1
|
Zhang P, Liu L, Sheng H, Zhang M, Wang T, Chang G, Wang Y, Bai L, Wang X. Antibiotic Resistance and Genomic Analysis of Shiga Toxin-Producing Escherichia coli from Dairy Cattle, Raw Milk, and Farm Environment in Shaanxi Province, China. Foodborne Pathog Dis 2024; 21:624-633. [PMID: 39042484 DOI: 10.1089/fpd.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/25/2024] Open
Abstract
To investigate the epidemiology of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle, 975 samples (185 feces, 34 silage, 36 cattle drinking water, 360 raw milk, and 360 teat skin swabs) were collected from two dairy farms in Baoji and Yangling, Shaanxi Province, China, and were screened for STEC. Whole-genome sequencing was used to analyze the genomic characteristics and potential transmission of STEC isolates. A total of 32 samples were contaminated with STEC, including 4.0% (19/479) in Farm A and 2.6% (13/496) in Farm B. Compared with adult cows (4.5%), nonadult cows had a higher rate (21.3%) of STEC colonization. A total of 14 serotypes and 11 multilocus sequence typing were identified in 32 STEC isolates, among which O55:H12 (25.0%) and ST101 (31.3%) were the most predominant, respectively. Six stx subtypes/combinations were identified, including stx1a (53.1%), stx2g (15.6%), stx2d, stx2a+stx2d, stx1a+stx2a (6.3%, for each), and stx2a (3.1%). Of 32 STEC isolates, 159 virulence genes and 27 antibiotic resistance genes were detected. Overall, STEC isolates showed low levels of resistance to the 16 antibiotics tested (0-40.6%), with most common resistance to ampicillin (40.6%). The phylogenetic analysis confirmed that STEC in the gut of cattle can be transmitted through feces. The results of this study help to improve our understanding of the epidemiological aspects of STEC in dairy cattle and provide early warning and control of the prevalence and spread of the bacterium.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- College of Food Science, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Lisha Liu
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yeru Wang
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Naidoo N, Zishiri OT. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genomics 2023; 24:791. [PMID: 38124028 PMCID: PMC10731853 DOI: 10.1186/s12864-023-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain pathogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 National Center for Biotechnology Information database. These strains of interest were analysed in the following programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five strains (ECP19-198, ECP19-798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was commonly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribution of bacteriophages and genomic islands respectively. The results indicated that structural and functional features of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional features will enable the development of detection and control of transmission strategies.
Collapse
Affiliation(s)
- Natalie Naidoo
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
3
|
Matussek A, Mernelius S, Chromek M, Zhang J, Frykman A, Hansson S, Georgieva V, Xiong Y, Bai X. Genome-wide association study of hemolytic uremic syndrome causing Shiga toxin-producing Escherichia coli from Sweden, 1994-2018. Eur J Clin Microbiol Infect Dis 2023; 42:771-779. [PMID: 37103716 PMCID: PMC10172287 DOI: 10.1007/s10096-023-04600-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) infection can cause clinical manifestations ranging from diarrhea to potentially fatal hemolytic uremic syndrome (HUS). This study is aimed at identifying STEC genetic factors associated with the development of HUS in Sweden. A total of 238 STEC genomes from STEC-infected patients with and without HUS between 1994 and 2018 in Sweden were included in this study. Serotypes, Shiga toxin gene (stx) subtypes, and virulence genes were characterized in correlation to clinical symptoms (HUS and non-HUS), and pan-genome wide association study was performed. Sixty-five strains belonged to O157:H7, and 173 belonged to non-O157 serotypes. Our study revealed that strains of O157:H7 serotype especially clade 8 were most commonly found in patients with HUS in Sweden. stx2a and stx2a + stx2c subtypes were significantly associated with HUS. Other virulence factors associated with HUS mainly included intimin (eae) and its receptor (tir), adhesion factors, toxins, and secretion system proteins. Pangenome wide-association study identified numbers of accessory genes significantly overrepresented in HUS-STEC strains, including genes encoding outer membrane proteins, transcriptional regulators, phage-related proteins, and numerous genes related to hypothetical proteins. Whole-genome phylogeny and multiple correspondence analysis of pangenomes could not differentiate HUS-STEC from non-HUS-STEC strains. In O157:H7 cluster, strains from HUS patients clustered closely; however, no significant difference in virulence genes was found in O157 strains from patients with and without HUS. These results suggest that STEC strains from different phylogenetic backgrounds may independently acquire genes determining their pathogenicity and confirm that other non-bacterial factors and/or bacteria-host interaction may affect STEC pathogenesis.
Collapse
Affiliation(s)
- Andreas Matussek
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Medicine, Department of Clinical and Experimental Medicine, Jönköping Region County, Linköping University, Jönköping, Sweden
| | - Sara Mernelius
- Laboratory Medicine, Department of Clinical and Experimental Medicine, Jönköping Region County, Linköping University, Jönköping, Sweden
- Department of Laboratory Medicine, Jönköping, Sweden
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ji Zhang
- Fonterra Research and Development Centre, Dairy Farm Road, Palmerston North, New Zealand
| | - Anne Frykman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sverker Hansson
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valya Georgieva
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.
