1
|
Sandhu A, Rawat K, Gautam V, Kumar A, Sharma A, Bhatia A, Grover S, Saini L, Saha L. Neuroprotective effect of PPAR gamma agonist in rat model of autism spectrum disorder: Role of Wnt/β-catenin pathway. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111126. [PMID: 39179196 DOI: 10.1016/j.pnpbp.2024.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The clinical manifestation of autism spectrum disorder (ASD) is linked to the disruption of fundamental neurodevelopmental pathways. Emerging evidences claim to have an upregulation of canonical Wnt/β-catenin pathway while downregulation of PPARγ pathway in ASD. This study aims to investigate the therapeutic potential of pioglitazone, a PPARγ agonist, in rat model of ASD. The study further explores the possible role of PPARγ and Wnt/β-catenin pathway and their interaction in ASD by using their modulators. MATERIAL AND METHODS Pregnant female Wistar rats received 600 mg/kg of valproic acid (VPA) to induce autistic symptoms in pups. Pioglitazone (10 mg/kg) was used to evaluate neurobehaviors, relative mRNA expression of inflammatory (IL-1β, IL-6, IL-10, TNF-α), apoptotic markers (Bcl-2, Bax, & Caspase-3) and histopathology (H&E, Nissl stain, Immunohistochemistry). Effect of pioglitazone was evaluated on Wnt pathway and 4 μg/kg dose of 6-BIO (Wnt modulator) was used to study the PPARγ pathway. RESULTS ASD model was established in pups as indicated by core autistic symptoms, increased neuroinflammation, apoptosis and histopathological neurodegeneration in cerebellum, hippocampus and amygdala. Pioglitazone significantly attenuated these alterations in VPA-exposed rats. The expression study results indicated an increase in key transcription factor, β-catenin in VPA-rats suggesting an upregulation of canonical Wnt pathway in them. Pioglitazone significantly downregulated the Wnt signaling by suppressing the expression of Wnt signaling-associated proteins. The inhibiting effect of Wnt pathway on PPARγ activity was indicated by downregulation of PPARγ-associated protein in VPA-exposed rats and those administered with 6-BIO. CONCLUSION In the present study, upregulation of canonical Wnt/β-catenin pathway was demonstrated in ASD rat model. Pioglitazone administration significantly ameliorated these symptoms potentially through its neuroprotective effect and its ability to downregulate the Wnt/β-catenin pathway. The antagonism between the PPARγ and Wnt pathway offers a promising therapeutic approach for addressing ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute ofMedical Education and Research (PGIMER), Chandigarh 160012, India
| | - Lokesh Saini
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan 342001, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
2
|
Meng J, Pan P, Guo G, Chen A, Meng X, Liu H. Transient CSF1R inhibition ameliorates behavioral deficits in Cntnap2 knockout and valproic acid-exposed mouse models of autism. J Neuroinflammation 2024; 21:262. [PMID: 39425203 PMCID: PMC11487716 DOI: 10.1186/s12974-024-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Microglial abnormality and heterogeneity are observed in autism spectrum disorder (ASD) patients and animal models of ASD. Microglial depletion by colony stimulating factor 1-receptor (CSF1R) inhibition has been proved to improve autism-like behaviors in maternal immune activation mouse offspring. However, it is unclear whether CSF1R inhibition has extensive effectiveness and pharmacological heterogeneity in treating autism models caused by genetic and environmental risk factors. Here, we report pharmacological functions and cellular mechanisms of PLX5622, a small-molecule CSF1R inhibitor, in treating Cntnap2 knockout and valproic acid (VPA)-exposed autism model mice. For the Cntnap2 knockout mice, PLX5622 can improve their social ability and reciprocal social behavior, slow down their hyperactivity in open field and repetitive grooming behavior, and enhance their nesting ability. For the VPA model mice, PLX5622 can enhance their social ability and social novelty, and alleviate their anxiety behavior, repetitive and stereotyped autism-like behaviors such as grooming and marble burying. At the cellular level, PLX5622 restores the morphology and/or number of microglia in the somatosensory cortex, striatum, and hippocampal CA1 regions of the two models. Specially, PLX5622 corrects neurophysiological abnormalities in the striatum of the Cntnap2 knockout mice, and in the somatosensory cortex, striatum, and hippocampal CA1 regions of the VPA model mice. Incidentally, microglial dynamic changes in the VPA model mice are also reported. Our study demonstrates that microglial depletion and repopulation by transient CSF1R inhibition is effective, and however, has differential pharmacological functions and cellular mechanisms in rescuing behavioral deficits in the two autism models.
Collapse
Affiliation(s)
- Jiao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Pengming Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Gengshuo Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Anqi Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Heli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Autism Research Center, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Zahedi E, Sadr SS, Sanaeierad A, Hosseini M, Roghani M. Acetyl-l-carnitine alleviates valproate-induced autism-like behaviors through attenuation of hippocampal mitochondrial dysregulation. Neuroscience 2024; 558:92-104. [PMID: 39168175 DOI: 10.1016/j.neuroscience.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to evaluate the potential benefits of acetyl-L-carnitine (ALCAR) in the context of valproate-induced autism. After prenatal exposure to valproate (VPA; 600 mg/kg, i.p.) on embryonic day 12.5, followed by ALCAR treatment (300 mg/kg on postnatal days 21-49, p.o.), assessment of oxidative stress, mitochondrial membrane potential (MMP), mitochondrial biogenesis, parvalbumin interneurons, and hippocampal volume was conducted. These assessments were carried out subsequent to the evaluation of autism-like behaviors. Hippocampal analysis of oxidative factors (reactive oxygen species and malondialdehyde) and antioxidants (superoxide dismutase, catalase, and glutathione) revealed a burden of oxidative stress in VPA rats. Additionally, mitochondrial biogenesis and MMP were elevated, while the number of parvalbumin interneurons decreased. These changes were accompanied by autism-like behaviors observed in the three-chamber maze, marble burring test, and Y-maze, as well as a learning deficit in the Barnes maze. In contrast, administrating ALCAR attenuated behavioral deficits, reduced oxidative stress, improved parvalbumin-positive neuronal population, and properly modified MMP and mitochondrial biogenesis. Collectively, our results indicate that oral administration of ALCAR ameliorates autism-like behaviors, partly through its targeting oxidative stress and mitochondrial biogenesis. This suggests that ALCAR may have potential benefits ASD managing.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Thomas SD, Jayaprakash P, Marwan NZHJ, Aziz EABA, Kuder K, Łażewska D, Kieć-Kononowicz K, Sadek B. Alleviation of Autophagic Deficits and Neuroinflammation by Histamine H3 Receptor Antagonist E159 Ameliorates Autism-Related Behaviors in BTBR Mice. Pharmaceuticals (Basel) 2024; 17:1293. [PMID: 39458934 PMCID: PMC11510413 DOI: 10.3390/ph17101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy for brain disorders with features overlapping ASD, such as schizophrenia and Alzheimer's disease. METHODS This study investigated the effects of sub-chronic systemic treatment with the H3R antagonist E159 on social deficits, repetitive behaviors, neuroinflammation, and autophagic disruption in male BTBR mice. RESULTS E159 (2.5, 5, and 10 mg/kg, i.p.) improved stereotypic repetitive behavior by reducing self-grooming time and enhancing spontaneous alternation in addition to attenuating social deficits. It also decreased pro-inflammatory cytokines in the cerebellum and hippocampus of treated BTBR mice. In BTBR mice, reduced expression of autophagy-related proteins LC3A/B and Beclin 1 was observed, which was elevated following treatment with E159, attenuating the disruption in autophagy. The co-administration with the H3R agonist MHA (10 mg/kg, i.p.) reversed these effects, highlighting the role of histaminergic neurotransmission in observed behavioral improvements. CONCLUSIONS These preliminary findings suggest the therapeutic potential of H3R antagonists in targeting neuroinflammation and autophagic disruption to improve ASD-like behaviors.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nurfirzana Z. H. J. Marwan
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ezzatul A. B. A. Aziz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland; (K.K.); (D.Ł.); (K.K.-K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.D.T.); (P.J.); (N.Z.H.J.M.); (E.A.B.A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Neelotpol S, Rezwan R, Singh T, Mayesha II, Saba S, Jamiruddin MR. Pharmacological intervention of behavioural traits and brain histopathology of prenatal valproic acid-induced mouse model of autism. PLoS One 2024; 19:e0308632. [PMID: 39316620 PMCID: PMC11421774 DOI: 10.1371/journal.pone.0308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/27/2024] [Indexed: 09/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is one of the leading causes of distorted social communication, impaired speech, hyperactivity, anxiety, and stereotyped repetitive behaviour. The aetiology of ASD is complex; therefore, multiple drugs have been suggested to manage the symptoms. Studies with histamine H3 receptor (H3R) blockers and acetylcholinesterase (AchE) blockers are considered potential therapeutic agents for the management of various cognitive impairments. Therefore, the aim of this study was to evaluate the neuro-behavioural effects of Betahistine, an H3R antagonist, and Donepezil, an acetylcholinesterase inhibitor on Swiss albino mouse model of autism. The mice were intraperitoneally injected with valproic acid (VPA) on the embryonic 12.5th day to induce autism-like symptoms in their offspring. This induced autism-like symptoms persists throughout the life. After administration of different experimental doses, various locomotor tests: Open Field, Hole-Board, Hole Cross and behavioural tests by Y-Maze Spontaneous Alternation and histopathology of brain were performed and compared with the control and negative control (NC1) groups of mice. The behavioural Y-Maze test exhibits significant improvement (p <0.01) on the short term memory of the test subjects upon administration of lower dose of Betahistine along with MAO-B inhibitor Rasagiline once compared with the NC1 group (VPA-exposed mice). Furthermore, the tests showed significant reduction in locomotion in line crossing (p <0.05), rearing (p <0.001) of the Open Field Test, and the Hole Cross Test (p <0.01) with administration of higher dose of Betahistine. Both of these effects were observed upon administration of acetylcholinesterase inhibitor, Donepezil. Brain-histopathology showed lower neuronal loss and degeneration in the treated groups of mice in comparison with the NC1 VPA-exposed mice. Administration of Betahistine and Rasagiline ameliorates symptoms like memory deficit and hyperactivity, proving their therapeutic effects. The effects found are dose dependent. The findings suggest that H3R might be a viable target for the treatment of ASD.
