1
|
Cancedda R, Mastrogiacomo M. The Phoenix of stem cells: pluripotent cells in adult tissues and peripheral blood. Front Bioeng Biotechnol 2024; 12:1414156. [PMID: 39139297 PMCID: PMC11319133 DOI: 10.3389/fbioe.2024.1414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Pluripotent stem cells are defined as cells that can generate cells of lineages from all three germ layers, ectoderm, mesoderm, and endoderm. On the contrary, unipotent and multipotent stem cells develop into one or more cell types respectively, but their differentiation is limited to the cells present in the tissue of origin or, at most, from the same germ layer. Multipotent and unipotent stem cells have been isolated from a variety of adult tissues, Instead, the presence in adult tissues of pluripotent stem cells is a very debated issue. In the early embryos, all cells are pluripotent. In mammalians, after birth, pluripotent cells are maintained in the bone-marrow and possibly in gonads. In fact, pluripotent cells were isolated from marrow aspirates and cord blood and from cultured bone-marrow stromal cells (MSCs). Only in few cases, pluripotent cells were isolated from other tissues. In addition to have the potential to differentiate toward lineages derived from all three germ layers, the isolated pluripotent cells shared other properties, including the expression of cell surface stage specific embryonic antigen (SSEA) and of transcription factors active in the early embryos, but they were variously described and named. However, it is likely that they are part of the same cell population and that observed diversities were the results of different isolation and expansion strategies. Adult pluripotent stem cells are quiescent and self-renew at very low rate. They are maintained in that state under the influence of the "niche" inside which they are located. Any tissue damage causes the release in the blood of inflammatory cytokines and molecules that activate the stem cells and their mobilization and homing in the injured tissue. The inflammatory response could also determine the dedifferentiation of mature cells and their reversion to a progenitor stage and at the same time stimulate the progenitors to proliferate and differentiate to replace the damaged cells. In this review we rate articles reporting isolation and characterization of tissue resident pluripotent cells. In the attempt to reconcile observations made by different authors, we propose a unifying picture that could represent a starting point for future experiments.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Watanabe S, Hosokawa H, Sakamoto T, Horii M, Ono Y, Kimura S, Yamaguchi S, Ohtori S, Sasho T. Investigating the Potential of Multilineage Differentiating Stress-Enduring Cells for Osteochondral Healing. Cartilage 2024:19476035241262020. [PMID: 38887038 DOI: 10.1177/19476035241262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Multilineage differentiating stress-enduring (Muse) cells, a pluripotent stem cell subset of mesenchymal stem cells (MSCs), have shown promise for various tissue repairs due to their stress tolerance and multipotent capabilities. We aimed to investigate the differentiation potential in vitro, the dynamics in vivo, and the reparative contribution of Muse cells to osteochondral lesions. DESIGN Labeled MSCs were cultured and sorted into Muse and non-Muse (MSCs without Muse cells) groups. These cells were then formed into spheroids, and chondrogenic differentiation was assessed in vitro. Twenty-one immunocompromised mice were used as the in vivo models of osteochondral lesions. Live imaging, macroscopic evaluation, and histological and immunohistochemical analyses were conducted at the 4- and 8-week time points. RESULTS Muse cell spheroids were formed, which were larger and stained more intensely with toluidine blue than non-Muse spheroids, indicating better chondrogenic differentiation. Live imaging confirmed luminescence in all 4-week model knees, but only in a few knees at 8 weeks, suggesting cell persistence. Macroscopically and histologically, no significant differences were observed between the Muse and non-Muse groups at 4 and 8 weeks; however, both groups showed better cartilage repair than that of the vehicle group at 8 weeks. No collagen type II generation was observed in the repaired tissues. CONCLUSION The implantation of the spheroids of Muse and non-Muse cells resulted in better healing of osteochondral lesions than that of the controls, and Muse cells had a higher chondrogenic differentiation potential in vitro than non-Muse cells.
Collapse
Affiliation(s)
- Shotaro Watanabe
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Hosokawa
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Toho University Medical Center Sakura Hospital, Chiba, Japan
| | - Takuya Sakamoto
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Horii
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshimasa Ono
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Orthopedic Surgery, Numazu City Hospital, Shizuoka, Japan
| | - Seiji Kimura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamaguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Graduate School of Global and Transdisciplinary Studies College of Liberal Arts and Sciences, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Sasho
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Xiao D, Li F, Zhang K, Liu G, Wang Y, Liu H. The therapeutic role of SSEA3(+) human umbilical cord blood mononuclear cells in ischemic stroke model. Neurosci Res 2024; 203:42-50. [PMID: 38154662 DOI: 10.1016/j.neures.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Numerous evidences showed that human umbilical cord blood (UCB) mononuclear cells were a promising approach for the therapy of ischemic stroke(IS). The effect of stage-specific embryonic antigen 3 (SSEA3)positive subpopulation in UCB was not investigated in IS. In this study, we isolated SSEA3 positive cells from healthy UCB mononuclear cells, which comprised about 7.01% of the total UCB-mononuclear cells. Flow cytometry analysis revealed that SSEA3(+)UCB cells were almost positive for CD44 and CD45, and negative for CD73, CD90 and CD105. The expression of Oct3/4 in SSEA3(+)UCB cells were higher than that in UCB. SSEA3(+)UCB cells sorted by magnetic cell sorting were intravenously injected into the middle cerebral arterial occlusion(MCAO) rat model. Neurological score showed that SSEA3(+)UCB transplantation group exhibited significant improvements in the functional outcome of MCAO rats than UCB transplantation group. Nissl staining and microtubule association protein-2(MAP2) immunofluorescence staining showed that the SSEA3(+)UCB transplantation group decreased neuronal loss. SSEA3(+)UCB transplantation group reduced neuronal apoptosis, inhibited caspase3 expression, and decreased tumor necrosis factor α(TNF-α). These results indicate that SSEA3 positive cells are a novel subpopulation of UCB cells, which exhibit great potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dongjie Xiao
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, PR China; Shandong Research Center of Transplantation and Tissue, 250013 Jinan, PR China
| | - Fang Li
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, PR China; Shandong Research Center of Transplantation and Tissue, 250013 Jinan, PR China
| | - Kun Zhang
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, PR China; Shandong Research Center of Transplantation and Tissue, 250013 Jinan, PR China
| | - Guojun Liu
- Shandong Qilu Stem Cell Engineering Co. Ltd., Jinan 250100, PR China
| | - Yunshan Wang
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, PR China; Shandong Research Center of Transplantation and Tissue, 250013 Jinan, PR China
| | - Hua Liu
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, PR China; Shandong Research Center of Transplantation and Tissue, 250013 Jinan, PR China.
| |
Collapse
|
4
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
5
|
Alanazi RF, Alhwity BS, Almahlawi RM, Alatawi BD, Albalawi SA, Albalawi RA, Albalawi AA, Abdel-Maksoud MS, Elsherbiny N. Multilineage Differentiating Stress Enduring (Muse) Cells: A New Era of Stem Cell-Based Therapy. Cells 2023; 12:1676. [PMID: 37443710 PMCID: PMC10340735 DOI: 10.3390/cells12131676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Stem cell transplantation has recently demonstrated a significant therapeutic efficacy in various diseases. Multilineage-differentiating stress-enduring (Muse) cells are stress-tolerant endogenous pluripotent stem cells that were first reported in 2010. Muse cells can be found in the peripheral blood, bone marrow and connective tissue of nearly all body organs. Under basal conditions, they constantly move from the bone marrow to peripheral blood to supply various body organs. However, this rate greatly changes even within the same individual based on physical status and the presence of injury or illness. Muse cells can differentiate into all three-germ-layers, producing tissue-compatible cells with few errors, minimal immune rejection and without forming teratomas. They can also endure hostile environments, supporting their survival in damaged/injured tissues. Additionally, Muse cells express receptors for sphingosine-1-phosphate (S1P), which is a protein produced by damaged/injured tissues. Through the S1P-S1PR2 axis, circulating Muse cells can preferentially migrate to damaged sites following transplantation. In addition, Muse cells possess a unique immune privilege system, facilitating their use without the need for long-term immunosuppressant treatment or human leucocyte antigen matching. Moreover, they exhibit anti-inflammatory, anti-apoptotic and tissue-protective effects. These characteristics circumvent all challenges experienced with mesenchymal stem cells and induced pluripotent stem cells and encourage the wide application of Muse cells in clinical practice. Indeed, Muse cells have the potential to break through the limitations of current cell-based therapies, and many clinical trials have been conducted, applying intravenously administered Muse cells in stroke, myocardial infarction, neurological disorders and acute respiratory distress syndrome (ARDS) related to novel coronavirus (SARS-CoV-2) infection. Herein, we aim to highlight the unique biological properties of Muse cells and to elucidate the advantageous difference between Muse cells and other types of stem cells. Finally, we shed light on their current therapeutic applications and the major obstacles to their clinical implementation from laboratory to clinic.