- Department of Microbiology, Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny. J Microbiol 2022; 60:689-704. [DOI: 10.1007/s12275-022-1616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 10/17/2022]
|
5
|
Comparative Genomics of Shiga Toxin-Producing Escherichia coli Strains Isolated from Pediatric Patients with and without Hemolytic Uremic Syndrome from 2000 to 2016 in Finland. Microbiol Spectr 2022; 10:e0066022. [PMID: 35730965 PMCID: PMC9430701 DOI: 10.1128/spectrum.00660-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infection can cause mild to severe illness, such as nonbloody or bloody diarrhea, and the fatal hemolytic uremic syndrome (HUS). The molecular mechanism underlying the variable pathogenicity of STEC infection is not fully defined so far. Here, we performed a comparative genomics study on a large collection of clinical STEC strains collected from STEC-infected pediatric patients with and without HUS in Finland over a 16-year period, aiming to identify the bacterial genetic factors that can predict the risk to cause HUS and poor renal outcome. Of 240 STEC strains included in this study, 52 (21.7%) were from pediatric patients with HUS. Serotype O157:H7 was the main cause of HUS, and Shiga toxin gene subtype stx2a was significantly associated with HUS. Comparative genomics and pangenome-wide association studies identified a number of virulence and accessory genes overrepresented in HUS-associated STEC compared to non-HUS STEC strains, including genes encoding cytolethal distending toxins, type III secretion system effectors, adherence factors, etc. No virulence or accessory gene was significantly associated with risk factors for poor renal outcome among HUS patients assessed in this study, including need for and duration of dialysis, presence and duration of anuria, and leukocyte counts. Whole-genome phylogeny and multiple-correspondence analysis of pangenomes could not separate HUS STEC from non-HUS STEC strains, suggesting that STEC strains with diverse genetic backgrounds may independently acquire genetic elements that determine their varied pathogenicity. Our findings indicate that nonbacterial factors, i.e., characteristics of the host immunity, might affect STEC virulence and clinical outcomes. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) is a serious public health burden worldwide which causes outbreaks of gastrointestinal diseases and the fatal hemolytic uremic syndrome (HUS) characterized by the triad of mechanical hemolytic anemia, thrombocytopenia, and acute renal failure. Understanding the mechanism underlying the disease severity and patient outcome is of high importance. Using comparative genomics on a large collection of clinical STEC strains from STEC-infected patients with and without HUS, our study provides a reference of STEC genetic factors/variants that can be used as predictors of the development of HUS, which will aid risk assessment at the early stage of STEC infection. Additionally, our findings suggest that nonbacterial factors may play a primary role in the renal outcome in STEC-infected patients with HUS; further studies are needed to validate this.
Collapse
|
6
|
Fagerlund A, Aspholm M, Węgrzyn G, Lindbäck T. High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics 2022; 23:230. [PMID: 35331132 PMCID: PMC8951638 DOI: 10.1186/s12864-022-08428-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) is an emerging health challenge worldwide and outbreaks caused by this pathogen poses a serious public health concern. Shiga toxin (Stx) is the major virulence factor of EHEC, and the stx genes are carried by temperate bacteriophages (Stx phages). The switch between lysogenic and lytic life cycle of the phage, which is crucial for Stx production and for severity of the disease, is regulated by the CI repressor which maintain latency by preventing transcription of the replication proteins. Three EHEC phage replication units (Eru1-3) in addition to the classical lambdoid replication region have been described previously, and Stx phages carrying the Eru1 replication region were associated with highly virulent EHEC strains. Results In this study, we have classified the Eru replication region of 419 Stx phages. In addition to the lambdoid replication region and three already described Erus, ten novel Erus (Eru4 to Eru13) were detected. The lambdoid type, Eru1, Eru4 and Eru7 are widely distributed in Western Europe. Notably, EHEC strains involved in severe outbreaks in England and Norway carry Stx phages with Eru1, Eru2, Eru5 and Eru7 replication regions. Phylogenetic analysis of CI repressors from Stx phages revealed eight major clades that largely separate according to Eru type. Conclusion The classification of replication regions and CI proteins of Stx phages provides an important platform for further studies aimed to assess how characteristics of the replication region influence the regulation of phage life cycle and, consequently, the virulence potential of the host EHEC strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08428-5.
Collapse
Affiliation(s)
- Annette Fagerlund
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
7
|
Ramstad SN, Wasteson Y, Lindstedt BA, Taxt AM, Bjørnholt JV, Brandal LT, Bohlin J. Characterization of Shiga Toxin 2a Encoding Bacteriophages Isolated From High-Virulent O145:H25 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2021; 12:728116. [PMID: 34566932 PMCID: PMC8456039 DOI: 10.3389/fmicb.2021.728116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause severe disease mainly due to the ability to produce Shiga toxins (Stx) encoded on bacteriophages. In Norway, more than 30% of the reported cases with STEC O145:H25 develop hemolytic uremic syndrome (HUS), and most cases, with known travel history, acquired the infection domestically. To describe phage characteristics associated with high virulence, we extracted the Stx2a phage sequences from eight clinical Norwegian O145:H25 STEC to conduct in-depth molecular characterization using long and short read sequencing. The Stx2a phages were annotated, characterized, and compared with previously published Stx2a phages isolated from STEC of different serotypes. The Norwegian O145:H25 Stx2a phages showed high sequence identity (>99%) with 100% coverage. The Stx2a phages were located at the integration site yciD, were approximately 45 kbp long, and harbored several virulence-associated genes, in addition to stx2a, such as nanS and nleC. We observed high sequence identity (>98%) and coverage (≥94%) between Norwegian O145:H25 Stx2a phages and publicly available Stx2a phages from O145:H25 and O145:H28 STEC, isolated from HUS cases in the USA and a hemorrhagic diarrhea case from Japan, respectively. However, low similarity was seen when comparing the Norwegian O145:H25 Stx2a phage to Stx2a phages from STEC of other serotypes. In all the Norwegian O145:H25 STEC, we identified a second phage or remnants of a phage (a shadow phage, 61 kbp) inserted at the same integration site as the Stx2a phage. The shadow phage shared similarity with the Stx2a phage, but lacked stx2a and harbored effector genes not present in the Stx2a phage. We identified a conserved Stx2a phage among the Norwegian O145:H25 STEC that shared integration site with a shadow phage in all isolates. Both phage and shadow phage harbored several virulence-associated genes that may contribute to the increased pathogenicity of O145:H25 STEC.
