1
|
Miyata W, Sakaibara N, Yoshinaga K, Honjo A, Takahashi M, Ooki T, Yako H, Sango K, Miyamoto Y, Yamauchi J. Bcl2l12, a novel protein interacting with Arf6, triggers Schwann cell differentiation programme. J Biochem 2025; 177:5-14. [PMID: 39510036 DOI: 10.1093/jb/mvae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024] Open
Abstract
Schwann cells are glial cells in the peripheral nervous system (PNS); they wrap neuronal axons with their differentiated plasma membranes called myelin sheaths. Although the physiological functions, such as generating saltatory conduction, have been well studied in the PNS, the molecular mechanisms by which Schwann cells undergo their differentiation programme without apparent morphological changes before dynamic myelin sheath formation remain unclear. Here, for the first time, we report that Arf6, a small GTP/GDP-binding protein controlling morphological differentiation, and the guanine-nucleotide exchange factors cytohesin proteins are involved in the regulation of Schwann cell differentiation marker expression in primary Schwann cells. Specific inhibition of Arf6 and cytohesins by NAV-2729 and SecinH3, respectively, decreased expression of marker proteins 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and glial fibrillary acidic protein (GFAP). Similar results using promoter assays were observed using the IMS32 Schwann cell line. Furthermore, using an affinity-precipitation technique, we identified Bcl2-like 12 (Bcl2l12) as a novel GTP-bound Arf6-interacting protein. Knockdown of Bcl2l12 using a specific artificial miRNA decreased expression of marker proteins. The knockdown also led to decreased filamentous actin extents. These results suggest that Arf6 and Bcl2l12 can trigger Schwann cell differentiation, providing evidence for a molecular relay that underlies how Schwann cells differentiate.
Collapse
Affiliation(s)
- Wakana Miyata
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Naoko Sakaibara
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Kentaro Yoshinaga
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Asahi Honjo
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Tatsuya Ooki
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hideji Yako
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
2
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
3
|
Hu B, Moiseev D, Schena I, Faezov B, Dunbrack R, Chernoff J, Li J. PAK2 is necessary for myelination in the peripheral nervous system. Brain 2024; 147:1809-1821. [PMID: 38079473 PMCID: PMC11068108 DOI: 10.1093/brain/awad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Myelination enables electrical impulses to propagate on axons at the highest speed, encoding essential life functions. The Rho family GTPases, RAC1 and CDC42, have been shown to critically regulate Schwann cell myelination. P21-activated kinase 2 (PAK2) is an effector of RAC1/CDC42, but its specific role in myelination remains undetermined. We produced a Schwann cell-specific knockout mouse of Pak2 (scPak2-/-) to evaluate PAK2's role in myelination. Deletion of Pak2, specifically in mouse Schwann cells, resulted in severe hypomyelination, slowed nerve conduction velocity and behaviour dysfunctions in the scPak2-/- peripheral nerve. Many Schwann cells in scPak2-/- sciatic nerves were arrested at the stage of axonal sorting. These abnormalities were rescued by reintroducing Pak2, but not the kinase-dead mutation of Pak2, via lentivirus delivery to scPak2-/- Schwann cells in vivo. Moreover, ablation of Pak2 in Schwann cells blocked the promyelinating effect driven by neuregulin-1, prion protein and inactivated RAC1/CDC42. Conversely, the ablation of Pak2 in neurons exhibited no phenotype. Such PAK2 activity can also be either enhanced or inhibited by different myelin lipids. We have identified a novel promyelinating factor, PAK2, that acts as a critical convergence point for multiple promyelinating signalling pathways. The promyelination by PAK2 is Schwann cell-autonomous. Myelin lipids, identified as inhibitors or activators of PAK2, may be utilized to develop therapies for repairing abnormal myelin in peripheral neuropathies.
Collapse
Affiliation(s)
- Bo Hu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel Moiseev
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Isabella Schena
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulat Faezov
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Roland Dunbrack
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jonathan Chernoff
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
4
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Xu J, Zhang B, Cai J, Peng Q, Hu J, Askar P, Shangguan J, Su W, Zhu C, Sun H, Zhou S, Chen G, Yang X, Gu Y. The transcription factor Stat-1 is essential for Schwann cell differentiation, myelination and myelin sheath regeneration. Mol Med 2023; 29:79. [PMID: 37365519 DOI: 10.1186/s10020-023-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Myelin sheath is a crucial accessory to the functional nerve-fiber unit, its disruption or loss can lead to axonal degeneration and subsequent neurodegenerative diseases (NDs). Notwithstanding of substantial progress in possible molecular mechanisms underlying myelination, there is no therapeutics that prevent demyelination in NDs. Therefore, it is crucial to seek for potential intervention targets. Here, we focused on the transcriptional factor, signal transducer and activator of transcription 1 (Stat1), to explore its effects on myelination and its potential as a drug target. METHODS By analyzing the transcriptome data obtained from Schwann cells (SCs) at different stages of myelination, it was found that Stat1 might be involved in myelination. To test this, we used the following experiments: (1) In vivo, the effect of Stat1 on remyelination was observed in an in vivo myelination mode with Stat1 knockdown in sciatic nerves or specific knockdown in SCs. (2) In vitro, the RNA interference combined with cell proliferation assay, scratch assay, SC aggregate sphere migration assay, and a SC differentiation model, were used to assess the effects of Stat1 on SC proliferation, migration and differentiation. Chromatin immunoprecipitation sequencing (ChIP-Seq), RNA-Seq, ChIP-qPCR and luciferase activity reporter assay were performed to investigate the possible mechanisms of Stat1 regulating myelination. RESULTS Stat1 is important for myelination. Stat1 knockdown in nerve or in SCs reduces the axonal remyelination in the injured sciatic nerve of rats. Deletion of Stat1 in SCs blocks SC differentiation thereby inhibiting the myelination program. Stat1 interacts with the promoter of Rab11-family interacting protein 1 (Rab11fip1) to initiate SC differentiation. CONCLUSION Our findings demonstrate that Stat1 regulates SC differentiation to control myelinogenic programs and repair, uncover a novel function of Stat1, providing a candidate molecule for clinical intervention in demyelinating diseases.