Collapse
Affiliation(s)
| | - Rifat Rezwan
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Timothy Singh
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | | | - Sayedatus Saba
- Department of Clinical Pathology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Trebesova H, Monaco M, Baldassari S, Ailuno G, Lancellotti E, Caviglioli G, Pittaluga AM, Grilli M. Unveiling Niaprazine's Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent. Biomedicines 2024; 12:2087. [PMID: 39335600 PMCID: PMC11428487 DOI: 10.3390/biomedicines12092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Ongoing global research actions seek to comprehensively understand the adverse impact of stress and anxiety on the physical and mental health of both human beings and animals. Niaprazine (NIA) is a chemical compound that belongs to the class of piperazine derivatives. This compound has recently gained renewed attention due to its potential therapeutic properties for treating certain conditions such as anxiety. Despite its potential benefits, the behavioral effects of NIA have not been thoroughly investigated. This study aimed to examine NIA's potential as an anti-anxiety and anti-stress agent. After administering either vehicle or NIA in their drinking water to mice for 14 days, we conducted behavioral analyses using the Marble Burying Test and the Elevated Plus Maze test. NIA-treated mice spend more time in the open arms and bury fewer marbles. Moreover, a stability study confirmed the linear relationship between NIA concentration and its response across concentrations encompassing the NIA mother solution and the NIA solutions administered to mice. Also, a preliminary synaptic toxicity analysis showed no direct damage to cortical nerve endings. Here, we show that NIA can modulate anxiety-related behaviors without significantly impacting exploratory activity or adverse effects. Our work describes new findings that contribute to the research on safer and more tolerable anxiety management options.
Collapse
Affiliation(s)
- Hanna Trebesova
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Martina Monaco
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Sara Baldassari
- Pharmaceutical Technology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Giorgia Ailuno
- Pharmaceutical Technology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | | | - Gabriele Caviglioli
- Pharmaceutical Technology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Anna Maria Pittaluga
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Massimo Grilli
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
7
|
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer's Disease, Parkinson's Disease, and Autism Spectrum Disorder. Pharmaceuticals (Basel) 2024; 17:831. [PMID: 39065682 PMCID: PMC11279978 DOI: 10.3390/ph17070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3β pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Sabna Abdalla
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
8
|
Brown SE, Wang Z(Z, Newman EL, Engin E, Berretta S, Balu DT, Folorunso OO. Serine racemase deletion alters adolescent social behavior and whole-brain cFos activation. Front Psychiatry 2024; 15:1365231. [PMID: 38979499 PMCID: PMC11228300 DOI: 10.3389/fpsyt.2024.1365231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
Background Neurodevelopmental disorders (NDDs) can cause debilitating impairments in social cognition and aberrant functional connectivity in large-scale brain networks, leading to social isolation and diminished everyday functioning. To facilitate the treatment of social impairments, animal models of NDDs that link N- methyl-D-aspartate receptor (NMDAR) hypofunction to social deficits in adulthood have been used. However, understanding the etiology of social impairments in NDDs requires investigating social changes during sensitive windows during development. Methods We examine social behavior during adolescence using a translational mouse model of NMDAR hypofunction (SR-/-) caused by knocking out serine racemase (SR), the enzyme needed to make D-serine, a key NMDAR coagonist. Species-typical social interactions are maintained through brain-wide neural activation patterns; therefore, we employed whole-brain cFos activity mapping to examine network-level connectivity changes caused by SR deletion. Results In adolescent SR-/- mice, we observed disinhibited social behavior toward a novel conspecific and rapid social habituation toward familiar social partners. SR-/- mice also spent more time in the open arm of the elevated plus maze which classically points to an anxiolytic behavioral phenotype. These behavioral findings point to a generalized reduction in anxiety-like behavior in both social and non-social contexts in SR-/- mice; importantly, these findings were not associated with diminished working memory. Inter-regional patterns of cFos activation revealed greater connectivity and network density in SR-/- mice compared to controls. Discussion These results suggest that NMDAR hypofunction - a potential biomarker for NDDs - can lead to generalized behavioral disinhibition in adolescence, potentially arising from disrupted communication between and within salience and default mode networks.
Collapse
Affiliation(s)
- Stephanie E. Brown
- Division of Basic Neuroscience, Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, United States
| | - Ziyi (Zephyr) Wang
- Division of Basic Neuroscience, Stress Neurobiology Laboratory, McLean Hospital, Belmont, MA, United States
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Depression and Anxiety Disorders, Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA, United States
| | - Elif Engin
- Division of Basic Neuroscience, Stress Neurobiology Laboratory, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Basic Neuroscience, Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, United States
| | - Darrick T. Balu
- Division of Basic Neuroscience, Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Oluwarotimi O. Folorunso
- Division of Basic Neuroscience, Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Basic Neuroscience, Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
9
|
Sandhu A, Rawat K, Gautam V, Bhatia A, Grover S, Saini L, Saha L. Ameliorating effect of pioglitazone on prenatal valproic acid-induced behavioral and neurobiological abnormalities in autism spectrum disorder in rats. Pharmacol Biochem Behav 2024; 237:173721. [PMID: 38307465 DOI: 10.1016/j.pbb.2024.173721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder that mainly arises due to abnormalities in different brain regions, resulting in behavioral deficits. Besides its diverse phenotypical features, ASD is associated with complex and varied etiology, presenting challenges in understanding its precise neuro-pathophysiology. Pioglitazone was reported to have a fundamental role in neuroprotection in various other neurological disorders. The present study aimed to investigate the therapeutic potential of pioglitazone in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. Pregnant female Wistar rats received VPA on Embryonic day (E.D12.5) to induce autistic-like-behavioral and neurobiological alterations in their offspring. VPA-exposed rats presented core behavioral symptoms of ASD such as deficits in social interaction, poor spatial and learning behavior, increased anxiety, locomotory and repetitive activity, and decreased exploratory activity. Apart from these, VPA exposure also stimulated neurochemical and histopathological neurodegeneration in various brain regions. We administered three different doses of pioglitazone i.e., 2.5, 5, and 10 mg/kg in rats to assess various parameters. Of all the doses, our study highlighted that 10 mg/kg pioglitazone efficiently attenuated the autistic symptoms along with other neurochemical alterations such as oxidative stress, neuroinflammation, and apoptosis. Moreover, pioglitazone significantly attenuated the neurodegeneration by restoring the neuronal loss in the hippocampus and cerebellum. Taken together, our study suggests that pioglitazone exhibits therapeutic potential in alleviating behavioral abnormalities induced by prenatal VPA exposure in rats. However, further research is needed to fully understand and establish pioglitazone's effectiveness in treating ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education andResearch (PGIMER), 2nd Floor, Research Block B, Chandigarh 160012, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Lokesh Saini
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), Jodhpur 342001, Rajasthan, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| |
Collapse
|
10
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
11
|
Li Q, Li W, Hu K, Wang Y, Li Y, Xu J. A de novo variant in RERE causes autistic behavior by disrupting related genes and signaling pathway. Clin Genet 2024; 105:273-282. [PMID: 38018232 DOI: 10.1111/cge.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Autism spectrum disorder (ASD) is a highly variable neurodevelopmental disorder that typically manifests childhood, characterized by a triad of symptoms: impaired social interaction, communication difficulties, and restricted interests with repetitive behaviors. De novo variants in related genes can cause ASD. We present the case of a 6-year-old Chinese boy with autistic behavior, including language communication impairments, intellectual disabilities, stunted development, and irritability in social interactions. Using Sanger sequencing, we confirmed a pathogenic in the RERE gene (NM_012102.4) (c.3732delC, p.Tyr1245Thrfs*12; EX21; Het). Subsequently, we generated an RERE point mutation cell line (ReMut) using CRISPR/Cas9 Targeted Genome Editing. Immunofluorescence was conducted to determine the location of the mutant RERE. RNA-sequencing and mass spectrometry analyses were performed to elucidate the ASD-related genes and signaling pathways disrupted by this variant in RERE. We identified 3790 differentially expressed genes and 684 differentially expressed proteins. The SHH signaling pathway was found to be downregulated, and the Hippo pathway was upregulated in ReMut. Genes implicated in autism, such as CNTNAP2, STX1A, FARP2, and GPC1, were significantly downregulated. Simultaneously, we noted alterations in HDAC1 and HDAC2, which are members of the WHHERE complex, suggesting their role in the pathogenesis of this patient. In conclusion, we report a de novo variant in RERE associated with autistic behavior. The finding that ASD is associated with RERE variants underscore the role of genetic factors in ASD and provides insights regarding the mechanisms underlying RERE variants in disease onset.