Collapse
Affiliation(s)
- Raghad F. Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raghad M. Almahlawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Bashayer D. Alatawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Shatha A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raneem A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Amaal A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Mohamed S. Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Ossanna R, Veronese S, Quintero Sierra LA, Conti A, Conti G, Sbarbati A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023; 11:1587. [PMID: 37371682 DOI: 10.3390/biomedicines11061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-based therapy in regenerative medicine is a powerful tool that can be used both to restore various cells lost in a wide range of human disorders and in renewal processes. Stem cells show promise for universal use in clinical medicine, potentially enabling the regeneration of numerous organs and tissues in the human body. This is possible due to their self-renewal, mature cell differentiation, and factors release. To date, pluripotent stem cells seem to be the most promising. Recently, a novel stem cell niche, called multilineage-differentiating stress-enduring (Muse) cells, is emerging. These cells are of particular interest because they are pluripotent and are found in adult human mesenchymal tissues. Thanks to this, they can produce cells representative of all three germ layers. Furthermore, they can be easily harvested from fat and isolated from the mesenchymal stem cells. This makes them very promising, allowing autologous treatments and avoiding the problems of rejection typical of transplants. Muse cells have recently been employed, with encouraging results, in numerous preclinical studies performed to test their efficacy in the treatment of various pathologies. This review aimed to (1) highlight the specific potential of Muse cells and provide a better understanding of this niche and (2) originate the first organized review of already tested applications of Muse cells in regenerative medicine. The obtained results could be useful to extend the possible therapeutic applications of disease healing.
Collapse
Affiliation(s)
- Riccardo Ossanna
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Sheila Veronese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | | | - Anita Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Giamaica Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| |
Collapse
|
7
|
Velasco MG, Satué K, Chicharro D, Martins E, Torres-Torrillas M, Peláez P, Miguel-Pastor L, Del Romero A, Damiá E, Cuervo B, Carrillo JM, Cugat R, Sopena JJ, Rubio M. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): The Future of Human and Veterinary Regenerative Medicine. Biomedicines 2023; 11:biomedicines11020636. [PMID: 36831171 PMCID: PMC9953712 DOI: 10.3390/biomedicines11020636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, several studies have been conducted on Muse cells mainly due to their pluripotency, high tolerance to stress, self-renewal capacity, ability to repair DNA damage and not being tumoral. Additionally, since these stem cells can be isolated from different tissues in the adult organism, obtaining them is not considered an ethical problem, providing an advantage over embryonic stem cells. Regarding their therapeutic potential, few studies have reported clinical applications in the treatment of different diseases, such as aortic aneurysm and chondral injuries in the mouse or acute myocardial infarction in the swine, rabbit, sheep and in humans. This review aims to describe the characterization of Muse cells, show their biological characteristics, explain the differences between Muse cells and mesenchymal stem cells, and present their contribution to the treatment of some diseases.
Collapse
Affiliation(s)
- María Gemma Velasco
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Katy Satué
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Emma Martins
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - José María Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ramón Cugat
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín Jesús Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
- Correspondence:
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
8
|
Kuroda Y, Oguma Y, Hall K, Dezawa M. Endogenous reparative pluripotent Muse cells with a unique immune privilege system: Hint at a new strategy for controlling acute and chronic inflammation. Front Pharmacol 2022; 13:1027961. [PMID: 36339573 PMCID: PMC9627303 DOI: 10.3389/fphar.2022.1027961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Multilineage-differentiating stress enduring (Muse) cells, non-tumorigenic endogenous pluripotent stem cells, reside in the bone marrow (BM), peripheral blood, and connective tissue as pluripotent surface marker SSEA-3(+) cells. They express other pluripotent markers, including Nanog, Oct3/4, and Sox2 at moderate levels, differentiate into triploblastic lineages, self-renew at a single cell level, and exhibit anti-inflammatory effects. Cultured mesenchymal stromal cells (MSCs) and fibroblasts contain several percent of SSEA-3(+)-Muse cells. Circulating Muse cells, either endogenous or administered exogenously, selectively accumulate at the damaged site by sensing sphingosine-1-phosphate (S1P), a key mediator of inflammation, produced by damaged cells and replace apoptotic and damaged cells by spontaneously differentiating into multiple cells types that comprise the tissue and repair the tissue. Thus, intravenous injection is the main route for Muse cell treatment, and surgical operation is not necessary. Furthermore, gene introduction or cytokine induction are not required for generating pluripotent or differentiated states prior to treatment. Notably, allogenic and xenogenic Muse cells escape host immune rejection after intravenous injection and survive in the tissue as functioning cells over 6 and ∼2 months, respectively, without immunosuppressant treatment. Since Muse cells survive in the host tissue for extended periods of time, therefore their anti-inflammatory, anti-fibrotic, and trophic effects are long-lasting. These unique characteristics have led to the administration of Muse cells via intravenous drip in clinical trials for stroke, acute myocardial infarction, epidermolysis bullosa, spinal cord injury, neonatal hypoxic ischemic encephalopathy, amyotrophic lateral sclerosis, and COVID-19 acute respiratory distress syndrome without HLA-matching or immunosuppressive treatment.
Collapse
Affiliation(s)
| | | | | | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Martinez B, Peplow PV. Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration. Neural Regen Res 2022; 17:2108-2116. [PMID: 35259816 PMCID: PMC9083174 DOI: 10.4103/1673-5374.336132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The incidence of neurodegenerative diseases is increasing due to changing age demographics and the incidence of sports-related traumatic brain injury is tending to increase over time. Currently approved medicines for neurodegenerative diseases only temporarily reduce the symptoms but cannot cure or delay disease progression. Cell transplantation strategies offer an alternative approach to facilitating central nervous system repair, but efficacy is limited by low in vivo survival rates of cells that are injected in suspension. Transplanting cells that are attached to or encapsulated within a suitable biomaterial construct has the advantage of enhancing cell survival in vivo. A variety of biomaterials have been used to make constructs in different types that included nanoparticles, nanotubes, microspheres, microscale fibrous scaffolds, as well as scaffolds made of gels and in the form of micro-columns. Among these, Tween 80-methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles loaded with rhynchophylline had higher transport across a blood-brain barrier model and decreased cell death in an in vitro model of Alzheimer’s disease than rhynchophylline or untreated nanoparticles with rhynchophylline. In an in vitro model of Parkinson’s disease, trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin had a similar protective ability as free non-Fe hemin. A positive effect on neuron survival in several in vivo models of Parkinson’s disease was associated with the use of biomaterial constructs such as trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin, carbon nanotubes with olfactory bulb stem cells, poly(lactic-co-glycolic acid) microspheres with attached DI-MIAMI cells, ventral midbrain neurons mixed with short fibers of poly-(L-lactic acid) scaffolds and reacted with xyloglucan with/without glial-derived neurotrophic factor, ventral midbrain neurons mixed with Fmoc-DIKVAV hydrogel with/without glial-derived neurotrophic factor. Further studies with in vivo models of Alzheimer’s disease and Parkinson’s disease are warranted especially using transplantation of cells in agarose micro-columns with an inner lumen filled with an appropriate extracellular matrix material.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Cai K, Mankar S, Ajiri T, Shirai K, Yotoriyama T. An integrated high-throughput microfluidic circulatory fluorescence-activated cell sorting system (μ-CFACS) for the enrichment of rare cells. LAB ON A CHIP 2021; 21:3112-3127. [PMID: 34286793 DOI: 10.1039/d1lc00298h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is an increasing need for the enrichment of rare cells in the clinical environments of precision medicine, personalized medicine, and regenerative medicine. With the possibility of becoming the next-generation cell sorters, microfluidic fluorescence-activated cell sorting (μ-FACS) devices have been developed to avoid cross-contamination, minimize device footprint, and eliminate bio-aerosols. However, due to highly precise flow control, the achievable throughput of the μ-FACS system is generally lower than the throughput of conventional FACS devices. Here, we report a fully integrated high-throughput microfluidic circulatory fluorescence-activated cell sorting (μ-CFACS) system for the enrichment of clinical rare cells. A microfluidic sorting cartridge has been developed for enriching samples through a sequential sorting process, which was further realized by the integration of both fast amplified piezoelectrically actuated on-chip valves and compact pneumatic cylinders actuated on-chip valves. At an equivalent throughput of ∼8000 events per second (eps), the purity of rare fluorescent microparticles has been significantly increased from ∼0.01% to ∼27.97%. An enrichment of ∼9400-fold from 0.009% to 81.86% has also been demonstrated for isolating fluorescently labelled MCF-7 breast cancer cells from Jurkat cells at an equivalent sorting throughput of ∼6400 eps. With the advantages of high throughput and contamination-free design, the proposed integrated μ-CFACS system provides a new option for the enrichment of clinical rare cells.
Collapse
Affiliation(s)
- Kunpeng Cai
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan.
| | - Shruti Mankar
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan.
| | - Taiga Ajiri
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan.
| | - Kentaro Shirai
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan.
| | - Tasuku Yotoriyama
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan.
