stimulation during Ag presentation. MAIT cells can be
activated either via presentation of unconventional Ags (such as riboflavin
metabolites) through the evolutionarily conserved major histocompatibility class
I-like molecule, MR1, or directly by cytokines such as IL-12 and IL-18. Given
that APCs produce cytokines and can express MR1, these cells can play an
important role in both pathways of MAIT cell activation. In this review, we
summarize evidence on the role of APCs in MAIT cell activation in infectious
disease and cancer. A better understanding of the interactions between APCs and
MAIT cells is important in further elucidating the role of MAIT cells in
infectious diseases, which may facilitate the design of novel interventions such
as vaccines.
Collapse
Affiliation(s)
- Muki Shehu Shey
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Avuyonke Balfour
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Katalin Andrea Wilkinson
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa.,3 The Francis Crick Institute, Midland Road, London, NW1 2AT
| | - Graeme Meintjes
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
34
|
Zhao N, Wang S, Li H, Liu S, Li M, Luo J, Su W, He H. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota. Front Cell Infect Microbiol 2018. [PMID: 29520341 PMCID: PMC5827414 DOI: 10.3389/fcimb.2018.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus. We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.
Collapse
Affiliation(s)
- Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Supen Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyi Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun 2018; 10:487-501. [PMID: 29439264 DOI: 10.1159/000487057] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, .,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel,
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - David Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
36
|
Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, Mondot S, Mburu Y, Lambert M, Azarnoush S, Diana JS, Virlouvet AL, Peuchmaur M, Schmitz T, Dalle JH, Lantz O, Biran V, Caillat-Zucman S. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J Exp Med 2018; 215:459-479. [PMID: 29339446 PMCID: PMC5789419 DOI: 10.1084/jem.20171739] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/27/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
There are very few human MAIT cells in cord blood. Ben Youssef et al. show that they slowly expand during childhood and point to a critical role of the TCRαβ repertoire in determining their unique ability to recognize MR1-restricted microbial antigens. Mucosal-associated invariant T (MAIT) cells are semi-invariant Vα7.2+ CD161highCD4− T cells that recognize microbial riboflavin precursor derivatives such as 5-OP-RU presented by MR1. Human MAIT cells are abundant in adult blood, but there are very few in cord blood. We longitudinally studied Vα7.2+ CD161high T cell and related subset levels in infancy and after cord blood transplantation. We show that Vα7.2+ and Vα7.2− CD161high T cells are generated early during gestation and likely share a common prenatal developmental program. Among cord blood Vα7.2+ CD161high T cells, the minority recognizing MR1:5-OP-RU display a TRAV/TRBV repertoire very similar to adult MAIT cells. Within a few weeks of life, only the MR1:5-OP-RU reactive Vα7.2+ CD161high T cells acquire a memory phenotype. Only these cells expand to form the adult MAIT pool, diluting out other Vα7.2+ CD161high and Vα7.2− CD161high populations, in a process requiring at least 6 years to reach adult levels. Thus, the high clonal size of adult MAIT cells is antigen-driven and likely due to the fine specificity of the TCRαβ chains recognizing MR1-restricted microbial antigens.