Collapse
Affiliation(s)
- Silje N Ramstad
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arne M Taxt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Department of Infectious Diseases and Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørgen V Bjørnholt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lin T Brandal
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Jon Bohlin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
8
|
Hua Y, Chromek M, Frykman A, Jernberg C, Georgieva V, Hansson S, Zhang J, Marits AK, Wan C, Matussek A, Bai X. Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence 2021; 12:1296-1305. [PMID: 33939581 PMCID: PMC8096335 DOI: 10.1080/21505594.2021.1922010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli, a foodborne bacterial pathogen, has been linked to a broad spectrum of clinical outcomes ranging from asymptomatic carriage to fatal hemolytic uremic syndrome (HUS). Here, we collected clinical data and STEC strains from HUS patients from 1994 through 2018, whole-genome sequencing was performed to molecularly characterize HUS-associated STEC strains, statistical analysis was conducted to identify bacterial genetic factors associated with severe outcomes in HUS patients. O157:H7 was the most predominant serotype (57%) among 54 HUS-associated STEC strains, followed by O121:H19 (19%) and O26:H11 (7%). Notably, some non-predominant serotypes such as O59:H17 (2%) and O109:H21 (2%) also caused HUS. All O157:H7 strains with one exception belonged to clade 8. During follow-up at a median of 4 years, 41% of the patients had renal sequelae. Fifty-nine virulence genes were found to be statistically associated with severe renal sequelae, these genes encoded type II and type III secretion system effectors, chaperones, and other factors. Notably, virulence genes associated with severe clinical outcomes were significantly more prevalent in O157:H7 strains. In contrast, genes related to mild symptoms were evenly distributed across all serotypes. The whole-genome phylogeny indicated high genomic diversity among HUS-STEC strains. No distinct cluster was found between HUS and non-HUS STEC strains. The current study showed that O157:H7 remains the main cause of STEC-associated HUS, despite the rising importance of other non-O157 serotypes. Besides, O157:H7 is associated with severe renal sequelae in the follow-up, which could be a risk factor for long-term prognosis in HUS patients.
Collapse
Affiliation(s)
- Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anne Frykman
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Valya Georgieva
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sverker Hansson
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ji Zhang
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Ann Katrine Marits
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden.,Oslo University Hospital, Oslo, Norway.,Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Harrison LM, Lacher DW, Mammel MK, Leonard SR. Comparative Transcriptomics of Shiga Toxin-Producing and Commensal Escherichia coli and Cytokine Responses in Colonic Epithelial Cell Culture Infections. Front Cell Infect Microbiol 2020; 10:575630. [PMID: 33194815 PMCID: PMC7649339 DOI: 10.3389/fcimb.2020.575630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ingestion of Shiga toxin-producing Escherichia coli (STEC) can result in a range of illness severity from asymptomatic to hemorrhagic colitis and death; thus risk assessment of STEC strains for human pathogenicity is important in the area of food safety. Illness severity depends in part on the combination of virulence genes carried in the genome, which can vary between strains even of identical serotype. To better understand how core genes are regulated differently among strains and to identify possible novel STEC virulence gene candidates that could be added to the risk assessment repertoire, we used comparative transcriptomics to investigate global gene expression differences between two STEC strains associated with severe illness and a commensal E. coli strain during in vitro intestinal epithelial cell (IEC) infections. Additionally, we compared a wide array of concomitant cytokine levels produced by the IECs. The cytokine expression levels were examined for a pattern representing STEC pathogenicity; however, while one STEC strain appeared to elicit a proinflammatory response, infection by the other strain produced a pattern comparable to the commensal E. coli. This result may be explained by the significant differences in gene content and expression observed between the STEC strains. RNA-Seq analysis revealed considerable disparity in expression of genes in the arginine and tryptophan biosynthesis/import pathways between the STEC strains and the commensal E. coli strain, highlighting the important role some amino acids play in STEC colonization and survival. Contrasting differential expression patterns were observed for genes involved in respiration among the three strains suggesting that metabolic diversity is a strategy utilized to compete with resident microflora for successful colonization. Similar temporal expression results for known and putative virulence genes were observed in the STEC strains, revealing strategies used for survival prior to and after initial adherence to IECs. Additionally, three genes encoding hypothetical proteins located in mobile genetic elements were, after interrogation of a large set of E. coli genomes, determined to likely represent novel STEC virulence factors.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - David W Lacher
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Susan R Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
10
|
Pintara A, Jennison A, Rathnayake IU, Mellor G, Huygens F. Core and Accessory Genome Comparison of Australian and International Strains of O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2020; 11:566415. [PMID: 33013798 PMCID: PMC7498637 DOI: 10.3389/fmicb.2020.566415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen, and serotype O157:H7 is typically associated with severe disease. Australian STEC epidemiology differs from many other countries, as severe outbreaks and HUS cases appear to be more often associated with non-O157 serogroups. It is not known why Australian strains of O157 STEC might differ in virulence to international strains. Here we investigate the reduced virulence of Australian strains. Multiple genetic analyses were performed, including SNP-typing, to compare the core genomes of the Australian to the international isolates, and accessory genome analysis to determine any significant differences in gene presence/absence that could be associated with their phenotypic differences in virulence. The most distinct difference between the isolates was the absence of the stx2a gene in all Australian isolates, with few other notable differences observed in the core and accessory genomes of the O157 STEC isolates analyzed in this study. The presence of stx1a in most Australian isolates was another notable observation. Acquisition of stx2a seems to coincide with the emergence of highly pathogenic STEC. Due to the lack of other notable genotypic differences observed between Australian and international isolates characterized as highly pathogenic, this may be further evidence that the absence of stx2a in Australian O157 STEC could be a significant characteristic defining its mild virulence. Further work investigating the driving force(s) behind Stx prophage loss and acquisition is needed to determine if this potential exists in Australian O157 isolates.