Collapse
Affiliation(s)
- Qian Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
- Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Wenbo Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Kaiyue Hu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Yaqian Wang
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Yang Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Yao Y, Baronio D, Chen YC, Jin C, Panula P. The Roles of Histamine Receptor 1 (hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol Neurobiol 2023; 60:6660-6675. [PMID: 37474883 PMCID: PMC10533647 DOI: 10.1007/s12035-023-03447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.
Collapse
Affiliation(s)
- Yuxiao Yao
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Diego Baronio
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| |
Collapse
|
13
|
DeOliveira-Mello L, Baronio D, Panula P. Zebrafish embryonically exposed to valproic acid present impaired retinal development and sleep behavior. Autism Res 2023; 16:1877-1890. [PMID: 37638671 DOI: 10.1002/aur.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Prenatal exposure to valproic acid (VPA), a drug widely used to treat epilepsy and bipolar disorder, is an environmental risk factor for autism spectrum disorder (ASD). VPA has been used to reproduce the core symptoms of ASD in animal model organisms, including zebrafish. Visual system functioning is essential in the interpretation of social conditions and plays an important role of several behavioral responses. We hypothesized that behavioral deficits displayed by ASD patients may involve impaired visual processing. We used zebrafish as model organism to investigate the visual system after embryonic exposure to VPA using histological, behavioral and gene expression analysis. We analyzed the pineal gland of zebrafish and sleep-like behavior to study how VPA exposure alters photo-sensibility of zebrafish. VPA-exposed zebrafish showed a delay in the development of the retina and optic nerve, which normalized at five days post fertilization. At larval stage, VPA-exposed zebrafish showed sleep disturbances associated with a reduced number of serotonin-producing cells of the pineal gland. In addition, the number of hypocretin/orexin (hcrt) expressing neurons in the rostral hypothalamus at 6 and 14 days post fertilization was reduced. In conclusion, we demonstrated that although VPA exposure leads to a delay in visual system development, it does not affect larval visual function. The novel finding that VPA alters significantly cells involved in sleep regulation and the sleep-like state itself may be relevant for understanding sleep disturbances in ASD patients.
Collapse
Affiliation(s)
| | - Diego Baronio
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Paudel R, Singh S. Selection of Young Animal Models of Autism over Adult: Benefits and Limitations. Integr Psychol Behav Sci 2023; 57:697-712. [PMID: 33447895 DOI: 10.1007/s12124-020-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Autism is a complex neurodevelopmental broad-spectrum disorder characterized by social interaction, and aberrant restrictive and repetitive behavior. The complex pathophysiology and unexplored drug targets make it difficult to standardize and validate the animal models of autism. The review was purposed for determining the benefits of younger animal models over adult models of autism. Similarly, animal models with respect to age, sex, body weight, number of animals used, along with autism inducing agents have been reviewed in this article. The differentiation of behavioral parameters has shown the benefits in the selection of younger animal models. Thus, we conclude that young and adolescence animal models of autism will be supporting for early detection and interventions with significant results.
Collapse
Affiliation(s)
- Raju Paudel
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
15
|
Taheri F, Esmaeilpour K, Sepehri G, Sheibani V, Shekari MA. Amelioration of cognition impairments in the valproic acid-induced animal model of autism by ciproxifan, a histamine H3-receptor antagonist. Behav Pharmacol 2023; 34:179-196. [PMID: 37171458 DOI: 10.1097/fbp.0000000000000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behavior. Many studies show that the number of cognitive impairmentscan be reduced by antagonists of the histamine H3 receptor (H3R). In this study, the effects of ciproxifan (CPX) (1 and 3 mg/kg, intraperitoneally) on cognitive impairments in rat pups exposed to valproic acid (VPA) (600 mg/kg, intraperitoneally) wereexamined on postnatal day 48-50 (PND 48-50) using marble-burying task (MBT), open field, novel object recognition (NOR), and Passive avoidance tasks. Famotidine (FAM) (10, 20, and 40 mg/kg, intraperitoneally) was also used to determine whether histaminergic neurotransmission exerts its procognitive effects via H2 receptors (H2Rs). Furthermore, a histological investigation was conducted to assess the degree of degeneration of hippocampal neurons. The results revealed that repetitive behaviors increased in VPA-exposed rat offspring in the MBT. In addition, VPA-exposed rat offspring exhibited more anxiety-like behaviors in the open field than saline-treated rats. It was found that VPA-exposed rat offspring showed memory deficits in NOR and Passive avoidance tasks. Our results indicated that 3 mg/kg CPX improved cognitive impairments induced by VPA, while 20 mg/kg FAM attenuated them. We concluded that 3 mg/kg CPX improved VPA-induced cognitive impairments through H3Rs. The histological assessment showed that the number of CA1 neurons decreased in the VPA-exposed rat offspring compared to the saline-exposed rat offspring, but this decrease was not significant. The histological assessment also revealed no significant differences in CA1 neurons in VPA-exposed rat offspring compared to saline-exposed rat offspring. However, CPX3 increased the number of CA1 neurons in the VPA + CPX3 group compared to the VPA + Saline group, but this increase was not significant. This study showed that rats prenatally exposed to VPA exhibit cognitive impairments in the MBT, open field, NOR, and Passive avoidance tests, which are ameliorated by CPX treatment on PND 48-50. In addition, morphological investigations showed that VPA treatment did not lead to neuronal degeneration in the CA1 subfield of the hippocampus in rat pups.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi Shekari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|
17
|
Grgurevic N. Testing the extreme male hypothesis in the valproate mouse model; sex-specific effects on plasma testosterone levels and tyrosine hydroxylase expression in the anteroventral periventricular nucleus, but not on parental behavior. Front Behav Neurosci 2023; 17:1107226. [PMID: 36818606 PMCID: PMC9932272 DOI: 10.3389/fnbeh.2023.1107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism is a neurodevelopmental disorder with a strong male bias in prevalence and severity. The extreme male hypothesis proposed that autism is a manifestation of extreme male traits as evidenced by increased masculine behaviors, hypermasculinization of some brain regions, and alterations in androgen metabolism. In the present study, the extreme male hypothesis was tested in the valproate (VPA) mouse model. Methods Females of the C57BL/6JOlaHsd mouse strain were treated with 500 mg/kg VPA on gestational day 12. Offspring of both sexes were tested at 3 to 4 months of age in the elevated plus maze (EPM), open field, sociability tests, and for parental behavior. After sacrifice at 5 to 6 months of age, plasma testosterone was measured in males, while the brains of both sexes were examined for tyrosine hydroxylase (TH) expression in the anteroventral periventricular nucleus (AVPV). Results VPA treatment significantly increased plasma testosterone levels and decreased AVPV TH expression in males, whereas the expression of TH in females remained at the same level. In parental behavior test none of the pup-oriented behavior was affected by VPA treatment in both sexes, the exception was nest quality which was lower after VPA exposure in males, but not in females. Discussion Our results suggest a hypermasculinizing effect of VPA that occurred specifically in males but not in females, and this effect could be related to changes in androgen physiology. Nevertheless, a generalized interpretation of the extreme male hypothesis on brain and behavior should be avoided due to the complex effects of VPA.