| |
Collapse
|
11
|
Suzuki T, Sato Y, Kushida Y, Tsuji M, Wakao S, Ueda K, Imai K, Iitani Y, Shimizu S, Hida H, Temma T, Saito S, Iida H, Mizuno M, Takahashi Y, Dezawa M, Borlongan CV, Hayakawa M. Intravenously delivered multilineage-differentiating stress enduring cells dampen excessive glutamate metabolism and microglial activation in experimental perinatal hypoxic ischemic encephalopathy. J Cereb Blood Flow Metab 2021; 41:1707-1720. [PMID: 33222596 PMCID: PMC8217885 DOI: 10.1177/0271678x20972656] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perinatal hypoxic ischemic encephalopathy (HIE) results in serious neurological dysfunction and mortality. Clinical trials of multilineage-differentiating stress enduring cells (Muse cells) have commenced in stroke using intravenous delivery of donor-derived Muse cells. Here, we investigated the therapeutic effects of human Muse cells in an HIE model. Seven-day-old rats underwent ligation of the left carotid artery then were exposed to 8% oxygen for 60 min, and 72 hours later intravenously transplanted with 1 × 104 of human-Muse and -non-Muse cells, collected from bone marrow-mesenchymal stem cells as stage-specific embryonic antigen-3 (SSEA-3)+ and -, respectively, or saline (vehicle) without immunosuppression. Human-specific probe revealed Muse cells distributed mainly to the injured brain at 2 and 4 weeks, and expressed neuronal and glial markers until 6 months. In contrast, non-Muse cells lodged in the lung at 2 weeks, but undetectable by 4 weeks. Magnetic resonance spectroscopy and positron emission tomography demonstrated that Muse cells dampened excitotoxic brain glutamatergic metabolites and suppressed microglial activation. Muse cell-treated group exhibited significant improvements in motor and cognitive functions at 4 weeks and 5 months. Intravenously transplanted Muse cells afforded functional benefits in experimental HIE possibly via regulation of glutamate metabolism and reduction of microglial activation.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Shimizu
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Temma
- Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shigeyoshi Saito
- Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hidehiro Iida
- Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaaki Mizuno
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
12
|
Liubaviciute A, Ivaskiene T, Biziuleviciene G. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals 2020; 67:1-8. [DOI: 10.1016/j.biologicals.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
|
13
|
Abstract
Stem cell-based regenerative therapies may rescue the central nervous system following ischemic stroke. Mesenchymal stem cells exhibit promising regenerative capacity in in vitro studies but display little to no incorporation in host tissue after transplantation in in vivo models of stroke. Despite these limitations, clinical trials using mesenchymal stem cells have produced some functional benefits ascribed to their ability to modulate the host's inflammatory response coupled with their robust safety profile. Regeneration of ischemic brain tissue using stem cells, however, remains elusive in humans. Multilineage-differentiating stress-enduring (Muse) cells are a distinct subset of mesenchymal stem cells found sporadically in connective tissue of nearly every organ. Since their discovery in 2010, these endogenous reparative stem cells have been investigated for their therapeutic potential against a variety of diseases, including acute myocardial infarction, stroke, chronic kidney disease, and liver disease. Preclinical studies have exemplified Muse cells' unique ability mobilize, differentiate, and engraft into damaged host tissue. Intravenously transplanted Muse cells in mouse lacunar stroke models afforded functional recovery and long-term engraftment into the host neural network. This mini-review article highlights these biological properties that make Muse cells an exceptional candidate donor source for cell therapy in ischemic stroke. Elucidating the mechanism behind the therapeutic potential of Muse cells will undoubtedly help optimize stem cell therapy for stroke and advance the field of regenerative medicine.
Collapse
Affiliation(s)
- You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida (Y.J.P., M.M., C.V.B.)
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Sendai, Japan (K.N.)
| | - Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida (Y.J.P., M.M., C.V.B.)
| | - Mari Dezawa
- Department of Histology, Tohoku University, Japan (M.D.)
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida (Y.J.P., M.M., C.V.B.)
| |
Collapse
|
14
|
Cao J, Yang Z, Xiao R, Pan B. Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells). Regen Ther 2020; 15:92-96. [PMID: 33426206 PMCID: PMC7770368 DOI: 10.1016/j.reth.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Multilineage differentiating stress enduring cells (Muse cells), double positive for SSEA-3 and CD105, can be isolated by fluorescence-activated cell sorting (FACS) or sever cellular conditions from dermal fibroblasts, bone marrow stem cells (BMSCs), adipose tissue derived stem cells (ADSCs), fresh bone marrow and liposuction fat. When cultured in a single-cell suspension, Muse cells can grow into characteristic cell clusters. Muse cells maintain pluripotency as evidenced by pluripotent markers in vitro. Besides, Muse cells have no tumorigenesis up to 6 months in SCID mice. Muse cells differentiate into cells representative of all three germ layers both spontaneously and under specific induction. In comparison to mesenchymal stem cells (MSCs), Muse cells show higher homing and migration capabilities to damaged sites which is predominantly attributed to S1P–S1PR2 axis. The regenerative effects of Muse cells have been demonstrated by many models in vivo or in vitro, including stroke, intracerebral hemorrhage, myocardial infarction, aortic aneurysm, lung injuries, liver fibrosis, focal segmental glomerulosclerosis, osteochondral defects and skin ulcer. In general, migration, differentiation and paracrine play a pivotal role in the regeneration capability. Here we review the isolation, core properties, preclinical studies as well as the underling molecular and cellular details to highlight their regenerative potential.
Collapse
Affiliation(s)
- Jiankun Cao
- Plastic Surgery Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhigang Yang
- Plastic Surgery Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Plastic Surgery Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Pan
- th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Tobin MK, Stephen TKL, Lopez KL, Pergande MR, Bartholomew AM, Cologna SM, Lazarov O. Activated Mesenchymal Stem Cells Induce Recovery Following Stroke Via Regulation of Inflammation and Oligodendrogenesis. J Am Heart Assoc 2020; 9:e013583. [PMID: 32204666 PMCID: PMC7428606 DOI: 10.1161/jaha.119.013583] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Brain repair mechanisms fail to promote recovery after stroke, and approaches to induce brain regeneration are scarce. Mesenchymal stem cells (MSC) are thought to be a promising therapeutic option. However, their efficacy is not fully elucidated, and the mechanism underlying their effect is not known. Methods and Results The middle cerebral artery occlusion model was utilized to determine the efficacy of interferon-γ-activated mesenchymal stem cells (aMSCγ) as an acute therapy for stroke. Here we show that treatment with aMSCγ is a more potent therapy for stroke than naive MSC. aMSCγ treatment results in significant functional recovery assessed by the modified neurological severity score and open-field analysis compared with vehicle-treated animals. aMSCγ-treated animals showed significant reductions in infarct size and inhibition of microglial activation. The aMSCγ treatment suppressed the hypoxia-induced microglial proinflammatory phenotype more effectively than treatment with naive MSC. Importantly, treatment with aMSCγ induced recruitment and differentiation of oligodendrocyte progenitor cells to myelin-producing oligodendrocytes in vivo. To elucidate the mechanism underlying high efficacy of aMSCγ therapy, we examined the secretome of aMSCγ and compared it to that of naive MSC. Intriguingly, we found that aMSCγ but not nMSC upregulated neuron-glia antigen 2, an important extracellular signal and a hallmark protein of oligodendrocyte progenitor cells. Conclusions These results suggest that activation of MSC with interferon-γ induces a potent proregenerative, promyelinating, and anti-inflammatory phenotype of these cells, which increases the potency of aMSCγ as an effective therapy for ischemic stroke.
Collapse
Affiliation(s)
- Matthew K Tobin
- Department of Anatomy and Cell Biology University of Illinois at Chicago IL
| | | | - Kyra L Lopez
- Department of Anatomy and Cell Biology University of Illinois at Chicago IL
| | | | | | | | - Orly Lazarov
- Department of Anatomy and Cell Biology University of Illinois at Chicago IL
| |
Collapse
|
16
|
Nitobe Y, Nagaoki T, Kumagai G, Sasaki A, Liu X, Fujita T, Fukutoku T, Wada K, Tanaka T, Kudo H, Asari T, Furukawa KI, Ishibashi Y. Neurotrophic Factor Secretion and Neural Differentiation Potential of Multilineage-differentiating Stress-enduring (Muse) Cells Derived from Mouse Adipose Tissue. Cell Transplant 2019; 28:1132-1139. [PMID: 31304790 PMCID: PMC6767880 DOI: 10.1177/0963689719863809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent stem cells that can be isolated based on stage-specific embryonic antigen-3 (SSEA-3), a pluripotent stem cell-surface marker. However, their capacities for survival, neurotrophic factor secretion, and neuronal and glial differentiation are unclear in rodents. Here we analyzed mouse adipose tissue-derived Muse cells in vitro. We collected mesenchymal stem cells (MSCs) from C57BL/6 J mouse adipose tissue and separated SSEA-3+, namely Muse cells, and SSEA-3-, non-Muse cells, to assess self-renewability; pluripotency marker expression (Nanog, Oct3/4, Sox2, and SSEA-3); spontaneous differentiation into endodermal, mesodermal, and ectodermal lineages; and neural differentiation capabilities under cytokine induction. Neurally differentiated Muse and non-Muse cell functions were assessed by calcium imaging. Antioxidant ability was measured to assess survival under oxidative stress. Brain-derived neurotrophic factor (BDNF), vascular endothelial cell growth factor (VEGF), and hepatocyte growth factor (HGF) secretion were analyzed in enzyme-linked immunosorbent assays. SSEA-3+ Muse cells (6.3 ± 1.9% of mouse adipose-MSCs), but not non-Muse cells, exhibited self-renewability, spontaneous differentiation into the three germ layers, and differentiation into cells positive for Tuj-1 (27 ± 0.9%), O4 (17 ± 3.4%), or GFAP (23 ± 1.3%) under cytokine induction. Neurally differentiated Muse cells responded to KCl depolarization with greater increases in cytoplasmic Ca2+ levels than non-Muse cells. Cell survival under oxidative stress was significantly higher in Muse cells (50 ± 2.7%) versus non-Muse cells (22 ± 2.8%). Muse cells secreted significantly more BDNF, VEGF, and HGF (273 ± 12, 1479 ± 7.5, and 6591 ± 1216 pg/mL, respectively) than non-Muse cells (133 ± 4.0, 1165 ± 20, and 2383 ± 540 pg/mL, respectively). Mouse Muse cells were isolated and characterized for the first time. Muse cells showed greater pluripotency-like characteristics, survival, neurotrophic factor secretion, and neuronal and glial-differentiation capacities than non-Muse cells, indicating that they may have better neural-regeneration potential.