Collapse
Affiliation(s)
- Alexander Pintara
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amy Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Irani U. Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Glen Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield, QLD, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Jinnerot T, Tomaselli ATP, Johannessen GS, Söderlund R, Urdahl AM, Aspán A, Sekse C. The prevalence and genomic context of Shiga toxin 2a genes in E. coli found in cattle. PLoS One 2020; 15:e0232305. [PMID: 32785271 PMCID: PMC7423110 DOI: 10.1371/journal.pone.0232305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) that cause severe disease predominantly carry the toxin gene variant stx2a. However, the role of Shiga toxin in the ruminant reservoirs of this zoonotic pathogen is poorly understood and strains that cause severe disease in humans (HUSEC) likely constitute a small and atypical subset of the overall STEC flora. The aim of this study was to investigate the presence of stx2a in samples from cattle and to isolate and characterize stx2a-positive E. coli. In nationwide surveys in Sweden and Norway samples were collected from individual cattle or from cattle herds, respectively. Samples were tested for Shiga toxin genes by real-time PCR and amplicon sequencing and stx2a-positive isolates were whole genome sequenced. Among faecal samples from Sweden, stx1 was detected in 37%, stx2 in 53% and stx2a in 5% and in skin (ear) samples in 64%, 79% and 2% respectively. In Norway, 79% of the herds were positive for stx1, 93% for stx2 and 17% for stx2a. Based on amplicon sequencing the most common stx2 types in samples from Swedish cattle were stx2a and stx2d. Multilocus sequence typing (MLST) of 39 stx2a-positive isolates collected from both countries revealed substantial diversity with 19 different sequence types. Only a few classical LEE-positive strains similar to HUSEC were found among the stx2a-positive isolates, notably a single O121:H19 and an O26:H11. Lineages known to include LEE-negative HUSEC were also recovered including, such as O113:H21 (sequence type ST-223), O130:H11 (ST-297), and O101:H33 (ST-330). We conclude that E. coli encoding stx2a in cattle are ranging from strains similar to HUSEC to unknown STEC variants. Comparison of isolates from human HUS cases to related STEC from the ruminant reservoirs can help identify combinations of virulence attributes necessary to cause HUS, as well as provide a better understanding of the routes of infection for rare and emerging pathogenic STEC.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Aspán
- National Veterinary Institute, Uppsala, Sweden
| | | |
Collapse
|
12
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
13
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Assessing the genomic relatedness and evolutionary rates of persistent verotoxigenic Escherichia coli serotypes within a closed beef herd in Canada. Microb Genom 2020; 6. [PMID: 32496181 PMCID: PMC7371104 DOI: 10.1099/mgen.0.000376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher’s exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | | | - Chad R Laing
- National Centre for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
14
|
Is Shiga Toxin-Producing Escherichia coli O45 No Longer a Food Safety Threat? The Danger is Still Out There. Microorganisms 2020; 8:microorganisms8050782. [PMID: 32455956 PMCID: PMC7285328 DOI: 10.3390/microorganisms8050782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
Many Shiga toxin-producing Escherichia coli (STEC) strains, including the serogroups of O157 and most of the top six non-O157 serotypes, are frequently associated with foodborne outbreaks. Therefore, they have been extensively studied using next-generation sequencing technology. However, related information regarding STEC O45 strains is scarce. In this study, three environmental E. coli O45:H16 strains (RM11911, RM13745, and RM13752) and one clinical E. coli O45:H2 strain (SJ7) were sequenced and used to characterize virulence factors using two reference E. coli O45:H2 strains of clinical origin. Subsequently, whole-genome-based phylogenetic analysis was conducted for the six STEC O45 strains and nine other reference STEC genomes, in order to evaluate their evolutionary relationship. The results show that one locus of enterocyte effacement pathogenicity island was found in all three STEC O45:H2 strains, but not in the STEC O45:H16 strains. Additionally, E. coli O45:H2 strains were evolutionarily close to E. coli O103:H2 strains, sharing high homology in terms of virulence factors, such as Stx prophages, but were distinct from E. coli O45:H16 strains. The findings show that E. coli O45:H2 may be as virulent as E. coli O103:H2, which is frequently associated with severe illness and can provide genomic evidence to facilitate STEC surveillance.
Collapse
|
15
|
Baba H, Kanamori H, Kudo H, Kuroki Y, Higashi S, Oka K, Takahashi M, Yoshida M, Oshima K, Aoyagi T, Tokuda K, Kaku M. Genomic analysis of Shiga toxin-producing Escherichia coli from patients and asymptomatic food handlers in Japan. PLoS One 2019; 14:e0225340. [PMID: 31743366 PMCID: PMC6863542 DOI: 10.1371/journal.pone.0225340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe gastrointestinal disease and colonization among food handlers. In Japan, STEC infection is a notifiable disease, and food handlers are required to undergo routine stool examination for STEC. However, the molecular epidemiology of STEC is not entirely known. We investigated the genomic characteristics of STEC from patients and asymptomatic food handlers in Miyagi Prefecture, Japan. Whole-genome sequencing (WGS) was performed on 65 STEC isolates obtained from 38 patients and 27 food handlers by public health surveillance in Miyagi Prefecture between April 2016 and March 2017. Isolates of O157:H7 ST11 and O26:H11 ST21 were predominant (n = 19, 29%, respectively). Non-O157 isolates accounted for 69% (n = 45) of all isolates. Among 48 isolates with serotypes found in the patients (serotype O157:H7 and 5 non-O157 serotypes, O26:H11, O103:H2, O103:H8, O121:H19 and O145:H28), adhesion genes eae, tir, and espB, and type III secretion system genes espA, espJ, nleA, nleB, and nleC were detected in 41 to 47 isolates (85–98%), whereas isolates with other serotypes found only in food handlers were negative for all of these genes. Non-O157 isolates were especially prevalent among patients younger than 5 years old. Shiga-toxin gene stx1a, adhesion gene efa1, secretion system genes espF and cif, and fimbrial gene lpfA were significantly more frequent among non-O157 isolates from patients than among O157 isolates from patients. The most prevalent resistance genes among our STEC isolates were aminoglycoside resistance genes, followed by sulfamethoxazole/trimethoprim resistance genes. WGS revealed that 20 isolates were divided into 9 indistinguishable core genomes (<5 SNPs), demonstrating clonal expansion of these STEC strains in our region, including an O26:H11 strain with stx1a+stx2a. Non-O157 STEC with multiple virulence genes were prevalent among both patients and food handlers in our region of Japan, highlighting the importance of monitoring the genomic characteristics of STEC.
