1
|
Alanazi N, Fitzgerald M, Hume P, Hellewell S, Horncastle A, Anyaegbu C, Papini MG, Hargreaves N, Halicki M, Entwistle I, Hind K, Chazot P. Concussion-Related Biomarker Variations in Retired Rugby Players and Implications for Neurodegenerative Disease Risk: The UK Rugby Health Study. Int J Mol Sci 2024; 25:7811. [PMID: 39063053 PMCID: PMC11276902 DOI: 10.3390/ijms25147811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The health and well-being of retired rugby union and league players, particularly regarding the long-term effects of concussions, are of major concern. Concussion has been identified as a major risk factor for neurodegenerative diseases, such as Alzheimer's and Amyotrophic Lateral Sclerosis (ALS), in athletes engaged in contact sports. This study aimed to assess differences in specific biomarkers between UK-based retired rugby players with a history of concussion and a non-contact sports group, focusing on biomarkers associated with Alzheimer's, ALS, and CTE. We randomly selected a sample of male retired rugby or non-contact sport athletes (n = 56). The mean age was 41.84 ± 6.44, and the mean years since retirement from the sport was 7.76 ± 6.69 for participants with a history of substantial concussions (>5 concussions in their career) (n = 30). The mean age was 45.75 ± 11.52, and the mean years since retirement was 6.75 ± 4.64 for the healthy controls (n = 26). Serum biomarkers (t-tau, RBP-4, SAA, Nf-L, and retinol), plasma cytokines, and biomarkers associated with serum-derived exosomes (Aβ42, p-tau181, p-tau217, and p-tau231) were analyzed using validated commercial ELISA assays. The results of the selected biomarkers were compared between the two groups. Biomarkers including t-tau and p-tau181 were significantly elevated in the history of the substantial concussion group compared to the non-contact sports group (t-tau: p < 0.01; p-tau181: p < 0.05). Although between-group differences in p-tau217, p-tau231, SAA, Nf-L, retinol, and Aβ42 were not significantly different, there was a trend for higher levels of Aβ42, p-tau217, and p-tau231 in the concussed group. Interestingly, the serum-derived exosome sizes were significantly larger (p < 0.01), and serum RBP-4 levels were significantly reduced (p < 0.05) in the highly concussed group. These findings indicate that retired athletes with a history of multiple concussions during their careers have altered serum measurements of exosome size, t-tau, p-tau181, and RBP-4. These biomarkers should be explored further for the prediction of future neurodegenerative outcomes, including ALS, in those with a history of concussion.
Collapse
Affiliation(s)
- Norah Alanazi
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Patria Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, AUT Millennium, 17 Antares Place, Mairangi Bay, Private Bag 92006, Auckland 1142, New Zealand;
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Technology and Policy Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Sarah Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Alex Horncastle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Melissa G. Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Natasha Hargreaves
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Michal Halicki
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Ian Entwistle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Karen Hind
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| |
Collapse
|
2
|
Grijalva C, Mullins VA, Michael BR, Hale D, Wu L, Toosizadeh N, Chilton FH, Laksari K. Neuroimaging, wearable sensors, and blood-based biomarkers reveal hyperacute changes in the brain after sub-concussive impacts. BRAIN MULTIPHYSICS 2023; 5:100086. [PMID: 38292249 PMCID: PMC10827333 DOI: 10.1016/j.brain.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Impacts in mixed martial arts (MMA) have been studied mainly in regard to the long-term effects of concussions. However, repetitive sub-concussive head impacts at the hyperacute phase (minutes after impact), are not understood. The head experiences rapid acceleration similar to a concussion, but without clinical symptoms. We utilize portable neuroimaging technology - transcranial Doppler (TCD) ultrasound and functional near infrared spectroscopy (fNIRS) - to estimate the extent of pre- and post-differences following contact and non-contact sparring sessions in nine MMA athletes. In addition, the extent of changes in neurofilament light (NfL) protein biomarker concentrations, and neurocognitive/balance parameters were determined following impacts. Athletes were instrumented with sensor-based mouth guards to record head kinematics. TCD and fNIRS results demonstrated significantly increased blood flow velocity (p = 0.01) as well as prefrontal (p = 0.01) and motor cortex (p = 0.04) oxygenation, only following the contact sparring sessions. This increase after contact was correlated with the cumulative angular acceleration experienced during impacts (p = 0.01). In addition, the NfL biomarker demonstrated positive correlations with angular acceleration (p = 0.03), and maximum principal and fiber strain (p = 0.01). On average athletes experienced 23.9 ± 2.9 g peak linear acceleration, 10.29 ± 1.1 rad/s peak angular velocity, and 1,502.3 ± 532.3 rad/s2 angular acceleration. Balance parameters were significantly increased following contact sparring for medial-lateral (ML) center of mass (COM) sway, and ML ankle angle (p = 0.01), illustrating worsened balance. These combined results reveal significant changes in brain hemodynamics and neurophysiological parameters that occur immediately after sub-concussive impacts and suggest that the physical impact to the head plays an important role in these changes.