Collapse
|
18
|
Eissa N, Awad MA, Thomas SD, Venkatachalam K, Jayaprakash P, Zhong S, Stark H, Sadek B. Simultaneous Antagonism at H3R/D2R/D3R Reduces Autism-like Self-Grooming and Aggressive Behaviors by Mitigating MAPK Activation in Mice. Int J Mol Sci 2022; 24:ijms24010526. [PMID: 36613969 PMCID: PMC9820264 DOI: 10.3390/ijms24010526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Dysregulation in brain neurotransmitters underlies several neuropsychiatric disorders, e.g., autism spectrum disorder (ASD). Also, abnormalities in the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway pave the way for neuroinflammation, neurodegeneration, and altered learning phenotype in ASD. Therefore, the effects of chronic systemic administration of the multiple-targeting antagonist ST-713 at the histamine H3 receptor (H3R) and dopamine D2/D3 receptors (D2/D3R) on repetitive self-grooming, aggressive behaviors, and abnormalities in the MAPK pathway in BTBR T + Itpr3tf/J (BTBR) mice were assessed. The results showed that ST-713 (2.5, 5, and 10 mg/kg, i.p.) mitigated repetitive self-grooming and aggression in BTBR mice (all p < 0.05), and the ameliorative effects of the most promising dose of ST-713 (5 mg/kg, i.p.) on behaviors were completely abrogated by co-administration of the H3R agonist (R)-α-methylhistamine or the anticholinergic drug scopolamine. Moreover, the elevated levels of several MAPK pathway proteins and induced proinflammatory markers such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and IL-6 were significantly suppressed following chronic administration of ST-713 (5 mg/kg, i.p.) (all p < 0.01). Furthermore, ST-713 significantly increased the levels of histamine and dopamine in hippocampal tissue of treated BTBR mice (all p < 0.01). The current observations signify the potential role of such multiple-targeting compounds, e.g., ST-713, in multifactorial neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Mohamed Al Awad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Karthikkumar Venkatachalam
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sicheng Zhong
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
19
|
Taheri F, Esmaeilpour K, Sepehri G, Sheibani V, Ur Rehman N, Maneshian M. Histamine H3 receptor antagonist, ciproxifan, alleviates cognition and synaptic plasticity alterations in a valproic acid-induced animal model of autism. Psychopharmacology (Berl) 2022; 239:2673-2693. [PMID: 35538250 DOI: 10.1007/s00213-022-06155-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and cognitive behaviors. Histamine H3 receptor (H3R) antagonists are considered as therapeutic factors for treating cognitive impairments. OBJECTIVES The aim of the present study was to evaluate the effects of the H3R antagonist, ciproxifan (CPX), on cognition impairment especially, spatial learning memory, and synaptic plasticity in the CA1 region of the hippocampus in autistic rats. METHODS Pregnant rats were injected with either valproic acid (VPA) (600 mg/kg, i.p.) or saline on an embryonic day 12.5 (E12.5). The effects of the H3R antagonist, ciproxifan (CPX) (1, 3 mg/kg, i.p.), were investigated on learning and memory in VPA-exposed rat pups and saline-exposed rat pups using Morris water maze (MWM) and social interaction tasks. The H2R antagonist, famotidine (FAM) (10, 20, 40 mg/kg, i.p.), was used to determine whether brain histaminergic neurotransmission exerted its procognitive effects through the H2R. In addition, synaptic reinforcement was evaluated by in vivo field potential recording. RESULTS The results showed that VPA-exposed rat pups had significantly lower sociability and social memory performance compared to the saline rats. VPA-exposed rat pups exhibited learning and memory impairments in the MWM task. In addition, VPA caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results demonstrated that CPX 3 mg/kg improved VPA-induced cognitive impairments and FAM 20 mg/kg attenuated cognitive behaviors as well as electrophysiological properties. CONCLUSIONS CPX 3 mg/kg improved VPA-induced impairments of LTP as well as learning and memory deficits through H2R.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physics and Astronomy Department, University of Waterloo, Waterloo, Ontario, Canada.
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Experimental Studies Indicate That ST-2223, the Antagonist of Histamine H3 and Dopamine D2/D3 Receptors, Restores Social Deficits and Neurotransmission Dysregulation in Mouse Model of Autism. Pharmaceuticals (Basel) 2022; 15:ph15080929. [PMID: 36015079 PMCID: PMC9414676 DOI: 10.3390/ph15080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Altered regulation of neurotransmitters may lead to many pathophysiological changes in brain disorders including autism spectrum disorder (ASD). Given the fact that there are no FDA-approved effective treatments for the social deficits in ASD, the present study determined the effects of chronic systemic treatment of the novel multiple-active H3R/D2R/D3R receptor antagonist ST-2223 on ASD-related social deficits in a male Black and Tan Brachyury (BTBR) mice. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly and dose-dependently mitigated social deficits and disturbed anxiety levels of BTBR mice (p < 0.05) in comparison to the effects of aripiprazole (1 mg/kg, i.p.). Moreover, levels of monoaminergic neurotransmitters quantified by LC-MS/MS in four brain regions including the prefrontal cortex, cerebellum, striatum, and hippocampus unveiled significant elevation of histamine (HA) in the cerebellum and striatum; dopamine (DA) in the prefrontal cortex and striatum; as well as acetylcholine (ACh) in the prefrontal cortex, striatum, and hippocampus following ST-2223 (5 mg/kg) administration (all p < 0.05). These in vivo findings demonstrate the mitigating effects of a multiple-active H3R/D2R/D3R antagonist on social deficits of assessed BTBR mice, signifying its pharmacological potential to rescue core ASD-related behaviors and altered monoaminergic neurotransmitters. Further studies on neurochemical alterations in ASD are crucial to elucidate the early neurodevelopmental variations behind the core symptoms and heterogeneity of ASD, leading to new approaches for the future therapeutic management of ASD.
Collapse
|
21
|
Raja A, Shekhar N, Singh H, Prakash A, Medhi B. In-silico discovery of dual active molecule to restore synaptic wiring against autism spectrum disorder via HDAC2 and H3R inhibition. PLoS One 2022; 17:e0268139. [PMID: 35877665 PMCID: PMC9312418 DOI: 10.1371/journal.pone.0268139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Metal-dependent histone deacetylases (HDACs) are essential epigenetic regulators; their molecular and pharmacological roles in medically critical diseases such as neuropsychiatric disorders, neurodegeneration, and cancer are being studied globally. HDAC2’s differential expression in the central nervous system makes it an appealing therapeutic target for chronic neurological diseases like autism spectrum disorder. In this study, we identified H3R inhibitor molecules that are computationally effective at binding to the HDAC2 metal-coordinated binding site. The study highlights the importance of pitolisant in screening the potential H3R inhibitors by using a hybrid workflow of ligand and receptor-based drug discovery. The screened lead compounds with PubChem SIDs 103179850, 103185945, and 103362074 show viable binding with HDAC2 in silico. The importance of ligand contacts with the Zn2+ ion in the HDAC2 catalytic site is also discussed and investigated for a significant role in enzyme inhibition. The proposed H3R inhibitors 103179850, 103185945, and 103362074 are estimated as dual-active molecules to block the HDAC2-mediated deacetylation of the EAAT2 gene (SLC1A2) and H3R-mediated synaptic transmission irregularity and are, therefore, open for experimental validation.
Collapse
Affiliation(s)
- Anupam Raja
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
- * E-mail:
| |
Collapse
|
22
|
Abdulrazzaq YM, Bastaki SMA, Adeghate E. Histamine H3 receptor antagonists - Roles in neurological and endocrine diseases and diabetes mellitus. Biomed Pharmacother 2022; 150:112947. [PMID: 35447544 DOI: 10.1016/j.biopha.2022.112947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022] Open
Abstract
Human histamine H3 receptor (H3R) was initially described in the brain of rat in 1983 and cloned in 1999. It can be found in the human brain and functions as a regulator of histamine synthesis and release. H3 receptors are predominantly resident in the presynaptic region of neurons containing histamine, where they modulate the synthesis and release of histamine (autoreceptor) or other neurotransmitters such as dopamine, norepinephrine, gamma-aminobutyric acid (GABA), glutamate, acetylcholine and serotonin (all heteroreceptors). The human histamine H3 receptor has twenty isoforms of which eight are functional. H3 receptor expression is seen in the cerebral cortex, neurons of the basal ganglia and hippocampus, which are important for process of cognition, sleep and homoeostatic regulation. In addition, histamine H3R antagonists stimulate insulin release, through inducing the release of acetylcholine and cause significant reduction in total body weight and triglycerides in obese subjects by causing a feeling of satiety in the hypothalamus. The ability of histamine H3R antagonist to reduce diabetes-induced hyperglycaemia is comparable to that of metformin. It is reasonable therefore, to claim that H3 receptor antagonists may play an important role in the therapy of disorders of cognition, the ability to sleep, oxidative stress, inflammation and anomaly of glucose homoeostasis. A large number of H3R antagonists are being developed by pharmaceutical companies and university research centres. As examples of these new drugs, this review will discuss a number of drugs, including the first histamine H3R receptor antagonist produced.
