1
|
Monedeiro F, Ehall B, Tiffner K, Eberl A, Svehlikova E, Prietl B, Pfeifer V, Senekowitsch J, Remm A, Rebane A, Magnes C, Pieber T, Sinner F, Birngruber T. Characterization of Inflammatory Mediators and Metabolome in Interstitial Fluid Collected with Dermal Open Flow Microperfusion before and at the End of Dupilumab Treatment in Atopic Dermatitis. J Proteome Res 2024; 23:3496-3514. [PMID: 38986055 PMCID: PMC11304394 DOI: 10.1021/acs.jproteome.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Dupilumab is a monoclonal antibody approved for the treatment of atopic dermatitis (AD); however, its effects on molecular, cellular, and immunological levels remain to be elucidated. In this study, blood and dermal interstitial fluid (ISF) from nonlesional (NL) and lesional (L) skin were collected from eight patients with moderate to severe AD, before (visit 2-v2) and at the end of a 16-week treatment with dupilumab (visit 10-v10). Clinical treatment effect was demonstrated by significantly decreased AD severity scores at the end of treatment. At v10 versus v2, the percentages of CD4+ interleukin-producing cells showed a decreasing trend in ISF L and NL, unbound IL-4 levels in plasma were increased, IL-5 levels in ISF L reduced, and levels of factors involved in anti-inflammatory pathways and re-epithelization increased. At v2, ISF L showed that AD lesions might have altered amino acid pathways and lipid signaling compared to ISF NL. At v10, ISF L exhibited raised levels of long- and very-long-chain fatty acids and lipids compared to v2. Furthermore, dupilumab administration caused reduced expression of miR-155-5p and miR-378a-3p in ISF L. In conclusion, results from the present study provided novel knowledge by linking local immune and metabolic alterations to AD pathogenesis and treatment response.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Barbara Ehall
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- BioTechMed, Mozartgasse
12, Graz 8010, Austria
| | - Katrin Tiffner
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Anita Eberl
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Eva Svehlikova
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Barbara Prietl
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Verena Pfeifer
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Julia Senekowitsch
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Anu Remm
- Institute
of Biomedicine and Translational Medicine, University of Tartu, Biomeedikum, Ravila 19, Tartu 50411, Estonia
| | - Ana Rebane
- Institute
of Biomedicine and Translational Medicine, University of Tartu, Biomeedikum, Ravila 19, Tartu 50411, Estonia
| | - Christoph Magnes
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Thomas Pieber
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
- Center
for Biomarker Research in Medicine (CBmed) GmbH, Stiftingtalstrasse 5, Graz 8010, Austria
| | - Frank Sinner
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
- Division
of Endocrinology and Diabetology, Medical
University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria
| | - Thomas Birngruber
- HEALTH
− Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz 8010, Austria
| |
Collapse
|
2
|
da Silva Duarte AJ, Sanabani SS. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci 2024; 348:122713. [PMID: 38735367 DOI: 10.1016/j.lfs.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Atopic dermatitis, commonly referred to as atopic eczema, is a persistent inflammatory skin disorder that predominantly manifests in children but may endure into adulthood. Its clinical management poses challenges due to the absence of a definitive cure, and its prevalence varies across ethnicities, genders, and geographic locations. The epigenetic landscape of AD includes changes in DNA methylation, changes in histone acetylation and methylation, and regulation by non-coding RNAs. These changes affect inflammatory and immune mechanisms, and research has identified AD-specific variations in DNA methylation, particularly in the affected epidermis. Histone modifications, including acetylation, have been associated with the disruption of skin barrier function in AD, suggesting the potential therapeutic benefit of histone deacetylase inhibitors such as belinostat. Furthermore, non-coding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs), have been implicated in modulating various cellular processes central to AD pathogenesis. Therapeutic implications in AD include the potential use of DNA methylation inhibitors and histone deacetylase inhibitors to correct aberrant methylation patterns and modulate gene expression related to immune responses and skin barrier functions. Additionally, the emerging role of lncRNAs suggests the possibility of using small interfering RNAs or antisense oligonucleotides to inhibit lncRNAs and adjust their regulatory impact on gene expression. In conclusion, the importance of epigenetic elements in AD is becoming increasingly clear as studies highlight the contribution of DNA methylation, histone modifications and, control by non-coding RNAs to the onset and progression of the disease. Understanding these epigenetic changes provides valuable insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
3
|
Dessì A, Di Maria C, Pintus R, Fanos V, Bosco A. Lipidomics and Metabolomics in Infant Atopic Dermatitis: What's the Correlation with Early Nutrition? Curr Pediatr Rev 2024; 20:510-524. [PMID: 37055903 DOI: 10.2174/1573396320666230411093122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/15/2023]
Abstract
To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk. In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.
Collapse
Affiliation(s)
- Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Camilla Di Maria
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Grafanaki K, Antonatos C, Maniatis A, Petropoulou A, Vryzaki E, Vasilopoulos Y, Georgiou S, Gregoriou S. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med 2023; 12:4000. [PMID: 37373692 DOI: 10.3390/jcm12124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) or atopic eczema is an increasingly manifested inflammatory skin disorder of complex etiology which is modulated by both extrinsic and intrinsic factors. The exposome includes a person's lifetime exposures and their effects. We recently reviewed the extrinsic exposome's environmental risk factors that contribute to AD. The periods of pregnancy, infancy, and teenage years are recognized as crucial stages in the formation of AD, where the exposome leads to enduring impacts on the immune system. However, research is now focusing on the interactions between intrinsic pathways that are modulated by the extrinsic exposome, including genetic variation, epigenetic modifications, and signals, such as diet, stress, and microbiome interactions. As a result, immune dysregulation, barrier dysfunction, hormonal fluctuations, and skin microbiome dysbiosis are important factors contributing to AD development, and their in-depth understanding is crucial not only for AD treatment but also for similar inflammatory disorders.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Antonia Petropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Eleftheria Vryzaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Stamatis Gregoriou
- Department of Dermatology-Venereology, Faculty of Medicine, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
5
|
Dopytalska K, Czaplicka A, Szymańska E, Walecka I. The Essential Role of microRNAs in Inflammatory and Autoimmune Skin Diseases-A Review. Int J Mol Sci 2023; 24:ijms24119130. [PMID: 37298095 DOI: 10.3390/ijms24119130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The etiopathogenesis of autoimmune skin diseases is complex and still not fully understood. The role of epigenetic factors is emphasized in the development of such diseases. MicroRNAs (miRNAs), a group of non-coding RNAs (ncRNAs-non-coding RNAs), are one of the important post-transcriptional epigenetic factors. miRNAs have a significant role in the regulation of the immune response by participating in the process of the differentiation and activation of B and T lymphocytes, macrophages, and dendritic cells. Recent advances in research on epigenetic factors have provided new insights into the pathogenesis and potential diagnostic and therapeutic targets of many pathologies. Numerous studies revealed a change in the expression of some microRNAs in inflammatory skin disorders, and the regulation of miRNA expression is a promising therapeutic goal. This review presents the state of the art regarding changes in the expression and role of miRNAs in inflammatory and autoimmune skin diseases, including psoriasis, atopic dermatitis, vitiligo, lichen planus, hidradenitis suppurativa, and autoimmune blistering diseases.
Collapse
Affiliation(s)
- Klaudia Dopytalska
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Anna Czaplicka
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Elżbieta Szymańska
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Irena Walecka
- Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
- Department of Dermatology, The National Institute of Medicine of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
6
|
Brancaccio R, Murdaca G, Casella R, Loverre T, Bonzano L, Nettis E, Gangemi S. miRNAs' Cross-Involvement in Skin Allergies: A New Horizon for the Pathogenesis, Diagnosis and Therapy of Atopic Dermatitis, Allergic Contact Dermatitis and Chronic Spontaneous Urticaria. Biomedicines 2023; 11:1266. [PMID: 37238937 PMCID: PMC10216116 DOI: 10.3390/biomedicines11051266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Skin inflammation is a common underlying feature of atopic dermatitis, allergic contact dermatitis and chronic spontaneous urticaria. The pathogenetic mechanisms have not been fully elucidated. The purpose of this study was to examine whether miRNA, by regulating inflammatory mechanisms through the modulation of innate and adaptive immune responses, could play a major role in the pathogenesis of these skin conditions. We conducted a narrative review using the Pubmed and Embase scientific databases and search engines to find the most relevant miRNAs related to the pathophysiology, severity and prognosis of skin conditions. The studies show that miRNAs are involved in the pathogenesis and regulation of atopic dermatitis and can reveal an atopic predisposition or indicate disease severity. In chronic spontaneous urticaria, different miRNAs which are over-expressed during urticaria exacerbations not only play a role in the possible response to therapy or remission, but also serve as a marker of chronic autoimmune urticaria and indicate associations with other autoimmune diseases. In allergic contact dermatitis, miRNAs are upregulated in inflammatory lesions and expressed during the sensitization phase of allergic response. Several miRNAs have been identified as potential biomarkers of these chronic skin conditions, but they are also possible therapeutic targets.
