1
|
Chibuogwu MO, Reed H, Groves CL, Mueller B, Barrett-Wilt G, Webster RW, Goeser J, Smith DL. Influence of Hybrid Class and Ensiling Duration on Deoxynivalenol Accumulation and Its Derivative Deoxynivalenol-3-Glucoside While Ensiling Corn for Silage. PLANT DISEASE 2024:PDIS06241166RE. [PMID: 39172494 DOI: 10.1094/pdis-06-24-1166-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In silage corn (Zea mays L.), Fusarium graminearum causes diseases and produces the mycotoxin deoxynivalenol (DON). The work presented here investigated DON accumulation and its fate during the ensiling of ground, whole-plant material obtained from dual-purpose (DP) and brown midrib (BMR) corn hybrids. Multiyear field trials arranged in a randomized complete block design were conducted in Wisconsin to evaluate BMR and DP corn hybrids in response to fungicide treatment. At harvest, the samples were chopped and vacuum sealed for a mini-silo time series assessment with silos opened following anaerobic fermentation for 0, 30, 60, 90, and 120 days. Repeated measures analysis of ensiled corn showed that hybrid (P < 0.01) and ensiling duration (P < 0.01) significantly impacted DON concentration through ensiling, whereas fungicide treatment had no significant effect (P > 0.05). Across hybrids and treatments, DON concentrations detected at harvest were the lowest with DON-3-glucoside at harvest significantly (P < 0.01) and highly correlated (r = 0.74) with DON concentration 30-days after ensiling. These findings suggest that mycotoxin testing in corn should include not only DON but also conjugates of DON that can be metabolized back to DON and increase the final DON concentration during ensiling.
Collapse
Affiliation(s)
- Maxwell O Chibuogwu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Hannah Reed
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Brian Mueller
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Gregory Barrett-Wilt
- Mass Spectrometry Core Facility, University of Wisconsin-Madison, Madison, WI, U.S.A
| | | | - John Goeser
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, U.S.A
- Rock River Laboratory, Inc., Watertown, WI, U.S.A
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
2
|
Kleber A, Gruber-Dorninger C, Platzer A, Payet C, Novak B. Effect of Fungicide Treatment on Multi-Mycotoxin Occurrence in French Wheat during a 4-Year Period. Toxins (Basel) 2023; 15:443. [PMID: 37505712 PMCID: PMC10467151 DOI: 10.3390/toxins15070443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Wheat represents one of the most widely consumed cereals worldwide. Cultivated in winter and spring, it is vulnerable to an array of different pathogens, including fungi, which are managed largely through the in-field application of fungicides. During this study, a 4-year field investigation (2018-2021) was performed in France, aiming to assess the efficacy of fungicide treatment to reduce mycotoxin contamination in common and durum wheat. Several different commercially available fungicides were applied via sprayers. Concentrations of mycotoxins and fungal metabolites in wheat were determined using a multi-analyte liquid-chromatography-tandem-mass-spectrometry-based method. The highest contamination levels and strongest effects of fungicides were observed in 2018, followed by 2021. A significant fungicide-mediated reduction was observed for the trichothecenes deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and nivalenol-3-glucoside. Furthermore, fungicide treatment also reduced levels of culmorin and its hydroxy metabolites 5- and 15-hydroxy-culmorin, as well as aurofusarin. Interestingly, the Alternaria metabolite infectopyron was increased following fungicide treatment. In conclusion, fungicide treatment was effective in reducing mycotoxin levels in wheat. However, as complete prevention of mycotoxin contamination was not achieved, fungicide treatment should always be combined with other pre- and post-harvest mycotoxin mitigation strategies to improve food and feed safety.
Collapse
Affiliation(s)
- Alexandra Kleber
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Alexander Platzer
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Barbara Novak
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| |
Collapse
|
3
|
Robinson KA, St-Jacques AD, Shields SW, Sproule A, Demissie ZA, Overy DP, Loewen MC. Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum. J Fungi (Basel) 2023; 9:723. [PMID: 37504712 PMCID: PMC10381798 DOI: 10.3390/jof9070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Mycotoxins, derived from toxigenic fungi such as Fusarium, Aspergillus, and Penicillium species have impacted the human food chain for thousands of years. Deoxynivalenol (DON), is a tetracyclic sesquiterpenoid type B trichothecene mycotoxin predominantly produced by F. culmorum and F. graminearum during the infection of corn, wheat, oats, barley, and rice. Glycosylation of DON is a protective detoxification mechanism employed by plants. More recently, DON glycosylating activity has also been detected in fungal microparasitic (biocontrol) fungal organisms. Here we follow up on the reported conversion of 15-acetyl-DON (15-ADON) into 15-ADON-3-O-glycoside (15-ADON-3G) in Clonostachys rosea. Based on the hypothesis that the reaction is likely being carried out by a uridine diphosphate glycosyl transferase (UDP-GTase), we applied a protein structural comparison strategy, leveraging the availability of the crystal structure of rice Os70 to identify a subset of potential C. rosea UDP-GTases that might have activity against 15-ADON. Using CRISPR/Cas9 technology, we knocked out several of the selected UDP-GTases in the C. rosea strain ACM941. Evaluation of the impact of knockouts on the production of 15-ADON-3G in confrontation assays with F. graminearum revealed multiple UDP-GTase enzymes, each contributing partial activities. The relationship between these positive hits and other UDP-GTases in fungal and plant species is discussed.