Collapse
Affiliation(s)
- Carissa Grijalva
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
| | - Veronica A. Mullins
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Bryce R. Michael
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Dallin Hale
- University of Arizona, Department of Physiology, Tucson, AZ, United States
| | - Lyndia Wu
- Univerisity of British Columbia, Department of Mechanical Engineering, Vancouver, BC, Canada
| | - Nima Toosizadeh
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Medicine, Arizona Center for Aging, Tucson, AZ, United States
| | - Floyd H. Chilton
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Kaveh Laksari
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of California Riverside, Department of Mechanical Engineering, Riverside, CA, United States
| |
Collapse
|
3
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Tang J, Xu Z, Sun R, Wan J, Zhang Q. Research Trends and Prospects of Sport-Related Concussion: A Bibliometric Study Between 2000 and 2021. World Neurosurg 2022; 166:e263-e277. [PMID: 35803563 DOI: 10.1016/j.wneu.2022.06.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Research around sport-related concussion (SRC) has made great advances during the twenty-first century. However, few studies have systematically analyzed the published SRC research. METHODS A bibliometric analysis was conducted of data from articles from the Web of Science Core Collection database. Descriptive statistics were used to analyze publication trends, most productive countries, institutions, authors, journals, research fields, and references with the highest citation number. VOSviewer software was used to perform network visualization and keywords co-occurrence analysis. CiteSpace software was used to perform reference co-citation analysis. RESULTS 1) The number of publications and number of citations of research in SRC progressively increased between 2000 and 2021; 2) the United States was the leading country in research in SRC; 3) extensive cooperation among countries, institutions, and investigators was prevalent in SRC research; 4) P. McCrory, M. McCrea, and K.M. Guskiewicz were the 3 most prolific and influential authors; 5) research in SRC involved multidisciplinary perspectives and approaches; 6) research in SRC mainly covered aspects of primary prevention, diagnosis, and management, and the latter two have gained more attention in recent years; and 7) specific questions about "education," "predictors," "youth," "exercise," "reliability," "validity," and "baseline" were the research frontiers of SRC. CONCLUSIONS Attention to research in SRC has rapidly increased in recent years. Our work is a holistic overview that summarizes the hotspots, frontiers, and prospects of SRC, thus providing valuable information and guidance concerning research directions for those who are interested in or are dedicated to SRC research.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Machan M, Tabor JB, Wang M, Sutter B, Wiley JP, Mychasiuk R, Debert CT. The Impact of Concussion, Sport, and Time in Season on Saliva Telomere Length in Healthy Athletes. Front Sports Act Living 2022; 4:816607. [PMID: 35243342 PMCID: PMC8886719 DOI: 10.3389/fspor.2022.816607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
To date, sport-related concussion diagnosis and management is primarily based on subjective clinical tests in the absence of validated biomarkers. A major obstacle to clinical validation and application is a lack of studies exploring potential biomarkers in non-injured populations. This cross-sectional study examined the associations between saliva telomere length (TL) and multiple confounding variables in a healthy university athlete population. One hundred eighty-three (108 male and 75 female) uninjured varsity athletes were recruited to the study and provided saliva samples at either pre- or mid-season, for TL analysis. Multiple linear regression was used to determine the associations between saliva TL and history of concussion, sport contact type, time in season (pre vs. mid-season collection), age, and sex. Results showed no significant associations between TL and history of concussion, age, or sport contact type. However, TL from samples collected mid-season were longer than those collected pre-season [β = 231.4, 95% CI (61.9, 401.0), p = 0.008], and males had longer TL than females [β = 284.8, 95% CI (111.5, 458.2), p = 0.001] when adjusting for all other variables in the model. These findings population suggest that multiple variables may influence TL. Future studies should consider these confounders when evaluating saliva TL as a plausible fluid biomarker for SRC.
Collapse
Affiliation(s)
- Matthew Machan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jason B. Tabor
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Bonnie Sutter
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J. Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chantel T. Debert
| |
Collapse
|
6
|
Diaz-Pacheco V, Vargas-Medrano J, Tran E, Nicolas M, Price D, Patel R, Tonarelli S, Gadad BS. Prognosis and Diagnostic Biomarkers of Mild Traumatic Brain Injury: Current Status and Future Prospects. J Alzheimers Dis 2022; 86:943-959. [PMID: 35147534 DOI: 10.3233/jad-215158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mild traumatic brain injury (mTBI) is the most prevalent type of TBI (80-90%). It is characterized by a loss consciousness for less than 30 minutes, post-traumatic amnesia for less than 24 hours, and Glasgow Coma Score of 13-15. Accurately diagnosing mTBIs can be a challenge because the majority of these injuries do not show noticeable or visible changes on neuroimaging studies. Appropriate determination of mTBI is tremendously important because it might lead in some cases to post-concussion syndrome, cognitive impairments including attention, memory, and speed of information processing problems. The scientists have studied different methods to improve mTBI diagnosis and enhanced approaches that would accurately determine the severity of the trauma. The present review focuses on discussing the role of biomarkers as potential key factors in diagnosing mTBI. The present review focuses on 1) protein based peripheral and CNS markers, 2) genetic biomarkers, 3) imaging biomarkers, 4) neurophysiological biomarkers, and 5) the studies and clinical trials in mTBI. Each section provides information and characteristics on different biomarkers for mTBI.
Collapse
Affiliation(s)
- Valeria Diaz-Pacheco
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Eric Tran
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Meza Nicolas
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Diamond Price
- The Chicago School of Professional Psychology, Irvine, CA, USA
| | - Richa Patel
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Silvina Tonarelli
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| |
Collapse
|
7
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
8
|
Al-Adli N, Akbik OS, Rail B, Montgomery E, Caldwell C, Barrie U, Vira S, Al Tamimi M, Bagley CA, Aoun SG. The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurg 2021; 155:e418-e438. [PMID: 34438102 DOI: 10.1016/j.wneu.2021.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serum biomarkers have gained significant popularity as an adjunctive measure in the evaluation and prognostication of traumatic brain injury (TBI). However, a concise and clinically oriented report of the major markers in function of TBI severity is lacking. This systematic review aims to report current data on the diagnostic and prognostic utility of blood-based biomarkers across the spectrum of TBI. METHODS A literature search of the PubMed/Medline electronic database was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We excluded systematic reviews and meta-analyses that did not provide novel data. The American College of Cardiology/American Heart Association criteria were used to assess levels of evidence. RESULTS An initial 1463 studies were identified. In total, 115 full-text articles reporting on 94 distinct biomarkers met the inclusion criteria. Glasgow Coma Scale scores, computed tomography/magnetic resonance imaging abnormalities, and injury severity scores were the most used clinical diagnostic variables. Glasgow Outcome Scores and 1-, 3-, and 6-month mortality were the most used clinical prognostic variables. Several biomarkers significantly correlated with these variables and had statistically significant different levels in TBI subjects when compared with healthy, orthopedic, and polytrauma controls. The biomarkers also displayed significant variability across mild, moderate, and severe TBI categories, as well as in concussion cases. CONCLUSIONS This review summarizes existing high-quality evidence that supports the use of severity-specific biomarkers in the diagnostic and prognostic evaluation of TBI. These data can be used as a launching platform for the validation of upcoming clinical studies.