Collapse
Affiliation(s)
- Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Bin Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jieyi Cai
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Qianqian Peng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Junxia Hu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Parizat Askar
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaoming Yang
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
6
|
Schepers M, Malheiro A, Gamardo AS, Hellings N, Prickaerts J, Moroni L, Vanmierlo T, Wieringa P. Phosphodiesterase (PDE) 4 inhibition boosts Schwann cell myelination in a 3D regeneration model. Eur J Pharm Sci 2023; 185:106441. [PMID: 37004962 DOI: 10.1016/j.ejps.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been extensively researched for their anti-inflammatory and neuroregenerative properties. Despite the known neuroplastic and myelin regenerative properties of nonselective PDE4 inhibitors on the central nervous system, the direct impact on peripheral remyelination and subsequent neuroregeneration has not yet been investigated. Therefore, to examine the possible therapeutic effect of PDE4 inhibition on peripheral glia, we assessed the differentiation of primary rat Schwann cells exposed in vitro to the PDE4 inhibitor roflumilast. To further investigate the differentiation promoting effects of roflumilast, we developed a 3D model of rat Schwann cell myelination that closely resembles the in vivo situation. Using these in vitro models, we demonstrated that pan-PDE4 inhibition using roflumilast significantly promoted differentiation of Schwann cells towards a myelinating phenotype, as indicated by the upregulation of myelin proteins, including MBP and MAG. Additionally, we created a unique regenerative model comprised of a 3D co-culture of rat Schwann cells and human iPSC-derived neurons. Schwann cells treated with roflumilast enhanced axonal outgrowth of iPSC-derived nociceptive neurons, which was accompanied by an accelerated myelination speed, thereby showing not only phenotypic but also functional changes of roflumilast-treated Schwann cells. Taken together, the PDE4 inhibitor roflumilast possesses a therapeutic benefit to stimulate Schwann cell differentiation and, subsequently myelination, as demonstrated in the biologically relevant in vitro platform used in this study. These results can aid in the development of novel PDE4 inhibition-based therapies in the advancement of peripheral regenerative medicine.
Collapse
Affiliation(s)
- Melissa Schepers
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Afonso Malheiro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Adrián Seijas Gamardo
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| | - Paul Wieringa
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| |
Collapse
|
7
|
Chen S, Gu X, Li R, An S, Wang Z. Genome-wide Analysis of Histone H3 Lysine 27 Trimethylation Profiles in Sciatic Nerve of Chronic Constriction Injury Rats. Neurochem Res 2023; 48:1945-1957. [PMID: 36763313 DOI: 10.1007/s11064-023-03879-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| |
Collapse
|
8
|
Angelaki D, Kavatzikidou P, Fotakis C, Stratakis E, Ranella A. Laser-Structured Si and PLGA Inhibit the Neuro2a Differentiation in Mono- and Co-Culture with Glia. Tissue Eng Regen Med 2022; 20:111-125. [PMID: 36538193 PMCID: PMC9852401 DOI: 10.1007/s13770-022-00497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The first step towards a successful neural tissue engineering therapy is the development of an appropriate scaffold and the in vitro study of the cellular response onto it. METHODS Here, we fabricated nano- and micro- patterned Si surfaces via direct ultrafast laser irradiation, as well as their replicas in the biodegradable poly(lactide-co-glycolide), in order to use them as culture substrates for neuronal cells. The differentiation of neuro2a cells on the Si platforms and their replicas was studied both in a mono-culture and in a co-culture with glial cells (Schwann-SW10). RESULTS It was found that the substrate's roughness inhibits the differentiation of the neuronal cells even in the presence of the differentiation medium, and the higher the roughness is, the more the differentiation gets limited. CONCLUSION Our results highlight the importance of the substrate's topography for the controlled growth and differentiation of the neuronal cells and their further study via protein screening methods could shed light on the factors that lead to limited differentiation; thus, contributing to the long standing request for culture substrates that induce cells to differentiate.
Collapse
Affiliation(s)
- Despoina Angelaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece
| |
Collapse
|
9
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
10
|
Shimba K, Asahina T, Sakai K, Kotani K, Jimbo Y. Recording Saltatory Conduction Along Sensory Axons Using a High-Density Microelectrode Array. Front Neurosci 2022; 16:854637. [PMID: 35509449 PMCID: PMC9058065 DOI: 10.3389/fnins.2022.854637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Myelinated fibers are specialized neurological structures used for conducting action potentials quickly and reliably, thus assisting neural functions. Although demyelination leads to serious functional impairments, little is known the relationship between myelin structural change and increase in conduction velocity during myelination and demyelination processes. There are no appropriate methods for the long-term evaluation of spatial characteristics of saltatory conduction along myelinated axons. Herein, we aimed to detect saltatory conduction from the peripheral nervous system neurons using a high-density microelectrode array. Rat sensory neurons and intrinsic Schwann cells were cultured. Immunofluorescence and ultrastructure examination showed that the myelinating Schwann cells appeared at 1 month, and compact myelin was formed by 10 weeks in vitro. Activity of rat sensory neurons was evoked with optogenetic stimulation, and axon conduction was detected with high-density microelectrode arrays. Some conductions included high-speed segments with low signal amplitude. The same segment could be detected with electrical recording and immunofluorescent imaging for a myelin-related protein. The spatiotemporal analysis showed that some segments show a velocity of more than 2 m/s and that ends of the segments show a higher electrical sink, suggesting that saltatory conduction occurred in myelinated axons. Moreover, mathematical modeling supported that the recorded signal was in the appropriate range for axon and electrode sizes. Overall, our method could be a feasible tool for evaluating spatial characteristics of axon conduction including saltatory conduction, which is applicable for studying demyelination and remyelination.
Collapse
Affiliation(s)
- Kenta Shimba
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kenta Shimba, , orcid.org/0000-0003-1156-260X
| | - Takahiro Asahina
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Japan Society for Promotion of Science, Tokyo, Japan
| | - Koji Sakai
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity. Neurosci Bull 2022; 38:720-740. [DOI: 10.1007/s12264-022-00850-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
|
12
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
13
|
Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021; 10:cells10123292. [PMID: 34943800 PMCID: PMC8699767 DOI: 10.3390/cells10123292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, 68159 Mannheim, Germany;
- Hector Institute for Translational Brain Research (HITBR gGmbH), 68159 Mannheim, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
- Correspondence:
| |
Collapse
|
14
|
Monje PV, Bacallao K, Aparicio GI, Lalwani A. Heregulin Activity Assays for Residual Testing of Cell Therapy Products. Biol Proced Online 2021; 23:22. [PMID: 34772336 PMCID: PMC8590303 DOI: 10.1186/s12575-021-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Heregulin is a ligand for the protooncogene product ErbB/HER that acts as a key mitogenic factor for human Schwann cells (hSCs). Heregulin is required for sustained hSC growth in vitro but must be thoroughly removed before cell collection for transplantation due to potential safety concerns. The goal of this study was to develop simple cell-based assays to assess the effectiveness of heregulin addition to and removal from aliquots of hSC culture medium. These bioassays were based on the capacity of a β1-heregulin peptide to elicit ErbB/HER receptor signaling in adherent ErbB2+/ErbB3+ cells. Results Western blotting was used to measure the activity of three different β1-heregulin/ErbB-activated kinases (ErbB3/HER3, ERK/MAPK and Akt/PKB) using phospho-specific antibodies against key activating residues. The duration, dose-dependency and specificity of β1-heregulin-initiated kinase phosphorylation were investigated, and controls were implemented for assay optimization and reproducibility to detect β1-heregulin activity in the nanomolar range. Results from these assays showed that the culture medium from transplantable hSCs elicited no detectable activation of the aforementioned kinases in independent rounds of testing, indicating that the implemented measures can ensure that the final hSC product is devoid of bioactive β1-heregulin molecules prior to transplantation. Conclusions These assays may be valuable to detect impurities such as undefined soluble factors or factors for which other biochemical or biological assays are not yet available. Our workflow can be modified as necessary to determine the presence of ErbB/HER, ERK, and Akt activators other than β1-heregulin using native samples, such as fresh isolates from cell- or tissue extracts in addition to culture medium.