Collapse
Affiliation(s)
- Yousef M Abdulrazzaq
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Salim M A Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
23
|
Mehra S, Ul Ahsan A, Seth E, Chopra M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022; 72:1259-1273. [DOI: 10.1007/s12031-022-02033-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
24
|
Baronio D, Chen YC, Panula P. Abnormal brain development of monoamine oxidase mutant zebrafish and impaired social interaction of heterozygous fish. Dis Model Mech 2021; 15:273667. [PMID: 34881779 PMCID: PMC8891935 DOI: 10.1242/dmm.049133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Monoamine oxidase (MAO) deficiency and imbalanced levels of brain monoamines have been associated with developmental delay, neuropsychiatric disorders and aggressive behavior. Animal models are valuable tools to gain mechanistic insight into outcomes associated with MAO deficiency. Here, we report a novel genetic model to study the effects of mao loss of function in zebrafish. Quantitative PCR, in situ hybridization and immunocytochemistry were used to study neurotransmitter systems and expression of relevant genes for brain development in zebrafish mao mutants. Larval and adult fish behavior was evaluated through different tests. Stronger serotonin immunoreactivity was detected in mao+/− and mao−/− larvae compared with their mao+/+ siblings. mao−/− larvae were hypoactive, and presented decreased reactions to visual and acoustic stimuli. They also had impaired histaminergic and dopaminergic systems, abnormal expression of developmental markers and died within 20 days post-fertilization. mao+/− fish were viable, grew until adulthood, and demonstrated anxiety-like behavior and impaired social interactions compared with adult mao+/+ siblings. Our results indicate that mao−/− and mao+/− mutants could be promising tools to study the roles of MAO in brain development and behavior. This article has an associated First Person interview with the first author of the paper. Summary: We assessed developmental, neurochemical and behavioral alterations displayed by mao+/− and mao−/− zebrafish, establishing that these model organisms are promising tools to study the consequences of MAOA/B deficiency.
Collapse
Affiliation(s)
- Diego Baronio
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Molenhuis RT, Hutten L, Kas MJH. Histamine H3 receptor antagonism modulates autism-like hyperactivity but not repetitive behaviors in BTBR T+Itpr3tf/J inbred mice. Pharmacol Biochem Behav 2021; 212:173304. [PMID: 34856309 DOI: 10.1016/j.pbb.2021.173304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are a group of neurodevelopmental conditions defined by behavioral deficits in social communication and interactions, mental inflexibility and repetitive behaviors. Converging evidence from observational and preclinical studies suggest that excessive repetitive behaviors in people with ASD may be due to elevated histaminergic H3 receptor signaling in the striatum. We hypothesized that systemic administration of pharmacological histamine H3 receptor antagonists would attenuate the expression of repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse inbred strain, an established mouse model presenting autism-like repetitive behaviors and novelty-induced hyperactivity. We further aimed to investigate whether agonism of the histamine H3 receptor would be sufficient to induce repetitive behaviors in the C57BL/6J control mouse strain. METHODS Different doses of H3 receptor agonists (i.e., (R)-α-methylhistamine and immethridine) and H3 receptor antagonists/inverse agonists (i.e., ciproxifan and pitolisant) were administered via intraperitoneal (i.p.) injection in male mice to characterize the acute effects of these compounds on ASD-related behavioral readouts. RESULTS The highly selective H3 receptor agonist immethridine significantly increased the time spent in stereotypic patterns in C57BL/6J mice, but this effect appeared to be driven by general sedative properties of the compound. High doses of pitolisant significantly decreased locomotor hyperactivity in novel environments in BTBR mice, without significant effects on repetitive behaviors. CONCLUSIONS Based on our findings, we conclude that acute H3 receptor manipulation mainly affected general motor activity levels in novel environments. Small changes in stereotyped behaviors were observed but appeared to be driven by altered general activity levels.
Collapse
Affiliation(s)
- Remco T Molenhuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Lianda Hutten
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
26
|
Bauer-Negrini G, Deckmann I, Schwingel GB, Hirsch MM, Fontes-Dutra M, Carello-Collar G, Halliwell DE, Paraskevaidi M, Morais CLM, Martin FL, Riesgo R, Gottfried C, Bambini-Junior V. The role of T-cells in neurobehavioural development: Insights from the immunodeficient nude mice. Behav Brain Res 2021; 418:113629. [PMID: 34656692 DOI: 10.1016/j.bbr.2021.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/20/2021] [Accepted: 10/09/2021] [Indexed: 11/02/2022]
Abstract
Mice homozygous for the nude mutation (Foxn1nu) are hairless and exhibit congenital dysgenesis of the thymic epithelium, resulting in a primary immunodeficiency of mature T-cells, and have been used for decades in research with tumour grafts. Early studies have already demonstrated social behaviour impairments and central nervous system (CNS) alterations in these animals, but did not address the complex interplay between CNS, immune system and behavioural alterations. Here we investigate the impact of T-cell immunodeficiency on behaviours relevant to the study of neurodevelopmental and neuropsychiatric disorders. Moreover, we aimed to characterise in a multidisciplinary manner the alterations related to those findings, through evaluation of the excitatory/inhibitory synaptic proteins, cytokines expression and biological spectrum signature of different biomolecules in nude mice CNS. We demonstrate that BALB/c nude mice display sociability impairments, a complex pattern of repetitive behaviours and higher sensitivity to thermal nociception. These animals also have a reduced IFN-γ gene expression in the prefrontal cortex and an absence of T-cells in meningeal tissue, both known modulators of social behaviour. Furthermore, excitatory synaptic protein PSD-95 immunoreactivity was also reduced in the prefrontal cortex, suggesting an intricate involvement of social behaviour related mechanisms. Lastly, employing biospectroscopy analysis, we have demonstrated that BALB/c nude mice have a different CNS spectrochemical signature compared to their heterozygous littermates. Altogether, our results show a comprehensive behavioural analysis of BALB/c nude mice and potential neuroimmunological influences involved with the observed alterations.
Collapse
Affiliation(s)
- Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Mauro Mozael Hirsch
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Giovanna Carello-Collar
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil.
| | - Diane E Halliwell
- Alliance Manchester Business School, University of Manchester, Booth St W, M15 6PB, UK.
| | - Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire. Marsh Ln, PR1 2HE. Preston, Lancashire, UK.
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire. Marsh Ln, PR1 2HE. Preston, Lancashire, UK.
| | - Francis L Martin
- Biocel UK Ltd., 15 Riplingham Road, West Ella, Hull, HU10 6TS, UK.
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, CEP: 90035-007, Rio Grande do Sul, Brazil.
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365, Manguinhos, CEP: 21040-900, Rio de Janeiro, Brazil.
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS). Rua Ramiro Barcelos, 2600, CEP: 90035-003, Porto Alegre, Brazil; School of Pharmacy and Biomedical Sciences, University of Central Lancashire. Marsh Ln, PR1 2HE. Preston, Lancashire, UK.
| |
Collapse
|
27
|
Wang X, Gao C, Zhang Y, Hu S, Qiao Y, Zhao Z, Gou L, Song J, Wang Q. Overexpression of mGluR7 in the Prefrontal Cortex Attenuates Autistic Behaviors in Mice. Front Cell Neurosci 2021; 15:689611. [PMID: 34335187 PMCID: PMC8319395 DOI: 10.3389/fncel.2021.689611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with a range of abnormalities pertaining to socialization, communication, repetitive behaviors, and restricted interests. Owing to its complexity, the etiology of ASD remains incompletely understood. The presynaptic G protein-coupled glutamate receptor metabotropic glutamate receptor 7 (mGluR7) is known to be essential for synaptic transmission and is also tightly linked with ASD incidence. Herein, we report that prefrontal cortex (PFC) mGluR7 protein levels were decreased in C57BL/6J mice exposed to valproic acid (VPA) and BTBR T+ Itpr3tf/J mice. The overexpression of mGluR7 in the PFC of these mice using a lentiviral vector was sufficient to reduce the severity of ASD-like behavioral patterns such that animals exhibited decreases in abnormal social interactions and communication, anxiety-like, and stereotyped/repetitive behaviors. Intriguingly, patch-clamp recordings revealed that the overexpression of mGluR7 suppressed neuronal excitability by inhibiting action potential discharge frequencies, together with enhanced action potential threshold and increased rheobase. These data offer a scientific basis for the additional study of mGluR7 as a promising therapeutic target in ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaona Wang
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Shunan Hu
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yidan Qiao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Jijun Song
- Henan Infectious Disease Hospital, The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Qi Wang
- Department of Histology and Embryology, Guizhou Medical University, Guizhou, China
| |
Collapse
|
28
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Keller R, Costa T, Imperiale D, Bianco A, Rondini E, Hassiotis A, Bertelli MO. Stereotypies in the Autism Spectrum Disorder: Can We Rely on an Ethological Model? Brain Sci 2021; 11:762. [PMID: 34201177 PMCID: PMC8230333 DOI: 10.3390/brainsci11060762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Stereotypic behaviour can be defined as a clear behavioural pattern where a specific function or target cannot be identified, although it delays on time. Nonetheless, repetitive and stereotypical behaviours play a key role in both animal and human behaviour. Similar behaviours are observed across species, in typical human developmental phases, and in some neuropsychiatric conditions, such as Autism Spectrum Disorder (ASD) and Intellectual Disability. This evidence led to the spread of animal models of repetitive behaviours to better understand the neurobiological mechanisms underlying these dysfunctional behaviours and to gain better insight into their role and origin within ASD and other disorders. This, in turn, could lead to new treatments of those disorders in humans. METHOD This paper maps the literature on repetitive behaviours in animal models of ASD, in order to improve understanding of stereotypies in persons with ASD in terms of characterization, pathophysiology, genomic and anatomical factors. RESULTS Literature mapping confirmed that phylogenic approach and animal models may help to improve understanding and differentiation of stereotypies in ASD. Some repetitive behaviours appear to be interconnected and mediated by common genomic and anatomical factors across species, mainly by alterations of basal ganglia circuitry. A new distinction between stereotypies and autotypies should be considered. CONCLUSIONS Phylogenic approach and studies on animal models may support clinical issues related to stereotypies in persons with ASD and provide new insights in classification, pathogenesis, and management.