Collapse
Affiliation(s)
- Raffaele Brancaccio
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio nell’Emilia, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70124 Bari, Italy
| | - Teresa Loverre
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70124 Bari, Italy
| | - Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio nell’Emilia, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70124 Bari, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Division of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
The Potential Role of Serum and Exhaled Breath Condensate miRNAs in Diagnosis and Predicting Exacerbations in Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030763. [PMID: 36979742 PMCID: PMC10045893 DOI: 10.3390/biomedicines11030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Asthma is the most common chronic disease of the respiratory system in children and the number of new cases is constantly increasing. It is characterized by dyspnea, wheezing, tightness in the chest, or coughing. Due to diagnostic difficulties, disease monitoring, and the selection of safe and effective drugs, it has been shown that among the youngest patients, miRNAs fulfilling the above roles can be successfully used in common clinical practice. These biomolecules, by regulating the expression of the body’s genes, influence various biological processes underlying the pathogenesis of asthma, such as the inflammatory process, remodeling, and intensification of airway obstruction. They can be detected in blood serum and in exhaled breath condensate (EBC). Among children, common factors responsible for the onset or exacerbation of asthma, such as infections, allergens, air pollution, or tobacco smoke present in the home environment, cause a change the concentration of miRNAs in the body. This is related to their significant impact on the modulation of the disease process. In the following paper, we review the latest knowledge on miRNAs and their use, especially as diagnostic markers in assessing asthma exacerbation, with particular emphasis on the pediatric population.
Collapse
|
8
|
Grueso-Navarro E, Navarro P, Laserna-Mendieta EJ, Lucendo AJ, Arias-González L. Blood-Based Biomarkers for Eosinophilic Esophagitis and Concomitant Atopic Diseases: A Look into the Potential of Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24043669. [PMID: 36835081 PMCID: PMC9967575 DOI: 10.3390/ijms24043669] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic, Th2-inflammatory disease of the esophagus that can severely affect food intake. Currently, diagnosis and assessing response to treatment of EoE is highly invasive and requires endoscopy with esophageal biopsies. Finding non-invasive and accurate biomarkers is important for improving patient well-being. Unfortunately, EoE is usually accompanied by other atopies, which make it difficult to identify specific biomarkers. Providing an update of circulating EoE biomarkers and concomitant atopies is therefore timely. This review summarizes the current knowledge in EoE blood biomarkers and two of its most common comorbidities, bronchial asthma (BA) and atopic dermatitis (AD), focusing on dysregulated proteins, metabolites, and RNAs. It also revises the current knowledge on extracellular vesicles (EVs) as non-invasive biomarkers for BA and AD, and concludes with the potential use of EVs as biomarkers in EoE.
Collapse
Affiliation(s)
- Elena Grueso-Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, 13700 Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
- Correspondence: (E.G.-N.); (A.J.L.)
| | - Pilar Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, 13700 Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| | - Emilio J. Laserna-Mendieta
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, 13700 Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
- Laboratory Medicine Department, Hospital Universitario de La Princesa, 28006 Madrid, Spain
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alfredo J. Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, 13700 Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Correspondence: (E.G.-N.); (A.J.L.)
| | - Laura Arias-González
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, 13700 Ciudad Real, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28006 Madrid, Spain
| |
Collapse
|
9
|
Carreras-Badosa G, Maslovskaja J, Vaher H, Pajusaar L, Annilo T, Lättekivi F, Hübenthal M, Rodriguez E, Weidinger S, Kingo K, Rebane A. miRNA expression profiles of the perilesional skin of atopic dermatitis and psoriasis patients are highly similar. Sci Rep 2022; 12:22645. [PMID: 36587063 PMCID: PMC9805436 DOI: 10.1038/s41598-022-27235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis vulgaris (PV) are chronic inflammatory skin diseases with heterogeneous molecular backgrounds. MicroRNAs (miRNAs) contribute to either development or regulation of many immune system related diseases. Only few miRNA profiling studies are available for AD and no comparisons between AD and PV skin miRNA profiles have been performed recently. We conducted a miRNA profiling analysis of skin, as well as serum, from adult AD and PV patients and control individuals. 130 miRNAs were differentially expressed in AD skin, of which 77 were common differentially expressed in AD and PV. No differentially expressed miRNAs were detected in serum. Pathway analyses revealed differentially expressed miRNAs to potentially target immune-system related pathways, including TNF-α, IL-2/STAT4 and IL-6/JAK/STAT3. Additional genetic analysis of published AD GWAS dataset detected association of several target genes of differentially expressed miRNAs in skin. Moreover, miR-28-5p, miR-31-5p, miR-378a-3p and miR-203a were validated as upregulated in the skin of AD and PV patients. All validated miRNAs were reliable predictive markers for AD or PV. In conclusion, miRNA expression pattern in the skin of adult AD patients is highly similar to that of PV with multiple differentially expressed miRNAs potentially involved in the regulation of immune responses in AD and PV.
Collapse
Affiliation(s)
- Gemma Carreras-Badosa
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
- Endocrinology, Girona Biomedical Research Institute, Girona, Spain
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Laura Pajusaar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Tarmo Annilo
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Freddy Lättekivi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Matthias Hübenthal
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia.
| |
Collapse
|
10
|
Kim H, Yun JW, Baek G, Kim S, Jue MS. Differential microRNA profiles in elderly males with seborrheic dermatitis. Sci Rep 2022; 12:21241. [PMID: 36481792 PMCID: PMC9732001 DOI: 10.1038/s41598-022-24383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Seborrheic dermatitis (SD) is one of the most common skin diseases characterized by inflammatory symptoms and cell proliferation, which has increased incidence in patients older than 50 years. Although the roles of microRNAs (miRNAs) have been investigated in several diseases, miRNA profiles of patients with SD remain unknown. This study aimed to identify differentially expressed miRNAs (DEMs) in lesions of elderly male patients with SD. We used a microarray-based approach to identify DEMs in lesions compared to those in non-lesions of patients with SD. Furthermore, Gene Ontology and pathway enrichment analysis were performed using bioinformatics tools to elucidate the functional significance of the target mRNAs of DEMs in lesions of patients with SD. Expression levels of two miRNAs-hsa-miR-6831-5p and hsa-miR-7107-5p-were downregulated, whereas those of six miRNAs-hsa-miR-20a-5p, hsa-miR-191-5p, hsa-miR-127-3p, hsa-miR-106b-5p, hsa-miR-342-3p, and hsa-miR-6824-5p-were upregulated. Functions of the SD-related miRNAs were predicted to be significantly associated with typical dermatological pathogenesis, such as cell proliferation, cell cycle, apoptosis, and immune regulation. In summary, SD alters the miRNA profile, and target mRNAs of the DEMs are related to immune responses and cell proliferation, which are the two main processes in SD pathogenesis.
Collapse
Affiliation(s)
- Hyejun Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Center for RNA Research, Institute for Basic Science, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Korea
| | - Jae Won Yun
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, 05368, Korea
| | - Gayun Baek
- Department of Dermatology, Veterans Health Service Medical Center, Seoul, 05368, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Korea.