Collapse
Affiliation(s)
- Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hayami Kudo
- Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | | | - Seiya Higashi
- Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Kentaro Oka
- Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | | | - Makiko Yoshida
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Oshima
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tetsuji Aoyagi
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koichi Tokuda
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mitsuo Kaku
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Mapping of control measures to prevent secondary transmission of STEC infections in Europe during 2016 and revision of the national guidelines in Norway. Epidemiol Infect 2019; 147:e267. [PMID: 31496450 PMCID: PMC6805742 DOI: 10.1017/s0950268819001614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
In 2016, we reviewed preventive control measures for secondary transmission of Shiga-toxin producing Escherichia coli (STEC) in humans in European Union (EU)/European Free Trade Association (EEA) countries to inform the revision of the respective Norwegian guidelines which at that time did not accommodate for the varying pathogenic potential of STEC. We interviewed public health experts from EU/EEA institutes, using a semi-structured questionnaire. We revised the Norwegian guidelines using a risk-based approach informed by the new scientific evidence on risk factors for HUS and the survey results. All 13 (42%) participating countries tested STEC for Shiga toxin (stx) 1, stx2 and eae (encoding intimin). Five countries differentiated their control measures based on clinical and/or microbiological case characteristics, but only Denmark based their measures on routinely conducted stx subtyping. In all countries, but Norway, clearance was obtained with ⩽3 negative STEC specimens. After this review, Norway revised the STEC guidelines and recommended only follow-up of cases infected with high-virulent STEC (determined by microbiological and clinical information); clearance is obtained with three negative specimens. Implementation of the revised Norwegian guidelines will lead to a decrease of STEC cases needing follow-up and clearance, and will reduce the burden of unnecessary public health measures and the socioeconomic impact on cases. This review of guidelines could assist other countries in adapting their STEC control measures.
Collapse
|
17
|
The importance of integrating genetic strain information for managing cases of Shiga toxin-producing E. coli infection. Epidemiol Infect 2019; 147:e264. [PMID: 31496452 PMCID: PMC6805796 DOI: 10.1017/s0950268819001602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
|
18
|
Shiga toxin-producing Escherichia coli in British Columbia, 2011-2017: Analysis to inform exclusion guidelines. ACTA ACUST UNITED AC 2019; 45:238-243. [PMID: 31556405 DOI: 10.14745/ccdr.v45i09a03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) can cause severe illness including bloody diarrhea and hemolytic-uremic syndrome (HUS) through the production of Shiga toxins 1 (Stx1) and 2 (Stx2). E. coli O157:H7 was the most common serotype detected in the 1980s to 1990s, but improvements in laboratory methods have led to increased detection of non-O157 STEC. Non-O157 STEC producing only Stx1 tend to cause milder clinical illness. Exclusion guidelines restrict return to high-risk work or settings for STEC cases, but most do not differentiate between STEC serogroups and Stx type. Objective To analyze British Columbia (BC) laboratory and surveillance data to inform the BC STEC exclusion guideline. Methods For all STEC cases reported in BC in 2011-2017, laboratory and epidemiological data were obtained through provincial laboratory and reportable disease electronic systems, respectively. Incidence was measured for all STEC combined as well as by serogroup. Associations were measured between serogroups, Stx types and clinical outcomes. Results Over the seven year period, 984 cases of STEC were reported. A decrease in O157 incidence was observed, while non-O157 rates increased. The O157 serogroup was significantly associated with Stx2. Significant associations were observed between Stx2 and bloody diarrhea, hospitalization and HUS. Conclusion The epidemiology of STEC has changed in BC as laboratories increasingly distinguish between O157 and non-O157 cases and identify Stx type. It appears that non-O157 cases with Stx1 are less severe than O157 cases with Stx2. The BC STEC exclusion guidelines were updated as a result of this analysis.
Collapse
|
19
|
Branger C, Ledda A, Billard-Pomares T, Doublet B, Barbe V, Roche D, Médigue C, Arlet G, Denamur E. Specialization of small non-conjugative plasmids in Escherichia coli according to their family types. Microb Genom 2019; 5. [PMID: 31389782 PMCID: PMC6807383 DOI: 10.1099/mgen.0.000281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
We undertook a comprehensive comparative analysis of a collection of 30 small (<25 kb) non-conjugative Escherichia coli plasmids previously classified by the gene sharing approach into 10 families, as well as plasmids found in the National Center for Biotechnology Information (NCBI) nucleotide database sharing similar genomic sequences. In total, 302 mobilizable (belonging to 2 MOBrep and 5 MOBRNA families) and 106 non-transferable/relaxase-negative (belonging to three ReLRNA families) plasmids were explored. The most striking feature was the specialization of the plasmid family types that was not related to their transmission mode and replication system. We observed a range of host strain specificity, from narrow E. coli host specificity to broad host range specificity, including a wide spectrum of Enterobacteriaceae. We found a wide variety of toxin/antitoxin systems and colicin operons in the plasmids, whose numbers and types varied according to the plasmid family type. The plasmids carried genes conferring resistance spanning almost all of the antibiotic classes, from those to which resistance developed early, such as sulphonamides, to those for which resistance has only developed recently, such as colistin. However, the prevalence of the resistance genes varied greatly according to the family type, ranging from 0 to 100 %. The evolutionary history of the plasmids based on the family type core genes showed variability within family nucleotide divergences in the range of E. coli chromosomal housekeeping genes, indicating long-term co-evolution between plasmids and host strains. In rare cases, a low evolutionary divergence suggested the massive spread of an epidemic plasmid. Overall, the importance of these small non-conjugative plasmids in bacterial adaptation varied greatly according to the type of family they belonged to, with each plasmid family having specific hosts and genetic traits.