Collapse
Affiliation(s)
- Roberto Keller
- Adult Autism Centre, Mental Health Department, ASL Città di Torino, 10138 Turin, Italy; (R.K.); (T.C.)
| | - Tatiana Costa
- Adult Autism Centre, Mental Health Department, ASL Città di Torino, 10138 Turin, Italy; (R.K.); (T.C.)
| | - Daniele Imperiale
- Neurology Unit, Maria Vittoria Hospital, ASL Città di Torino, 10144 Turin, Italy;
| | - Annamaria Bianco
- CREA (Research and Clinical Centre), San Sebastiano Foundation, Misericordia di Firenze, 50142 Florence, Italy; (A.B.); (E.R.)
| | - Elisa Rondini
- CREA (Research and Clinical Centre), San Sebastiano Foundation, Misericordia di Firenze, 50142 Florence, Italy; (A.B.); (E.R.)
| | - Angela Hassiotis
- Division of Psychiatry, University College London, London W1T 7NF, UK;
| | - Marco O. Bertelli
- CREA (Research and Clinical Centre), San Sebastiano Foundation, Misericordia di Firenze, 50142 Florence, Italy; (A.B.); (E.R.)
| |
Collapse
|
30
|
Wang HLV, Forestier S, Corces VG. Exposure to sevoflurane results in changes of transcription factor occupancy in sperm and inheritance of autism. Biol Reprod 2021; 105:705-719. [PMID: 33982067 DOI: 10.1093/biolre/ioab097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
One in 54 children in the U.S. is diagnosed with Autism Spectrum Disorder (ASD). De novo germline and somatic mutations cannot account for all cases of ASD, suggesting that epigenetic alterations triggered by environmental exposures may be responsible for a subset of ASD cases. Human and animal studies have shown that exposure of the developing brain to general anesthetic (GA) agents can trigger neurodegeneration and neurobehavioral abnormalities but the effects of general anesthetics on the germ line have not been explored in detail. We exposed pregnant mice to sevoflurane during the time of embryonic development when the germ cells undergo epigenetic reprogramming and found that more than 38% of the directly exposed F1 animals exhibit impairments in anxiety and social interactions. Strikingly, 44-47% of the F2 and F3 animals, which were not directly exposed to sevoflurane, show the same behavioral problems. We performed ATAC-seq and identified more than 1200 differentially accessible sites in the sperm of F1 animals, 69 of which are also present in the sperm of F2 animals. These sites are located in regulatory regions of genes strongly associated with ASD, including Arid1b, Ntrk2, and Stmn2. These findings suggest that epimutations caused by exposing germ cells to sevoflurane can lead to ASD in the offspring, and this effect can be transmitted through the male germline inter and trans-generationally.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Samantha Forestier
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
A Need for Consistency in Behavioral Phenotyping for ASD: Analysis of the Valproic Acid Model. AUTISM RESEARCH AND TREATMENT 2021; 2021:8863256. [PMID: 33828864 PMCID: PMC8004365 DOI: 10.1155/2021/8863256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent and impairing neurodevelopmental disorder that affects 1 : 54 persons. Over the last several decades, the reported incidence of ASD in the US has increased potentially due to increased awareness and improved diagnostic measurement. Although ASD prevalence is increasing, the etiology of ASD remains relatively unknown. To better understand the neurological basis of ASD, rodent models of ASD have been developed for research. Currently, there is not a standardized set of behavioral tests to quantify ASD-like behavior in rodents. The goal of this review is to present an overview of the methodologies used to analyze ASD-like behaviors in rodents, focusing on the valproic acid (VPA) model, and illustrate inconsistencies between different approaches. Despite that the in utero VPA rodent model for ASD is widely used and extensively characterized, behaviors vary substantially between different researchers. Moving forward, consistency in behavioral method analytics would benefit progress in evaluating interventions for all models of ASD and help to uncover unique qualities underlying mechanisms causing ASD signs and symptoms.
Collapse
|
32
|
Venkatachalam K, Eissa N, Awad MA, Jayaprakash P, Zhong S, Stölting F, Stark H, Sadek B. The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism-like behavioral features in BTBR T+tf/J mice by multiple actions. Biomed Pharmacother 2021; 138:111517. [PMID: 33773463 DOI: 10.1016/j.biopha.2021.111517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Several brain neurotransmitters, including histamine (HA), acetylcholine (ACh), and dopamine (DA) are suggested to be involved in several brain disorders including cognitive deficits, depression, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with Autism spectrum disorder (ASD). Therefore, the ameliorative effects of the novel multiple-active compound ST-713 with high binding affinities at histamine H3 receptor (H3R), dopamine D2sR and D3R on ASD-like behaviors in male BTBR T+tf/J mice model were assessed. ST-713 (3-(2-chloro-10H-phenothiazin-10-yl)-N-methyl-N-(4-(3-(piperidin-1-yl)propoxy)benzyl)propan-1-amine; 2.5, 5, and 10 mg/kg, i.p.) ameliorated dose-dependently social deficits, and significantly alleviated the repetitive/compulsive behaviors of BTBR mice (all P < 0.05). Moreover, ST-713 modulated disturbed anxiety levels, but failed to obliterate increased hyperactivity of tested mice. Furthermore, ST-713 (5 mg/kg) attenuated the increased levels of hippocampal and cerebellar protein expressions of NF-κB p65, COX-2, and iNOS in BTBR mice (all P < 0.05). The ameliorative effects of ST-713 on social parameters were entirely reversed by co-administration of the H3R agonist (R)-α-methylhistamine or the anticholinergic drug scopolamine. The obtained results demonstrate the potential of multiple-active compounds for the therapeutic management of neuropsychiatric disorders, e.g. ASD.
Collapse
Affiliation(s)
- Karthikkumar Venkatachalam
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Department of Applied Sciences, College of Arts and Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Mohamed Al Awad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sicheng Zhong
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Frauke Stölting
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
33
|
Arkhipov AY, Samigullin DV, Semina II, Malomouzh AI. Functional Assessment of Peripheral
Cholinergic Neurotransmission in Rats with Fetal Valproate Syndrome. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Ruelle-Le Glaunec L, Inquimbert P, Hugel S, Schlichter R, Bossu JL. [Nociception pain and autism]. Med Sci (Paris) 2021; 37:141-151. [PMID: 33591257 DOI: 10.1051/medsci/2020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Autistic subjects frequently display sensory anomalies. Those regarding nociception and its potential outcome, pain, are of crucial interest. Indeed, because of numerous comorbidities, autistic subjects are more often exposed to painful situation. Despite being often considered as less sensitive, experimental studies evaluating this point are failing to reach consensus. Using animal model can help reduce variability and bring, regarding autism, an overview of potential alterations of the nociceptive system at the cellular and molecular level.
Collapse
Affiliation(s)
- Lucien Ruelle-Le Glaunec
- CNRS, 5 rue Blaise-Pascal, 67000 Strasbourg, France - Université de Strasbourg, Institut des neurosciences cellulaires et intégratives, UPR 3212, 8 allée du Général Rouvillois, F-67000 Strasbourg, France
| | - Perrine Inquimbert
- CNRS, 5 rue Blaise-Pascal, 67000 Strasbourg, France - Université de Strasbourg, Institut des neurosciences cellulaires et intégratives, UPR 3212, 8 allée du Général Rouvillois, F-67000 Strasbourg, France
| | | | - Rémy Schlichter
- CNRS, 5 rue Blaise-Pascal, 67000 Strasbourg, France - Université de Strasbourg, Institut des neurosciences cellulaires et intégratives, UPR 3212, 8 allée du Général Rouvillois, F-67000 Strasbourg, France
| | | |
Collapse
|
35
|
The Multi-Targeting Ligand ST-2223 with Histamine H 3 Receptor and Dopamine D 2/D 3 Receptor Antagonist Properties Mitigates Autism-Like Repetitive Behaviors and Brain Oxidative Stress in Mice. Int J Mol Sci 2021; 22:ijms22041947. [PMID: 33669336 PMCID: PMC7920280 DOI: 10.3390/ijms22041947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by social and communicative impairments, as well as repetitive and restricted behaviors (RRBs). With the limited effectiveness of current pharmacotherapies in treating repetitive behaviors, the present study determined the effects of acute systemic treatment of the novel multi-targeting ligand ST-2223, with incorporated histamine H3 receptor (H3R) and dopamine D2/D3 receptor affinity properties, on ASD-related RRBs in a male Black and Tan BRachyury (BTBR) mouse model of ASD. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly mitigated the increase in marble burying and self-grooming, and improved reduced spontaneous alternation in BTBR mice (all p < 0.05). Similarly, reference drugs memantine (MEM, 5 mg/kg, i.p.) and aripiprazole (ARP, 1 mg/kg, i.p.), reversed abnormally high levels of several RRBs in BTBR (p < 0.05). Moreover, ST-2223 palliated the disturbed anxiety levels observed in an open field test (all p < 0.05), but did not restore the hyperactivity parameters, whereas MEM failed to restore mouse anxiety and hyperactivity. In addition, ST-2223 (5 mg/kg, i.p.) mitigated oxidative stress status by decreasing the elevated levels of malondialdehyde (MDA), and increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in different brain parts of treated BTBR mice (all p < 0.05). These preliminary in vivo findings demonstrate the ameliorative effects of ST-2223 on RRBs in a mouse model of ASD, suggesting its pharmacological prospective to rescue core ASD-related behaviors. Further confirmatory investigations on its effects on various brain neurotransmitters, e.g., dopamine and histamine, in different brain regions are still warranted to corroborate and expand these initial data.