| | - Mihn-Sook Jue
- Department of Dermatology, Hanyang University Hospital, 222-1 Wangsimniro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
11
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
12
|
Yadav K, Singh D, Singh MR, Minz S, Sahu KK, Kaurav M, Pradhan M. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Specjalski K, Maciejewska A, Romantowski J, Pawłowski R, Jassem E, Niedoszytko M. miRNA profiles change during grass pollen immunotherapy irrespective of clinical outcome. Immunotherapy 2022; 14:433-444. [DOI: 10.2217/imt-2021-0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Subcutaneous immunotherapy (SCIT) is widely used in the treatment of allergic rhinitis (AR). This study aimed to determine the expression of 48 miRNAs in patients with AR undergoing grass pollen SCIT and investigate relations with clinical outcomes. Methodology: Expression of selected miRNAs was determined using RT-PCR in the full blood of 16 patients with AR and seven healthy controls. Results: miR-136, miR-208 and miR-190 were upregulated in the AR group. After 6 months of SCIT, significant downregulation of some proinflammatory miRNAs and upregulation of several miRNAs regulating Th1/Th2 balance were found. No differences were found between good and poor responders. Conclusion: miRNAs may play a regulatory role in SCIT, leading to tolerance induction.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Agnieszka Maciejewska
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, Gdansk, 80-208, Poland
| | - Jan Romantowski
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Ryszard Pawłowski
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, Gdansk, 80-208, Poland
| | - Ewa Jassem
- Department of Pneumonology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| |
Collapse
|
14
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Mai ZM, Byrne SN, Little MP, Sargen MR, Cahoon EK. Solar UVR and Variations in Systemic Immune and Inflammation Markers. JID INNOVATIONS 2021; 1:100055. [PMID: 34909751 PMCID: PMC8659735 DOI: 10.1016/j.xjidi.2021.100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The characterization of the effects of solar UVR on a broad set of circulating markers in systemic immunity and inflammation may provide insight into the mechanisms responsible for the UVR associations observed for several benign and malignant diseases. We examined the associations between exposure to solar UVR and circulating levels of 78 markers among 1,819 individuals aged 55–74 years who participated in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial using multiplex assays. Solar UVR was derived by linking the geocoded locations of 10 screening centers across the continental United States and the date of blood draw to the National Solar Radiation Database from 1993 to 2005. We assessed associations between ambient solar UVR and dichotomized marker levels using adjusted weighted logistic regression models and applied a 5% false discovery rate criterion to P-values. UVR exposure was associated (P < 0.05) with 9 of the 78 markers. CCL27, CCL4, FGF2, GM-CSF, IFN-γ, soluble IL4R, IL-7, and IL-11 levels were lower with increasing UVR tertile, with adjusted ORs ranging from 0.66 to 0.80, and the significant association for CCL27 withstood multiple comparison correction. In contrast, CRP levels were elevated with increasing UVR. Solar UVR was associated with alterations in systemic immune and inflammation marker levels.
Collapse
Affiliation(s)
- Zhi-Ming Mai
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Michael R Sargen
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Wu J, Fang Z, Liu T, Hu W, Wu Y, Li S. Maximizing the Utility of Transcriptomics Data in Inflammatory Skin Diseases. Front Immunol 2021; 12:761890. [PMID: 34777377 PMCID: PMC8586455 DOI: 10.3389/fimmu.2021.761890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory skin diseases are induced by disorders of the host defense system of the skin, which is composed of a barrier, innate and acquired immunity, as well as the cutaneous microbiome. These disorders are characterized by recurrent cutaneous lesions and intense itch, which seriously affecting life quality of people across all ages and ethnicities. To elucidate molecular factors for typical inflammatory skin diseases (such as psoriasis and atopic dermatitis), transcriptomic profiling assays have been largely performed. Additionally, single-cell RNA sequencing (scRNA-seq) as well as spatial transcriptomic profiling have revealed multiple potential translational targets and offered guides to improve diagnosis and treatment strategies for inflammatory skin diseases. High-throughput transcriptomics data has shown unprecedented power to disclose the complex pathophysiology of inflammatory skin diseases. Here, we will summarize discoveries from transcriptomics data and discuss how to maximize the transcriptomics data to propel the development of diagnostic biomarkers and therapeutic targets in inflammatory skin diseases.
Collapse
Affiliation(s)
- Jingni Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiao Fang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Liu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Hu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Kaur G, Ramirez A, Xie C, Clark D, Dong C, Maki C, Ramos T, Izadyar F, Najera SOL, Harb J, Hao J. A double-blinded placebo-controlled evaluation of adipose-derived mesenchymal stem cells in treatment of canine atopic dermatitis. Vet Res Commun 2021; 46:251-260. [PMID: 34713306 DOI: 10.1007/s11259-021-09853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/17/2021] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a new therapy for various immune-mediated inflammatory diseases. In this study we perform the first double-blinded, placebo-controlled evaluation of the efficacy of adipose-derived allogenic canine MSCs for the treatment of canine atopic dermatitis (cAD). Enrolled canine patients were randomly divided into placebo (PBS saline), low-dose (5 × 105 cells/kg), and high-dose (5 × 106 cells/kg) treatment groups. Each patient received three subcutaneous MSCs treatments or PBS saline at four-week intervals with injections at five sites. Patients were monitored by physical exams, pruritus visual analog scales (PVAS) signed by the primary caretaker, canine atopic dermatitis extent and severity index-4 (CADESI-4) scores by two veterinarians, and complete blood count and serum chemistry analysis along with laboratory analysis for potential biomarkers. Patients were kept off any immune-modulating drugs during the study period, and oral antibiotics and topicals were used for managing pruritus and secondary infections. The PVAS scores and the serum miR-483 levels were significantly lower in the high dose group compared to the placebo group at day90 post first-treatment. The CADESI-4 scores of the high dose group also showed downward trends. No severe adverse effects were observed in any patient in this study. The high dose MSC treatment is efficacious in alleviating the clinical signs of cAD until 30 days after the last subcutaneous administration of MSCs, and miRNA-483 may be a reliable prognostic biomarker for cAD. The MSCs efficacy and potential biomarkers should be further explored by a larger scale clinical trial.
Collapse
Affiliation(s)
- Gagandeep Kaur
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA.
| | - Ana Ramirez
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Chen Xie
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - David Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Charli Dong
- Animal Dermatology Clinic, Pasadena, CA, USA
| | | | | | | | | | - Jerry Harb
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA. .,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
18
|
Kumar S, Ashraf MU, Kumar A, Bae YS. Therapeutic Potential of microRNA Against Th2-associated Immune Disorders. Curr Top Med Chem 2021; 21:753-766. [PMID: 33655864 DOI: 10.2174/1568026621666210303150235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are short ~18-22 nucleotide, single-stranded, non-coding RNA molecules playing a crucial role in regulating diverse biological processes and are frequently dysregulated during disease pathogenesis. Thus, targeting miRNA could be a potential candidate for therapeutic invention. This systemic review aims to summarize our current understanding regarding the role of miRNAs associated with Th2-mediated immune disorders and strategies for therapeutic drug development and current clinical trials.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Anil Kumar
- Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurugram-122413, India
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| |
Collapse
|
19
|
Baumann R, Untersmayr E, Zissler UM, Eyerich S, Adcock IM, Brockow K, Biedermann T, Ollert M, Chaker AM, Pfaar O, Garn H, Thwaites RS, Togias A, Kowalski ML, Hansel TT, Jakwerth CA, Schmidt‐Weber CB. Noninvasive and minimally invasive techniques for the diagnosis and management of allergic diseases. Allergy 2021; 76:1010-1023. [PMID: 33128851 DOI: 10.1111/all.14645] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Allergic diseases of the (upper and lower) airways, the skin and the gastrointestinal tract, are on the rise, resulting in impaired quality of life, decreased productivity, and increased healthcare costs. As allergic diseases are mostly tissue-specific, local sampling methods for respective biomarkers offer the potential for increased sensitivity and specificity. Additionally, local sampling using noninvasive or minimally invasive methods can be cost-effective and well tolerated, which may even be suitable for primary or home care sampling. Non- or minimally invasive local sampling and diagnostics may enable a more thorough endotyping, may help to avoid under- or overdiagnosis, and may provide the possibility to approach precision prevention, due to early diagnosis of these local diseases even before they get systemically manifested and detectable. At the same time, dried blood samples may help to facilitate minimal-invasive primary or home care sampling for classical systemic diagnostic approaches. This EAACI position paper contains a thorough review of the various technologies in allergy diagnosis available on the market, which analytes or biomarkers are employed, and which samples or matrices can be used. Based on this assessment, EAACI position is to drive these developments to efficiently identify allergy and possibly later also viral epidemics and take advantage of comprehensive knowledge to initiate preventions and treatments.
Collapse
Affiliation(s)
- Ralf Baumann
- Medical Faculty Institute for Molecular Medicine Medical School Hamburg (MSH) – Medical University Hamburg Germany
- RWTH Aachen University Hospital Institute for Occupational, Social and Environmental Medicine Aachen Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein School of Medicine Technische Universität München Munich Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein School of Medicine Technische Universität München Munich Germany
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health (LIH) Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Center Odense Research Centre for Anaphylaxis (ORCA) University of Southern Denmark Odense Denmark
| | - Adam M. Chaker
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
- Department of Otolaryngology Allergy Section Klinikum Rechts der Isar Technical University of Munich Munich Germany
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Holger Garn
- Biochemical Pharmacological Center (BPC) ‐ Molecular Diagnostics, Translational Inflammation Research Division & Core Facility for Single Cell Multiomics Philipps University of Marburg ‐ Medical Faculty Member of the German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC) Marburg Germany
| | - Ryan S. Thwaites
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Alkis Togias
- Division of Allergy, Immunology and Transplantation National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda MD USA
| | - Marek L. Kowalski
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| | - Trevor T. Hansel
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Constanze A. Jakwerth
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| |
Collapse
|
20
|
Polak M. Early life regulation of inflammation in atopic dermatitis by microRNA. Br J Dermatol 2021; 184:391-392. [PMID: 32951210 PMCID: PMC11497238 DOI: 10.1111/bjd.19475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/15/2023]
Abstract
Linked Article: Nousbeck et al. Br J Dermatol 2021; 184 :514–523 .