Collapse
Affiliation(s)
- Yohshiro Nitobe
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,*Both the authors contributed equally to this article
| | - Toshihide Nagaoki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,*Both the authors contributed equally to this article
| | - Gentaro Kumagai
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Ayako Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Xizhe Liu
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Taku Fujita
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Toshihiro Tanaka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hitoshi Kudo
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Toru Asari
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
17
|
Leng Z, Sun D, Huang Z, Tadmori I, Chiang N, Kethidi N, Sabra A, Kushida Y, Fu YS, Dezawa M, He X, Young W. Quantitative Analysis of SSEA3+ Cells from Human Umbilical Cord after Magnetic Sorting. Cell Transplant 2019; 28:907-923. [PMID: 30997834 PMCID: PMC6719495 DOI: 10.1177/0963689719844260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a population of pluripotent stage-specific embryonic antigen 3 (SSEA3)+ mesenchymal stem cells first described by Mari Dezawa in 2010. Although some investigators have reported SSEA3+ mesenchymal cells in umbilical cord tissues, none have quantitatively compared SSEA3+ cells isolated from Wharton’s jelly (WJ) and the cord lining (CL) of human umbilical cords (HUCs). We separated WJ and the CL from HUCs, cultured mesenchymal stromal cells (MSCs) isolated from these two tissues with collagenase, and quantified the percentage of SSEA3+ cells over three passages. The first passage had 5.0% ± 4.3% and 5.3% ± 5.1% SSEA3+ cells from WJ and the CL, respectively, but the percentage of SSEA3+ cells decreased significantly (P < 0.05) between P0 and P2 in the CL group and between P0 and P1 in the WJ group. Magnetic-activated cell sorting (MACS) markedly enriched SSEA3+ cells to 91.4% ± 3.2%. Upon culture of the sorted population, we found that the SSEA3+ percentage ranged from 62.5% to 76.0% in P2–P5 and then declined to 42.0%–54.7% between P6 and P9. At P10, the cultures contained 37.4% SSEA3+ cells. After P10, we resorted the cells and achieved 89.4% SSEA3+ cells in culture. The procedure for MACS-based enrichment of SSEA3+ cells, followed by expansion in culture and a re-enrichment step, allows the isolation of many millions of SSEA3+ cells in relatively pure culture. When cultured, the sorted SSEA3+ cells differentiated into embryoid spheres and survived 4 weeks after transplant into a contused Sprague-Dawley rat spinal cord. The transplanted SSEA3+ cells migrated into the injury area from four injection points around the contusion site and did not produce any tumors. The umbilical cord is an excellent source of fetal Muse cells, and our method allows the practical and efficient isolation and expansion of relatively pure populations of SSEA3+ Muse cells that can be matched by human leukocyte antigen for transplantation in human trials.
Collapse
Affiliation(s)
- Zikuan Leng
- 1 Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Dongming Sun
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Zihao Huang
- 3 Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei
| | - Iman Tadmori
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Ning Chiang
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Nikhit Kethidi
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Ahmed Sabra
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - Yoshihiro Kushida
- 4 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu-Show Fu
- 3 Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei
| | - Mari Dezawa
- 4 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xijing He
- 1 Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wise Young
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
18
|
Bang OY, Kim EH. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. Front Neurol 2019; 10:211. [PMID: 30915025 PMCID: PMC6422999 DOI: 10.3389/fneur.2019.00211] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Stroke is the leading cause of physical disability among adults. Stem cells such as mesenchymal stem cells (MSCs) secrete a variety of bioactive substances, including trophic factors and extracellular vesicles (EVs), into the injured brain, which may be associated with enhanced neurogenesis, angiogenesis, and neuroprotection. EVs are circular membrane fragments (30 nm−1 μm) that are shed from the cell surface and harbor proteins, microRNAs, etc. Since 2013 when it was first reported that intravenous application of MSC-derived EVs in a stroke rat model improved neurological outcomes and increased angiogenesis and neurogenesis, many preclinical studies have shown that stem cell-derived EVs can be used in stroke therapy, as an alternative approach to stem cell infusion. Although scientific research regarding MSC-derived EV therapeutics is still at an early stage, research is rapidly increasing and is demonstrating a promising approach for patients with severe stroke. MSC therapies have already been tested in preclinical studies and clinical trials, and EV-mediated therapy has unique advantages over cell therapies in stroke patients, in terms of biodistribution (overcoming the first pass effect and crossing the blood-brain-barrier), cell-free paradigm (avoidance of cell-related problems such as tumor formation and infarcts caused by vascular occlusion), whilst offering an off-the-shelf approach for acute ischemic stroke. Recently, advances have been made in the understanding of the function and biogenesis of EVs and EVs therapeutics for various diseases. This review presents the most recent advances in MSC-derived EV therapy for stroke, focusing on the application of this strategy for stroke patients.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea.,Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
19
|
Dabrowski A, Robinson TJ, Felling RJ. Promoting Brain Repair and Regeneration After Stroke: a Plea for Cell-Based Therapies. Curr Neurol Neurosci Rep 2019; 19:5. [PMID: 30712068 DOI: 10.1007/s11910-019-0920-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW After decades of hype, cell-based therapies are emerging into the clinical arena for the purposes of promoting recovery after stroke. In this review, we discuss the most recent science behind the role of cell-based therapies in ischemic stroke and the efforts to translate these therapies into human clinical trials. RECENT FINDINGS Preclinical data support numerous beneficial effects of cell-based therapies in both small and large animal models of ischemic stroke. These benefits are driven by multifaceted mechanisms promoting brain repair through immunomodulation, trophic support, circuit reorganization, and cell replacement. Cell-based therapies offer tremendous potential for improving outcomes after stroke through multimodal support of brain repair. Based on recent clinical trials, cell-based therapies appear both feasible and safe in all phases of stroke. Ongoing translational research and clinical trials will further refine these therapies and have the potential to transform the approach to stroke recovery and rehabilitation.
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Thomas J Robinson
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA.
| |
Collapse
|
20
|
Leng Z, Kethidi N, Chang AJ, Sun L, Zhai J, Yang Y, Xu J, He X. Muse cells and Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells were discovered in 2010 as a subpopulation of mesenchymal stroma cells (MSCs). Muse cells can self-renew and tolerate severe culturing conditions. These cells can differentiate into three lineage cells spontaneously or in induced medium but do not form teratoma in vitro or in vivo. Central nervous system (CNS) diseases, such as intracerebral hemorrhage (ICH), cerebral infarction, and spinal cord injury are normally disastrous. Despite numerous therapy strategies, CNS diseases are difficult to recover. As a novel kind of pluripotent stem cells, Muse cells have shown great regeneration capacity in many animal models, including acute myocardial infarction, hepatectomy, and acute cerebral ischemia (ACI). After injection into injury sites, Muse cells survived, migrated, and differentiated into functional neurons with synaptic junctions to local neurons and contributed to recovery of function. Furthermore, Muse cell differentiation did not need to be induced pre-transplantation and no tumors were observed post- transplantation. The Muse cell population is promising and may lead to a revolution in regenerative medicine. This review focuses on recent advances regarding the Muse cells therapies in Neurorestoratology and discusses future perspectives in this field.
Collapse
|
21
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
22
|
Jiang J, Wang Y, Liu B, Chen X, Zhang S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev 2018; 40:612-626. [PMID: 29661589 DOI: 10.1016/j.braindev.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Cerebral Ischemic Stroke (CIS) has become a hot issue in medical research because of the diversity of risk factors and the uncertainty of prognosis. In the field of regenerative medicine, mesenchymal stem cells (MSCs) have an increasingly prominent position due to their advantages of multiple differentiation, low immunogenicity and wide application. In the basic and clinical research of CIS, there are still some problems to be solved in the treatment of CIS. This paper will discuss the progresses and some obstacles of current MSCs for the treatment of CIS.
Collapse
Affiliation(s)
- Jipeng Jiang
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China.
| | - Yuting Wang
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin 300070, China
| | - Baohu Liu
- Tianjin University of Traditional Chinese Medicine, Yuquan Road No. 88, Tianjin 300193, China
| | - Xuyi Chen
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China.
| |
Collapse
|
23
|
Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H, Mikami A, Ushikoshi H, Kawasaki M, Dezawa M, Minatoguchi S. Mobilized Muse Cells After Acute Myocardial Infarction Predict Cardiac Function and Remodeling in the Chronic Phase. Circ J 2018; 82:561-571. [DOI: 10.1253/circj.cj-17-0552] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine
| | | | | | - Takahide Nawa
- Department of Cardiology, Gifu University Graduate School of Medicine
| | - Yoshihisa Yamada
- Department of Cardiology, Gifu University Graduate School of Medicine
| | | | - Atsushi Mikami
- Department of Cardiology, Gifu University Graduate School of Medicine
| | - Hiroaki Ushikoshi
- Department of Cardiology, Gifu University Graduate School of Medicine
| | - Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
24
|
Current Cell-Based Therapies in the Chronic Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:243-253. [PMID: 30484233 DOI: 10.1007/978-4-431-56847-6_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver diseases account for one of the leading causes of deaths in global health care. Furthermore, chronic liver failure such as liver cirrhosis is, namely, responsible for these fatal conditions. However, only liver transplantation is an established treatment for this end-stage condition, although the availability of this salvage treatment option is quite limited. Thus, the novel therapy such as artificial liver devices or cellular administration has been regarded as feasible. Especially cellular therapies have been proposed in decades. The technical advancement and progress of understanding of cellular differentiation have contributed to the development of basis of cellular therapy. This attractive therapeutic option has been advanced from original embryonic stem cells to more effective cellular fractions such as Muse cells. Indeed several cellular therapies including bone marrow-derived stem cells or peripheral blood-derived stem cells were initiated; the recent most organized clinical trials could not demonstrate its efficacy. Thus, truly innovative cellular therapy is needed to meet the scientific demands, and Muse cell administration is the remaining approach to this. In this article, we will discuss the current development and status of cellular therapy toward chronic liver failure.