Collapse
Affiliation(s)
- Paula V Monje
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Ketty Bacallao
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gabriela I Aparicio
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Instituto de Investigaciones Biotecnológicas "Rodolfo A. Ugalde", Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| | - Anil Lalwani
- Cell and Gene Therapy CMC and Regulatory Advisor, Boulder, CO, USA
| |
Collapse
|
15
|
Sohn EJ, Nam YK. The Transcription Factor TFCP2L1 is Associated with Myelination via miR708-5p Regulation in the Peripheral Nerve System. Neurochem Res 2021; 47:434-445. [PMID: 34581937 DOI: 10.1007/s11064-021-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in nerve injury and demyelination; however, their functions in peripheral nerves remain unclear. To determine the potential functions of miRNAs, an miRNA array was carried out. Here, miRNA array analysis of neuregulin-treated Schwann cells revealed 18 upregulated (> 2-fold) and 13 downregulated (> 2-fold) miRNAs. After sciatic nerve injury, miR708-5p was highly expressed in neuregulin-treated Schwann cells, whereas it was downregulated during postnatal development. A predicted functional interaction was found between miR708-5p and transcription factor CP2-like protein 1 (TFCP2L1) using a bioinformatics tool. This finding suggested that miR708-5p may regulate TFCP2L1. During sciatic nerve development, TFCP2L1 was upregulated on postnatal days 1 and 4, while it was downregulated after nerve axotomy and crush injury. Notably, TFCP2L1 was upregulated in cAMP-treated Schwann cells. We also found that activity of the myelin protein zero promoter was downregulated in TFCP2L1 siRNA-treated Schwann cells, whereas it was upregulated in TFCP2L1-overexpressing cells. Immunofluorescence analysis showed that TFCP2L1 was localized in Schwann cells. In addition, miR708-5p overexpression promoted migration of Schwann cells, while miR-708-5p inhibitor inhibited migration. miR708-5p inhibitor also blocked the migration of TFCP2L1 siRNA-treated Schwann cells. These findings indicate the functions of miR708-5p in TFCP2L1 regulation in the peripheral nervous system occur via regulation of Schwann cell migration.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Pusan National University, Yangsan, South Korea.
| | - Yun Kyung Nam
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
16
|
Wong FC, Ye L, Demir IE, Kahlert C. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 2021; 70:20-34. [PMID: 34519370 DOI: 10.1002/glia.24087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This double-sided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.,Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| |
Collapse
|
17
|
Huff TC, Sant DW, Camarena V, Van Booven D, Andrade NS, Mustafi S, Monje PV, Wang G. Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of pro-myelinating genes. J Neurochem 2021; 157:1759-1773. [PMID: 32219848 PMCID: PMC7530063 DOI: 10.1111/jnc.15015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.
Collapse
Affiliation(s)
- Tyler C. Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David W. Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadja S. Andrade
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V. Monje
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Sundaram VK, El Jalkh T, Barakat R, Fernandez CJI, Massaad C, Grenier J. Retracing Schwann Cell Developmental Transitions in Embryonic Dissociated DRG/Schwann Cell Cocultures in Mice. Front Cell Neurosci 2021; 15:590537. [PMID: 34093128 PMCID: PMC8173108 DOI: 10.3389/fncel.2021.590537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Embryonic Dissociated Dorsal Root Ganglia (DRG) cultures are often used to investigate the role of novel molecular pathways or drugs in Schwann cell development and myelination. These cultures largely recapitulate the order of cellular and molecular events that occur in Schwann cells of embryonic nerves. However, the timing of Schwann cell developmental transitions, notably the transition from Schwann Cell Precursors (SCP) to immature Schwann cells (iSC) and then to myelinating Schwann cells, has not been estimated so far in this culture system. In this study, we determined the expression profiles of Schwann cell developmental genes during the first week of culture and then compared our data to the expression profiles of these genes in developing spinal nerves. This helped in identifying that SCP transition into iSC between the 5th and 7th day in vitro. Furthermore, we also investigated the transition of immature cells into pro-myelinating and myelinating Schwann cells upon the induction of myelination in vitro. Our results suggest that Schwann cell differentiation beyond the immature stage can be observed as early as 4 days post the induction of myelination in cocultures. Finally, we compared the myelinating potential of coculture-derived Schwann cell monocultures to cultures established from neonatal sciatic nerves and found that both these culture systems exhibit similar myelinating phenotypes. In effect, our results allow for a better understanding and interpretation of coculture experiments especially in studies that aim to elucidate the role of a novel actor in Schwann cell development and myelination.