Collapse
Affiliation(s)
- Nadeem Al-Adli
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Omar S Akbik
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Rail
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Montgomery
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christie Caldwell
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Umaru Barrie
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shaleen Vira
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mazin Al Tamimi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos A Bagley
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
10
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Waragai M, Masliah E, Takenouchi T. Understanding Creutzfeldt-Jackob disease from a viewpoint of amyloidogenic evolvability. Prion 2021; 14:1-8. [PMID: 32375593 PMCID: PMC7219431 DOI: 10.1080/19336896.2020.1761514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Creutzfeldt-Jackob disease (CJD), the most common human prion disorder, is frequently accompanied by ageing-associated neurodegenerative conditions, such as Alzheimer’s disease and Parkinson’s disease. Although cross-seeding of amyloidogenic proteins (APs), including amyloid β and α-synuclein, may be critical in the co-morbidity of neurodegenerative disorders, the direct interaction of APs with prion protein (PrP), the central molecule involved in the pathogenesis of CJD, is unlikely. Currently, the nature of this biological interaction and its significance remain obscure. In this context, the objective of the present study is to discuss such interactions from the perspective of amyloidogenic evolvability, a putative function of APs. Hypothetically, both hereditary- and sporadic CJD might be attributed to the role of PrP in evolvability against multiple stressors, such as physical stresses relevant to concussions, which might be manifest through the antagonistic pleiotropy mechanism in ageing. Furthermore, accumulating evidence suggests that PrP- and other APs evolvability may negatively regulate each other. Provided that increased APs evolvability might be beneficial for acquired CJD in young adults, a dose-reduction of α-synuclein, a natural inhibitor of αS aggregation, might be therapeutically effective in upregulating APs evolvability. Collectively, a better understanding of amyloidogenic evolvability may lead to the development of novel therapies for CJD.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Ryoko Wada
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Masaaki Waragai
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
11
|
Yao H, Lv C, Luo F, He C. Plasma cellular prion protein concentrations correlate with severity and prognosis of aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2021; 523:114-119. [PMID: 34537219 DOI: 10.1016/j.cca.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cellular prion protein (PrPc) is greatly expressed in injured brain tissues. We investigates correlation of plasma PrPc concentrations with severity, delayed cerebral ischemia (DCI) plus prognosis following aneurysmal subarachnoid hemorrhage (aSAH). METHODS Plasma PrPc concentrations were measured in 110 aSAH patients and 110 healthy controls. The World Federation of Neurological Surgeons scale (WFNS) score, Glasgow coma scale (GCS) score, Hunt-Hess score and modified Fisher score were utilized to assess hemorrhagic severity. Relations of plasma PrPc concentrations to DCI and 90-day poor outcome (Glasgow outcome scale score of 1-3) were analyzed using multivariate analysis. Prognostic predictive capabilities were determined under receiver operating characteristic curve. RESULTS Plasma PrPc concentrations were significantly higher in patients than in controls. Plasma PrPc concentrations were tightly correlated with WFNS score, GCS score, Hunt-Hess score and modified Fisher score. Plasma PrPc emerged as an independent predictor for 90-day poor outcome, but not for DCI. Plasma PrPc concentrations exhibited similar prognostic predictive abilities, as compared to WFNS score, GCS score, Hunt-Hess score and modified Fisher score. CONCLUSIONS Plasma PrPc concentrations are highly associated with severity and poor outcome after hemorrhagic stroke, indicating that plasma PrPc may serve as a useful prognostic biomarker for aSAH.
Collapse
Affiliation(s)
- Hongfeng Yao
- Medical Laboratory, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China
| | - Caiping Lv
- Medical Laboratory, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China
| | - Fangjun Luo
- Medical Laboratory, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China.
| | - Chao He
- Department of Neurosurgery, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China
| |
Collapse
|
12
|
Wanner ZR, Southam CG, Sanghavi P, Boora NS, Paxman EJ, Dukelow SP, Benson BW, Montina T, Metz GAS, Debert CT. Alterations in Urine Metabolomics Following Sport-Related Concussion: A 1H NMR-Based Analysis. Front Neurol 2021; 12:645829. [PMID: 34489846 PMCID: PMC8416667 DOI: 10.3389/fneur.2021.645829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/25/2021] [Indexed: 11/15/2022] Open
Abstract
Objective: Millions of sport-related concussions (SRC) occur annually in North America, and current diagnosis of concussion is based largely on clinical evaluations. The objective of this study was to determine whether urinary metabolites are significantly altered post-SRC compared to pre-injury. Setting: Outpatient sports medicine clinic. Participants: Twenty-six male youth sport participants. Methods: Urine was analyzed pre-injury and after SRC by 1H NMR spectroscopy. Data were analyzed using multivariate statistics, pairwise t-test, and metabolic pathway analysis. Variable importance analysis based on random variable combination (VIAVC) was applied to the entire data set and resulted in a panel of 18 features. Partial least square discriminant analysis was performed exploring the separation between pre-injury and post-SRC groups. Pathway topography analysis was completed to identify biological pathway involvement. Spearman correlations provide support for the relationships between symptom burden and length of return to play and quantifiable metabolic changes in the human urinary metabolome. Results: Phenylalanine and 3-indoxysulfate were upregulated, while citrate, propylene glycol, 1-methylhistidine, 3-methylhistidine, anserine, and carnosine were downregulated following SRC. A receiver operator curve (ROC) tool constructed using the 18-feature classifier had an area under the curve (AUC) of 0.887. A pairwise t-test found an additional 19 altered features, 7 of which overlapped with the VIAVC analysis. Pathway topology analysis indicated that aminoacyl-tRNA biosynthesis and beta-alanine metabolism were the two pathways most significantly changed. There was a significant positive correlation between post-SRC 2-hydroxybutyrate and the length of return to play (ρ = 0.482, p = 0.02) as well as the number of symptoms and post-SRC lactose (ρ = 0.422, p = 0.036). Conclusion: We found that 1H NMR metabolomic urinary analysis can identify a set of metabolites that can correctly classify SRC with an accuracy of 81.6%, suggesting potential for a more objective method of characterizing SRC. Correlations to both the number of symptoms and length of return to play indicated that 2-hydroxybutyrate and lactose may have potential applications as biomarkers for sport-related concussion.