Collapse
|
25
|
Muse Cells Are Endogenous Reparative Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:43-68. [PMID: 30484223 DOI: 10.1007/978-4-431-56847-6_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dynamics and actions of Muse cells at a time of physical crisis are unique and highly remarkable compared with other stem cell types. When the living body is in a steady state, low levels of Muse cells are mobilized to the peripheral blood, possibly from the bone marrow, and supplied to the connective tissue of nearly every organ. Under conditions of serious tissue damage, such as acute myocardial infarction and stroke, Muse cells are highly mobilized to the peripheral blood, drastically increasing their numbers in the peripheral blood within 24 h after the onset of tissue injury. The alerting signal, sphingosine-1-phosphate, attracts Muse cells to the damaged site mainly via the sphingosine-1-phosphate receptor 2, enabling them to preferentially home to site of injury. After homing, Muse cells spontaneously differentiate into tissue-compatible cells and replenish new functional cells for tissue repair. Because Muse cells have pleiotropic effects, including paracrine, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects, these cells synergistically deliver long-lasting functional and structural recovery. This chapter describes how Muse cells exert their reparative effects in vivo.
Collapse
|
26
|
Hosoyama K, Saiki Y. Muse Cells and Aortic Aneurysm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:273-291. [PMID: 30484235 DOI: 10.1007/978-4-431-56847-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aorta is a well-organized, multilayered structure comprising several cell types, namely, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts, as well as an extracellular matrix (ECM), which includes elastic and collagen fibers. Aortic aneurysms (AAs) are defined as progressive enlargements of the aorta that carries an incremental risk of rupture as the diameter increases over time. The destruction of the aortic wall tissue is triggered by atherosclerosis, inflammation, and oxidative stress, leading to the activation of matrix metalloproteinases (MMPs), and inflammatory cytokines and chemokines, resulting in the loss of the structural back bone of VSMCs, ECM, and ECs. To date, cell-based therapy has been applied to animal models using several types of cells, such as VSMCs, ECs, and mesenchymal stem cells (MSCs). Although these cells indeed deliver beneficial outcomes for AAs, particularly by paracrine and immunomodulatory effects, the attenuation of aneurysmal dilation with a robust tissue repair is insufficient. Meanwhile, multilineage-differentiating stress-enduring (Muse) cells are known to be endogenous non-tumorigenic pluripotent-like stem cells that are included as several percent of MSCs. Since Muse cells are pluripotent-like, they have the ability to differentiate into cells representative of all three germ layers from a single cell and to self-renew. Moreover, Muse cells are able to home to the site of damage following simple intravenous injection and repair the tissue by replenishing new functional cells through spontaneous differentiation into tissue-compatible cells. Given these unique properties, Muse cells are expected to provide an efficient therapeutic efficacy for AA by simple intravenous injection. In this chapter, we summarize several studies on Muse cell therapy for AA including our recent data, in comparison with other kinds of cell therapies.
Collapse
Affiliation(s)
- Katsuhiro Hosoyama
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
27
|
Niizuma K, Borlongan CV, Tominaga T. Application of Muse Cell Therapy to Stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:167-186. [PMID: 30484229 DOI: 10.1007/978-4-431-56847-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke is defined as a sudden onset of neurologic deficits arising from cerebrovascular complications. It is the second common cause of death around the world and the major cause of disability. Because brain is an organ with complicated neural networks and neurons are highly differentiated, it has been traditionally considered to possess a limited potential for regeneration. The number of stroke patients is increasing, and stroke represents a serious problem from the viewpoint of the national medical economy. Even with the current sophisticated treatments, more than half of stroke patient survivors remain disabled. Therefore, it is imperative to develop a new treatment for promoting functional recovery and repair of the lost neurological circuit. Multilineage-differentiating stress-enduring (Muse) cells are endogenous non-tumorigenic stem cells with pluripotency. After transplantation, Muse cells recognize the injured site through their specific receptor for damage signal, home preferentially into these tissues and spontaneously differentiate into tissue-compatible cells to replace the lost cells, and repair the tissue, delivering functional and structural regeneration. These properties are desirable for the treatment of strokes and advantageous compared to other stem cell therapies. Here, we describe the current status of stem cell therapies for stroke and future possibilities of Muse cell therapy.
Collapse
Affiliation(s)
- Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan. .,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Kuroda S, Koh M, Hori E, Hayakawa Y, Akai T. Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:187-198. [PMID: 30484230 DOI: 10.1007/978-4-431-56847-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multilineage-differentiating stress enduring (Muse) cells are one of the most promising donor cells for cell therapy against ischemic stroke, because they can differentiate into any type of cells constructing the central nervous system (CNS), including the neurons. They can easily be isolated from the bone marrow stromal cells (BMSCs), which may also contribute to functional recovery after ischemic stroke as donor cells. In this chapter, we concisely review their biological features and then future perspective of Muse cell transplantation for ischemic stroke. In addition, we briefly refer to the surprising role of Muse cells to maintain the homeostasis in the living body under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan.
| | - Masaki Koh
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Emiko Hori
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Yumiko Hayakawa
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Takuya Akai
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Abstract
Discovered nearly 10 years ago by Professor Mari Dezawa and her colleagues, Muse cells are entering clinical trials faster than any other stem cell for three reasons. First, Muse cells have multiple fail-safe mechanisms to keep themselves from growing out of control and do not form tumors. In contrast, embryonic stem cells and induced pluripotent stem cells form tumors and must be differentiated before transplantation. Second, Muse cells possess potent anti-immune mechanisms, including human leukocyte antigen G and indoleamine 2,3-dioxygenase that prevent both cellular and humoral immunity. Muse cells engraft even though they do not match HLA antigens with the host. Third, Muse cells are able to determine what kind and how many cells they need to make for tissue repair. While the mechanisms responsible for these traits are not well understood, Muse cells are able to enter severely injured tissues of all kinds and repair them. Study of mechanisms underlying these traits of Muse cells is likely to yield new therapies for cancer prevention, autoimmune diseases, and repair of injured tissues. The future is bright for Muse cells.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
30
|
Matsuoka AJ, Sayed ZA, Stephanopoulos N, Berns EJ, Wadhwani AR, Morrissey ZD, Chadly DM, Kobayashi S, Edelbrock AN, Mashimo T, Miller CA, McGuire TL, Stupp SI, Kessler JA. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles. PLoS One 2017; 12:e0190150. [PMID: 29284013 PMCID: PMC5746215 DOI: 10.1371/journal.pone.0190150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration.
Collapse
Affiliation(s)
- Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Zafar A. Sayed
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
| | - Eric J. Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Anil R. Wadhwani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zachery D. Morrissey
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shun Kobayashi
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandra N. Edelbrock
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Tomoji Mashimo
- The Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Charles A. Miller
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tammy L. McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
31
|
Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Res 2017; 1680:143-154. [PMID: 29274877 DOI: 10.1016/j.brainres.2017.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are mainly administered via three routes: intra-arterial, intravenous and intracerebral. It has been reported that BMSC administration via each route ameliorates the functional deficits after cerebral ischemia. However, there have been no comparisons of the therapeutic benefits of BMSC administration through different delivery routes. In this study, we injected BMSCs into a rat model of transient middle cerebral artery occlusion (MCAO) through the intra-arterial, intravenous, or intracerebral route at day 7 after MCAO. Control animals received only the vehicle. Neurological function was assessed at post-ischemic days (PIDs) 1, 7, 14, 21, 28 and 35 using behavioral tests (modified Neurological Severity Score (mNSS) and the adhesive removal test). At PID 35, the rat brain tissues were processed for histochemical and immunohistochemical staining. Our results showed that BMSC transplantation via the intra-arterial, intravenous, and intracerebral routes induced greater improvement in neurological functions than the control treatments; furthermore, the intra-arterial route showed the greatest degree and speed of neurological functional recovery. Moreover, BMSCs treatment through each route enhanced reconstruction of axonal myelination in the area of the corpus callosum on the infarct side of the cerebral hemisphere, increased the expression of SYN and Ki-67, and decreased the expression of Nogo-A in the brain. These effects were more apparent in the intra-arterial group than in the intravenous and intracerebral groups. These data suggest that BMSCs transplantation, especially through intra-arterial delivery, can effectively improve neurological function intra-arterial. The underlying mechanism may include the promotion of synaptogenesis, endogenous cell proliferation, and axonal regeneration.
Collapse
|
32
|
Therapeutic Potential of Multilineage-Differentiating Stress-Enduring Cells for Osteochondral Repair in a Rat Model. Stem Cells Int 2017; 2017:8154569. [PMID: 29312455 PMCID: PMC5682088 DOI: 10.1155/2017/8154569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are stage-specific embryonic antigen-3 (SSEA-3) positive cells existing in mesenchymal stem cell (MSC) populations. Muse cells have the pluripotency to differentiate into all germ layers as embryonic stem cells. In this study, we aimed to investigate the efficacy of Muse cell transplantation for osteochondral defect repair. Muse cells were isolated from human bone marrow MSCs. An osteochondral defect was created in the patellar groove of immunodeficient rats. After this, cell injection was performed, whereby rats were divided into 3 groups: the control group, the rats of which were given a PBS injection; the non-Muse group, which comprised 5 × 104 SSEA-3 negative non-Muse cells; and the Muse group, which comprised 5 × 104 SSEA-3 positive Muse cells. The white repaired tissue had a mostly smooth homogenous surface at 12 weeks after treatment in the Muse group, while no repair tissue was detected in the control and non-Muse groups. Histological assessments showed better repair at the cartilage defect sites in the Muse group compared to the other groups at 4 and 12 weeks after treatment. Muse cells could be a new promising cell source for the treatment of osteochondral defects.