Collapse
Affiliation(s)
| | - Tatiana El Jalkh
- INSERM UMRS 1124, Faculty of Basic and Biomedical Sciences, Université de Paris, Paris, France.,EC2M, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Rasha Barakat
- INSERM UMRS 1124, Faculty of Basic and Biomedical Sciences, Université de Paris, Paris, France.,INSERM UMRS 1016, Institut Cochin, Université de Paris, Paris, France
| | | | - Charbel Massaad
- INSERM UMRS 1124, Faculty of Basic and Biomedical Sciences, Université de Paris, Paris, France
| | - Julien Grenier
- INSERM UMRS 1124, Faculty of Basic and Biomedical Sciences, Université de Paris, Paris, France
| |
Collapse
|
19
|
Fabbri R, Saracino E, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene glial-interfaces: challenges and perspectives. NANOSCALE 2021; 13:4390-4407. [PMID: 33599662 DOI: 10.1039/d0nr07824g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Graphene nanosheets are mechanically strong but flexible, electrically conductive and bio-compatible. Thus, due to these unique properties, they are being intensively studied as materials for the next generation of neural interfaces. Most of the literature focused on optimizing the interface between these materials and neurons. However, one of the most common causes of implant failure is the adverse inflammatory reaction of glial cells. These cells are not, as previously considered, just passive and supportive cells, but play a crucial role in the physiology and pathology of the nervous system, and in the interaction with implanted electrodes. Besides providing structural support to neurons, glia are responsible for the modulation of synaptic transmission and control of central and peripheral homeostasis. Accordingly, knowledge on the interaction between glia and biomaterials is essential to develop new implant-based therapies for the treatment of neurological disorders, such as epilepsy, brain tumours, and Alzheimer's and Parkinson's disease. This work provides an overview of the emerging literature on the interaction of graphene-based materials with glial cells, together with a complete description of the different types of glial cells and problems associated with them. We believe that this description will be important for researchers working in materials science and nanotechnology to develop new active materials to interface, measure and stimulate these cells.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Won SY, Kwon S, Jeong HS, Chung KW, Choi B, Chang JW, Lee JE. Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells 2020; 38:1578-1593. [PMID: 33107705 PMCID: PMC7756588 DOI: 10.1002/stem.3287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 04/25/2023]
Abstract
In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Soojin Kwon
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Hui Su Jeong
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
22
|
Smith TA, Ghergherehchi CL, Tucker HO, Bittner GD. Coding transcriptome analyses reveal altered functions underlying immunotolerance of PEG-fused rat sciatic nerve allografts. J Neuroinflammation 2020; 17:287. [PMID: 33008419 PMCID: PMC7532577 DOI: 10.1186/s12974-020-01953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current methods to repair ablation-type peripheral nerve injuries (PNIs) using peripheral nerve allografts (PNAs) often result in poor functional recovery due to immunological rejection as well as to slow and inaccurate outgrowth of regenerating axonal sprouts. In contrast, ablation-type PNIs repaired by PNAs, using a multistep protocol in which one step employs the membrane fusogen polyethylene glycol (PEG), permanently restore sciatic-mediated behaviors within weeks. Axons and cells within PEG-fused PNAs remain viable, even though outbred host and donor tissues are neither immunosuppressed nor tissue matched. PEG-fused PNAs exhibit significantly reduced T cell and macrophage infiltration, expression of major histocompatibility complex I/II and consistently low apoptosis. In this study, we analyzed the coding transcriptome of PEG-fused PNAs to examine possible mechanisms underlying immunosuppression. METHODS Ablation-type sciatic PNIs in adult Sprague-Dawley rats were repaired using PNAs and a PEG-fusion protocol combined with neurorrhaphy. Electrophysiological and behavioral tests confirmed successful PEG-fusion of PNAs. RNA sequencing analyzed differential expression profiles of protein-coding genes between PEG-fused PNAs and negative control PNAs (not treated with PEG) at 14 days PO, along with unoperated control nerves. Sequencing results were validated by quantitative reverse transcription PCR (RT-qPCR), and in some cases, immunohistochemistry. RESULTS PEG-fused PNAs display significant downregulation of many gene transcripts associated with innate and adaptive allorejection responses. Schwann cell-associated transcripts are often upregulated, and cellular processes such as extracellular matrix remodeling and cell/tissue development are particularly enriched. Transcripts encoding several potentially immunosuppressive proteins (e.g., thrombospondins 1 and 2) also are upregulated in PEG-fused PNAs. CONCLUSIONS This study is the first to characterize the coding transcriptome of PEG-fused PNAs and to identify possible links between alterations of the extracellular matrix and suppression of the allorejection response. The results establish an initial molecular basis to understand mechanisms underlying PEG-mediated immunosuppression.
Collapse
Affiliation(s)
- Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
23
|
Patel A, Rumsey JW, Lorance C, Long CJ, Lee B, Tetard L, Lambert S, Hickman JJ. Myelination and Node of Ranvier Formation in a Human Motoneuron-Schwann Cell Serum-Free Coculture. ACS Chem Neurosci 2020; 11:2615-2623. [PMID: 32786317 DOI: 10.1021/acschemneuro.0c00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myelination and node of Ranvier formation play an important role in the rapid conduction of nerve impulses, referred to as saltatory conduction, along axons in the peripheral nervous system. We report a human-human myelination model using human primary Schwann cells (SCs) and human-induced pluripotent stem-cell-derived motoneurons utilizing a serum-free medium supplemented with ascorbate to induce myelination, where 41.6% of SCs expressed the master transcription factor for myelination, early growth response protein 2. After 30 days in coculture, myelin segments were visualized using immunocytochemistry for myelin basic protein surrounding neurofilament-stained motor neuron axons, which was confirmed via 3D confocal Raman microscopy, a viable alternative for transmission electron microscopy analysis. The myelination efficiency was 65%, and clusters of voltage-gated sodium channels and the paranodal protein contactin-associated protein 1 indicated node of Ranvier formation. This model has applications to study remyelination and demyelinating diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, and anti-myelin-associated glycoprotein peripheral neuropathy.
Collapse
Affiliation(s)
- Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - John W. Rumsey
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Case Lorance
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Christopher J. Long
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| | - Briana Lee
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - James J. Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, Florida 32826, United States
| |
Collapse
|
24
|
Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells 2020; 9:cells9081848. [PMID: 32781699 PMCID: PMC7465416 DOI: 10.3390/cells9081848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.
Collapse
|
25
|
van der Horst J, Greenwood IA, Jepps TA. Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels. Front Physiol 2020; 11:727. [PMID: 32695022 PMCID: PMC7338754 DOI: 10.3389/fphys.2020.00727] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Gao ZZ, Li YC, Shao CY, Xiao J, Shen Y, Zhou L. EPAC Negatively Regulates Myelination via Controlling Proliferation of Oligodendrocyte Precursor Cells. Neurosci Bull 2020; 36:639-648. [PMID: 32303914 DOI: 10.1007/s12264-020-00495-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that a cyclic adenosine monophosphate (cAMP)-dependent intracellular signal drives the process of myelination. Yet, the signal transduction underlying the action of cAMP on central nervous system myelination remains undefined. In the present work, we sought to determine the role of EPAC (exchange protein activated by cAMP), a downstream effector of cAMP, in the development of the myelin sheath using EPAC1 and EPAC2 double-knockout (EPACdKO) mice. The results showed an age-dependent regulatory effect of EPAC1 and EPAC2 on myelin development, as their deficiency caused more myelin sheaths in postnatal early but not late adult mice. Knockout of EPAC promoted the proliferation of oligodendrocyte precursor cells and had diverse effects on myelin-related transcription factors, which in turn increased the expression of myelin-related proteins. These results indicate that EPAC proteins are negative regulators of myelination and may be promising targets for the treatment of myelin-related diseases.