Collapse
Affiliation(s)
- Zachary R Wanner
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Cormac G Southam
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prachi Sanghavi
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Naveenjyote S Boora
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Eric J Paxman
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brian W Benson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Winsport Medicine Clinic, Calgary, AB, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Sekar S, Viswas RS, Miranzadeh Mahabadi H, Alizadeh E, Fonge H, Taghibiglou C. Concussion/Mild Traumatic Brain Injury (TBI) Induces Brain Insulin Resistance: A Positron Emission Tomography (PET) Scanning Study. Int J Mol Sci 2021; 22:9005. [PMID: 34445708 PMCID: PMC8396497 DOI: 10.3390/ijms22169005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from the brain to circulation following TBI. The PrPc level was also found to be decreased in insulin-resistant rat brains. In the present study, we investigated the molecular link between PrPc and brain insulin resistance in a single and repeated mild TBI-induced mouse model. Mild TBI was induced in mice by dropping a weight (~95 g at 1 m high) on the right side of the head. The procedure was performed once and thrice (once daily) for single (SI) and repeated induction (RI), respectively. Micro PET/CT imaging revealed that RI mice showed significant reduction in cortical, hippocampal and cerebellum glucose uptake compared to SI and control. Mice that received RI also showed significant motor and cognitive deficits. In co-immunoprecipitation, the interaction between PrPc, flotillin and Cbl-associated protein (CAP) observed in the control mice brains was disrupted by RI. Lipid raft isolation showed decreased levels of PrPc, flotillin and CAP in the RI mice brains. Based on observation, it is clear that PrPc has an interaction with CAP and the dislodgment of PrPc from cell membranes may lead to brain insulin resistance in a mild TBI mouse model. The present study generated a new insight into the pathogenesis of brain injury, which may result in the development of novel therapy.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (S.S.); (H.M.M.)
| | - Raja Solomon Viswas
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; (R.S.V.); (E.A.)
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (S.S.); (H.M.M.)
| | - Elahe Alizadeh
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; (R.S.V.); (E.A.)
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; (R.S.V.); (E.A.)
- Department of Medical Imaging, Royal University Hospital (RUH), Saskatoon, SK S7N 0W8, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (S.S.); (H.M.M.)
| |
Collapse
|
14
|
Symons GF, Clough M, Fielding J, O'Brien WT, Shepherd CE, Wright DK, Shultz SR. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2021; 37:792-809. [PMID: 32056505 DOI: 10.1089/neu.2019.6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries. However, the majority of previous studies and reviews pertaining to the neurological implications of sustaining mild brain traumas, while engaging in collision sports, have focused on those popular in North America and Europe. As part of this 2020 International Neurotrauma Symposium special issue, which highlights Australian neurotrauma research, this article will therefore review the burden of mild brain traumas in Australian collision sports athletes. Specifically, this review will first provide an overview of the consequences of mild brain trauma in Australian collision sports, followed by a summary of the previous studies that have investigated neurocognition, ocular motor function, neuroimaging, and fluid biomarkers, as well as neuropathological outcomes in Australian collision sports athletes. A review of the literature indicates that although Australians have contributed to the field, several knowledge gaps and limitations currently exist. These include important questions related to sex differences, the identification and implementation of blood and imaging biomarkers, the need for consistent study designs and common data elements, as well as more multi-modal studies. We conclude that although Australia has had an active history of investigating the neurological impact of collision sports participation, further research is clearly needed to better understand these consequences in Australian athletes and how they can be mitigated.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, The University of New South Wales, Sydney, New South Wales, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Tate DF, Dennis EL, Adams JT, Adamson MM, Belanger HG, Bigler ED, Bouchard HC, Clark AL, Delano-Wood LM, Disner SG, Eapen BC, Franz CE, Geuze E, Goodrich-Hunsaker NJ, Han K, Hayes JP, Hinds SR, Hodges CB, Hovenden ES, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Lindsey HM, Morey RA, Newsome MR, Ollinger J, Pugh MJ, Scheibel RS, Shenton ME, Sullivan DR, Taylor BA, Troyanskaya M, Velez C, Wade BS, Wang X, Ware AL, Zafonte R, Thompson PM, Wilde EA. Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging Behav 2021; 15:585-613. [PMID: 33409819 PMCID: PMC8035292 DOI: 10.1007/s11682-020-00423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - John T Adams
- Western University of Health Sciences, Pomona, CA, USA
| | - Maheen M Adamson
- Defense and Veterans Brain Injury Center, VA Palo Alto, Palo Alto, CA, USA
- Neurosurgery, Stanford School of Medicine, Stanford, CA, USA
| | - Heather G Belanger
- United States Special Operations Command (USSOCOM), Tampa, FL, USA
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
- St Michaels Inc, Tampa, FL, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Heather C Bouchard
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Alexandra L Clark
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa M Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Seth G Disner
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Blessen C Eapen
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- University Medical Center Utrecht, Utrecht, Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Naomi J Goodrich-Hunsaker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kihwan Han
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Sidney R Hinds
- Department of Defense/United States Army Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Elizabeth S Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Mary Jo Pugh
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randall S Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Brockton Division, VA Boston Healthcare System, Brockton, MA, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Brian A Taylor
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Benjamin Sc Wade
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, USC, Los Angeles, CA, USA
- Department of Pediatrics, USC, Los Angeles, CA, USA
- Department of Psychiatry, USC, Los Angeles, CA, USA
- Department of Radiology, USC, Los Angeles, CA, USA
- Department of Engineering, USC, Los Angeles, CA, USA
- Department of Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Persad A, Pham N, Moien-Afshari F, Gormley W, Yan S, Mannix R, Taghibiglou C. Plasma PrPC and ADAM-10 as novel biomarkers for traumatic brain injury and concussion: a pilot study. Brain Inj 2021; 35:734-741. [PMID: 33760683 DOI: 10.1080/02699052.2021.1900602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cellular prion protein (PrPC) is a lipid raft protein abundant within CNS. It is regulated by a disintegrin and metalloproteinase domain containing protein 10 (ADAM10). PrPC has previously been implicated as a biomarker for TBI. ADAM10 has not been investigated as a TBI biomarker. OBJECTIVE We evaluated PrPC and ADAM10 as candidate biomarkers for TBI. METHODS We performed ELISA for ADAM10 and PrPC on plasma samples of patients with TBI admitted to Brigham and Women's Hospital. Plasma samples from 20 patients admitted for isolated TBI were acquired from a biobank with clinical information. Control plasma (37 samples) was acquired from a commercial source. GraphPad was used to conduct statistical analysis. RESULTS 37 controls and 20 TBI samples were collected. Of the patients with TBI, eight were mild, three were moderate, and nine were severe. Both PrPC and ADAM10 were elevated in patients with TBI compared with control (p < .001). ADAM10 exhibited greater expression in patients with worse clinical grade. There was no significant association of either PrPC or ADAM10 with time after injury. CONCLUSIONS Our results indicate that PrPC and ADAM10 appear to be useful potential tools for screening of TBI. ADAM10 is closely associated with clinical grade.