Collapse
Affiliation(s)
- Ghada Ben Youssef
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Marie Tourret
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Marion Salou
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Liana Ghazarian
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Véronique Houdouin
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France.,Service de Gastroentérologie et Pneumologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanislas Mondot
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Yvonne Mburu
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Marion Lambert
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Saba Azarnoush
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Jean-Sébastien Diana
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France
| | - Anne-Laure Virlouvet
- Service de Pédiatrie et Réanimation Néonatale, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michel Peuchmaur
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France.,Service de Pathologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Schmitz
- Service d'Obstétrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Hugues Dalle
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France.,Service d'Hématologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigations Cliniques CIC-BT1428 IGR/Curie, Paris, France.,Equipe labellisée de la Ligue de Lutte contre le Cancer, Institut Curie, Paris, France.,Département de Biopathologie, Institut Curie, Paris, France
| | - Valérie Biran
- Service de Pédiatrie et Réanimation Néonatale, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Caillat-Zucman
- Institut national de recherche médicale (INSERM) UMR1149, Center for Research on Inflammation, Paris Diderot University, Paris, France .,Laboratoire d'Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
37
|
Ghazarian L, Caillat-Zucman S, Houdouin V. Mucosal-Associated Invariant T Cell Interactions with Commensal and Pathogenic Bacteria: Potential Role in Antimicrobial Immunity in the Child. Front Immunol 2017; 8:1837. [PMID: 29326714 PMCID: PMC5736530 DOI: 10.3389/fimmu.2017.01837] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional CD3+CD161high T lymphocytes that recognize vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the MHC-I related protein, MR1. In humans, their T cell receptor is composed of a Vα7.2-Jα33/20/12 chain, combined with a restricted set of Vβ chains. MAIT cells are very abundant in the liver (up to 40% of resident T cells) and in mucosal tissues, such as the lung and gut. In adult peripheral blood, they represent up to 10% of circulating T cells, whereas they are very few in cord blood. This large number of MAIT cells in the adult likely results from their gradual expansion with age following repeated encounters with riboflavin-producing microbes. Upon recognition of MR1 ligands, MAIT cells have the capacity to rapidly eliminate bacterially infected cells through the production of inflammatory cytokines (IFNγ, TNFα, and IL-17) and cytotoxic effector molecules (perforin and granzyme B). Thus, MAIT cells may play a crucial role in antimicrobial defense, in particular at mucosal sites. In addition, MAIT cells have been implicated in diseases of non-microbial etiology, including autoimmunity and other inflammatory diseases. Although their participation in various clinical settings has received increased attention in adults, data in children are scarce. Due to their innate-like characteristics, MAIT cells might be particularly important to control microbial infections in the young age, when long-term protective adaptive immunity is not fully developed. Herein, we review the data showing how MAIT cells may control microbial infections and how they discriminate pathogens from commensals, with a focus on models relevant for childhood infections.
Collapse
Affiliation(s)
- Liana Ghazarian
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Laboratoire d'Immunologie, Hôpital Saint Louis, AP-HP, Paris, France
| | - Véronique Houdouin
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Service des Maladies Digestives et Respiratoires de l'Enfant, Hôpital Robert Debré, AP-HP, Paris, France
| |
Collapse
|
38
|
Wakao H, Sugimoto C, Kimura S, Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. Front Immunol 2017; 8:1711. [PMID: 29250077 PMCID: PMC5717033 DOI: 10.3389/fimmu.2017.01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for difficult-to-cure infectious diseases and cancer and contributes to improvement of our welfare.