Collapse
|
33
|
Fisch SC, Gimeno ML, Phan JD, Simerman AA, Dumesic DA, Perone MJ, Chazenbalk GD. Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): a seven-year retrospective. Stem Cell Res Ther 2017; 8:227. [PMID: 29041955 PMCID: PMC5646122 DOI: 10.1186/s13287-017-0674-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multilineage differentiating stress enduring (Muse) cells, discovered in the spring of 2010 at Tohoku University in Sendai, Japan, were quickly recognized by scientists as a possible source of pluripotent cells naturally present within mesenchymal tissues. Muse cells normally exist in a quiescent state, singularly activated by severe cellular stress in vitro and in vivo. Muse cells have the capacity for self-renewal while maintaining pluripotent cell characteristics indicated by the expression of pluripotent stem cell markers. Muse cells differentiate into cells representative of all three germ cell layers both spontaneously and under media-specific induction. In contrast to embryonic stem and induced pluripotent stem cells, Muse cells exhibit low telomerase activity, a normal karyotype, and do not undergo tumorigenesis once implanted in SCID mice. Muse cells efficiently home into damaged tissues and differentiate into specific cells leading to tissue regeneration and functional recovery as described in different animal disease models (i.e., fulminant hepatitis, muscle degeneration, skin ulcers, liver cirrhosis, cerebral stroke, vitiligo, and focal segmental glomerulosclerosis). Circulating Muse cells have been detected in peripheral blood, with higher levels present in stroke patients during the acute phase. Furthermore, Muse cells have inherent immunomodulatory properties, which could contribute to tissue generation and functional repair in vivo. Genetic studies in Muse cells indicate a highly conserved cellular mechanism as seen in more primitive organisms (yeast, Saccharomyces cerevisiae, Caenorhabditis elegans, chlamydomonas, Torpedo californica, drosophila, etc.) in response to cellular stress and acute injury. This review details the molecular and cellular properties of Muse cells as well as their capacity for tissue repair and functional recovery, highlighting their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Samantha C. Fisch
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, The University of California, 10833 Le Conte Ave, Box 951740, Los Angeles, CA 90095-1740 USA
| | - María L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Julia D. Phan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, The University of California, 10833 Le Conte Ave, Box 951740, Los Angeles, CA 90095-1740 USA
| | - Ariel A. Simerman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, The University of California, 10833 Le Conte Ave, Box 951740, Los Angeles, CA 90095-1740 USA
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, The University of California, 10833 Le Conte Ave, Box 951740, Los Angeles, CA 90095-1740 USA
| | - Marcelo J. Perone
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, The University of California, 10833 Le Conte Ave, Box 951740, Los Angeles, CA 90095-1740 USA
| |
Collapse
|
34
|
Shimamura N, Katagai T, Kakuta K, Matsuda N, Katayama K, Fujiwara N, Watanabe Y, Naraoka M, Ohkuma H. Rehabilitation and the Neural Network After Stroke. Transl Stroke Res 2017; 8:507-514. [PMID: 28681346 DOI: 10.1007/s12975-017-0550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
Abstract
Stroke remains a major cause of disability throughout the world: paralysis, cognitive impairment, aphasia, and so on. Surgical or medical intervention is curative in only a small number of cases. Nearly all stroke cases require rehabilitation. Neurorehabilitation generally improves patient outcome, but it sometimes has no effect or even a mal-influence. The aim of this review is the clarification of the mechanisms of neurorehabilitation. We systematically reviewed recently published articles on neural network remodeling, especially from 2014 to 2016. Finally, we summarize progress in neurorehabilitation and discuss future prospects.
Collapse
Affiliation(s)
- Norihito Shimamura
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan.
| | - Takeshi Katagai
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Kiyohide Kakuta
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Naoya Matsuda
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Kosuke Katayama
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Nozomi Fujiwara
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Yuuka Watanabe
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
35
|
Tian T, Zhang RZ, Yang YH, Liu Q, Li D, Pan XR. Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes. Cell Reprogram 2017; 19:116-122. [PMID: 28170296 DOI: 10.1089/cell.2016.0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objective of the authors has been to obtain multilineage-differentiating stress-enduring cells (Muse cells) from primary cultures of dermal fibroblasts, identify their pluripotency, and detect their ability to differentiate into melanocytes. The distribution of SSEA-3-positive cells in human scalp skin was assessed by immunohistochemistry, and the distribution of Oct4, Sox2, Nanog, and SSEA-3-positive cells was determined by immunofluorescence staining. The expression levels of Sox2, Oct4, hKlf4, and Nanog mRNAs and proteins in Muse cells were determined by reverse transcription polymerase chain reaction (RT-PCR) analyses and Western blots, respectively. These Muse cells differentiated into melanocytes in differentiation medium. The SSEA-3-positive cells were scattered in the basement membrane zone and the dermis, with comparatively more in the sebaceous glands, vascular and sweat glands, as well as the outer root sheath of hair follicles, the dermal papillae, and the hair bulbs. Muse cells, which have the ability to self-renew, were obtained from scalp dermal fibroblasts by flow cytometry sorting with an anti-SSEA-3 antibody. The results of RT-PCR, Western blot, and immunofluorescence staining showed that the expression levels of Oct4, Nanog, Sox2, and Klf4 mRNAs and proteins in Muse cells were significantly different from their parental dermal fibroblasts. Muse cells differentiated into melanocytes when cultured in melanocyte differentiation medium, and the Muse cell-derived melanocytes expressed the melanocyte-specific marker HMB45. Muse cells could be obtained by flow cytometry from primary cultures of scalp dermal fibroblasts, which possessed the ability of pluripotency and self-renewal, and could differentiate into melanocytes in vitro.
Collapse
Affiliation(s)
- Ting Tian
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Ru-Zhi Zhang
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Yu-Hua Yang
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Qi Liu
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Di Li
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Xiao-Ru Pan
- 2 The Dermal and Venereal Department, Bengbu Medical College , Bengbu, China
| |
Collapse
|
36
|
Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, Dezawa M. Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model. Stroke 2016; 48:428-435. [PMID: 27999136 DOI: 10.1161/strokeaha.116.014950] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3+ cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. METHODS We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. RESULTS Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. CONCLUSIONS Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke.
Collapse
Affiliation(s)
- Hiroki Uchida
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.)
| | - Kuniyasu Niizuma
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.)
| | - Yoshihiro Kushida
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.)
| | - Shohei Wakao
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.)
| | - Teiji Tominaga
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.)
| | - Cesario V Borlongan
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.).
| | - Mari Dezawa
- From the Department of Stem Cell Biology and Histology (H.U., S.W., M.D.), Department of Neurosurgery (H.U., K.N., T.T.), and Department of Anatomy and Anthropology (Y.K., M.D.), Tohoku University Graduate School of Medicine, Sendai, Japan; and Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa (C.V.B.).
| |
Collapse
|
37
|
Liu Q, Zhang RZ, Li D, Cheng S, Yang YH, Tian T, Pan XR. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram 2016; 18:67-77. [PMID: 27055628 DOI: 10.1089/cell.2015.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A new type of mesenchymal stem cells (MSCs) that expresses stage-specific embryonic antigen 3 (SSEA-3) and the mesenchymal cell marker CD105 are known as multilineage-differentiating stress-enduring (Muse) cells. Studies have shown that stem cells in suspension cultures are more likely to generate embryoid body-like stem cell spheres and maintain an undifferentiated phenotype and pluripotency. We separated Muse cells derived from human dermal fibroblasts by long-term trypsin incubation (LTT) through suspension cultures in methylcellulose. The Muse cells obtained expressed several pluripotency markers, including Nanog, Oct4, Sox2, and SSEA-3, and could differentiate in vitro into cells of the three germ layers, such as hepatocytes (endodermal), neural cells (ectodermal) and adipocytes, and osteocytes (mesodermal cells). These cells showed a low level of DNA methylation and a high nucleo-cytoplasmic ratio. Our study provides an innovative and exciting platform for exploring the potential cell-based therapy of various human diseases using Muse cells as well as their great possibility for regenerative medicine.
Collapse
Affiliation(s)
- Qi Liu
- 1 Department of Dermatology, The Third Affiliated Hospital of Suzhou University , Changzhou, 213003, China
| | - Ru-zhi Zhang
- 1 Department of Dermatology, The Third Affiliated Hospital of Suzhou University , Changzhou, 213003, China
| | - Di Li
- 1 Department of Dermatology, The Third Affiliated Hospital of Suzhou University , Changzhou, 213003, China
| | - Sai Cheng
- 2 Department of Dermatology, The First Affiliated Hospital of Bengbu Medical College , Anhui, 213003, China
| | - Yu-hua Yang
- 1 Department of Dermatology, The Third Affiliated Hospital of Suzhou University , Changzhou, 213003, China
| | - Ting Tian
- 1 Department of Dermatology, The Third Affiliated Hospital of Suzhou University , Changzhou, 213003, China
| | - Xiao-ru Pan
- 2 Department of Dermatology, The First Affiliated Hospital of Bengbu Medical College , Anhui, 213003, China
| |
Collapse
|
38
|
Simerman AA, Phan JD, Dumesic DA, Chazenbalk GD. Muse Cells: Nontumorigenic Pluripotent Stem Cells Present in Adult Tissues-A Paradigm Shift in Tissue Regeneration and Evolution. Stem Cells Int 2016; 2016:1463258. [PMID: 28070194 PMCID: PMC5192335 DOI: 10.1155/2016/1463258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
Muse cells are a novel population of nontumorigenic pluripotent stem cells, highly resistant to cellular stress. These cells are present in every connective tissue and intrinsically express pluripotent stem markers such as Nanog, Oct3/4, Sox2, and TRA1-60. Muse cells are able to differentiate into cells from all three embryonic germ layers both spontaneously and under media-specific induction. Unlike ESCs and iPSCs, Muse cells exhibit low telomerase activity and asymmetric division and do not undergo tumorigenesis or teratoma formation when transplanted into a host organism. Muse cells have a high capacity for homing into damaged tissue and spontaneous differentiation into cells of compatible tissue, leading to tissue repair and functional restoration. The ability of Muse cells to restore tissue function may demonstrate the role of Muse cells in a highly conserved cellular mechanism related to cell survival and regeneration, in response to cellular stress and acute injury. From an evolutionary standpoint, genes pertaining to the regenerative capacity of an organism have been lost in higher mammals from more primitive species. Therefore, Muse cells may offer insight into the molecular and evolutionary bases of autonomous tissue regeneration and elucidate the molecular and cellular mechanisms that prevent mammals from regenerating limbs and organs, as planarians, newts, zebrafish, and salamanders do.