Collapse
Affiliation(s)
- Amit Persad
- Division of Neurosurgery, University of Saskatchewan, Saskatoon, Canada
| | - Nam Pham
- Dept. Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Farzad Moien-Afshari
- Division of Neurology, Department of Medicine, Clinical Associate Professor, University of British Columbia, Vancouver, Canada
| | - William Gormley
- Department of Neurosurgery, Director, Neurosurgical Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Sandra Yan
- Department of Neurosurgery, Warren Alpert Medical School Of Brown University, Brown Medical School, Providence, RI, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Director, Boston Children's Hospital Brain Injury Center, Harvard Medical School, Boston, USA
| | - Changiz Taghibiglou
- Dept. Of Anatomy, Physiology, Pharmacology, Associate Professor, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
17
|
Rajib D. Central nervous system diseases associated with blood brain barrier breakdown - A Comprehensive update of existing literatures. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.jnnd.1001035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessels that supply and feed the central nervous system (CNS) possess unique and exclusive properties, named as blood–brain barrier (BBB). It is responsible for tight regulation of the movement of ions, molecules, and cells between the blood and the brain thereby maintaining controlled chemical composition of the neuronal milieu required for appropriate functioning. It also protects the neural tissue from toxic plasma components, blood cells and pathogens from entering the brain. In this review the importance of BBB and its disruption causing brain pathology and progression to different neurological diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) etc. will be discussed.
Collapse
|
18
|
Crupi R, Cordaro M, Cuzzocrea S, Impellizzeri D. Management of Traumatic Brain Injury: From Present to Future. Antioxidants (Basel) 2020; 9:antiox9040297. [PMID: 32252390 PMCID: PMC7222188 DOI: 10.3390/antiox9040297] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
TBI (traumatic brain injury) is a major cause of death among youth in industrialized societies. Brain damage following traumatic injury is a result of direct and indirect mechanisms; indirect or secondary injury involves the initiation of an acute inflammatory response, including the breakdown of the blood–brain barrier (BBB), brain edema, infiltration of peripheral blood cells, and activation of resident immunocompetent cells, as well as the release of numerous immune mediators such as interleukins and chemotactic factors. TBI can cause changes in molecular signaling and cellular functions and structures, in addition to tissue damage, such as hemorrhage, diffuse axonal damages, and contusions. TBI typically disturbs brain functions such as executive actions, cognitive grade, attention, memory data processing, and language abilities. Animal models have been developed to reproduce the different features of human TBI, better understand its pathophysiology, and discover potential new treatments. For many years, the first approach to manage TBI has been treatment of the injured tissue with interventions designed to reduce the complex secondary-injury cascade. Several studies in the literature have stressed the importance of more closely examining injuries, including endothelial, microglia, astroglia, oligodendroglia, and precursor cells. Significant effort has been invested in developing neuroprotective agents. The aim of this work is to review TBI pathophysiology and existing and potential new therapeutic strategies in the management of inflammatory events and behavioral deficits associated with TBI.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy;
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
19
|
A Look Ahead. Concussion 2020. [DOI: 10.1016/b978-0-323-65384-8.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
|
20
|
Charkviani M, Muradashvili N, Lominadze D. Vascular and non-vascular contributors to memory reduction during traumatic brain injury. Eur J Neurosci 2019; 50:2860-2876. [PMID: 30793398 PMCID: PMC6703968 DOI: 10.1111/ejn.14390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is an increasing health problem. It is a complex, progressive disease that consists of many factors affecting memory. Studies have shown that increased blood-brain barrier (BBB) permeability initiates pathological changes in neuro-vascular network but the role of cerebrovascular dysfunction and its mediated mechanisms associated with memory reduction during TBI are still not well understood. Changes in BBB, inflammation, extravasation of blood plasma components, activation of neuroglia lead to neurodegeneration. Extravasated proteins such as amyloid-beta, fibrinogen, and cellular prion protein may form degradation resistant complexes that can lead to neuronal dysfunction and degeneration. They also have the ability to activate astrocytes, and thus, can be involved in memory impairment. Understanding the triggering mechanisms and the places they originate in vasculature or in extravascular tissue may help to identify potential therapeutic targets to ameliorate memory reduction during TBI. The goal of this review is to discuss conceptual mechanisms that lead to short-term memory reduction during non-severe TBI considering distinction between vascular and non-vascular effects on neurons. Some aspects of these mechanisms need to be confirmed further. Therefore, we hope that the discussion presented bellow may lead to experiments that may clarify the triggering mechanisms of memory reduction after head trauma.