Collapse
|
36
|
Shan L, Fronczek R, Lammers GJ, Swaab DF. The tuberomamillary nucleus in neuropsychiatric disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:389-400. [PMID: 34225943 DOI: 10.1016/b978-0-12-820107-7.00024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tuberomamillary nucleus (TMN) is located within the posterior part of the hypothalamus. The histamine neurons in it synthesize histamine by means of the key enzyme histidine decarboxylase (HDC) and from the TMN, innervate a large number of brain areas, such as the cerebral cortex, hippocampus, amygdala as well as the thalamus, hypothalamus, and basal ganglia. Brain histamine is reduced to an inactivated form, tele-methylhistamine (t-MeHA), by histamine N-methyltransferase (HMT). In total, there are four types of histamine receptors (H1-4Rs) in the brain, all of which are G-protein coupled. The histaminergic system controls several basal physiological functions, including the sleep-wake cycle, energy and endocrine homeostasis, sensory and motor functions, and cognitive functions such as attention, learning, and memory. Histaminergic dysfunction may contribute to clinical disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, narcolepsy type 1, schizophrenia, Tourette syndrome, and autism spectrum disorder. In the current chapter, we focus on the role of the histaminergic system in these neurological/neuropsychiatric disorders. For each disorder, we first discuss human data, including genetic, postmortem brain, and cerebrospinal fluid studies. Then, we try to interpret the human changes by reviewing related animal studies and end by discussing, if present, recent progress in clinical studies on novel histamine-related therapeutic strategies.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|
38
|
Simultaneous Blockade of Histamine H 3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ tf/J Mouse Model of Autism. Biomolecules 2020; 10:biom10091251. [PMID: 32872194 PMCID: PMC7563744 DOI: 10.3390/biom10091251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder defined by persistent deficits in social interaction and the presence of patterns of repetitive and restricted behaviors. The central neurotransmitters histamine (HA) and acetylcholine (ACh) play pleiotropic roles in physiological brain functions that include the maintenance of wakefulness, depression, schizophrenia, epilepsy, anxiety and narcolepsy, all of which are found to be comorbid with ASD. Therefore, the palliative effects of subchronic systemic treatment using the multiple-active test compound E100 with high H3R antagonist affinity and AChE inhibitory effect on ASD-like behaviors in male BTBR T+tf/J (BTBR) mice as an idiopathic ASD model were assessed. E100 (5, 10 and 15 mg/kg, i.p.) dose-dependently palliated social deficits of BTBR mice and significantly alleviated the repetitive/compulsive behaviors of tested animals. Moreover, E100 modulated disturbed anxiety levels, but failed to modulate hyperactivity parameters, whereas the reference AChE inhibitor donepezil (DOZ, one milligram per kilogram) significantly obliterated the increased hyperactivity measures of tested mice. Furthermore, E100 mitigated the increased levels of AChE activity in BTBR mice with observed effects comparable to that of DOZ and significantly reduced the number of activated microglial cells compared to the saline-treated BTBR mice. In addition, the E100-provided effects on ASD-like parameters, AChE activity, and activated microglial cells were entirely reversed by co-administration of the H3R agonist (R)-α-methylhistamine (RAM). These initial overall results observed in an idiopathic ASD mice model show that E100 (5 mg/kg) alleviated the assessed behavioral deficits and demonstrate that simultaneous targeting of brain histaminergic and cholinergic neurotransmissions is crucial for palliation of ASD-like features, albeit further in vivo assessments on its effects on brain levels of ACh as well as HA are still needed.
Collapse
|
39
|
Chaliha D, Albrecht M, Vaccarezza M, Takechi R, Lam V, Al-Salami H, Mamo J. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism. Dev Neurosci 2020; 42:12-48. [DOI: 10.1159/000509109] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
|
40
|
Shamsi Meymandi M, Sepehri G, Moslemizadeh A, Vakili Shahrbabaki S, Bashiri H. Prenatal pregabalin is associated with sex-dependent alterations in some behavioral parameters in valproic acid-induced autism in rat offspring. Int J Dev Neurosci 2020; 80:500-511. [PMID: 32588482 DOI: 10.1002/jdn.10046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
This study was performed to evaluate the effects of prenatal exposure to pregabalin (PGB) on behavioral changes of rat offspring in an animal model of valproic acid (VPA)-induced autism-like symptoms. Pregnant rats received VPA (600 mg/kg/i.p.) once at 12.5 gestational days for autism-like symptom induction in offspring. After the delivery single male and single female offspring from each mother were randomly selected for behavioral test (anxiety, pain response, pleasure, and motor function) at 60th day adulthood (n = 7). Offspring received prenatal PGB (15 & 30 mg/kg/i.p.) during gestational days 9.5 to 15.5 either alone or in combination with VPA (PGB15, PGB30, PGB15 + VPA, and PGB30 + VPA). Control offspring received normal saline during the same period. The result showed that prenatal VPA exposure was associated with autism-like behaviors in rat offspring. PGB treatment during the gestational period revealed significant reduction in sucrose preference test and anxiety in elevated plus maze and open field test in offspring. Also, PGB treatments exhibited a dose-dependent increase in pain threshold in prenatally VPA exposed rats in tail-flick and hot plate test. Also, there was a sex-related significant impairment in motor function in beam balance and open field test, and male rats were affected more than females. However, no significant sex differences in sucrose preference and pain sensitivity were observed in prenatal PGB-treated rat offspring. In conclusion, prenatal exposure to VPA increased the risk of autism-like behaviors in the offspring rats, and PGB treatment during the gestational period was associated with some beneficial effects, including anxiety reduction and motor impairment in autism-like symptoms in rat offspring.
Collapse
Affiliation(s)
- Manzumeh Shamsi Meymandi
- Pathology and Stem Cells Research Center, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Hamideh Bashiri
- Physiology Research Center, Department of Physiology and Pharmacology, Medical School, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
41
|
Eissa N, Sadeq A, Sasse A, Sadek B. Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also for BPSD? Front Pharmacol 2020; 11:886. [PMID: 32612529 PMCID: PMC7309953 DOI: 10.3389/fphar.2020.00886] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Many behavioral and psychological symptoms of dementia (BPSD) share similarities in executive functioning and communication deficits with those described in several neuropsychiatric disorders, including Alzheimer's disease (AD), epilepsy, schizophrenia (SCH), and autism spectrum disorder (ASD). Numerous studies over the last four decades have documented altered neuroinflammation among individuals diagnosed with ASD. The purpose of this review is to examine the hypothesis that central histamine (HA) plays a significant role in the regulation of neuroinflammatory processes of microglia functions in numerous neuropsychiatric diseases, i.e., ASD, AD, SCH, and BPSD. In addition, this review summarizes the latest preclinical and clinical results that support the relevance of histamine H1-, H2-, and H3-receptor antagonists for the potential clinical use in ASD, SCH, AD, epilepsy, and BPSD, based on the substantial symptomatic overlap between these disorders with regards to cognitive dysfunction. The review focuses on the histaminergic neurotransmission as relevant in these brain disorders, as well as the effects of a variety of H3R antagonists in animal models and in clinical studies.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
42
|
Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol Teratol 2020; 81:106905. [PMID: 32534151 DOI: 10.1016/j.ntt.2020.106905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The present study was designed to clarify the effects of resveratrol (RSV) on social behavioral alterations and nociceptive reactivity in valproic acid (VPA)-induced autistic-like model in female and male rats. METHODS Pregnant Wistar rats were randomly divided in five groups. Animals received saline, DMSO, VPA, RSV and RSV + VPA. VPA was administered (600 mg/kg, i. p.) on embryonic day 12.5 (E12.5) and pretreatment by resveratrol (3.6 mg/kg, s. c.) was applied on E6.5 until E18.5. All offspring were weaned on postnatal day 21 and the experiments were done in male and female rats on day 60. Social interaction, hot plate and tail flick tests were set out to assess social deficits and pain threshold, respectively. Sociability index (SI), Social novelty index (SNI) and latency time were calculated as the standard indices of social behaviors and pain threshold, respectively. RESULTS The results indicated that systemic intraperitoneal administration of VPA (600 mg/kg) significantly decreased SI and SNI in social interaction test (SIT) especially in male rats, indicating the social impairments caused by VPA. RSV (3.6 mg/kg, s. c.) reversed VPA-induced social deficits in male rats, but not in female group. VPA administration resulted in significant increase in latency time in the hot plate and tail flick tests in male rats, whereas it had no such dramatic effect in females. RSV administration in combination with VPA had no significant effect on latency time compared to the valproic acid group in male rats. It is important to note that RSV by itself had no significant effect on SI, SNI and latency time in female and male rats. CONCLUSION It can be concluded that valproic acid produces autistic-like behaviors and increases pain threshold in male rats which may be ameliorated at least in part by resveratrol administration. Further studies are needed to elucidate the molecular mechanisms involved in valproic acid and resveratrol-induced effects.