Collapse
Affiliation(s)
- Hiroshi Wakao
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Chie Sugimoto
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Shinzo Kimura
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Rika Wakao
- Office of Regulatory Science, Pharmaceutical and Medical Device Agency (PMDA), Tokyo, Japan
| |
Collapse
|
39
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|
40
|
Salou M, Franciszkiewicz K, Lantz O. MAIT cells in infectious diseases. Curr Opin Immunol 2017; 48:7-14. [DOI: 10.1016/j.coi.2017.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
|
41
|
Liu J, Brutkiewicz RR. The Toll-like receptor 9 signalling pathway regulates MR1-mediated bacterial antigen presentation in B cells. Immunology 2017; 152:232-242. [PMID: 28518215 DOI: 10.1111/imm.12759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are conserved T cells that express a semi-invariant T-cell receptor (Vα7.2 in humans and Vα19 in mice). The development of MAIT cells requires the antigen-presenting MHC-related protein 1 (MR1), as well as commensal bacteria. The mechanisms that regulate the functional expression of MR1 molecules and their loading with bacterial antigen in antigen-presenting cells are largely unknown. We have found that treating B cells with the Toll-like receptor 9 (TLR9) agonist CpG increases MR1 surface expression. Interestingly, activation of TLR9 by CpG-A (but not CpG-B) enhances MR1 surface expression. This is limited to B cells and not other types of cells such as monocytes, T or natural killer cells. Knocking-down TLR9 expression by short hairpin RNA reduces MR1 surface expression and MR1-mediated bacterial antigen presentation. CpG-A triggers early endosomal TLR9 activation, whereas CpG-B is responsible for late endosomal/lysosomal activation of TLR9. Consistently, blocking endoplasmic reticulum to Golgi protein transport, rather than lysosomal acidification, suppressed MR1 antigen presentation. Overall, our results indicate that early endosomal TLR9 activation is important for MR1-mediated bacterial antigen presentation.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
42
|
Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A 2017. [PMID: 28630305 DOI: 10.1073/pnas.1705759114] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a large innate-like T-cell subset in humans defined by invariant TCR Vα7.2 use and expression of CD161. MAIT cells recognize microbial riboflavin metabolites of bacterial or fungal origin presented by the monomorphic MR1 molecule. The extraordinary level of evolutionary conservation of MR1 and the limited known diversity of riboflavin metabolite antigens have suggested that MAIT cells are relatively homogeneous and uniform in responses against diverse microbes carrying the riboflavin biosynthesis pathway. The ability of MAIT cells to exhibit microbe-specific functional specialization has not been thoroughly investigated. Here, we found that MAIT cell responses against Escherichia coli and Candida albicans displayed microbe-specific polyfunctional response profiles, antigen sensitivity, and response magnitudes. MAIT cell effector responses against E. coli and C. albicans displayed differential MR1 dependency and TCR β-chain bias, consistent with possible divergent antigen subspecificities between these bacterial and fungal organisms. Finally, although the MAIT cell immunoproteome was overall relatively homogenous and consistent with an effector memory-like profile, it still revealed diversity in a set of natural killer cell-associated receptors. Among these, CD56, CD84, and CD94 defined a subset with higher expression of the transcription factors promyelocytic leukemia zinc finger (PLZF), eomesodermin, and T-bet and enhanced capacity to respond to IL-12 and IL-18 stimulation. Thus, the conserved and innate-like MAIT cells harbor multiple layers of functional heterogeneity as they respond to bacterial or fungal organisms or innate cytokines and adapt their antimicrobial response patterns in a stimulus-specific manner.
Collapse
|
43
|
Keller AN, Corbett AJ, Wubben JM, McCluskey J, Rossjohn J. MAIT cells and MR1-antigen recognition. Curr Opin Immunol 2017; 46:66-74. [DOI: 10.1016/j.coi.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/05/2017] [Indexed: 01/21/2023]
|
44
|
Pincikova T, Paquin-Proulx D, Sandberg JK, Flodström-Tullberg M, Hjelte L. Vitamin D treatment modulates immune activation in cystic fibrosis. Clin Exp Immunol 2017; 189:359-371. [PMID: 28470739 DOI: 10.1111/cei.12984] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Persistent inflammatory response in cystic fibrosis (CF) airways is believed to play a central role in the progression of lung damage. Anti-inflammatory treatment may slow lung disease progression, but adverse side effects have limited its use. Vitamin D has immunoregulatory properties. We randomized 16 CF patients to receive vitamin D2, vitamin D3 or to serve as controls, and investigated the effect of vitamin D supplementation on soluble immunological parameters, myeloid dendritic cells (mDCs) and T cell activation. Three months of vitamin D treatment were followed by two washout months. Vitamin D status at baseline was correlated negatively with haptoglobin, erythrocyte sedimentation rate and immunoglobulin A concentration. Total vitamin D dose per kg bodyweight correlated with the down-modulation of the co-stimulatory receptor CD86 on mDCs. Vitamin D treatment was associated with reduced CD279 (PD-1) expression on CD4+ and CD8+ T cells, as well as decreased frequency of CD8+ T cells co-expressing the activation markers CD38 and human leucocyte antigen D-related (HLA-DR) in a dose-dependent manner. There was a trend towards decreased mucosal-associated invariant T cells (MAIT) cell frequency in patients receiving vitamin D and free serum 25-hydroxyvitamin D (free-s25OHD) correlated positively with CD38 expression by these cells. At the end of intervention, the change in free-s25OHD was correlated negatively with the change in CD279 (PD-1) expression on MAIT cells. Collectively, these data indicate that vitamin D has robust pleiotropic immunomodulatory effects in CF. Larger studies are needed to explore the immunomodulatory treatment potential of vitamin D in CF in more detail.