Collapse
Affiliation(s)
- Kelly A Robinson
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Antony D St-Jacques
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Sam W Shields
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0Z2, Canada
| | - Amanda Sproule
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0Z2, Canada
| | - Zerihun A Demissie
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - David P Overy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0Z2, Canada
| | - Michele C Loewen
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
4
|
Fanelli G, Kuzmanović L, Giovenali G, Tundo S, Mandalà G, Rinalducci S, Ceoloni C. Untargeted Metabolomics Reveals a Multi-Faceted Resistance Response to Fusarium Head Blight Mediated by the Thinopyrum elongatum Fhb7E Locus Transferred via Chromosome Engineering into Wheat. Cells 2023; 12:1113. [PMID: 37190021 PMCID: PMC10136595 DOI: 10.3390/cells12081113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The Thinopyrum elongatum Fhb7E locus has been proven to confer outstanding resistance to Fusarium Head Blight (FHB) when transferred into wheat, minimizing yield loss and mycotoxin accumulation in grains. Despite their biological relevance and breeding implications, the molecular mechanisms underlying the resistant phenotype associated with Fhb7E have not been fully uncovered. To gain a broader understanding of processes involved in this complex plant-pathogen interaction, we analysed via untargeted metabolomics durum wheat (DW) rachises and grains upon spike inoculation with Fusarium graminearum (Fg) and water. The employment of DW near-isogenic recombinant lines carrying or lacking the Th. elongatum chromosome 7E region including Fhb7E on their 7AL arm, allowed clear-cut distinction between differentially accumulated disease-related metabolites. Besides confirming the rachis as key site of the main metabolic shift in plant response to FHB, and the upregulation of defence pathways (aromatic amino acid, phenylpropanoid, terpenoid) leading to antioxidants and lignin accumulation, novel insights were revealed. Fhb7E conferred constitutive and early-induced defence response, in which specific importance of polyamine biosynthesis, glutathione and vitamin B6 metabolisms, along with presence of multiple routes for deoxynivalenol detoxification, was highlighted. The results suggested Fhb7E to correspond to a compound locus, triggering a multi-faceted plant response to Fg, effectively limiting Fg growth and mycotoxin production.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Gloria Giovenali
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy; (S.T.)
| | - Giulia Mandalà
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.)
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (L.K.); (G.G.); (G.M.)
| |
Collapse
|
5
|
Moraes WB, Madden LV, Baik BK, Gillespie J, Paul PA. Environmental Conditions After Fusarium Head Blight Visual Symptom Development Affect Contamination of Wheat Grain with Deoxynivalenol and Deoxynivalenol-3-Glucoside. PHYTOPATHOLOGY 2023; 113:206-224. [PMID: 36131392 DOI: 10.1094/phyto-06-22-0199-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB) of wheat, caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON). Although FHB is often positively correlated with DON, this relationship can break down under certain conditions. One possible explanation for this could be the conversion of DON to DON-3-glucoside (D3G), which is typically missed by common DON testing methods. The objective of this study was to quantify the effects of temperature, relative humidity (RH), and preharvest rainfall on DON, D3G, and the D3D/DON relationship. D3G levels were higher in grain from spikes exposed to 100% RH than to 70, 80, or 90% RH at 20 and 25°C across all tested levels of mean FHB index (percentage of diseased spikelets per spike). Mean D3G contamination was higher at 20°C than at 25 or 30°C. There were significantly positive linear relationships between DON and D3G. Rainfall treatments resulted in significantly higher mean D3G than the rain-free check and induced preharvest sprouting, as indicated by low falling numbers (FNs). There were significant positive relationships between the rate of increase in D3G per unit increase in DON (a measure of conversion) and sprouting. As FN decreased, the rate of D3G conversion increased, and this rate of conversion per unit decrease in FN was greater at relatively low than at high mean DON levels. These results provide strong evidence that moisture after FHB visual symptom development was associated with DON-to-D3G conversion and constitute valuable new information for understanding this complex disease-mycotoxin system.