Collapse
Affiliation(s)
- Zhen-Zhen Gao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying-Cong Li
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chong-Yu Shao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Shen
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Liang Zhou
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Key Laboratory of Brain Science, Guizhou Institution of Higher Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
27
|
The Cellular and Molecular Patterns Involved in the Neural Differentiation of Adipose-Derived Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:23-41. [PMID: 32514816 DOI: 10.1007/5584_2020_547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Injuries to the nervous system cause serious problems among affected patients by preventing them from the possibility of living a normal life. As this tissue possesses a reduced capacity of self-regeneration currently, lots of different strategies are being developed in order to make the regeneration in the nervous system possible. Among them, tissue engineering and stem cell-based therapies are to date very exploded fields and tremendous progress has been made in this direction. As the two main components of the nervous system, react differently to injuries and behave different during disease, it is clear that two separate regeneration approaches have been taken into consideration during development of treatment. Special attention is constantly given to the potential of adipose-derived stem cells for this kind of application. Due to the fact that they present remarkable properties, they can easily be obtained and have demonstrated that are capable of engaging in neural and glial lineages, adipose-derived stem cells are promising tools for the field of nervous system regeneration. Moreover, new insights into epigenetic control and modifications during the differentiation of adipose-derived stem cells towards the neural liege could provide new methods to maximize the regeneration process. In this review, we summarize the current applications of adipose-derived stem cells for neural regeneration and discuss in-depth molecular patterns involved in the differentiation of adipose-derived stem cells in neuron-like cells and Schwann-like cells.
Collapse
|
28
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
29
|
Jung K, Park JH, Kim SY, Jeon NL, Cho SR, Hyung S. Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro. Sci Rep 2019; 9:3487. [PMID: 30837563 PMCID: PMC6401157 DOI: 10.1038/s41598-019-40173-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/24/2019] [Indexed: 11/18/2022] Open
Abstract
Schwann cells (SCs) constitute a crucial element of the peripheral nervous system, by structurally supporting the formation of myelin and conveying vital trophic factors to the nervous system. However, the functions of SCs in developmental and regenerative stages remain unclear. Here, we investigated how optogenetic stimulation (OS) of SCs regulates their development. In SC monoculture, OS substantially enhanced SC proliferation and the number of BrdU+-S100ß+-SCs over time. In addition, OS also markedly promoted the expression of both Krox20 and myelin basic protein (MBP) in SC culture medium containing dBcAMP/NRG1, which induced differentiation. We found that the effects of OS are dependent on the intracellular Ca2+ level. OS induces elevated intracellular Ca2+ levels through the T-type voltage-gated calcium channel (VGCC) and mobilization of Ca2+ from both inositol 1,4,5-trisphosphate (IP3)-sensitive stores and caffeine/ryanodine-sensitive stores. Furthermore, we confirmed that OS significantly increased expression levels of both Krox20 and MBP in SC-motor neuron (MN) coculture, which was notably prevented by pharmacological intervention with Ca2+. Taken together, our results demonstrate that OS of SCs increases the intracellular Ca2+ level and can regulate proliferation, differentiation, and myelination, suggesting that OS of SCs may offer a new approach to the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyuhwan Jung
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Ji Hye Park
- Gradaute Program of Translational Neuroscience, Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Sung-Yon Kim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Noo Li Jeon
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea. .,Institute of Bioengineering, Seoul National University, Seoul, Korea.
| | - Sung-Rae Cho
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea. .,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Sujin Hyung
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea. .,BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, Seoul, Korea. .,Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, USA.
| |
Collapse
|
30
|
Monje PV. Scalable Differentiation and Dedifferentiation Assays Using Neuron-Free Schwann Cell Cultures. Methods Mol Biol 2019; 1739:213-232. [PMID: 29546710 DOI: 10.1007/978-1-4939-7649-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter describes protocols to establish simplified in vitro assays of Schwann cell (SC) differentiation in the absence of neurons. The assays are based on the capacity of isolated primary SCs to increase or decrease the expression of myelination-associated genes in response to the presence or absence of cell permeable analogs of cyclic adenosine monophosphate (cAMP). No special conditions of media or substrates beyond the administration or removal of cAMP analogs are required to obtain a synchronous response on differentiation and dedifferentiation. The assays are cost-effective and far easier to implement than traditional myelinating SC-neuron cultures. They are scalable to a variety of plate formats suited for downstream experimentation and analysis. These cell-based assays can be used as drug discovery platforms for the evaluation of novel agents controlling the onset, maintenance, and reversal of the differentiated state using any typical adherent SC population.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
31
|
Hyung S, Im SK, Lee BY, Shin J, Park JC, Lee C, Suh JKF, Hur EM. Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia 2018; 67:360-375. [PMID: 30444070 DOI: 10.1002/glia.23547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.