Collapse
Affiliation(s)
- T Pincikova
- Stockholm CF Center, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - D Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - L Hjelte
- Stockholm CF Center, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Jo YG, Choi HJ, Kim JC, Cho YN, Kang JH, Jin HM, Kee SJ, Park YW. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Multiple Trauma. J Korean Med Sci 2017; 32:750-756. [PMID: 28378547 PMCID: PMC5383606 DOI: 10.3346/jkms.2017.32.5.750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma.
Collapse
Affiliation(s)
- Young Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hyun Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jung Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jeong Hwa Kang
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hye Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Seung Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea.
| |
Collapse
|
46
|
Dias J, Sandberg JK, Leeansyah E. Extensive Phenotypic Analysis, Transcription Factor Profiling, and Effector Cytokine Production of Human MAIT Cells by Flow Cytometry. Methods Mol Biol 2017; 1514:241-256. [PMID: 27787804 DOI: 10.1007/978-1-4939-6548-9_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mucosa-associated invariant T (MAIT) cells are a large and relatively recently described innate-like antimicrobial T cell subset in humans. The study of human MAIT cells is still in its infancy, and many aspects of MAIT cell immunobiology in health and disease remain unexplored. Here, we describe methodological approaches and protocols to investigate the expression of a broad spectrum of surface receptors on human MAIT cells, and to examine their unique transcription factor profile, as well as their antimicrobial effector function using multicolor flow cytometry-based techniques. We provide specific guidance on protocols and describe potential pitfalls for each of the presented methodologies. Finally, we discuss future prospects and current limitations of multicolor flow cytometry-based approaches to the study of human MAIT cells.
Collapse
Affiliation(s)
- Joana Dias
- Department of Medicine, F59, Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Stockholm, 14186, Sweden
| | - Johan K Sandberg
- Department of Medicine, F59, Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Stockholm, 14186, Sweden
| | - Edwin Leeansyah
- Department of Medicine, F59, Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Stockholm, 14186, Sweden.
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
47
|
Pan T, Tan R, Li M, Liu Z, Wang X, Tian L, Liu J, Qu H. IL17-Producing γδ T Cells May Enhance Humoral Immunity during Pulmonary Pseudomonas aeruginosa Infection in Mice. Front Cell Infect Microbiol 2016; 6:170. [PMID: 27999768 PMCID: PMC5138229 DOI: 10.3389/fcimb.2016.00170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
The host acquired immune response, especially the humoral immunity, plays key roles in preventing bacterial pneumonia in the lung. Our previous research demonstrated that interleukin 17-producing γδ T cells (IL17-γδ T cells) have a protective effect on the early innate immune response during acute pulmonary Pseudomonas aeruginosa infection. However, whether IL17-γδ T cells also play a role in humoral immunity is unknown. In this study, an acute pulmonary P. aeruginosa infection model was established in wild-type and γδ TCR−/− C57BL/6 mice. The expression of IL-17 on γδ T cells isolated from infected lung tissues increased rapidly and peaked at day 7 after acute infection with P. aeruginosa. Compared with wild-type infected mice, the levels of total immunoglobulins including IgA, IgG, and IgM in the serum and BALF were significantly decreased in γδ TCR−/− mice, with the exception of IgM in the BALF. Moreover, CD69 expression in B cells from the lungs and spleen and the level of BAFF in the plasma were also decreased in γδ TCR−/− mice. IL17-γδ T cell transfusion significantly improved the production of immunoglobulins, B cell activation and BAFF levels in γδ TCR−/− mice compared with γδ TCR−/− mice without transfusion; this effect was blocked when cells were pretreated with an IL-17 antibody. Together, these data demonstrate that IL17-γδ T cells are involved in CD19+ B cell activation and the production of immunoglobulins during acute pulmonary P. aeruginosa infection. Thus, we conclude that IL17-γδ T cells may facilitate the elimination of bacteria and improve survival through not only innate immunity but also humoral immunity.