Collapse
Affiliation(s)
- M.E. Polak
- Clinical and Experimental SciencesSir Henry Wellcome LaboratoriesFaculty of MedicineUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
21
|
Reolid A, Muñoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Daudén E. Epigenetics in Non-tumor Immune-Mediated Skin Diseases. Mol Diagn Ther 2021; 25:137-161. [PMID: 33646564 DOI: 10.1007/s40291-020-00507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Epigenetics is the study of the mechanisms that regulate gene expression without modifying DNA sequences. Knowledge of and evidence about how epigenetics plays a causative role in the pathogenesis of many skin diseases is increasing. Since the epigenetic changes present in tumor diseases have been thoroughly reviewed, we believe that knowledge of the new epigenetic findings in non-tumor immune-mediated dermatological diseases should be of interest to the general dermatologist. Hence, the purpose of this review is to summarize the recent literature on epigenetics in most non-tumor dermatological pathologies, focusing on psoriasis. Hyper- and hypomethylation of DNA methyltransferases and methyl-DNA binding domain proteins are the most common and studied methylation mechanisms. The acetylation and methylation of histones H3 and H4 are the most frequent and well-characterized histone modifications and may be associated with disease severity parameters and serve as therapeutic response markers. Many specific microRNAs dysregulated in non-tumor dermatological disease have been reviewed. Deepening the study of how epigenetic mechanisms influence non-tumor immune-mediated dermatological diseases might help us better understand the role of interactions between the environment and the genome in the physiopathogenesis of these diseases.
Collapse
Affiliation(s)
- Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain.
| | - E Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - M C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - E Daudén
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
22
|
Shareef S, Ebrahimi SO, Reiisi S. Contribution of hsa-miR-146a and hsa-miR-223 gene variations in patients with multiple sclerosis reveals association of rs2910164 and rs1044165 with risk of multiple sclerosis susceptibility. J Investig Med 2021; 69:1015-1021. [PMID: 33478974 DOI: 10.1136/jim-2020-001539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a role in gene regulation. Due to their possible functional importance, genetic variants within miRNA genes have been recognized as candidate biomarkers. Single-nucleotide polymorphisms (SNPs) in miRNA genes can be related to the risk of different autoimmune diseases. Some of these SNPs are rs2910164 in the miR-146a and rs1044165 in the miR-223. The aim of this study was to investigate the relationship between these polymorphisms and the risk of multiple sclerosis (MS) in an Iranian population. In this case-control study, 261 patients with MS and 250 healthy controls that matched by age and geographical region were enrolled. After sampling and genomic DNA extraction, genotyping was determined by PCR-restriction fragment length polymorphism. Allelic and genotypic associations between the SNPs and MS were evaluated by the data analysis conducted by SPSS V.20. The frequencies of rs2910164 and rs1044165 SNPs were significantly different between the patients with MS and healthy controls. C and T alleles in the variants rs2910164 and rs1044165, respectively, are associated with increased risk of MS. Such association was obtained in codominant, dominant, and overdominant models for both variants (OR ~3 and OR ~1.5, respectively). Furthermore, this study determined that the C and T alleles of rs2910164 and rs1044165 are risk factors for MS in the Iranian population.
Collapse
Affiliation(s)
- Salar Shareef
- Department of Medical Laboratory Science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
23
|
Domingo S, Solé C, Moliné T, Ferrer B, Cortés-Hernández J. MicroRNAs in Several Cutaneous Autoimmune Diseases: Psoriasis, Cutaneous Lupus Erythematosus and Atopic Dermatitis. Cells 2020; 9:cells9122656. [PMID: 33321931 PMCID: PMC7763020 DOI: 10.3390/cells9122656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that regulate the gene expression at a post-transcriptional level and participate in maintaining the correct cell homeostasis and functioning. Different specific profiles have been identified in lesional skin from autoimmune cutaneous diseases, and their deregulation cause aberrant control of biological pathways, contributing to pathogenic conditions. Detailed knowledge of microRNA-affected pathways is of crucial importance for understating their role in skin autoimmune diseases. They may be promising therapeutic targets with novel clinical implications. They are not only present in skin tissue, but they have also been found in other biological fluids, such as serum, plasma and urine from patients, and therefore, they are potential biomarkers for the diagnosis, prognosis and response to treatment. In this review, we discuss the current understanding of the role of described miRNAs in several cutaneous autoimmune diseases: psoriasis (Ps, 33 miRNAs), cutaneous lupus erythematosus (CLE, 2 miRNAs) and atopic dermatitis (AD, 8 miRNAs). We highlight their role as crucial elements implicated in disease pathogenesis and their applicability as biomarkers and as a novel therapeutic approach in the management of skin inflammatory diseases.
Collapse
Affiliation(s)
- Sandra Domingo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
| | - Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
- Correspondence: ; Tel.: +34-9-3489-4045
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Berta Ferrer
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
| |
Collapse
|
24
|
Nousbeck J, McAleer M, Hurault G, Kenny E, Harte K, Kezic S, Tanaka R, Irvine A. MicroRNA analysis of childhood atopic dermatitis reveals a role for miR‐451a*. Br J Dermatol 2020; 184:514-523. [DOI: 10.1111/bjd.19254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Affiliation(s)
- J. Nousbeck
- National Children’s Research Centre Crumlin, Dublin Ireland
- Clinical Medicine Trinity College Dublin Dublin Ireland
| | - M.A. McAleer
- National Children’s Research Centre Crumlin, Dublin Ireland
- Paediatric Dermatology Our Lady’s Children’s Hospital Crumlin, Dublin Ireland
| | - G. Hurault
- Department of Bioengineering Imperial College London London UK
| | - E. Kenny
- Department of Psychiatry Trinity Translational Medicine Institute St James’s Hospital Dublin Ireland
| | - K. Harte
- Department of Psychiatry Trinity Translational Medicine Institute St James’s Hospital Dublin Ireland
| | - S. Kezic
- Coronel Institute of Occupational Health Academic Medical Center Amsterdam the Netherlands
| | - R.J. Tanaka
- Department of Bioengineering Imperial College London London UK
| | - A.D. Irvine
- National Children’s Research Centre Crumlin, Dublin Ireland
- Clinical Medicine Trinity College Dublin Dublin Ireland
- Paediatric Dermatology Our Lady’s Children’s Hospital Crumlin, Dublin Ireland
| |
Collapse
|
25
|
Mu Z, Zhang J. The Role of Genetics, the Environment, and Epigenetics in Atopic Dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:107-140. [PMID: 32445093 DOI: 10.1007/978-981-15-3449-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic Dermatitis (AD) is a common inflammatory disease with a genetic background. The prevalence of AD has been increasing in many countries. AD patients often have manifestations of pruritus, generalized skin dryness, and eczematous lesions. The pathogenesis of AD is complicated. The impaired skin barrier and immune imbalance play significant roles in the development of AD. Environmental factors such as allergens and pollutants are associated with the increasing prevalence. Many genetic and environmental factors induce a skin barrier deficiency, and this can lead to immune imbalance, which exacerbates the impaired skin barrier to form a vicious cycle (outside-inside-outside view). Genetic studies find many gene mutations and genetic variants, such as filaggrin mutations, which may directly induce the deficiency of the skin barrier and immune system. Epigenetic studies provide a connection between the relationship of an impaired skin barrier and immune and environmental factors, such as tobacco exposure, pollutants, microbes, and diet and nutrients. AD is a multigene disease, and thus there are many targets for regulation of expression of these genes which may contribute to the pathogenesis of AD. However, the epigenetic regulation of environmental factors in AD pathogenesis still needs to be further researched.