Collapse
Affiliation(s)
- Sujin Hyung
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sun-Kyoung Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea
| | - Bo Yoon Lee
- Center for Glia-Neuron Interaction, KIST, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Jihye Shin
- Center for Theragnosis, KIST, Seoul, South Korea
| | - Jong-Chul Park
- Department of Medical Engineering and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheolju Lee
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Center for Theragnosis, KIST, Seoul, South Korea
| | - Jun-Kyo Francis Suh
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eun-Mi Hur
- Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Sasaki Y, Hackett AR, Kim S, Strickland A, Milbrandt J. Dysregulation of NAD + Metabolism Induces a Schwann Cell Dedifferentiation Program. J Neurosci 2018; 38:6546-6562. [PMID: 29921717 PMCID: PMC6052240 DOI: 10.1523/jneurosci.3304-17.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Schwann cell (SC) is the major component of the peripheral nervous system (PNS) that provides metabolic and functional support for peripheral axons. The emerging roles of SC mitochondrial function for PNS development and axonal stability indicate the importance of SC metabolism in nerve function and in peripheral neuropathies associated with metabolic disorders. Nicotinamide adenine dinucleotide (NAD+) is a crucial molecule in the regulation of cellular metabolism and redox homeostasis. Here, we investigated the roles of NAD+ metabolism in SC functions in vivo by mutating NAMPT, the rate-limiting enzyme of NAD+ biosynthesis, specifically in SCs. NAMPT SC knock-out male and female mice (NAMPT SCKO mice) had delayed SC maturation in development and developed hypomyelinating peripheral neuropathy without axon degeneration or decreased SC survival. JUN, a master regulator of SC dedifferentiation, is elevated in NAMPT SCKO SCs, suggesting that decreased NAD+ levels cause them to arrest at an immature stage. Nicotinic acid administration rescues the NAD+ decline and reverses the SC maturation defect and the development of peripheral neuropathy, indicating the central role of NAD+ in PNS development. Upon nicotinic acid withdrawal in adulthood, NAMPT SCKO mice showed rapid and severe peripheral neuropathy and activation of ERK/MEK/JUN signaling, which in turn promotes SC dedifferentiation. These data demonstrate the importance of NAD+ metabolism in SC maturation and nerve development and maintenance and suggest that altered SC NAD+ metabolism could underlie neuropathies associated with diabetes and aging.SIGNIFICANCE STATEMENT In this study, we showed that Schwann cell differentiation status is critically dependent on NAD+ homeostasis. Aberrant regulation of NAD+ biosynthesis via NAMPT deletion results in a blockade of Schwann cell maturation during development and severe peripheral neuropathy without significant axon loss. The phenotype can be rescued by supplementation with nicotinic acid; however, withdrawal of nicotinic acid leads to Schwann cell dedifferentiation, myelination defects, and death. These results provide new therapeutic possibilities for peripheral neuropathies associated with NAD+ decline during aging or diabetes.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Amber R Hackett
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sungsu Kim
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
33
|
Bademci G, Abad C, Incesulu A, Rad A, Alper O, Kolb SM, Cengiz FB, Diaz-Horta O, Silan F, Mihci E, Ocak E, Najafi M, Maroofian R, Yilmaz E, Nur BG, Duman D, Guo S, Sant DW, Wang G, Monje PV, Haaf T, Blanton SH, Vona B, Walz K, Tekin M. MPZL2 is a novel gene associated with autosomal recessive nonsyndromic moderate hearing loss. Hum Genet 2018; 137:479-486. [PMID: 29982980 DOI: 10.1007/s00439-018-1901-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
While recent studies have revealed a substantial portion of the genes underlying human hearing loss, the extensive genetic landscape has not been completely explored. Here, we report a loss-of-function variant (c.72delA) in MPZL2 in three unrelated multiplex families from Turkey and Iran with autosomal recessive nonsyndromic hearing loss. The variant co-segregates with moderate sensorineural hearing loss in all three families. We show a shared haplotype flanking the variant in our families implicating a single founder. While rare in other populations, the allele frequency of the variant is ~ 0.004 in Ashkenazi Jews, suggesting that it may be an important cause of moderate hearing loss in that population. We show that Mpzl2 is expressed in mouse inner ear, and the protein localizes in the auditory inner and outer hair cells, with an asymmetric subcellular localization. We thus present MPZL2 as a novel gene associated with sensorineural hearing loss.
Collapse
Affiliation(s)
- Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Armagan Incesulu
- Department of Otorhinolaryngology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran
| | - Ozgul Alper
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Susanne M Kolb
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074, Würzburg, Germany
| | - Filiz B Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Oscar Diaz-Horta
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Fatma Silan
- Department of Medical Genetics, Canakkale Onsekiz Mart University School of Medicine, 17100, Canakkale, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, Akdeniz University School of Medicine, 07070, Antalya, Turkey
| | - Emre Ocak
- Department of Otolaryngology, Ankara University School of Medicine, 06260, Ankara, Turkey
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL, Nijmegen, The Netherlands
| | - Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Elanur Yilmaz
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Banu G Nur
- Department of Pediatric Genetics, Akdeniz University School of Medicine, 07070, Antalya, Turkey
| | - Duygu Duman
- Division of Genetics, Department of Pediatrics, Ankara University School of Medicine, 06260, Ankara, Turkey
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - David W Sant
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Paula V Monje
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074, Würzburg, Germany
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074, Würzburg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-610 (M-860), Miami, FL, 33136, USA. .,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
34
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
35
|
Matsuoka H, Tanaka H, Sayanagi J, Iwahashi T, Suzuki K, Nishimoto S, Okada K, Murase T, Yoshikawa H. Neurotropin ® Accelerates the Differentiation of Schwann Cells and Remyelination in a Rat Lysophosphatidylcholine-Induced Demyelination Model. Int J Mol Sci 2018; 19:ijms19020516. [PMID: 29419802 PMCID: PMC5855738 DOI: 10.3390/ijms19020516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/21/2018] [Accepted: 02/03/2018] [Indexed: 12/23/2022] Open
Abstract
Neurotropin® (NTP), a non-protein extract of inflamed rabbit skin inoculated with vaccinia virus, is clinically used for the treatment of neuropathic pain in Japan and China, although its effect on peripheral nerve regeneration remains to be elucidated. The purpose of this study was to investigate the effects of NTP on Schwann cells (SCs) in vitro and in vivo, which play an important role in peripheral nerve regeneration. In SCs, NTP upregulated protein kinase B (AKT) activity and Krox20 and downregulated extracellular signal-regulated kinase1/2 activity under both growth and differentiation conditions, enhanced the expression of myelin basic protein and protein zero under the differentiation condition. In a co-culture of dorsal root ganglion neurons and SCs, NTP accelerated myelination of SCs. To further investigate the influence of NTP on SCs in vivo, lysophosphatidylcholine was injected into the rat sciatic nerve, leading to the focal demyelination. After demyelination, NTP was administered systemically with an osmotic pump for one week. NTP improved the ratio of myelinated axons and motor, sensory, and electrophysiological function. These findings reveal novel effects of NTP on SCs differentiation in vitro and in vivo, and indicate NTP as a promising treatment option for peripheral nerve injuries and demyelinating diseases.
Collapse
Affiliation(s)
- Hozo Matsuoka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junichi Sayanagi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Medical Center for Translational and Clinical Research, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
36
|
Palomo-Guerrero M, Cosgaya JM, Gella A, Casals N, Grijota-Martinez C. Uridine-5'-Triphosphate Partially Blocks Differentiation Signals and Favors a more Repair State in Cultured rat Schwann Cells. Neuroscience 2018; 372:255-265. [PMID: 29337237 DOI: 10.1016/j.neuroscience.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
Schwann cells (SCs) play a key role in peripheral nerve regeneration. After damage, they respond acquiring a repair phenotype that allows them to proliferate, migrate and redirect axonal growth. Previous studies have shown that Uridine-5'-Triphosphate (UTP) and its purinergic receptors participate in several pathophysiological responses in the nervous system. Our group has previously described how UTP induces the migration of a Schwannoma cell line and promotes wound healing. These data suggest that UTP participates in the signaling involved in the regeneration process. In the present study we evaluated UTP effects in isolated rat SCs and cocultures of SCs and dorsal root ganglia neurons. UTP reduced cAMP-dependent Krox-20 induction in SCs. UTP also reduced the N-cadherin re-expression that occurs when SCs and axons make contact. In myelinating cocultures, a non-significant tendency to a lower expression of P0 and MAG proteins in presence of UTP was observed. We also demonstrated that UTP induced SC migration without affecting cell proliferation. Interestingly, UTP was found to block neuregulin-induced phosphorylation of the ErbB3 receptor, a pathway involved in the regeneration process. These results indicate that UTP could acts as a brake to the differentiation signals, promoting a more migratory state in the repair-SCs.