Collapse
Affiliation(s)
- Catherine Branger
- Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| | - Alice Ledda
- Present address: Department of Infectious Disease Epidemiology, Imperial College, London, W2 1PG, UK.,Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| | - Typhaine Billard-Pomares
- APHP, Service de Microbiologie Clinique, Hôpital Avicenne, F-93000, Bobigny, France.,Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| | - Benoît Doublet
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, F-37380 Nouzilly, France
| | - Valérie Barbe
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes (LBioMEG), CEA, Genoscope, Institut de Biologie François-Jacob, F-9100, Evry, France
| | - David Roche
- UMR8030, CNRS, CEA, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Genoscope, Institut de Biologie François-Jacob, Université Évry-Val d'Essonne, F-91000, Evry, France
| | - Claudine Médigue
- UMR8030, CNRS, CEA, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Genoscope, Institut de Biologie François-Jacob, Université Évry-Val d'Essonne, F-91000, Evry, France
| | - Guillaume Arlet
- CIMI, UMR 1135, INSERM, Faculté de Médecine Sorbonne Université, CR7, F-75013, Paris, France
| | - Erick Denamur
- APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, F-75018 Paris, France.,Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| |
Collapse
|
20
|
Stromberg ZR, Redweik GAJ, Mellata M. Detection, Prevalence, and Pathogenicity of Non-O157 Shiga Toxin-Producing Escherichia coli from Cattle Hides and Carcasses. Foodborne Pathog Dis 2019; 15:119-131. [PMID: 29638166 DOI: 10.1089/fpd.2017.2401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli (STEC) and harbor these bacteria in the intestinal tract. The prevalence, concentration, and STEC serogroup isolated in cattle varies between individuals. Hide removal at slaughter serves as a major point of carcass contamination and ultimately beef products. Certain STEC serogroups, such as O26, O45, O103, O111, O121, O145, and O157, containing the intestinal adherence factor intimin, pose a large economic burden to food producers because of testing and recalls. Human infection with STEC can cause illnesses ranging from diarrhea to hemorrhagic colitis and hemolytic uremic syndrome, and is commonly acquired through ingestion of contaminated foods, often beef products. Previously, most studies focused on O157 STEC, but there is growing recognition of the importance of non-O157 STEC serogroups. This review summarizes detection methods, prevalence, and methods for prediction of pathogenicity of non-O157 STEC from cattle hides and carcasses. A synthesis of procedures is outlined for general non-O157 STEC and targeted detection of specific STEC serogroups. Standardization of sample collection and processing procedures would allow for more robust comparisons among studies. Presence of non-O157 STEC isolated from cattle hides and carcasses and specific factors, such as point of sample collection and season, are summarized. Also, factors that might influence STEC survival on these surfaces, such as the microbial population on hides and microbial adherence genes, are raised as topics for future investigation. Finally, this review gives an overview on studies that have used genetic and cell-based methods to identify specific phenotypes of non-O157 STEC strains isolated from cattle to assess their risk to human health.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| |
Collapse
|
21
|
Risk determinants for the development of typical haemolytic uremic syndrome in Belgium and proposition of a new virulence typing algorithm for Shiga toxin-producing Escherichia coli. Epidemiol Infect 2018; 147:e6. [PMID: 30182864 DOI: 10.1017/s0950268818002546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
In Belgium, it is mandatory to report Shiga toxin-producing Escherichia coli (STEC) infections to the health inspection authorities. To facilitate the decision making regarding infection control measures, information about the risk factors for the development of the haemolytic uremic syndrome (HUS) can be helpful. We performed statistical analyses on a dataset of 411 Belgian STEC strains. Demographic and clinical patient characteristics as well as phenotypical and genotypical STEC strain characteristics were taken into account. Multivariate logistic regression models indicated that age categories ⩽5, 6-12 and ⩾75; the stx2 gene; and the eae gene were significant HUS development risk determinants. The stx2a subtype had the highest risk (OR 29.6, 95% CI 7.0-125.1), while all stx1 subtypes encompassed a significant lower risk (OR 0.3, 95% CI 0.1-0.5). Presence of the stx1 gene without stx2 encompassed a lower risk than the combined presence of stx1 and stx2, or stx2 solely. Based on these results, we propose a new virulence typing algorithm that will enable the National Reference Centre to provide the physicians and health inspection authorities with a risk classification for the development of HUS. We believe this will contribute to a more efficient STEC infection control management in Belgium.
Collapse
|
22
|
Twenty-seven years of screening for Shiga toxin-producing Escherichia coli in a university hospital. Brussels, Belgium, 1987-2014. PLoS One 2018; 13:e0199968. [PMID: 29965972 PMCID: PMC6028080 DOI: 10.1371/journal.pone.0199968] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2017] [Accepted: 06/17/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Since 1987 all fecal samples referred to the clinical microbiology laboratory of the UZ Brussel were screened for the presence of Shiga toxin-producing E. coli (STEC). In this study all STEC strains isolated over a period of 27 years (1987–2014) were reexamined to achieve deeper insight in the STEC infections in our patient population. Methods A total of 606 STEC strains from 604 patients were subjected to molecular methods for shiga toxin (stx) subtyping, detection of additional virulence genes, typing of the O-serogroups, and phylogenetic relatedness assessment of STEC O157:H7/H-. Results Since the introduction of PCR in 1991 the annual positivity rates varied between 1.1% and 2.7%. The isolation rate of STEC O157:H7/H- remained stable over the years while the isolation rate of non-O157 serotypes increased, mainly since 2011. The majority of the patients were children. Uncomplicated- and bloody diarrhea were the most prevalent gastrointestinal manifestations (respectively 51.9% and 13.6%), 4.3% of the strains were related to the hemolytic uremic syndrome (HUS), and 30.2% of the patients showed none of these symptoms. The strains were very diverse; they belonged to 72 different O-serovars and all stx subtypes except stx1d and stx2g were identified. Out of the 23 stx2f-positives one was associated with HUS and one belonged to the E. albertii species. As seen in other studies, the frequency of strains of the O157:H7/H- serotype and strains carrying stx2a, eaeA and ehxA was higher in patients with HUS. Conclusions The characteristics and trends of STEC infection seen in our patient population are similar to those noted in other countries. STEC infections in our hospital are mainly sporadic, and a substantial portion of the patients were asymptomatic carriers. Human STEC Stx2f infection was less rare than previously assumed and we report the first Belgian STEC stx2f HUS case and stx2f positive E. albertii infection.
Collapse
|
23
|
Aas CG, Drabløs F, Haugum K, Afset JE. Comparative Transcriptome Profiling Reveals a Potential Role of Type VI Secretion System and Fimbriae in Virulence of Non-O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2018; 9:1416. [PMID: 30008706 PMCID: PMC6033998 DOI: 10.3389/fmicb.2018.01416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause both sporadic infections and outbreaks of enteric disease in humans, with symptoms ranging from asymptomatic carriage to severe disease like haemolytic uremic syndrome (HUS). Bacterial virulence factors like subtypes of the Shiga toxin (Stx) and the locus of enterocyte effacement (LEE) pathogenicity island, as well as host factors like young age, are strongly associated with development of HUS. However, these factors alone do not accurately differentiate between strains that cause HUS and those that do not cause severe disease, which is important in the context of diagnosis, treatment, as well as infection control. We have used RNA sequencing to compare transcriptomes of 30 stx2a and eae positive STEC strains of non-O157 serogroups isolated from children <5 years of age. The strains were from children with HUS (HUS group, n = 15), and children with asymptomatic or mild disease (non-HUS group, n = 15), either induced with mitomycin C or non-induced, to reveal potential differences in gene expression levels between groups. When the HUS and non-HUS group were compared for differential expression of protein-encoding gene families, 399 of 6,119 gene families were differentially expressed (log2 fold change ≥ 1, FDR < 0.05) in the non-induced condition, whereas only one gene family was differentially expressed in the induced condition. Gene ontology and cluster analysis showed that several fimbrial operons, as well as a putative type VI secretion system (T6SS) were more highly expressed in the HUS group than in the non-HUS group, indicating a role of these in the virulence of STEC strains causing severe disease.