Collapse
Affiliation(s)
- Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
21
|
Llorens F, Villar-Piqué A, Schmitz M, Diaz-Lucena D, Wohlhage M, Hermann P, Goebel S, Schmidt I, Glatzel M, Hauw JJ, Sikorska B, Liberski PP, Riggert J, Ferrer I, Zerr I. Plasma total prion protein as a potential biomarker for neurodegenerative dementia: diagnostic accuracy in the spectrum of prion diseases. Neuropathol Appl Neurobiol 2019; 46:240-254. [PMID: 31216593 DOI: 10.1111/nan.12573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
AIMS In the search for blood-based biomarkers of neurodegenerative diseases, we characterized the concentration of total prion protein (t-PrP) in the plasma of neurodegenerative dementias. We aimed to assess its accuracy in this differential diagnostic context. METHODS Plasma t-PrP was measured in 520 individuals including healthy controls (HC) and patients diagnosed with neurological disease control (ND), Alzheimer's disease (AD), sporadic Creutzfeldt-Jakob disease (sCJD), frontotemporal dementia (FTD), Lewy body dementia (LBD) and vascular dementia (VaD). Additionally, t-PrP was quantified in genetic prion diseases and iatrogenic CJD. The accuracy of t-PrP discriminating the diagnostic groups was evaluated and correlated with demographic, genetic and clinical data in prion diseases. Markers of blood-brain barrier impairment were investigated in sCJD brains. RESULTS Compared to HC and ND, elevated plasma t-PrP concentrations were detected in sCJD, followed by FTD, AD, VaD and LBD. In sCJD, t-PrP was associated neither with age nor sex, but with codon 129 PRNP genotype. Plasma t-PrP concentrations correlated with cerebrospinal fluid (CSF) markers of neuro-axonal damage, but not with CSF t-PrP. In genetic prion diseases, plasma t-PrP was elevated in all type of mutations investigated. In sCJD brain tissue, extravasation of immunoglobulin G and the presence of swollen astrocytic end-feet around the vessels suggested leakage of blood-brain barrier as a potential source of increased plasma t-PrP. CONCLUSIONS Plasma t-PrP is elevated in prion diseases regardless of aetiology. This pilot study opens the possibility to consider plasma t-PrP as a promising blood-based biomarker in the diagnostic of prion disease.
Collapse
Affiliation(s)
- F Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Department of Neurology, University Medical School, Göttingen, Germany
| | - A Villar-Piqué
- Department of Neurology, University Medical School, Göttingen, Germany
| | - M Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - D Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Spain
| | - M Wohlhage
- Department of Neurology, University Medical School, Göttingen, Germany
| | - P Hermann
- Department of Neurology, University Medical School, Göttingen, Germany
| | - S Goebel
- Department of Neurology, University Medical School, Göttingen, Germany
| | - I Schmidt
- Department of Neurology, University Medical School, Göttingen, Germany
| | - M Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J-J Hauw
- Centre national de référence des ATNC, Paris, France
| | - B Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - P P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - J Riggert
- Department of Transfusion Medicine, University Medical School, Göttingen, Germany
| | - I Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - I Zerr
- Department of Neurology, University Medical School, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
22
|
Sekar S, Zhang Y, Miranzadeh Mahabadi H, Parvizi A, Taghibiglou C. Low-Field Magnetic Stimulation Restores Cognitive and Motor Functions in the Mouse Model of Repeated Traumatic Brain Injury: Role of Cellular Prion Protein. J Neurotrauma 2019; 36:3103-3114. [PMID: 31020907 DOI: 10.1089/neu.2018.5918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI)/concussion is a growing epidemic throughout the world. Memory and neurobehavioral dysfunctions are among the sequelae of TBI. Dislodgement of cellular prion protein (PrPc) and disruption of circadian rhythm have been linked to TBI. Low-field magnetic stimulation (LFMS) is a new noninvasive repetitive transcranial magnetic stimulation (rTMS) technique that generates diffused and low-intensity magnetic stimulation to deep cortical and subcortical areas. The role of LFMS on PrPc, proteins related to the circadian rhythm, and behavior alterations in a repeated TBI mouse model were studied in the present study. TBI was induced to the mice (right hemisphere) using weight-drop method, once daily for 3 days. LFMS treatment was given for 20 min once daily for 4 days (immediately after each TBI induction). The results showed that LFMS-treated TBI mice significantly improved cognitive and motor function as evidenced by open field exploration, rotarod, and novel location recognition tasks. In addition, a significant increase in PrPc and decreased glial fibrillary acidic protein levels were observed in cortical and hippocampal regions of LFMS-treated TBI mice brain compared with sham-treated TBI mice, while neuronal nuclei level was significantly increased in cortical region. In LFMS-treated mice, a decrease in proteins related to circadian rhythm were observed, compared with sham-treated TBI mice. The results obtained from the study demonstrated the neuroprotective effect of LFMS, which may be through regulating PrPc and/or proteins related to circadian rhythm. Thus, the present study suggests that LFMS may improve the subject's neurological condition following TBI.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amirhassan Parvizi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Wiegmans AP, Saunus JM, Ham S, Lobb R, Kutasovic JR, Dalley AJ, Miranda M, Atkinson C, Foliaki ST, Ferguson K, Niland C, Johnstone CN, Lewis V, Collins SJ, Lakhani SR, Al-Ejeh F, Möller A. Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight 2019; 5:124092. [PMID: 30830863 DOI: 10.1172/jci.insight.124092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are amongst the most effective chemotherapeutics ever developed, but they produce grueling side-effects, serious adverse events and resistance often develops over time. We found that these compounds can be sequestered by secreted cellular Prion protein (PrPC), blocking their cytotoxic activity. This effect was dose-dependent using either cell line-conditioned medium or human serum as a source of PrPC. Genetic depletion of PrPC or inhibition of binding via chelation of ionic copper prevented the interaction and restored cytotoxic activity. This was more pronounced for doxorubicin than its epimer, epirubicin. Investigating the relevance to breast cancer management, we found that the levels of PRNP transcript in pre-treatment tumor biopsies stratified relapse-free survival after neoadjuvant treatment with anthracyclines, particularly amongst doxorubicin-treated patients with residual disease at surgery (p=2.8E-08). These data suggest that local sequestration could mediate treatment resistance. Consistent with this, tumor cell expression of PrPC protein correlated with poorer response to doxorubicin but not epirubicin in an independent cohort analyzed by immunohistochemistry, particularly soluble isoforms released into the extracellular environment by shedding (p=0.015). These findings have important potential clinical implications for frontline regimen decision-making. We suggest there is warranted utility for prognostic PrPC/PRNP assays to guide chemo-sensitization strategies that exploit an understanding of PrPC-anthracycline-copper ion complexes.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jodi M Saunus
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Richard Lobb
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jamie R Kutasovic
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Andrew J Dalley
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Mariska Miranda
- Personalized Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Simote T Foliaki
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Kaltin Ferguson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Colleen Niland
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Cameron N Johnstone
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Victoria Lewis
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Sunil R Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Fares Al-Ejeh