Collapse
Affiliation(s)
- Marta Palomo-Guerrero
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| | - Jose Miguel Cosgaya
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alejandro Gella
- Instituto de Neurociencias, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carmen Grijota-Martinez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
37
|
Monje PV, Sant D, Wang G. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ. Mol Neurobiol 2018; 55:6637-6660. [PMID: 29327207 DOI: 10.1007/s12035-017-0837-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
This study comprehensively addresses the phenotype, function, and whole transcriptome of primary human and rodent Schwann cells (SCs) and highlights key species-specific features beyond the expected donor variability that account for the differential ability of human SCs to proliferate, differentiate, and interact with axons in vitro. Contrary to rat SCs, human SCs were insensitive to mitogenic factors other than neuregulin and presented phenotypic variants at various stages of differentiation, along with a mixture of proliferating and senescent cells, under optimal growth-promoting conditions. The responses of human SCs to cAMP-induced differentiation featured morphological changes and cell cycle exit without a concomitant increase in myelin-related proteins and lipids. Human SCs efficiently extended processes along those of other SCs (human or rat) but failed to do so when placed in co-culture with sensory neurons under conditions supportive of myelination. Indeed, axon contact-dependent human SC alignment, proliferation, and differentiation were not observed and could not be overcome by growth factor supplementation. Strikingly, RNA-seq data revealed that ~ 44 of the transcriptome contained differentially expressed genes in human and rat SCs. A bioinformatics approach further highlighted that representative SC-specific transcripts encoding myelin-related and axon growth-promoting proteins were significantly affected and that a deficient expression of key transducers of cAMP and adhesion signaling explained the fairly limited potential of human SCs to differentiate and respond to axonal cues. These results confirmed the significance of combining traditional bioassays and high-resolution genomics methods to characterize human SCs and identify genes predictive of cell function and therapeutic value.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - David Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
38
|
Kiepura AJ, Kochański A. Charcot-Marie-Tooth type 1A drug therapies: role of adenylyl cyclase activity and G-protein coupled receptors in disease pathomechanism. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Ravelo KM, Andersen ND, Monje PV. Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations. Methods Mol Biol 2018; 1739:87-109. [PMID: 29546702 DOI: 10.1007/978-1-4939-7649-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75NGFR, O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.
Collapse
Affiliation(s)
- Kristine M Ravelo
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalia D Andersen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V Monje
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Camarena V, Sant DW, Huff TC, Mustafi S, Muir RK, Aron AT, Chang CJ, Renslo AR, Monje PV, Wang G. cAMP signaling regulates DNA hydroxymethylation by augmenting the intracellular labile ferrous iron pool. eLife 2017; 6:29750. [PMID: 29239726 PMCID: PMC5745079 DOI: 10.7554/elife.29750] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
It is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA hydroxymethylation.
Collapse
Affiliation(s)
- Vladimir Camarena
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, United States
| | - David W Sant
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, United States
| | - Tyler C Huff
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, United States
| | - Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, United States
| | - Ryan K Muir
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Allegra T Aron
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Paula V Monje
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, United States.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, United States
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, United States.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, United States.,Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
41
|
Yu J, Wang S, Wu C, Yi S. Deep Sequencing Reveals the Significant Involvement of cAMP-Related Signaling Pathways Following Sciatic Nerve Crush. Neurochem Res 2017; 42:3603-3611. [PMID: 28993962 DOI: 10.1007/s11064-017-2409-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury and regeneration is a complex biological process jointly mediated by numerous factors. Cyclic adenosine monophosphate (cAMP) modifies the cellular behaviors of neurons and Schwann cells, and thus may contribute to peripheral nerve regeneration. Despite the importance of cAMP, the temporal and spatial expressions of genes involved in cAMP-related signaling pathways during peripheral nerve regeneration remain unclear. In the current study, by using rat sciatic nerve crush model, we analyzed previously obtained RNA deep sequencing data, explored the significance of cAMP-mediated signaling pathway and protein kinase A (PKA) signaling pathway after peripheral nerve injury, and examined the expression patterns of genes involved in these cAMP-related signaling pathways. Our results, from the genetic aspect, emphasized the critical involvement of cAMP-related signaling pathways, identified the dynamic changes of some key signaling cascades, and may help the discovery of potential therapeutic targets for peripheral nerve repair and regeneration.
Collapse
Affiliation(s)
- Jun Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Sijia Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chen Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
42
|
Ishii T, Kawakami E, Endo K, Misawa H, Watabe K. Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells. Neuropathology 2017; 37:475-481. [PMID: 28707715 DOI: 10.1111/neup.12397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022]
Abstract
Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Emiko Kawakami
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kentaro Endo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| |
Collapse
|
43
|
Ghidinelli M, Poitelon Y, Shin YK, Ameroso D, Williamson C, Ferri C, Pellegatta M, Espino K, Mogha A, Monk K, Podini P, Taveggia C, Nave KA, Wrabetz L, Park HT, Feltri ML. Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biol 2017. [PMID: 28636612 PMCID: PMC5479503 DOI: 10.1371/journal.pbio.2001408] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2β1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.