Collapse
Affiliation(s)
- Zhanglei Mu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
26
|
Lee YS, Han SB, Ham HJ, Park JH, Lee JS, Hwang DY, Jung YS, Yoon DY, Hong JT. IL-32γ suppressed atopic dermatitis through inhibition of miR-205 expression via inactivation of nuclear factor-kappa B. J Allergy Clin Immunol 2020; 146:156-168. [DOI: 10.1016/j.jaci.2019.12.905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
|
27
|
Yu X, Wang M, Li L, Zhang L, Chan MTV, Wu WKK. MicroRNAs in atopic dermatitis: A systematic review. J Cell Mol Med 2020; 24:5966-5972. [PMID: 32351034 PMCID: PMC7294122 DOI: 10.1111/jcmm.15208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease, affecting up to 10% to 20% of children and 3% of adults. Although allergen sensitization, skin barrier abnormalities and type 2 immune responses are involved, the exact molecular pathogenesis of AD remains unclear. MicroRNAs (miRNAs) are short (19‐25 nucleotides) single‐stranded RNA molecules that regulate gene expression at post‐transcriptional level and are implicated in the pathogenesis of many inflammatory and immunological skin disorders. This systematic review sought to summarize our current understanding regarding the role of miRNAs in AD development. We searched articles indexed in PubMed (MEDLINE) and Web of Science databases using Medical Subject Heading (MeSH) or Title/Abstract words (‘microRNA/miRNA’ and ‘atopic dermatitis/eczema’) from inception through January 2020. Observational studies revealed dysregulation of miRNAs, including miR‐143, miR‐146a, miR‐151a, miR‐155 and miR‐223, in AD patients. Experimental studies confirmed their functions in regulating keratinocyte proliferation/apoptosis, cytokine signalling and nuclear factor‐κB‐dependent inflammatory responses, together with T helper 17 and regulatory T cell activities. Altogether, this systematic review brings together contemporary findings on how deregulation of miRNAs contributes to AD.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meifang Wang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
28
|
Yin H, Wang S, Gu C. Identification of Molecular Signatures in Mild Intrinsic Atopic Dermatitis by Bioinformatics Analysis. Ann Dermatol 2020; 32:130-140. [PMID: 33911724 PMCID: PMC7992548 DOI: 10.5021/ad.2020.32.2.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background Atopic dermatitis (AD) is recognized as a common inflammatory skin disease and frequently occurred in Asian and Black individuals. Objective Since the limitation of dataset associated with human severe AD, this study aimed to screen potential novel biomarkers involved in mild AD. Methods Expression profile data (GSE75890) were obtained from the database of Gene Expression Omnibus. Using limma package, the differentially expressed genes (DEGs) between samples from AD and healthy control were selected. Furthermore, function analysis was conducted. Meanwhile, the protein-protein interaction (PPI) network and transcription factor (TF)-miRNA-target regulatory network were constructed. And quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expressions patterns of key genes. Results In total, 285 DEGs including 214 upregulated and 71 downregulated genes were identified between samples from two groups. The upregulated DEGs were mainly involved in nine pathways, such as hematopoietic cell lineage, pertussis, p53 signaling pathway, staphylococcus aureus infection, and cell cycle, while tight junction was the only pathway enriched by the downregulated DEGs. Cyclin B (CCNB)1, CCNB2, cyclin A (CCNA)2, C-X-C motif chemokine ligand (CXCL)10, and CXCL9 were key nodes in PPI network. The TF-miRNA-target gene regulatory network focused on miRNAs such as miR-106b, miR-106a, and miR-17, TFs such as nuclear factor kappa B subunit 1, RELA proto-oncogene, Sp1 transcription factor, and genes such as matrix metallopeptidase 9, peroxisome proliferator activated receptor gamma , and serpin family E member 1. Moreover, the upregulation of these genes, including CCNB1, CCNB2, CCNA2, CXCL10, and CXCL9 were confirmed by qRT-PCR. Conclusion CCNB1, CCNB2, CCNA2, and CXCL9 might be novel markers of mild AD. miR-106b and miR-17 may involve in regulation of immune response in AD patients.
Collapse
Affiliation(s)
- Huibin Yin
- Department of Dermatology, Fu Dan University, Huashan Hospital, Shanghai, China
| | - Shangshang Wang
- Department of Dermatology, Fu Dan University, Huashan Hospital, Shanghai, China
| | - Chaoying Gu
- Department of Dermatology, Fu Dan University, Huashan Hospital, Shanghai, China
| |
Collapse
|
29
|
Chen L, Zhong JL. MicroRNA and heme oxygenase-1 in allergic disease. Int Immunopharmacol 2020; 80:106132. [DOI: 10.1016/j.intimp.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
30
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
31
|
Specjalski K, Jassem E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch Immunol Ther Exp (Warsz) 2019; 67:213-223. [PMID: 31139837 PMCID: PMC6597590 DOI: 10.1007/s00005-019-00547-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are 18-22 nucleotides long and highly conserved throughout evolution. Currently, they are considered one of the fundamental regulatory mechanisms of genes expression. It has been demonstrated that miRNAs are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. More recently, the role of miRNA has also been revealed in numerous immunological and inflammatory disorders, including allergic inflammation. Specific miRNA profiles were demonstrated in asthma, allergic rhinitis and atopic dermatitis. A core set of miRNAs involved in atopic diseases include upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b, miR-155 and downregulated let-7 family, miR-193b and miR-375. Most of the involved miRNAs increase secretion of Th2 cytokines (miR-1248, miR-146b), decrease secretion of Th1 cytokines (miR-513-5p, miR-625-5p) or promote differentiation of T cells towards Th2 (miR-21, miR-19a). In asthma miR-140-3p, miR-708 and miR-142-3p play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. Some single miRNAs or, more probably, their sets hold the promise for their use as biomarkers of atopic diseases. They are also promising target of future therapies.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland.
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland
| |
Collapse
|
32
|
Phosphodiesterase 4D, miR-203 and selected cytokines in the peripheral blood are associated with canine atopic dermatitis. PLoS One 2019; 14:e0218670. [PMID: 31226136 PMCID: PMC6588236 DOI: 10.1371/journal.pone.0218670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022] Open
Abstract
Canine Atopic Dermatitis (AD) is a common complex and multifactorial disease involving immune dysregulation, genetic predisposition, skin barrier defects, environmental factors and allergic sensitization. To date, diagnosis of canine AD relies on a combination of patient history, clinical examination, allergy testing and response to diet trials/therapies with no reliable biomarkers available to distinguish AD from other diseases with similar clinical presentations. A handful of studies to identify potential biomarkers in the peripheral blood of AD dogs and healthy controls have been performed with some showing inconsistent and contradictory results. In this study, we, for the first time, report statistically significant increases in expression of phosphodiesterase 4D (PDE4D) gene in peripheral blood mononuclear cells (PBMCs) and miR-203 in plasma from AD dogs compared to healthy controls. In addition, we report a statistically non-significant change of the CD4+/CD8+ ratio, a dramatic decrease of three gene markers (PIAS1, RORA and SH2B1) as well as a panel of differential expression of cytokines in AD dogs in comparison to the healthy controls. Our study provides important insight into the complexities of canine AD, and further studies to verify the specificity of these findings for canine AD at a larger-scale are warranted.
Collapse
|
33
|
Tonacci A, Bagnato G, Pandolfo G, Billeci L, Sansone F, Conte R, Gangemi S. MicroRNA Cross-Involvement in Autism Spectrum Disorders and Atopic Dermatitis: A Literature Review. J Clin Med 2019; 8:jcm8010088. [PMID: 30646527 PMCID: PMC6352260 DOI: 10.3390/jcm8010088] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/27/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a category of neurodevelopmental disturbances seriously affecting social skills, to which the scientific community has paid great attention in last decades. To date, their pathogenesis is still unknown, but several studies highlighted the relevance of gene-environment interactions in the onset of ASD. In addition, an immune involvement was seen in a wide number of ASD subjects, leading several researchers to hypothesize a possible common pathogenesis between ASD and immune disturbances, including Atopic Dermatitis (AD). In general, among potential contributing factors, microRNAs (miRNAs), small molecules capable of controlling gene expression and targeting mRNA transcripts, might represent one of the major circulating link, possibly unraveling the connections between neurodevelopmental and immune conditions. Under such premises, we conducted a systematic literature review, under the PRISMA guidelines, trying to define the panel of common miRNAs involved in both ASD and AD. The review retrieved articles published between January 1, 2005, and December 13, 2018, in PubMed, ScienceDirect, PsycARTICLES, and Google Scholar. We found a handful of works dealing with miRNAs in ASD and AD, with the most overlapping dysregulated miRNAs being miR-146 and miR-155. Two possible compounds are abnormally regulated in both ASD and AD subjects, possibly cross-contributing to the interactions between the two disorders, setting the basis to investigate more precisely the possible link between ASD and AD from another, not just clinical, perspective.