- Personalized Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
24
|
Satarasinghe P, Hamilton DK, Buchanan RJ, Koltz MT. Unifying Pathophysiological Explanations for Sports-Related Concussion and Concussion Protocol Management: Literature Review. J Exp Neurosci 2019; 13:1179069518824125. [PMID: 30675103 PMCID: PMC6330734 DOI: 10.1177/1179069518824125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
Objective There is a plethora of theories about the pathophysiology behind a sport-related concussion. In this review of the literature, the authors evaluated studies on the pathophysiology of sport-related concussion and professional athlete return-to-play guidelines. The goal of this article is to summarize the most common hypotheses for sport-related concussion, evaluate if there are common underlying mechanisms, and determine if correlations are seen between published mechanisms and the most current return-to-play recommendations. Methods Two authors selected papers from the past 5 years for literature review involving discussion of sport-related concussion and pathophysiology, pathology, or physiology of concussion using mutually agreed-upon search criteria. After the articles were filtered based on search criteria, pathophysiological explanations for concussion were organized into tables. Following analysis of pathophysiology, concussion protocols and return-to-play guidelines were obtained via a Google search for the major professional sports leagues and synthesized into a summary table. Results Out of 1112 initially identified publications, 53 met our criteria for qualitative analysis. The 53 studies revealed 5 primary neuropathological explanations for sport-related concussion, regardless of the many theories talked about in the different papers. These 5 explanations, in order of predominance in the articles analyzed, were (1) tauopathy, (2) white matter changes, (3) neural connectivity alterations, (4) reduction in cerebral perfusion, and (5) gray matter atrophy. Pathology may be sport specific: white matter changes are seen in 47% of football reports, tauopathy is seen in 50% of hockey reports, and soccer reports 50% tauopathy as well as 50% neural connectivity alterations. Analysis of the return-to-play guidelines across professional sports indicated commonalities in concussion management despite individual policies. Conclusions Current evidence on pathophysiology for sport-related concussion does not yet support one unifying mechanism, but published hypotheses may potentially be simplified into 5 primary groups. The unification of the complex, likely multifactorial mechanisms for sport-related concussion to a few common explanations, combined with unique findings within individual sports presented in this report, may help filter and link concussion pathophysiology in sport. By doing so, the authors hope that this review will help guide future concussion research, treatment, and management.
Collapse
Affiliation(s)
- Praveen Satarasinghe
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - D Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert J Buchanan
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
- Michael T Koltz, Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
25
|
Spotlight on Neurotrauma Research in Canada's Leading Academic Centers. J Neurotrauma 2018; 35:1986-2004. [PMID: 30074875 DOI: 10.1089/neu.2018.29017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Costello DM, Kaye AH, O'Brien TJ, Shultz SR. Sport related concussion - Potential for biomarkers to improve acute management. J Clin Neurosci 2018; 56:1-6. [PMID: 30055944 DOI: 10.1016/j.jocn.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/08/2018] [Indexed: 12/14/2022]
Abstract
Sport-related concussion is a common form of mild traumatic brain injury that is now recognised as a serious health issue. Growing evidence suggests concussion may result in long-term and severe neurological disabilities. Recent research into the diagnosis and management of concussion may provide new approaches to concussion management that limit the potential long-term adverse effects of concussion. This paper summarises the problem of sport-related concussion and reviews key factors (sex, age, genetics) that may modify concussion outcomes. Current sport-related concussion tools are described. Analysis of emerging methods of acute concussion diagnosis using objective fluid and neuroimaging biomarkers is provided. These new concussion biomarkers have the potential to change management of sport-related concussion.
Collapse
Affiliation(s)
- Daniel M Costello
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia.
| | - Andrew H Kaye
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia; Departments of Neuroscience and Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia; Departments of Neuroscience and Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
27
|
Ritchie EV, Emery C, Debert CT. Analysis of serum cortisol to predict recovery in paediatric sport-related concussion. Brain Inj 2018; 32:523-528. [DOI: 10.1080/02699052.2018.1429662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- EV. Ritchie
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, Alberta, Canada
| | - C. Emery
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - CT. Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Kim HJ, Tsao JW, Stanfill AG. The current state of biomarkers of mild traumatic brain injury. JCI Insight 2018; 3:97105. [PMID: 29321373 DOI: 10.1172/jci.insight.97105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence, with over 3 million cases reported every year in the United States. While research into the underlying pathophysiology is ongoing, there is an urgent need for better clinical guidelines that allow more consistent diagnosis of mTBI and ensure safe return-to-play timelines for athletes, nonathletes, and military personnel. The development of a suite of biomarkers that indicate the pathogenicity of mTBI could lead to clinically useful tools for establishing both diagnosis and prognosis. Here, we review the current evidence for mTBI biomarkers derived from investigations of the multifactorial pathology of mTBI. While the current literature lacks the scope and size for clarification of these biomarkers' clinical utility, early studies have identified some promising candidates.
Collapse
Affiliation(s)
- Han Jun Kim
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jack W Tsao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Ansley Grimes Stanfill
- Department of Acute and Tertiary Care, College of Nursing, and.,Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Atkins CM, Bramlett HM, Dietrich WD. Is temperature an important variable in recovery after mild traumatic brain injury? F1000Res 2017; 6:2031. [PMID: 29188026 PMCID: PMC5698917 DOI: 10.12688/f1000research.12025.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/03/2022] Open
Abstract
With nearly 42 million mild traumatic brain injuries (mTBIs) occurring worldwide every year, understanding the factors that may adversely influence recovery after mTBI is important for developing guidelines in mTBI management. Extensive clinical evidence exists documenting the detrimental effects of elevated temperature levels on recovery after moderate to severe TBI. However, whether elevated temperature alters recovery after mTBI or concussion is an active area of investigation. Individuals engaged in exercise and competitive sports regularly experience body and brain temperature increases to hyperthermic levels and these temperature increases are prolonged in hot and humid ambient environments. Thus, there is a strong potential for hyperthermia to alter recovery after mTBI in a subset of individuals at risk for mTBI. Preclinical mTBI studies have found that elevating brain temperature to 39°C before mTBI significantly increases neuronal death within the cortex and hippocampus and also worsens cognitive deficits. This review summarizes the pathology and behavioral problems of mTBI that are exacerbated by hyperthermia and discusses whether hyperthermia is a variable that should be considered after concussion and mTBI. Finally, underlying pathophysiological mechanisms responsible for hyperthermia-induced altered responses to mTBI and potential gender considerations are discussed.