Collapse
Affiliation(s)
- Monica Ghidinelli
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- UniSR, Vita Salute San Raffaele University, Milan, Italy
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yoon Kyoung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, Dong-A University Medical School, Busan, South Korea
| | - Dominique Ameroso
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Courtney Williamson
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- UniSR, Vita Salute San Raffaele University, Milan, Italy
| | - Kevin Espino
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paola Podini
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, Dong-A University Medical School, Busan, South Korea
- * E-mail: (MLF); (HTP)
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- * E-mail: (MLF); (HTP)
| |
Collapse
|
44
|
Soto J, Monje PV. Axon contact-driven Schwann cell dedifferentiation. Glia 2017; 65:864-882. [PMID: 28233923 DOI: 10.1002/glia.23131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/26/2022]
Abstract
Mature Schwann cells (SCs) retain dedifferentiation potential throughout adulthood. Still, how dedifferentiation occurs remains uncertain. Results from a variety of cell-based assays using in vitro cultured cAMP-differentiated and myelinating SCs revealed the existence of a novel dedifferentiating activity expressed on the surface of dorsal root ganglion (DRG) axons. This activity had the capacity to prevent SC differentiation and elicit dedifferentiation through direct SC-axon contact. Evidence is provided showing that a rapid loss of myelinating SC markers concomitant to proliferation occurred even in the presence of elevated cAMP, a signal that is required to drive and maintain a differentiated state. The dedifferentiating activity was a membrane-bound protein found exclusively in DRG neurons, as judged by its subcellular partitioning, sensitivity to proteolytic degradation and cell-type specificity, and remained active even after disruption of cellular organization. It differed from the membrane-anchored neuregulin-1 isoforms that are responsible for axon contact-induced SC proliferation and exerted its action independently of mitogenic signaling emanating from receptor tyrosine kinases and mitogen-activated protein kinases such as ERK and JNK. Interestingly, dedifferentiation occurred without concomitant changes in the expression of Krox-20, a transcriptional enhancer of myelination, and c-Jun, an inhibitor of myelination. In sum, our data indicated the existence of cell surface axon-derived signals that override pro-differentiating cues, drive dedifferentiation and allow SCs to proliferate in response to axonal mitogens. This axonal signal may negatively regulate myelination at the onset or reversal of the differentiated state. GLIA 2017;65:851-863.
Collapse
Affiliation(s)
- Jennifer Soto
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Paula V Monje
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, 33136
| |
Collapse
|
45
|
Piñero G, Berg R, Andersen ND, Setton-Avruj P, Monje PV. Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss. Mol Neurobiol 2016; 54:8287-8307. [PMID: 27917448 DOI: 10.1007/s12035-016-0262-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023]
Abstract
This study was undertaken to examine the bioactivity, specificity, and reversibility of lithium's action on the growth, survival, proliferation, and differentiation of cultured Schwann cells (SCs). In isolated SCs, lithium promoted a state of cell cycle arrest that featured extensive cell enlargement and c-Jun downregulation in the absence of increased expression of myelin-associated markers. In addition, lithium effectively prevented mitogen-induced S-phase entry without impairing cell viability. When lithium was administered together with differentiating concentrations of cyclic adenosine monophosphate (cAMP) analogs, a dramatic inhibition of the expression of the master regulator of myelination Krox-20 was observed. Likewise, lithium antagonized the cAMP-dependent expression of various myelin markers such as protein zero, periaxin, and galactocerebroside and allowed SCs to maintain high levels of expression of immature SC markers even in the presence of high levels of cAMP and low levels of c-Jun. Most importantly, the inhibitory action of lithium on SC proliferation and differentiation was shown to be dose dependent, specific, and reversible upon removal of lithium compounds. In SC-neuron cultures, lithium suppressed myelin sheath formation while preserving axonal integrity, SC-axon contact, and basal lamina formation. Lithium was unique in its ability to prevent the onset of myelination without promoting myelin degradation or SC dedifferentiation. To conclude, our results underscored an unexpected antagonistic action of lithium on SC mitogenesis and myelin gene expression. We suggest that lithium represents an attractive pharmacological agent to safely and reversibly suppress the onset of SC proliferation, differentiation, and myelination while maintaining the integrity of pre-existing myelinated fibers.
Collapse
Affiliation(s)
- Gonzalo Piñero
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Universidad de Buenos Aires. CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Randall Berg
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalia Denise Andersen
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patricia Setton-Avruj
- Universidad de Buenos Aires. CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Paula Virginia Monje
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
46
|
Andersen ND, Srinivas S, Piñero G, Monje PV. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep 2016; 6:31781. [PMID: 27549422 PMCID: PMC4994039 DOI: 10.1038/srep31781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/27/2016] [Indexed: 01/04/2023] Open
Abstract
We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables.
Collapse
Affiliation(s)
- Natalia D. Andersen
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shruthi Srinivas
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Gonzalo Piñero
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Universidad de Buenos Aires, CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Paula V. Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
47
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
48
|
Monje PV. To myelinate or not to myelinate: fine tuning cAMP signaling in Schwann cells to balance cell proliferation and differentiation. Neural Regen Res 2016; 10:1936-7. [PMID: 26889176 PMCID: PMC4730812 DOI: 10.4103/1673-5374.169622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
49
|
Tomassy GS, Dershowitz LB, Arlotta P. Diversity Matters: A Revised Guide to Myelination. Trends Cell Biol 2016; 26:135-147. [PMID: 26442841 PMCID: PMC4727993 DOI: 10.1016/j.tcb.2015.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Abstract
The evolutionary success of the vertebrate nervous system is largely due to a unique structural feature--the myelin sheath, a fatty envelope that surrounds the axons of neurons. By increasing the speed by which electrical signals travel along axons, myelin facilitates neuronal communication between distant regions of the nervous system. We review the cellular and molecular mechanisms that regulate the development of myelin as well as its homeostasis in adulthood. We discuss how finely tuned neuron-oligodendrocyte interactions are central to myelin formation during development and in the adult, and how these interactions can have profound implications for the plasticity of the adult brain. We also speculate how the functional diversity of both neurons and oligodendrocytes may impact on the myelination process in both health and disease.
Collapse
Affiliation(s)
- Giulio Srubek Tomassy
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lori Bowe Dershowitz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol 2015; 271:25-35. [PMID: 25957629 DOI: 10.1016/j.expneurol.2015.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
Abstract
Successful regeneration of injured peripheral nerves is mainly attributed to the plastic behavior of Schwann cells. Upon loss of axons, these cells trans-differentiate into regeneration promoting repair cells which provide trophic support to regrowing axons. Among others, activation of cJun was revealed to be involved in this process, initiating the stereotypic pattern of Schwann cell phenotype alterations during Wallerian degeneration. Nevertheless, the ability of Schwann cells to adapt and therefore the nerve's potential to regenerate can be limited in particular after long term denervation or in neuropathies leading to incomplete regeneration only and thus emphasizing the need for novel therapeutic approaches. Here we stimulated primary neonatal and adult rat Schwann cells with Fingolimod/FTY720P and investigated its impact on the regeneration promoting phenotype. FTY720P activated a number of de-differentiation markers including cJun and interfered with maturation marker and myelin expression. Functionally, FTY720P treated Schwann cells upregulated growth factor expression and these cells enhanced dorsal root ganglion neurite outgrowth on inhibitory substrates. Our results therefore provide strong evidence that FTY720P application supports the generation of a repair promoting cellular phenotype and suggest that Fingolimod could be used as treatment for peripheral nerve injuries and diseases.
Collapse
|