Collapse
Affiliation(s)
- Alessandro Tonacci
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Gianluca Bagnato
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| | - Gianluca Pandolfo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Lucia Billeci
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Francesco Sansone
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Raffaele Conte
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| |
Collapse
|
34
|
Guo H, Qi RQ, Sheng J, Liu C, Ma H, Wang HX, Li JH, Gao XH, Wan YS, Chen HD. MiR-155, a potential serum marker of extramammary Paget's disease. BMC Cancer 2018; 18:1078. [PMID: 30458743 PMCID: PMC6247506 DOI: 10.1186/s12885-018-4994-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extramammary Paget's disease (EMPD), a rare skin malignancy with non-specific manifestations, is often misdiagnosed as eczema of scrotum or tinea cruris. Although the diagnosis of EMPD could be confirmed by biopsy, it can be delayed as patients are reluctant to receive invasive operations. Herein, we investigated the serum miRNA expressions of EMPD patients and compared to that of the eczema of scrotum or tinea cruris patients as well as health volunteers for potential diagnostic markers for EMPD. METHODS Altogether 45 subjects including 16 patients diagnosed with EMPD, 12 patients diagnosed with eczema of scrotum or tinea cruris and 17 healthy volunteers were enrolled in this study. Serum from all of subjects were collected to identify miRNAs (by miRNA array global normalization, RT-PCR validation, and receiver operating characteristic curve analysis) that could be potential diagnostic markers for EMPD. RESULTS The miRNA array analyses revealed that the expressions of 37 miRNAs from the EMPD patients were different (change ≥4-fold) from health volunteers. Among these miRNAs, the expression of miR-155 was significantly increased (p < 0.01) in the EMPD patients as compared with that of the health volunteers and the eczema of scrotum or the tinea cruris patients (no difference between these two control groups). In addition, receiver operating characteristic (ROC) curve analysis showed that diagnostic capacities (defined as the area under curve of ROC) of miR-155 are 0.85 (as compared with health volunteers group) and 0.81 (as compared with the eczema of scrotum or the tinea cruris patients group), respectively. CONCLUSION The serum miRNA expression of gene miR-155 in the EMPD patients was differentiated from that of other subjects warranting further validation of miR-155 as a diagnostic marker of EMPD.
Collapse
Affiliation(s)
- Hao Guo
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Rui-Qun Qi
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Jie Sheng
- Department of Anesthesiology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - He-Xiao Wang
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Jiu-Hong Li
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Xing-Hua Gao
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Yin-Sheng Wan
- Department of Physiology, Providence College, Providence, RI, 02918, USA
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
35
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
36
|
Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect 2018; 7:63. [PMID: 29636444 PMCID: PMC5893550 DOI: 10.1038/s41426-018-0066-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022]
Abstract
This study identified urinary biomarkers for tuberculosis (TB) diagnosis. The urine proteomic profiles of 45 pulmonary tuberculosis patients prior to anti-TB treatment and 45 healthy controls were analyzed and compared using two-dimensional electrophoresis with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Nineteen differentially expressed proteins were identified preliminarily, and western blotting and qRT-PCR were performed to confirm these changes at the translational and transcriptional levels, respectively, using samples from 122 additional pulmonary tuberculosis patients and 73 additional healthy controls. Two proteins, mannose-binding lectin 2 and a 35-kDa fragment of inter-α-trypsin inhibitor H4, exhibited the highest differential expression. We constructed a protein-microRNA interaction network that primarily involved complement and inflammatory responses. Eleven microRNAs from microRNA-target protein interactions were screened and validated using qRT-PCR with some of the above samples, including 97 pulmonary tuberculosis patients and 48 healthy controls. Only miR-625-3p exhibited significant differential expression (p < 0.05). miR-625-3p was increased to a greater extent in samples of smear-positive than smear-negative patients. miR-625-3p was predicted to target mannose-binding lectin 2 protein. A binary logistic regression model based on miR-625-3p, mannose-binding lectin 2, and inter-α-trypsin inhibitor H4 was further established. This three-biomarker combination exhibited better performance for tuberculosis diagnosis than individual biomarkers or any two-biomarker combination and generated a diagnostic sensitivity of 85.87% and a specificity of 87.50%. These novel urine biomarkers may significantly improve tuberculosis diagnosis.
Collapse
|
37
|
Antipruritic Effect of Acupuncture in Patients with Atopic Dermatitis: Feasibility Study Protocol for a Randomised, Sham-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:1926806. [PMID: 29358961 PMCID: PMC5735323 DOI: 10.1155/2017/1926806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/27/2017] [Indexed: 12/03/2022]
Abstract
This study aims to test the feasibility of a randomised clinical trial to evaluate how acupuncture affects atopic dermatitis (AD) symptoms and quality of life and to explore potential biomarkers that may be associated with AD. It is a sham-controlled trial in which 30 eligible patients will be randomly allocated in a 1 : 1 : 1 ratio to one of three groups: verum acupuncture (VA) group 1 (3 times weekly for 4 weeks); VA group 2 (twice weekly for 4 weeks); or sham acupuncture group (SA; twice weekly for 4 weeks). SA will consist of nonpenetrating acupuncture. Outcome measures will include the Visual Analogue Scale for itch, SCORing Atopic Dermatitis, and Eczema Area and Severity Index to evaluate AD symptoms improvement along with the Patient Oriented Eczema Measure and Dermatology Life Quality Index to assess quality of life. Measures will be collected at baseline, once weekly during the treatment period, and after a 4-week follow-up period. Blood collection will be at baseline and 4 and 8 weeks after treatment and compared with healthy controls. Illumina sequencing will be used to profile microRNA expression in each group to explore candidate microRNA biomarkers for specific effects of acupuncture in patients with AD. This trial is registered via US National Institutes of Health Clinical Trials registry (ClinicalTrials.gov) on 15 July 2016, identifier: NCT02844452.
Collapse
|
38
|
Yang Z, Zeng B, Wang C, Wang H, Huang P, Pan Y. MicroRNA-124 alleviates chronic skin inflammation in atopic eczema via suppressing innate immune responses in keratinocytes. Cell Immunol 2017; 319:53-60. [PMID: 28847568 DOI: 10.1016/j.cellimm.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/03/2017] [Accepted: 08/20/2017] [Indexed: 01/19/2023]
Abstract
Chronic skin inflammation in atopic eczema is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. MicroRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. Recent studies have demonstrated that miR-124 is associated with regulation of inflammation factors in several diseases. The aim of this study was to investigate the role of miR-124 in skin inflammation of atopic eczema. We showed that miR-124 expression is decreased in chronic lesional skin of patients with atopic eczema, and could be strongly inhibited by IFN-γ and TNF-α. Through Western blot, real-time PCR and luciferase assays, we revealed that miR-124 inhibited the expression of p65, a member of NF-κB family which can regulate many factors involved in the immune response and inflammatory reactions, through direct targeting. Further, upon IFN-γ or TNF-α stimulation, IL8, CCL5 and CCL8 showed to be significantly upregulated by IFN-γ or TNF-α, downregulated by miR-124; the promotive effect of IFN-γ and TNF-α could be partially reversed by miR-124. The levels of IL8, CCL5 and CCL8 could be significantly downregulated by p65 knockdown, upregulated by miR-124 inhibition; the suppressive effect of p65 knockdown could be partially reversed by miR-124. Moreover, contrary to miR-124, p65, IL8, CCL5 and CCL8 mRNA expression was upregulated in chronic lesional skin of patients with atopic eczema, and all inversely correlated with miR-124. Taken together, our data demonstrate that miR-124 controls NF-κB-dependent inflammatory responses in keratinocytes and chronic skin inflammation in atopic eczema; rescuing miR-124 expression presents a promising strategy for atopic eczema treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Bijun Zeng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China.
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Pan Huang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Yi Pan
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| |
Collapse
|
39
|
Davis JS, Sun M, Kho AT, Moore KG, Sylvia JM, Weiss ST, Lu Q, Tantisira KG. Circulating microRNAs and association with methacholine PC20 in the Childhood Asthma Management Program (CAMP) cohort. PLoS One 2017; 12:e0180329. [PMID: 28749975 PMCID: PMC5531511 DOI: 10.1371/journal.pone.0180329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/08/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction Circulating microRNAs (miRNA) are promising biomarkers for human diseases. Our study hypothesizes that circulating miRNA would reveal candidate biomarkers related to airway hyperresponsiveness (AHR) and provide biologic insights into asthma epigenetic influences. Methods Serum samples obtained at randomization for 160 children in the Childhood Asthma Management Program were profiled using a TaqMan miRNA array set. The association of the isolated miRNA with methacholine PC20 was assessed. Network and pathway analyses were performed. Functional validation of two significant miRNAs was performed in human airway smooth muscle cells (HASMs). Results Of 155 well-detected circulating miRNAs, eight were significantly associated with PC20 with the strongest association with miR-296-5p. Pathway analysis revealed miR-16-5p as a network hub, and involvement of multiple miRNAs interacting with genes in the FoxO and Hippo signaling pathways by KEGG analysis. Functional validation of two miRNA in HASM showed effects on cell growth and diameter. Conclusion Reduced circulatory miRNA expression at baseline is associated with an increase in PC20. These miRNA provide biologic insights into, and may serve as biomarkers of, asthma severity. miR-16-5p and -30d-5p regulate airway smooth muscle phenotypes critically involved in asthma pathogenesis, supporting a mechanistic link to these findings. Functional ASM phenotypes may be directly relevant to AHR.