Collapse
Affiliation(s)
- Ariel A. Simerman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia D. Phan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Shimamura N, Kakuta K, Wang L, Naraoka M, Uchida H, Wakao S, Dezawa M, Ohkuma H. Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model. Exp Brain Res 2016; 235:565-572. [PMID: 27817105 DOI: 10.1007/s00221-016-4818-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
A novel type of non-tumorigenic pluripotent stem cell, the Muse cell (multi-lineage, differentiating stress enduring cell), resides in the connective tissue and in cultured mesenchymal stem cells (MSCs) and is reported to differentiate into multiple cell types according to the microenvironment to repair tissue damage. We examined the efficiency of Muse cells in a mouse intracerebral hemorrhage (ICH) model. Seventy μl of cardiac blood was stereotactically injected into the left putamen of immunodeficient mice. Five days later, 2 × 105 of human bone marrow MSC-derived Muse cells (n = 6) or cells other than Muse cells in MSCs (non-Muse, n = 6) or the same volume of PBS (n = 11) was injected into the ICH cavity. Water maze and motor function tests were implemented for 68 days, and immunohistochemistry for NeuN, MAP2 and GFAP was done. The Muse group showed impressive recovery: Recovery was seen in the water maze after day 19, and motor functions after 5 days was compared with the other two groups, with a significant statistical difference (p < 0.05). The survival rate of the engrafted cells in the Muse group was significantly higher than in the non-Muse group (p < 0.05) at day 69, and those cells showed positivity for NeuN (~57%) and MAP-2 (~41.6%). Muse cells could remain in the ICH brain, differentiate into neural-lineage cells and restore functions without inducing them into neuronal cells by gene introduction and cytokine treatment prior to transplantation. A simple collection of Muse cells and their supply to the brain in naïve state facilitates regenerative therapy in ICH.
Collapse
Affiliation(s)
- Norihito Shimamura
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan.
| | - Kiyohide Kakuta
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Liang Wang
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Masato Naraoka
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Uchida
- Department of Stem Cell Biology and Histology, Tohoku University School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University School of Medicine, 5-Zaihuchou, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
40
|
Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F, Asada R, Shimizu S, Unno M, Chazenbalk G, Dezawa M. Muse Cells, Nontumorigenic Pluripotent-Like Stem Cells, Have Liver Regeneration Capacity Through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis. Cell Transplant 2016; 26:821-840. [PMID: 27938474 DOI: 10.3727/096368916x693662] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Muse cells, a novel type of nontumorigenic pluripotent-like stem cells, reside in the bone marrow, skin, and adipose tissue and are collectable as cells positive for pluripotent surface marker SSEA-3. They are able to differentiate into cells representative of all three germ layers. The capacity of intravenously injected human bone marrow-derived Muse cells to repair an immunodeficient mouse model of liver fibrosis was evaluated in this study. The cells exhibited the ability to spontaneously differentiate into hepatoblast/hepatocyte lineage cells in vitro. They demonstrated a high migration capacity toward the serum and liver section of carbon tetrachloride-treated mice in vitro. In vivo, they specifically accumulated in the liver, but not in other organs except, to a lesser extent, in the lungs at 2 weeks after intravenous injection in the liver fibrosis model. After homing, Muse cells spontaneously differentiated in vivo into HepPar-1 (71.1 ± 15.2%), human albumin (54.3 ± 8.2%), and anti-trypsin (47.9 ± 4.6%)-positive cells without fusing with host hepatocytes, and expressed mature functional markers such as human CYP1A2 and human Glc-6-Pase at 8 weeks after injection. Recovery in serum, total bilirubin, and albumin and significant attenuation of fibrosis were recognized with statistical differences between the Muse cell-transplanted group and the control groups, which received the vehicle or the same number of a non-Muse cell population of MSCs (MSCs in which Muse cells were eliminated). Thus, unlike ESCs and iPSCs, Muse cells are unique in their efficient migration and integration into the damaged liver after intravenous injection, nontumorigenicity, and spontaneous differentiation into hepatocytes, rendering induction into hepatocytes prior to transplantation unnecessary. They may repair liver fibrosis by two simple steps: expansion after collection from the bone marrow and intravenous injection. A therapeutic strategy such as this is feasible and may provide significant advancements toward liver regeneration in patients with liver disease.
Collapse
|
41
|
Anderson JD, Pham MT, Contreras Z, Hoon M, Fink KD, Johansson HJ, Rossignol J, Dunbar GL, Showalter M, Fiehn O, Bramlett CS, Bardini RL, Bauer G, Fury B, Hendrix KJ, Chedin F, EL-Andaloussi S, Hwang B, Mulligan MS, Lehtiö J, Nolta JA. Mesenchymal stem cell-based therapy for ischemic stroke. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Xie J, Wang B, Wang L, Dong F, Bai G, Liu Y. Intracerebral and Intravenous Transplantation Represents a Favorable Approach for Application of Human Umbilical Cord Mesenchymal Stromal Cells in Intracerebral Hemorrhage Rats. Med Sci Monit 2016; 22:3552-3561. [PMID: 27703134 PMCID: PMC5063432 DOI: 10.12659/msm.900512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is one severe subtype of stroke, with a very complex pathology. Stem cell-based therapy holds promising potential in the treatment of neurological disorders. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have a therapeutic effect in recovery from brain damage following ICH. The aim of this study was to identify an effective and convenient way of using UC-MSCs in the ICH rat model. Material/Methods CM-DiI-labeled human UC-MSCs were transplanted intracerebrally or intravenously into collagenase VII-induced ICH rat models. Neurological function was evaluated before ICH and at 0, 7, 14, 21, and 28 days after treatment. ICH rats were sacrificed to evaluate the injury volume. Neurogenesis and angiogenesis and vascular areas were investigated using microtubule-associated protein 2 (MAP2), glial fibrillary acidic protein (GFAP), and 4′,6-diamidino-2-phenylindole (DAPI) immunohistochemistry at two weeks after transplantation. Results The intracerebral and intravenous administration of UC-MSCs both resulted in significant improvement in neurological function and decrease in injury volume of ICH rats. Transplanted UC-MSCs were chemotactic in vivo and showed a predominant distribution around the ICH region. In addition, UC-MSCs could integrate into the cerebral vasculature in both groups. Conclusions Both intracerebral and intravenous administration of UC-MSCs could have a favorable effect on recovery of neurological function in ICH rats, although the fundamental mechanisms may be different between the two groups. Our data suggest that intravenous implantation of UC-MSCs could serve as a favorable approach for cell-based therapy in central nervous system (CNS) diseases according to clinical needs.
Collapse
Affiliation(s)
- Jiang Xie
- Alliancells Key Institute of Stem Cells and Translational Regenerative Medicine, Tianjin AllianStemcell Biotech Co., Ltd., Post-Doctoral Research Station, Tianjin, China (mainland)
| | - Bin Wang
- Alliancells Key Institute of Stem Cells and Translational Regenerative Medicine, Tianjin AllianStemcell Biotech Co., Ltd., Post-Doctoral Research Station, Tianjin, China (mainland)
| | - Lian Wang
- School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Fang Dong
- Alliancells Key Institute of Stem Cells and Translational Regenerative Medicine, Tianjin AllianStemcell Biotech Co., Ltd., Post-Doctoral Research Station, Tianjing, China (mainland)
| | - Gang Bai
- Alliancells Key Institute of Stem Cells and Translational Regenerative Medicine, Tianjin AllianStemcell Biotech Co., Ltd., Post-Doctoral Research Station, Tianjign, China (mainland)
| | - Yongjun Liu
- College of Pharmacy, Nankai University, Tianjin, China (mainland)
| |
Collapse
|
43
|
Bang OY, Kim EH, Cha JM, Moon GJ. Adult Stem Cell Therapy for Stroke: Challenges and Progress. J Stroke 2016; 18:256-266. [PMID: 27733032 PMCID: PMC5066440 DOI: 10.5853/jos.2016.01263] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Jae Min Cha
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Seoul, Korea.,Medical Device Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
44
|
Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T, Kubo M, Horie Y, Sasahara M, Kuroda S. Mobilization of Pluripotent Multilineage-Differentiating Stress-Enduring Cells in Ischemic Stroke. J Stroke Cerebrovasc Dis 2016; 25:1473-81. [PMID: 27019988 DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/11/2015] [Accepted: 12/27/2015] [Indexed: 01/29/2023] Open
Abstract
GOAL This prospective study was aimed to prove the hypothesis that multilineage-differentiating stress-enduring (Muse) cells are mobilized from bone marrow into peripheral blood in patients with ischemic stroke. MATERIALS AND METHODS This study included 29 patients with ischemic stroke. To quantify the circulating Muse cells, peripheral blood was obtained from all patients on admission and at days 7 and 30. Using fluorescence-activated cell sorting, Muse cells were identified as stage-specific embryonic antigen-3-positive cells. The control values were obtained from 5 healthy volunteers. Separately, immunohistochemistry was performed to evaluate the distribution of Muse cells in the bone marrow of 8 autopsy cases. FINDINGS The number of Muse cells robustly increased within 24 hours after the onset, compared with the controls, but their baseline number and temporal profile widely varied among patients. No clinical data predicted the baseline number of Muse cells at the onset. Multivariate analysis revealed that smoking and alcohol intake significantly affect the increase in circulating Muse cells. The odds ratio was .0027 (P = .0336) and 1688 (P = .0220) for smoking and alcohol intake, respectively. The percentage of Muse cells in the bone marrow was .20% ± .17%. CONCLUSION This study shows that pluripotent Muse cells are mobilized from the bone marrow into peripheral blood in the acute stage of ischemic stroke. Smoking and alcohol intake significantly affect their temporal profile. Therapeutic interventions that increase endogenous Muse cells or exogenous administration of Muse cells may improve functional outcome after ischemic stroke.