Collapse
Affiliation(s)
- Christina G Aas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan E Afset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
24
|
Shridhar PB, Patel IR, Gangiredla J, Noll LW, Shi X, Bai J, Elkins CA, Strockbine NA, Nagaraja TG. Genetic Analysis of Virulence Potential of Escherichia coli O104 Serotypes Isolated From Cattle Feces Using Whole Genome Sequencing. Front Microbiol 2018; 9:341. [PMID: 29545780 PMCID: PMC5838399 DOI: 10.3389/fmicb.2018.00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O104:H4, a Shiga toxin-producing hybrid pathotype that was implicated in a major foodborne outbreak in Germany in 2011, has not been detected in cattle. However, serotypes of O104, other than O104:H4, have been isolated from cattle feces, with O104:H7 being the most predominant. In this study, we investigated, based on whole genome sequence analyses, the virulence potential of E. coli O104 strains isolated from cattle feces, since cattle are asymptomatic carriers of E. coli O104. The genomes of ten bovine E. coli O104 strains (six O104:H7, one O104:H8, one O104:H12, and two O104:H23) and five O104:H7 isolated from human clinical cases were sequenced. Of all the bovine O104 serotypes (H7, H8, H12, and H23) that were included in the study, only E. coli O104:H7 serotype possessed Shiga toxins. Four of the six bovine O104:H7 strains and one of the five human strains carried stx1c. Three human O104 strains carried stx2, two were of subtype 2a, and one was 2d. Genomes of stx carrying bovine O104:H7 strains were larger than the stx-negative strains of O104:H7 or other serotypes. The genome sizes were proportional to the number of genes carried on the mobile genetic elements (phages, prophages, transposable elements and plasmids). Both bovine and human strains were negative for intimin and other genes associated with the type III secretory system and non-LEE encoded effectors. Plasmid-encoded virulence genes (ehxA, epeA, espP, katP) were also present in bovine and human strains. All O104 strains were negative for antimicrobial resistance genes, except one human strain. Phylogenetic analysis indicated that bovine E. coli O104 strains carrying the same flagellar antigen clustered together and STEC strains clustered separately from non-STEC strains. One of the human O104:H7 strains was phylogenetically closely related to and belonged to the same sequence type (ST-1817) as the bovine O104:H7 STEC strains. This suggests that the bovine feces could be a source of human illness caused by E. coli O104:H7 serotype. Because bovine O104:H7 strains carried virulence genes similar to human clinical strains and one of the human clinical strains was phylogenetically related to bovine strains, the serotype has the potential to be a diarrheagenic pathogen in humans.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Isha R Patel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Lance W Noll
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States.,Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Christopher A Elkins
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD, United States
| | - Nancy A Strockbine
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
25
|
Delannoy S, Mariani-Kurkdjian P, Webb HE, Bonacorsi S, Fach P. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity. Front Microbiol 2017; 8:1625. [PMID: 28932209 PMCID: PMC5592225 DOI: 10.3389/fmicb.2017.01625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2-positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2-positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2-positive and stx-negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs) separated in two distinct lineages, one of which comprises the "new French clone" (SNP-CC1) that appears genetically closely related to stx-negative attaching and effacing E. coli (AEEC) strains. Interestingly, the whole genome SNP (wgSNP) phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs) of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7-19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including stx-prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.
Collapse
Affiliation(s)
- Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| | - Patricia Mariani-Kurkdjian
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hattie E. Webb
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, United States
| | - Stephane Bonacorsi
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| |
Collapse
|
26
|
Wang L, Nakamura H, Kage-Nakadai E, Hara-Kudo Y, Nishikawa Y. Prevalence, antimicrobial resistance and multiple-locus variable-number tandem-repeat analysis profiles of diarrheagenic Escherichia coli isolated from different retail foods. Int J Food Microbiol 2017; 249:44-52. [PMID: 28292660 DOI: 10.1016/j.ijfoodmicro.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Diarrheagenic E. coli (DEC) isolates were recovered from local retail markets and the Osaka Municipal Central Wholesale Market in Japan. Retail food samples were collected for analysis in Osaka Japan from 2005 to 2008 and consisted of 32 beef, 28 pork, 20 poultry, 136 fish, 66 fruits and vegetables and 51 ready-to-eat (RTE) food samples. A total of 82 DEC strains were recovered from 64 (19%) food samples with the highest prevalence in poultry (100%, 20/20), followed by pork (54%, 15/28), beef (28%, 9/32), fruits and vegetables (12%, 8/66), fish (6.6%, 9/136) and RTE foods (5.9%, 3/51). Most of the strains belonged to E. coli possessing the enteroaggregative E. coli (EAEC) heat-stable enterotoxin 1 (EAST1) gene (EAST1EC; n=62, P<0.0001) and enteropathogenic E. coli (EPEC; n=16, P<0.01), whereas only 1 strain belonged to Shiga toxin-producing E. coli (STEC), 1 to EAEC and 2 to enterotoxigenic E. coli (ETEC) strains. Of the 82 DEC isolates, 22 O and 13H serogroups were detected, including some specific serogroups (O91, O103, O115, O119, O126, and O157) which have been associated with human diarrheal infections. Phylogenetic group A and B1 were predominant among the DEC isolates. Antimicrobial resistance to tetracycline was most common (49%), followed by nalidixic acid (28%), ampicillin (24%), sulfamethoxazole/trimethoprim (20%), and cephalothin (18%). All isolates were susceptible to aztreonam. Of the resistant strains, 44% (22/50) demonstrated resistance to >3 antimicrobial agents. Isolates resistant to >5 antimicrobials were only found in the meat samples, while isolates from the fruits and vegetables as well as RTE foods showed resistance to only 1 or 2 antimicrobial agents. Sixty one percent of EAST1EC, 56% of EPEC and all of the EAEC and ETEC were resistant to at least 1 antimicrobial agent. Multiple-locus variable-number tandem repeat analysis (MLVA) was used in this study for genotyping of DEC. The 82 isolates collected for this study showed 77 distinct MLVA profiles located among 3 branches. The Simpson's Index of Diversity (D) was 99.9% at its highest. The high diversity of these food strains would suggest their originating from a variety of sources and environments. In conclusion, retail food samples in Japan were contaminated with DEC; EAST1EC, a putative DEC, were detected at high rates in poultry, pork and beef. Isolates resistant to >3 antimicrobials were found only in raw meat and fish. Food animals may act as the reservoir for multi-resistant bacteria. Due to the finding that nearly 1/3 of EAST1EC strains were resistant to >3 antimicrobials, additional surveillance for EAST1EC should be initiated.