Collapse
Affiliation(s)
- Joshua S. Davis
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maoyun Sun
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kip G. Moore
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jody M. Sylvia
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Lu
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs that are increasingly being recognized as important epigenetic regulators. They have been implicated in the pathogenesis of many diseases including cancer, cardiovascular diseases, connective tissue diseases, and neuromuscular disorders. RECENT FINDINGS A few miRNAs have already been recognized as a core set of miRNAs important in allergic inflammation. These include let-7, miR-21, miR-142, and miR-146. This review aims to bring together some of the recent findings on how miRNAs regulate allergic inflammation with special focus on asthma, atopic dermatitis, allergic rhinitis, and eosinophilic esophagitis. We will also touch upon extracellular miRNAs and future perspective of this field of study.
Collapse
Affiliation(s)
- Eishika Dissanayake
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8670, Japan
| | - Yuzaburo Inoue
- Department of General Medical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8670, Japan.
| |
Collapse
|
41
|
Sastre B, Cañas JA, Rodrigo-Muñoz JM, Del Pozo V. Novel Modulators of Asthma and Allergy: Exosomes and MicroRNAs. Front Immunol 2017; 8:826. [PMID: 28785260 PMCID: PMC5519536 DOI: 10.3389/fimmu.2017.00826] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
Intercellular communication is crucial to the immune system response. In the recent years, the discovery of exosomes has changed the way immune response orchestration was understood. Exosomes are able to operate as independent units that act as mediators in both physiological and pathological conditions. These structures contain proteins, lipidic mediators, and nucleic acids and notoriously include microRNAs (miRNAs). miRNAs are short RNA sequences (around 19-22 nucleotides) with a high phylogenetic conservation and can partially or totally regulate multiple mRNAs, inhibiting protein synthesis. In respiratory diseases such as asthma and allergic sensitization, exosomes released by several cell types and their specific content perform crucial functions in the development and continuation of the pathogenic mechanisms. Released exosomes and miRNAs inside them have been found in different types of clinical samples, such as bronchoalveolar lavage fluids and sputum supernatants, providing new data about the environmental factors and mediators that participate in the inflammatory responses that lead to the exacerbation of asthma. In this review, we summarize our current knowledge of the role of exosomes and miRNAs in asthma and allergic sensitization, paying attention to the functions that both exosomes and miRNAs are described to perform through the literature. We review the effect of exosomes and miRNAs in cells implicated in asthma pathology and the genes and pathways that they modify in them, depicting how their behavior is altered in disease status. We also describe their possible repercussion in asthma diagnosis through their possible role as biomarkers. Therefore, both exosomes and miRNAs can be viewed as potential tools to be added to the arsenal of therapeutics to treat this disease.
Collapse
Affiliation(s)
- Beatriz Sastre
- Laboratory of Immunoallergy, Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José A Cañas
- Laboratory of Immunoallergy, Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M Rodrigo-Muñoz
- Laboratory of Immunoallergy, Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Victoria Del Pozo
- Laboratory of Immunoallergy, Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
42
|
MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin Sci (Lond) 2017; 131:1923-1940. [PMID: 28705953 DOI: 10.1042/cs20170039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
The skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing. Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed within the skin, and are evidently key regulators of numerous vital processes to maintain non-aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the ability of synthetic 'antagomiRs' to down-regulate abnormal miR expression, thereby potentiating wound healing and attenuating fibrotic processes which can contribute to disease such as systemic sclerosis (SSc). This review will provide an introduction to the structure and function of the skin and miR biogenesis, before summarizing the literature pertaining to the role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas of research.
Collapse
|
43
|
Skevaki C, Van den Berg J, Jones N, Garssen J, Vuillermin P, Levin M, Landay A, Renz H, Calder PC, Thornton CA. Immune biomarkers in the spectrum of childhood noncommunicable diseases. J Allergy Clin Immunol 2017; 137:1302-16. [PMID: 27155027 DOI: 10.1016/j.jaci.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
A biomarker is an accurately and reproducibly quantifiable biological characteristic that provides an objective measure of health status or disease. Benefits of biomarkers include identification of therapeutic targets, monitoring of clinical interventions, and development of personalized (or precision) medicine. Challenges to the use of biomarkers include optimizing sample collection, processing and storage, validation, and often the need for sophisticated laboratory and bioinformatics approaches. Biomarkers offer better understanding of disease processes and should benefit the early detection, treatment, and management of multiple noncommunicable diseases (NCDs). This review will consider the utility of biomarkers in patients with allergic and other immune-mediated diseases in childhood. Typically, biomarkers are used currently to provide mechanistic insight or an objective measure of disease severity, with their future role in risk stratification/disease prediction speculative at best. There are many lessons to be learned from the biomarker strategies used for cancer in which biomarkers are in routine clinical use and industry-wide standardized approaches have been developed. Biomarker discovery and validation in children with disease lag behind those in adults; given the early onset and therefore potential lifelong effect of many NCDs, there should be more studies incorporating cohorts of children. Many pediatric biomarkers are at the discovery stage, with a long path to evaluation and clinical implementation. The ultimate challenge will be optimization of prevention strategies that can be implemented in children identified as being at risk of an NCD through the use of biomarkers.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH Baldingerstr, Marburg, Germany
| | - Jolice Van den Berg
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Immunology/Microbiology Rush University Medical Center Chicago, Chicago, Ill
| | - Nicholas Jones
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales
| | - Johan Garssen
- International Inflammation (in-FLAME) Network of the World Universities Network; Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Beta Faculty, Utrecht University, Utrecht, The Netherlands
| | - Peter Vuillermin
- International Inflammation (in-FLAME) Network of the World Universities Network; Child Health Research Unit, Barwon Health, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Levin
- International Inflammation (in-FLAME) Network of the World Universities Network; Division of Asthma and Allergy, University of Cape Town, and the Department of Pediatrics and Child Health, Red Cross Children's Hospital, Cape Town, South Africa
| | - Alan Landay
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Immunology/Microbiology Rush University Medical Center Chicago, Chicago, Ill
| | - Harald Renz
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH Baldingerstr, Marburg, Germany
| | - Philip C Calder
- International Inflammation (in-FLAME) Network of the World Universities Network; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, Southampton University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Catherine A Thornton
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales.