Collapse
Affiliation(s)
- Emiko Hori
- Department of Neurosurgery, Graduate School of Medicine and Pharmacological Sciences, University of Toyama, Toyama, Japan; Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama, Japan
| | - Yumiko Hayakawa
- Department of Neurosurgery, Graduate School of Medicine and Pharmacological Sciences, University of Toyama, Toyama, Japan
| | - Tomohide Hayashi
- Department of Neurosurgery, Graduate School of Medicine and Pharmacological Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Hori
- Department of Neurosurgery, Graduate School of Medicine and Pharmacological Sciences, University of Toyama, Toyama, Japan
| | - Soushi Okamoto
- Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama, Japan
| | - Takashi Shibata
- Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama, Japan
| | - Michiya Kubo
- Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama, Japan
| | - Yukio Horie
- Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmacological Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmacological Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
45
|
Carlson AL, Bennett NK, Francis NL, Halikere A, Clarke S, Moore JC, Hart RP, Paradiso K, Wernig M, Kohn J, Pang ZP, Moghe PV. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nat Commun 2016; 7:10862. [PMID: 26983594 PMCID: PMC4800432 DOI: 10.1038/ncomms10862] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. Human pluripotent stem cell derived neurons have the potential for cell replacement therapy for brain injury and disease but problems on transplantation need to be overcome. Here, the authors use a microtopographic scaffold to graft neurons into both hippocampal organoids and the mouse brain striatum.
Collapse
Affiliation(s)
- Aaron L Carlson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Nicola L Francis
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Apoorva Halikere
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA
| | - Stephen Clarke
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | - Jennifer C Moore
- Human Genetics Institute of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA.,Human Genetics Institute of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Kenneth Paradiso
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA.,Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
46
|
Kuroda S. Current Opinion of Bone Marrow Stromal Cell Transplantation for Ischemic Stroke. Neurol Med Chir (Tokyo) 2016; 56:293-301. [PMID: 26984453 PMCID: PMC4908072 DOI: 10.2176/nmc.ra.2015-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article reviews recent advancement and perspective of bone marrow stromal cell (BMSC) transplantation for ischemic stroke, based on current information of basic and translational research. The author would like to emphasize that scientific approach would enable us to apply BMSC transplantation into clinical situation in near future.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama
| |
Collapse
|
47
|
Dezawa M. Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration. Cell Transplant 2016; 25:849-61. [PMID: 26884346 DOI: 10.3727/096368916x690881] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While mesenchymal stem cells (MSCs) are easily accessible from mesenchymal tissues, such as bone marrow and adipose tissue, they are heterogeneous, and their entire composition is not fully identified. MSCs are not only able to differentiate into osteocytes, chondrocytes, and adipocytes, which belong to the same mesodermal lineage, but they are also able to cross boundaries between mesodermal, ectodermal, and endodermal lineages, and differentiate into neuronal- and hepatocyte-like cells. However, the ratio of such differentiation is not very high, suggesting that only a subpopulation of the MSCs participates in this cross-lineage differentiation phenomenon. We have identified unique cells that we named multilineage-differentiating stress-enduring (Muse) cells that may explain the pluripotent-like properties of MSCs. Muse cells comprise a small percentage of MSCs, are able to generate cells representative of all three germ layers from a single cell, and are nontumorigenic and self-renewable. Importantly, cells other than Muse cells in MSCs do not have these pluripotent-like properties. Muse cells are particularly unique compared with other stem cells in that they efficiently migrate and integrate into damaged tissue when supplied into the bloodstream, and spontaneously differentiate into cells compatible with the homing tissue. Such a repairing action of Muse cells via intravenous injection is recognized in various tissues including the brain, liver, and skin. Therefore, unlike ESCs/iPSCs, Muse cells render induction into the target cell type prior to transplantation unnecessary. They can repair tissues in two simple steps: collection from mesenchymal tissues, such as the bone marrow, and intravenous injection. The impressive regenerative performance of these cells provides a simple, feasible strategy for treating a variety of diseases. This review details the unique characteristics of Muse cells and describes their future application for regenerative medicine.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Stem Cell Biology and Histology and Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
48
|
Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, Endo F, Kume K, Takahara T, Nitta H, Tsuda H, Dezawa M, Nishizuka SS. A Distinct Subpopulation of Bone Marrow Mesenchymal Stem Cells, Muse Cells, Directly Commit to the Replacement of Liver Components. Am J Transplant 2016; 16:468-83. [PMID: 26663569 DOI: 10.1111/ajt.13537] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 08/23/2015] [Accepted: 09/06/2015] [Indexed: 01/25/2023]
Abstract
Genotyping graft livers by short tandem repeats after human living-donor liver transplantation (n = 20) revealed the presence of recipient or chimeric genotype cases in hepatocytes (6 of 17, 35.3%), sinusoidal cells (18 of 18, 100%), cholangiocytes (15 of 17, 88.2%) and cells in the periportal areas (7 of 8, 87.5%), suggesting extrahepatic cell involvement in liver regeneration. Regarding extrahepatic origin, bone marrow mesenchymal stem cells (BM-MSCs) have been suggested to contribute to liver regeneration but compose a heterogeneous population. We focused on a more specific subpopulation (1-2% of BM-MSCs), called multilineage-differentiating stress-enduring (Muse) cells, for their ability to differentiate into liver-lineage cells and repair tissue. We generated a physical partial hepatectomy model in immunodeficient mice and injected green fluorescent protein (GFP)-labeled human BM-MSC Muse cells intravenously (n = 20). Immunohistochemistry, fluorescence in situ hybridization and species-specific polymerase chain reaction revealed that they integrated into regenerating areas and expressed liver progenitor markers during the early phase and then differentiated spontaneously into major liver components, including hepatocytes (≈74.3% of GFP-positive integrated Muse cells), cholangiocytes (≈17.7%), sinusoidal endothelial cells (≈2.0%), and Kupffer cells (≈6.0%). In contrast, the remaining cells in the BM-MSCs were not detected in the liver for up to 4 weeks. These results suggest that Muse cells are the predominant population of BM-MSCs that are capable of replacing major liver components during liver regeneration.
Collapse
Affiliation(s)
- H Katagiri
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Y Kushida
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M Nojima
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Y Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - S Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - K Ishida
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - F Endo
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - K Kume
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan.,Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan.,Medical Innovation by Advanced Science and Technology Program, Iwate Medical University, Morioka, Japan
| | - T Takahara
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - H Nitta
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - H Tsuda
- Diagnostic Pathology Section, Clinical Laboratory Division, National Cancer Center Hospital, Tokyo, Japan
| | - M Dezawa
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - S S Nishizuka
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan.,Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan.,Medical Innovation by Advanced Science and Technology Program, Iwate Medical University, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Dentistry, Morioka, Japan.,Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
49
|
Bang OY. Clinical Trials of Adult Stem Cell Therapy in Patients with Ischemic Stroke. J Clin Neurol 2015; 12:14-20. [PMID: 26610894 PMCID: PMC4712282 DOI: 10.3988/jcn.2016.12.1.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy is considered a potential regenerative strategy for patients with neurologic deficits. Studies involving animal models of ischemic stroke have shown that stem cells transplanted into the brain can lead to functional improvement. With current advances in the understanding regarding the effects of introducing stem cells and their mechanisms of action, several clinical trials of stem cell therapy have been conducted in patients with stroke since 2005, including studies using mesenchymal stem cells, bone marrow mononuclear cells, and neural stem/progenitor cells. In addition, several clinical trials of the use of adult stem cells to treat ischemic stroke are ongoing. This review presents the status of our understanding of adult stem cells and results from clinical trials, and introduces ongoing clinical studies of adult stem cell therapy in the field of stroke.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
50
|
Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, Dezawa M. Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells 2015; 34:160-73. [DOI: 10.1002/stem.2206] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/12/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroki Uchida
- Department of Stem Cell Biology and Histology
- Department of Neurosurgery
| | - Takahiro Morita
- Department of Stem Cell Biology and Histology
- Department of Neurosurgery
| | | | | | | | | | | | - Yoshiya Matsuzaka
- Department of Physiology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hajime Mushiake
- Department of Physiology; Tohoku University Graduate School of Medicine; Sendai Japan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair; University of South Florida College of Medicine; Tampa Florida USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology
- Department of Anatomy and Anthropology
| |
Collapse
|