Collapse
Affiliation(s)
- Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Meiling Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Lijun Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| |
Collapse
|
48
|
Wong EB, Ndung'u T, Kasprowicz VO. The role of mucosal-associated invariant T cells in infectious diseases. Immunology 2016; 150:45-54. [PMID: 27633333 DOI: 10.1111/imm.12673] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are donor-unrestricted lymphocytes that are surprisingly abundant in humans, representing 1-10% of circulating T cells and further enriched in mucosal tissues. MAIT cells recognize and are activated by small molecule ligands produced by microbes and presented by MR1, a highly conserved MHC-related antigen-presenting protein that is ubiquitously expressed in human cells. Increasing evidence suggests that MAIT cells play a protective role in anti-bacterial immunity at mucosal interfaces. Some fungi are known to produce MAIT-activating ligands, but the role of MAIT cells in fungal infections has not yet been investigated. In viral infections, specifically HIV, which has received the most study, MAIT cell biology is clearly altered, but the mechanisms explaining these alterations and their clinical significance are not yet understood. Many questions remain unanswered about the potential of MAIT cells for protection or pathogenesis in infectious diseases. Because they interact with the universal, donor-unrestricted ligand-presenting MR1 molecule, MAIT cells may be attractive immunotherapy or vaccine targets. New tools, including the development of MR1-ligand tetramers and next-generation T-cell receptor sequencing, have the potential to accelerate MAIT cell research and lead to new insights into the role of this unique set of lymphocytes in infectious diseases.
Collapse
Affiliation(s)
- Emily B Wong
- African Health Research Institute, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- African Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA, USA.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Victoria O Kasprowicz
- African Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
49
|
Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology 2016; 5:e98. [PMID: 27588203 PMCID: PMC5007630 DOI: 10.1038/cti.2016.51] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The liver is an important immunological organ that remains sterile and tolerogenic in homeostasis, despite continual exposure to non-self food and microbial-derived products from the gut. However, where intestinal mucosal defenses are breached or in the presence of a systemic infection, the liver acts as a second 'firewall', because of its enrichment with innate effector cells able to rapidly respond to infections or tissue dysregulation. One of the largest populations of T cells within the human liver are mucosal-associated invariant T (MAIT) cells, a novel innate-like T-cell population that can recognize a highly conserved antigen derived from the microbial riboflavin synthesis pathway. MAIT cells are emerging as significant players in the human immune system, associated with an increasing number of clinical diseases of bacterial, viral, autoimmune and cancerous origin. As reviewed here, we are only beginning to investigate the potential role of this dominant T-cell subset in the liver, but the reactivity of MAIT cells to both inflammatory cytokines and riboflavin derivatives suggests that MAIT cells may have an important role in first line of defense as part of the liver firewall. As such, MAIT cells are promising targets for modulating the host defense and inflammation in both acute and chronic liver diseases.
Collapse
Affiliation(s)
- Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Lucy J Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Mondot S, Boudinot P, Lantz O. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules? Immunogenetics 2016; 68:537-48. [DOI: 10.1007/s00251-016-0927-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
|