| |
Collapse
|
44
|
Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A, Mueller MD, Ferretti E, Benedetti Panici P. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumour Biol 2017; 39:1010428317695525. [PMID: 28459207 DOI: 10.1177/1010428317695525] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and ovarian cancer is the most lethal gynecological malignancy. Women carrying a BRCA1/2 mutation have a very high lifetime risk of developing breast and ovarian cancer. The only effective risk-reducing strategy in BRCA-mutated women is a prophylactic surgery with bilateral mastectomy and bilateral salpingo-oophorectomy. However, many women are reluctant to undergo these prophylactic surgeries due to a consequent mutilated body perception, unfulfilled family planning, and precocious menopause. In these patients, an effective screening strategy is available only for breast cancer, but it only consists in close radiological exams with a significant burden for the health system and a significant distress to the patients. No biomarkers have been shown to effectively detect breast and ovarian cancer at an early stage. MicroRNAs (miRNAs) are key regulatory molecules operating in a post-transcriptional regulation of gene expression. Aberrant expression of miRNAs has been documented in several pathological conditions, including solid tumors, suggesting their involvement in tumorigenesis. miRNAs can be detected in blood and urine and could be used as biomarkers in solid tumors. Encouraging results are emerging in gynecological malignancy as well, and suggest a different pattern of expression of miRNAs in biological fluids of breast and ovarian cancer patients as compared to healthy control. Aim of this study is to highlight the role of the urinary miRNAs which are specifically associated with cancer and to investigate their role in early diagnosis and in determining the prognosis in breast and ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy.,2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Assunta Casorelli
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Erlisa Bardhi
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Aris Raad Besharat
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Delia Savone
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ilary Ruscito
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ammad Ahmad Farooqi
- 3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Andrea Papadia
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Michael David Mueller
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Elisabetta Ferretti
- 4 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,5 Neuromed Institute, Pozzilli, Italy
| | | |
Collapse
|
45
|
Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, Yousefi P, Perera F, Joubert BR, Wiemels J, Taylor M, Yang IV, Chen R, Hew KM, Freeland DMH, Miller R, Murphy SK. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:511-526. [PMID: 28362264 PMCID: PMC5382002 DOI: 10.1289/ehp595] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Characterization of the epigenome is a primary interest for children's environmental health researchers studying the environmental influences on human populations, particularly those studying the role of pregnancy and early-life exposures on later-in-life health outcomes. OBJECTIVES Our objective was to consider the state of the science in environmental epigenetics research and to focus on DNA methylation and the collective observations of many studies being conducted within the Children's Environmental Health and Disease Prevention Research Centers, as they relate to the Developmental Origins of Health and Disease (DOHaD) hypothesis. METHODS We address the current laboratory and statistical tools available for epigenetic analyses, discuss methods for validation and interpretation of findings, particularly when magnitudes of effect are small, question the functional relevance of findings, and discuss the future for environmental epigenetics research. DISCUSSION A common finding in environmental epigenetic studies is the small-magnitude epigenetic effect sizes that result from such exposures. Although it is reasonable and necessary that we question the relevance of such small effects, we present examples in which small effects persist and have been replicated across populations and across time. We encourage a critical discourse on the interpretation of such small changes and further research on their functional relevance for children's health. CONCLUSION The dynamic nature of the epigenome will require an emphasis on future longitudinal studies in which the epigenome is profiled over time, over changing environmental exposures, and over generations to better understand the multiple ways in which the epigenome may respond to environmental stimuli.
Collapse
Affiliation(s)
| | | | | | - Kari Nadeau
- Stanford University, Palo Alto, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | | | | | | | - Nina Holland
- University of California, Berkeley, Berkeley, California, USA
| | | | | | - Paul Yousefi
- University of California, Berkeley, Berkeley, California, USA
| | | | - Bonnie R. Joubert
- National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina
| | - Joseph Wiemels
- University of California at San Francisco, San Francisco, California, USA
| | | | - Ivana V. Yang
- University of Colorado, Denver, Colorado, USA
- National Jewish Health, Denver, Colorado, USA
| | - Rui Chen
- Stanford University, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease affecting ~10–20% of the general population. AD is characterized by disturbances in epidermal barrier function and hyperactive immune response. Recently, changes in the skin and intestinal microbiome have been analyzed in more detail. The available data suggest a link between disturbed skin microbiome and course of the disease. Flares of the disease are associated with an expansion of Staphylococcus aureus on lesional skin and a substantial loss of biodiversity in skin microbiome. Staphylococci exoproteins and superantigens evoke inflammatory reactions in the host. Skin microbiome includes superficial stratum corneum that is affected by environmental factors such as exposure to germs and cleansing. Available evidence argues for a link between epidermal barrier impairment and disturbances in skin microbiome in AD. In contrast to skin microbiome, intestinal microbiome seems to become stabilized after infancy. There is also a significant heritable component for intestinal microbiome. The microbial taxa, relative percentages and quantities vary remarkably between the different parts of the intestinal tract. Early intestinal microbial colonization may be a critical step for prevention of further development of AD. Skin barrier-aimed topical treatments help to develop a neo-microbiome from deeper compartments. Probiotics, prebiotics and synbiotics have been investigated for the treatment of AD, but further investigations are needed. Targeted treatment options to normalize skin and intestinal microbiome in AD are under investigation.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Dresden, Germany
| |
Collapse
|
48
|
Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:52. [PMID: 27777593 PMCID: PMC5069938 DOI: 10.1186/s13223-016-0158-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory disease caused by the complex interaction of genetic, immune and environmental factors. There have many recent discoveries involving the genetic and epigenetic studies of AD. METHODS A retrospective PubMed search was carried out from June 2009 to June 2016 using the terms "atopic dermatitis", "association", "eczema", "gene", "polymorphism", "mutation", "variant", "genome wide association study", "microarray" "gene profiling", "RNA sequencing", "epigenetics" and "microRNA". A total of 132 publications in English were identified. RESULTS To elucidate the genetic factors for AD pathogenesis, candidate gene association studies, genome-wide association studies (GWAS) and transcriptomic profiling assays have been performed in this period. Epigenetic mechanisms for AD development, including genomic DNA modification and microRNA posttranscriptional regulation, have been explored. To date, candidate gene association studies indicate that filaggrin (FLG) null gene mutations are the most significant known risk factor for AD, and genes in the type 2 T helper lymphocyte (Th2) signaling pathways are the second replicated genetic risk factor for AD. GWAS studies identified 34 risk loci for AD, these loci also suggest that genes in immune responses and epidermal skin barrier functions are associated with AD. Additionally, gene profiling assays demonstrated AD is associated with decreased gene expression of epidermal differentiation complex genes and elevated Th2 and Th17 genes. Hypomethylation of TSLP and FCER1G in AD were reported; and miR-155, which target the immune suppressor CTLA-4, was found to be significantly over-expressed in infiltrating T cells in AD skin lesions. CONCLUSIONS The results suggest that two major biologic pathways are responsible for AD etiology: skin epithelial function and innate/adaptive immune responses. The dysfunctional epidermal barrier and immune responses reciprocally affect each other, and thereby drive development of AD.
Collapse
Affiliation(s)
- Lianghua Bin
- The Department of Dermatology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Kho AT, Sharma S, Davis JS, Spina J, Howard D, McEnroy K, Moore K, Sylvia J, Qiu W, Weiss ST, Tantisira KG. Circulating MicroRNAs: Association with Lung Function in Asthma. PLoS One 2016; 11:e0157998. [PMID: 27362794 PMCID: PMC4928864 DOI: 10.1371/journal.pone.0157998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs are key transcriptional and network regulators previously associated with asthma susceptibility. However, their role in relation to asthma severity has not been delineated. OBJECTIVE We hypothesized that circulating microRNAs could serve as biomarkers of changes in lung function in asthma patients. METHODS We isolated microRNAs from serum samples obtained at randomization for 160 participants of the Childhood Asthma Management Program. Using a TaqMan microRNA array containing 754 microRNA primers, we tested for the presence of known asthma microRNAs, and assessed the association of the individual microRNAs with lung function as measured by FEV1/FVC, FEV1% and FVC%. We further tested the subset of FEV1/FVC microRNAs for sex-specific and lung developmental associations. RESULTS Of the 108 well-detected circulating microRNAs, 74 (68.5%) had previously been linked to asthma susceptibility. We found 22 (20.3%), 4 (3.7%) and 8 (7.4%) microRNAs to be associated with FEV1/FVC, FEV1% and FVC%, respectively. 8 (of 22) FEV1/FVC, 3 (of 4) FEV1% and 1 (of 8) FVC% microRNAs had functionally validated target genes that have been linked via genome wide association studies to asthma and FEV1 change. Among the 22 FEV1/FVC microRNAs, 9 (40.9%) remain associated with FEV1/FVC in boys alone in a sex-stratified analysis (compared with 3 FEV1/FVC microRNAs in girls alone), 7 (31.8%) were associated with fetal lung development, and 3 (13.6%) in both. Ontology analyses revealed enrichment for pathways integral to asthma, including PPAR signaling, G-protein coupled signaling, actin and myosin binding, and respiratory system development. CONCLUSIONS Circulating microRNAs reflect asthma biology and are associated with lung function differences in asthmatics. They may represent biomarkers of asthma severity.
Collapse
Affiliation(s)
- Alvin T. Kho
- Children’s Hospital Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston MA 02115, United States of America
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Joshua S. Davis
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Joseph Spina
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dagnie Howard
- Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Kevin McEnroy
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kip Moore
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Jody Sylvia
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Partners Personalized Medicine, Partners HealthCare System, Boston, MA 02115, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
50
|
Abstract
MicroRNAs are relatively new molecules that have been widely studied in recent years as to determine their exact function in the human body. It is suggested that microRNAs control approx. 30% of all genes, making them one of the largest groups that control the expression of proteins. Various functions of miRNAs have already been described. In skin diseases, there are more and more studies describing an altered expression of microRNAs in the skin or serum. Relatively little is known about the function of these molecules in atopic dermatitis, which prompted us to gather current reports on this subject.
Collapse
|