Collapse
Affiliation(s)
- Coleen M Atkins
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| |
Collapse
|
30
|
McCrea M, Meier T, Huber D, Ptito A, Bigler E, Debert CT, Manley G, Menon D, Chen JK, Wall R, Schneider KJ, McAllister T. Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: a systematic review. Br J Sports Med 2017; 51:919-929. [DOI: 10.1136/bjsports-2016-097447] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 01/17/2023]
|
31
|
Shultz SR, McDonald SJ, Vonder Haar C, Meconi A, Vink R, van Donkelaar P, Taneja C, Iverson GL, Christie BR. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci Biobehav Rev 2016; 76:396-414. [PMID: 27659125 DOI: 10.1016/j.neubiorev.2016.09.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is a common health problem. There is tremendous variability and heterogeneity in human mTBI, including mechanisms of injury, biomechanical forces, injury severity, spatial and temporal pathophysiology, genetic factors, pre-injury vulnerability and resilience factors, and clinical outcomes. Animal models greatly reduce this variability and heterogeneity, and provide a means to study mTBI in a rigorous, controlled, and efficient manner. Rodent models, in particular, are time- and cost-efficient, and they allow researchers to measure morphological, cellular, molecular, and behavioral variables in a single study. However, inter-species differences in anatomy, morphology, metabolism, neurobiology, and lifespan create translational challenges. Although the term "mild" TBI is used often in the pre-clinical literature, clearly defined criteria for mild, moderate, and severe TBI in animal models have not been agreed upon. In this review, we introduce current issues facing the mTBI field, summarize the available research methodologies and previous studies in mTBI animal models, and discuss how a translational research approach may be useful in advancing our understanding and management of mTBI.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Cole Vonder Haar
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Alicia Meconi
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Robert Vink
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Chand Taneja
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, and MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA
| | - Brian R Christie
- Division of Medical Sciences, The University of Victoria, Victoria, BC, Canada
| |
Collapse
|
32
|
Evidence-Based Management of Sport-Related Concussion: Completing the Puzzle. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016. [DOI: 10.1007/s40141-016-0121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
PrP C expression and calpain activity independently mediate the effects of closed head injury in mice. Behav Brain Res 2016; 340:29-40. [PMID: 27188531 DOI: 10.1016/j.bbr.2016.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/23/2022]
Abstract
The normal cellular prion protein (PrPC) is a sialoglycoprotein with a glycophosphatidylinositol anchor and expressed in highest levels within the CNS particularly at neuronal synapses. This membrane-bound protein is involved with many cell functions including cell signaling and neuroprotection. Calpains are calcium-activated cysteine proteases that typically undergo controlled activation. PrPC is a calpain substrate and is neurotoxic if it undergoes aberrant processing with cytosol accumulation. Following traumatic brain injury (TBI), there is an abnormal influx of Ca+2 and overactivation of calpains resulting in neuronal dysfunction and cell death. We investigated whether PrPC expression and calpain activity have an effect on, or are affected by, TBI. PrPC expression in the hippocampus, cortex and cerebellum of WT and Tga20 (PrPC overexpression) mice were unchanged after closed head injury (CHI). Further, PrPC in WT and Tga20 mice was resistant to TBI-induced calpain proteolysis. CHI-induced calpain activation resulted in breakdown products (BDPs) of αII-spectrin (SBDPs) and GFAP (GBDP-44K) in all brain regions and mouse lines. CHI caused significant increases in SBDP145, GFAP and GBDP-44K when compared to sham. With few exceptions, the calpain inhibitor, SNJ-1945, reduced SBDP145 and GBDP-44K levels. Behavioral studies suggested that PrPC and calpain independently affect learning and memory. Overall, we conclude that: (i) there is SNJ-1945-sensitive calpain activation in both neuron and glial cells following CHI, (ii) closed head trauma is not affected by, nor does it have an influence on, PrPC expression, and (iii) PrPC expression plays a minor role, if any, in CHI-induced calpain activation in vivo.
Collapse
|
34
|
Lee Y, Lee D, Choi I, Song Y, Kang MJ, Kang SW. Single octapeptide deletion selectively processes a pathogenic prion protein mutant on the cell surface. Biochem Biophys Res Commun 2016; 470:263-268. [PMID: 26774341 DOI: 10.1016/j.bbrc.2016.01.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/12/2016] [Indexed: 11/30/2022]
Abstract
The number of octapeptide repeats has been considered to correlate with clinical and pathogenic phenotypes of prion diseases resulting from aberrant metabolism of prion protein (PrP). However, it is still poorly understood how this motif affects PrP metabolism. Here, we discover homozygous single octapeptide repeat deletion mutation in the PRNP gene encoding PrP in HeLa cells. The level of PrP proves to be unaffected by this mutation alone, but selectively reduced by additional pathogenic mutations within internal hydrophobic region of PrP. The pattern and relative amount of newly synthesized A117V mutant is unaffected, whereas the mutant appears to be differentially distributed and processed on the cell surface by single octapeptide deletion. This study provides an insight into a novel mutant-specific metabolism of PrP on the cell surface.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Ilho Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Toman E, Harrisson S, Belli T. Biomarkers in traumatic brain injury: a review. J ROY ARMY MED CORPS 2015; 162:103-8. [PMID: 26527607 DOI: 10.1136/jramc-2015-000517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/11/2015] [Indexed: 12/23/2022]
Abstract
Biomarkers allow physiological processes to be monitored, in both health and injury. Multiple attempts have been made to use biomarkers in traumatic brain injury (TBI). Identification of such biomarkers could allow improved understanding of the pathological processes involved in TBI, diagnosis, prognostication and development of novel therapies. This review article aims to cover both established and emerging TBI biomarkers along with their benefits and limitations. It then discusses the potential value of TBI biomarkers to military, civilian and sporting populations and the future hopes for developing a role for biomarkers in head injury management.
Collapse
Affiliation(s)
- Emma Toman
- Major Trauma Service, Queen Elizabeth Hospital, Birmingham, UK
| | - S Harrisson
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - T Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK University of Birmingham, Birmingham, UK
| |
Collapse
|