Collapse
Affiliation(s)
- Lili Wang
- Dalian University of Technology, School of Life Science and Biotechnology, Dalian 116024, China; Osaka City University, Graduate School of Human Life Science, Osaka 558-8585, Japan
| | - Hiromi Nakamura
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan
| | - Eriko Kage-Nakadai
- Osaka City University, Graduate School of Human Life Science, Osaka 558-8585, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yoshikazu Nishikawa
- Osaka City University, Graduate School of Human Life Science, Osaka 558-8585, Japan.
| |
Collapse
|
27
|
Molecular characterization and phylogeny of Shiga toxin–producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing. Clin Microbiol Infect 2016; 22:642.e1-9. [DOI: 10.1016/j.cmi.2016.03.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/19/2022]
|
28
|
De Rauw K, Detemmerman L, Breynaert J, Piérard D. Detection of Shiga toxin-producing and other diarrheagenic Escherichia coli by the BioFire FilmArray® Gastrointestinal Panel in human fecal samples. Eur J Clin Microbiol Infect Dis 2016; 35:1479-86. [PMID: 27259710 DOI: 10.1007/s10096-016-2688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2016] [Accepted: 05/18/2016] [Indexed: 02/04/2023]
Abstract
The purpose of this investigation was the evaluation of the performance of the BioFire FilmArray® Gastrointestinal (FA-GI) Panel, a multiplexed molecular stool screening assay, for the detection of diarrheagenic Escherichia coli (DEC), with emphasis on Shiga toxin-producing E. coli (STEC). A dilution series of 12 STEC reference strains was tested with the FA-GI Panel to assess the analytical sensitivity. A total of 389 patient samples were analyzed with the FA-GI Panel and confirmation of the detected DEC was attempted with an in-house culture-based polymerase chain reaction (PCR) method. All Shiga toxin genes, except the one encoding Stx2f, were detected in bacterial dilutions ranging from 10(4) to 10(2) colony-forming units (CFU)/ml. eae + stx2f + STEC was misclassified as enteropathogenic E. coli (EPEC). Different sensitivities for various gene targets present in one isolate led to differing identifications depending on the concentration. Using the in-house method as a reference, the FA-GI Panel had a sensitivity of 90.6 % [confidence interval (CI) 75.0 %-98.0 %] and a specificity of 97.2 % (CI 94.9 %-98.6 %) for STEC detection in feces. At least one DEC was reported in 35.5 % (171/389) of the patient specimens, with EPEC being the most prevalent (n = 71). Only 59.7 % of the detected DEC could be confirmed, presumably because the comparator method was not applied directly on feces. The FA-GI Panel could not detect the stx2f subtype, misclassified certain pathogens, and the high detection rate of EPEC needs further investigation. Nevertheless, we believe that this sensitive and convenient system will prove to be an invaluable tool for the rapid diagnosis of most DEC infections, but culturing of the detected microorganisms should always be attempted.
Collapse
Affiliation(s)
- K De Rauw
- Department of Microbiology, National Reference Centre for STEC/VTEC, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - L Detemmerman
- Department of Microbiology, National Reference Centre for STEC/VTEC, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090, Brussels, Belgium.,LaCAR MDX Technologies, Liège, Belgium
| | - J Breynaert
- Department of Microbiology, National Reference Centre for STEC/VTEC, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - D Piérard
- Department of Microbiology, National Reference Centre for STEC/VTEC, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090, Brussels, Belgium
| |
Collapse
|
29
|
Tóth I, Sváb D, Bálint B, Brown-Jaque M, Maróti G. Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei. INFECTION GENETICS AND EVOLUTION 2015; 37:150-7. [PMID: 26616675 DOI: 10.1016/j.meegid.2015.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/28/2015] [Revised: 11/13/2015] [Accepted: 11/21/2015] [Indexed: 11/26/2022]
Abstract
Here we report the first complete nucleotide sequence of a Shiga toxin (Stx) converting phage from a Shigella sonnei clinical isolate that harbors stx1 operon, first identified in the chromosome of Shigella dysenteriae type 1. The phage named Shigella phage 75/02 Stx displayed Podoviridae morphology. It proved to be transferable to Escherichia coli K-12 strains, and cytotoxicity of the lysogenized strains was demonstrated in Vero cell cultures. Genomic analysis revealed that the prophage genome is circular and its size is 60,875 nt that corresponds to 76 ORFs. The genome of Shigella phage 75/02 Stx shows a great degree of mosaic structure and its architecture is related to lambdoid phages. All the deduced proteins, including the 37 hypothetical proteins showed significant homologies to Stx phage proteins present in databases. The phage uniformly inserted into the ynfG oxidoreductase gene framed by phage integrase and antirepressor genes in parental S. sonnei and in the three lysogenized K-12 strains C600, DH5α and MG1655. The Stx1 prophage proved to be stable in its bacterial hosts and remained inducible.
Collapse
Affiliation(s)
- István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | - Gergely Maróti
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|