Collapse
|
43
|
The Dual-Active Histamine H 3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. Int J Mol Sci 2020; 21:ijms21113996. [PMID: 32503208 PMCID: PMC7312782 DOI: 10.3390/ijms21113996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer’s disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.
Collapse
|
44
|
Perez-Fernandez C, Morales-Navas M, Aguilera-Sáez LM, Abreu AC, Guardia-Escote L, Fernández I, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Medium and long-term effects of low doses of Chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. ENVIRONMENTAL RESEARCH 2020; 184:109341. [PMID: 32179266 DOI: 10.1016/j.envres.2020.109341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental pathology characterized by altered verbalizations, reduced social interaction behavior, and stereotypies. Environmental factors have been associated with its development. Some researchers have focused on pesticide exposure. Chlorpyrifos (CPF) is the most used Organophosphate. Previous developmental studies with CPF showed decreased, enhanced or no effect on social outcomes eminently in mice. The study of CPF exposure during preweaning stages on social behavior is sparse in mice and non-existent in rats. d stressors could be at the basis of ASD development, and around postnatal day 10 in the rat is equivalent to the human birthday in neurodevelopmental terms. We explored the effects of exposure to low doses (1mg/kg/mL/day) of CPF during this stage regarding: sociability, dominance gut microbiome and plasma metabolomic profile, since alterations in these systems have also been linked to ASD. There was a modest influence of CPF on social behavior in adulthood, with null effects during adolescence. Dominance and hierarchical status were not affected by exposure. Dominance status explained the significant reduction in reaction to social novelty observed on the sociability test. CPF induced a significant gut microbiome dysbiosis and triggered a hyperlipidemic, hypoglycemic/hypogluconeogenesis and a general altered cell energy production in females. These behavioral results in rats extend and complement previous studies with mice and show novel influences on gut metagenomics and plasma lipid profile and metabolomics, but do not stablish a relation between the exposure to CPF and the ASD phenotype. The effects of dominance status on reaction to social novelty have an important methodological meaning for future research on sociability.
Collapse
Affiliation(s)
- Cristian Perez-Fernandez
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Miguel Morales-Navas
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Luis Manuel Aguilera-Sáez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Laia Guardia-Escote
- Department of Biochemistry and Biotechnology and Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007, C/ Macel.lí Domingo 1, Tarragona, Spain.
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | | | - María Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007, C/ Carretera de Valls, s/n, Tarragona, Spain.
| | - Estela Giménez
- Department of Biology and Geology, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
45
|
Mohammadi S, Asadi-Shekaari M, Basiri M, Parvan M, Shabani M, Nozari M. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology (Berl) 2020; 237:199-208. [PMID: 31595334 DOI: 10.1007/s00213-019-05357-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023]
Abstract
RATIONALE Autism spectrum disorder (ASD), the fastest growing neurodevelopmental disorder, is characterized by social deficits, repetitive/stereotypic activity, and impaired verbal and nonverbal communication and is commonly diagnosed at early stages of life. Based on the excitatory-inhibitory imbalance theory of autism, some recent animal experiments have reported amelioration in autistic-like phenotypes in adult animals following acute treatment of NMDA antagonists. However, we suggested the neonatal period as a critical period for NMDA antagonist intervention. OBJECTIVES This experiment was designed to determine the role of postnatal MK-801, an NMDA receptor blocker, in the prenatal valproic acid (VPA) rat model of ASD. METHODS The model of autism was induced by subcutaneous administration of valproic acid (600 mg/kg) to pregnant rats at gestational day 12.5. The effects of MK-801 (0.03 mg/kg, from postnatal day 6-10) in correcting ASD-associated behaviors in male offspring were assessed by open-field, three-chambered social interaction tests. Moreover, the nociceptive threshold was measured by tail flick and hot plate. Behavioral tests were performed on PND 55-60. Nissl staining was performed to confirm the safety of 0.03 mg/kg MK-801 for the brain. RESULTS We reported that MK-801 rescued social deficits, repetitive behaviors (self-grooming), anxiety-related behavior, and the low nociceptive threshold in the VPA-treated rats. Further, histological examination showed that there were no significant differences among all the groups in terms of the neuronal survival rate. CONCLUSIONS Our results showed that postnatal low-dose MK-801 improved ASD-associated behaviors in the VPA-treated rats and that early exposure to NMDA antagonist resulted in permanent changes in adult behavior.
Collapse
Affiliation(s)
- Somayeh Mohammadi
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Parvan
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
46
|
Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159:107477. [DOI: 10.1016/j.neuropharm.2018.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
47
|
Consequences of VGluT3 deficiency on learning and memory in mice. Physiol Behav 2019; 212:112688. [PMID: 31622610 DOI: 10.1016/j.physbeh.2019.112688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to test the hypothesis that vesicular glutamate transporter 3 (VGluT3) deficiency is associated with cognitive impairments. Male VGluT3 knockout (KO) and wild type (WT) mice were exposed to a behavioral test battery covering paradigms based on spontaneous exploratory behavior and reinforcement-based learning tests. Reversal learning was examined to test the cognitive flexibility. The VGluT3 KO mice clearly exhibited the ability to learn. The social recognition memory of KO mice was intact. The y-maze test revealed weaker working memory of VGluT3 KO mice. No significant learning impairments were noticed in operant conditioning or holeboard discrimination paradigm. In avoidance-based learning tests (Morris water maze and active avoidance), KO mice exhibited slightly slower learning process compared to WT mice, but not a complete learning impairment. In tests based on simple associations (operant conditioning, avoidance learning) an attenuation of cognitive flexibility was observed in KO mice. In conclusion, knocking out VGluT3 results in mild disturbances in working memory and learning flexibility. Apparently, this glutamate transporter is not a major player in learning and memory formation in general. Based on previous characteristics of VGluT3 KO mice we would have expected a stronger deficit. The observed hypolocomotion did not contribute to the mild cognitive disturbances herein reported, either.
Collapse
|
48
|
Eissa N, Azimullah S, Jayaprakash P, Jayaraj RL, Reiner D, Ojha SK, Beiram R, Stark H, Łażewska D, Kieć-Kononowicz K, Sadek B. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem Biol Interact 2019; 312:108775. [DOI: 10.1016/j.cbi.2019.108775] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
|
49
|
Molenhuis RT, Bruining H, Brandt MJV, van Soldt PE, Abu-Toamih Atamni HJ, Burbach JPH, Iraqi FA, Mott RF, Kas MJH. Modeling the quantitative nature of neurodevelopmental disorders using Collaborative Cross mice. Mol Autism 2018; 9:63. [PMID: 30559955 PMCID: PMC6293525 DOI: 10.1186/s13229-018-0252-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background Animal models for neurodevelopmental disorders (NDD) generally rely on a single genetic mutation on a fixed genetic background. Recent human genetic studies however indicate that a clinical diagnosis with ASDAutism Spectrum Disorder (ASD) is almost always associated with multiple genetic fore- and background changes. The translational value of animal model studies would be greatly enhanced if genetic insults could be studied in a more quantitative framework across genetic backgrounds. Methods We used the Collaborative Cross (CC), a novel mouse genetic reference population, to investigate the quantitative genetic architecture of mouse behavioral phenotypes commonly used in animal models for NDD. Results Classical tests of social recognition and grooming phenotypes appeared insufficient for quantitative studies due to genetic dilution and limited heritability. In contrast, digging, locomotor activity, and stereotyped exploratory patterns were characterized by continuous distribution across our CC sample and also mapped to quantitative trait loci containing genes associated with corresponding phenotypes in human populations. Conclusions These findings show that the CC can move animal model studies beyond comparative single gene-single background designs, and point out which type of behavioral phenotypes are most suitable to quantify the effect of developmental etiologies across multiple genetic backgrounds.
Collapse
Affiliation(s)
- Remco T. Molenhuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Myrna J. V. Brandt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Petra E. van Soldt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hanifa J. Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Richard F. Mott
- Genetics Institute, University College London, Gower Street, London, WC1E 6BT UK
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
50
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|