Collapse
Affiliation(s)
- Wanderson Bucker Moraes
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Byung-Kee Baik
- USDA-ARS-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH 44691
| | - James Gillespie
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
6
|
Khairullina A, Micic N, Jørgensen HJL, Bjarnholt N, Bülow L, Collinge DB, Jensen B. Biocontrol Effect of Clonostachys rosea on Fusarium graminearum Infection and Mycotoxin Detoxification in Oat ( Avena sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:500. [PMID: 36771583 PMCID: PMC9918947 DOI: 10.3390/plants12030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/01/2023]
Abstract
Oat (Avena sativa) is susceptible to Fusarium head blight (FHB). The quality of oat grain is threatened by the accumulation of mycotoxins, particularly the trichothecene deoxynivalenol (DON), which also acts as a virulence factor for the main pathogen Fusarium graminearum. The plant can defend itself, e.g., by DON detoxification by UGT-glycosyltransferases (UTGs) and accumulation of PR-proteins, even though these mechanisms do not deliver effective levels of resistance. We studied the ability of the fungal biocontrol agent (BCA) Clonostachys rosea to reduce FHB and mycotoxin accumulation. Greenhouse trials showed that C. rosea-inoculation of oat spikelets at anthesis 3 days prior to F. graminearum inoculation reduced both the amount of Fusarium DNA (79%) and DON level (80%) in mature oat kernels substantially. DON applied to C. rosea-treated spikelets resulted in higher conversion of DON to DON-3-Glc than in mock treated plants. Moreover, there was a significant enhancement of expression of two oat UGT-glycosyltransferase genes in C. rosea-treated oat. In addition, C. rosea treatment activated expression of genes encoding four PR-proteins and a WRKY23-like transcription factor, suggesting that C. rosea may induce resistance in oat. Thus, C. rosea IK726 has strong potential to be used as a BCA against FHB in oat as it inhibits F. graminearum infection effectively, whilst detoxifying DON mycotoxin rapidly.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nikola Micic
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Hans J. Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
7
|
Kirana RP, Gaurav K, Arora S, Wiesenberger G, Doppler M, Michel S, Zimmerl S, Matic M, Eze CE, Kumar M, Topuz A, Lemmens M, Schuhmacher R, Adam G, Wulff BBH, Buerstmayr H, Steiner B. Identification of a UDP-glucosyltransferase conferring deoxynivalenol resistance in Aegilops tauschii and wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:109-121. [PMID: 36121345 PMCID: PMC9829400 DOI: 10.1111/pbi.13928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.
Collapse
Affiliation(s)
- Rizky Pasthika Kirana
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Laboratory of Plant BreedingDepartment of Agronomy, Faculty of Agriculture, Universitas Gadjah MadaYogyakartaIndonesia
| | | | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Maria Doppler
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Core Facility Bioactive Molecules: Screening and AnalysisUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Sebastian Michel
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Simone Zimmerl
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Magdalena Matic
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Faculty of Agrobiotechnical Sciences OsijekJosip Juraj Strossmayer University of OsijekOsijekCroatia
| | - Chinedu E. Eze
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of AgronomyMichael Okpara University of Agriculture UmudikeUmudikeNigeria
| | - Mukesh Kumar
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of Genetics & Plant BreedingCCS Haryana Agricultural UniversityHisar (Haryana)India
| | - Ajla Topuz
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Brande B. H. Wulff
- John Innes CentreNorwich Research ParkNorwichUK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
8
|
Xu W, Zhao YQ, Jia WB, Liao SY, Bouphun T, Zou Y. Reviews of fungi and mycotoxins in Chinese dark tea. Front Microbiol 2023; 14:1120659. [PMID: 36910180 PMCID: PMC9992979 DOI: 10.3389/fmicb.2023.1120659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The fermentation is the main process to form the unique flavor and health benefits of dark tea. Numerous studies have indicated that the microorganisms play a significant part in the fermentation process of dark tea. Dark tea has the quality of "The unique flavor grows over time," but unscientific storage of dark tea might cause infestation of harmful microorganisms, thereby resulting in the remaining of fungi toxins. Mycotoxins are regarded as the main contributor to the quality of dark tea, and its potential mycotoxin risk has attracted people's attention. This study reviews common and potential mycotoxins in dark tea and discusses the possible types of masked mycotoxins in dark tea. A summary of the potential risks of mycotoxins and masked mycotoxins in dark tea is presented, intending to provide a reference for the prevention and risk assessment of harmful fungi in dark tea.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-Qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-Bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Si-Yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Modified Mycotoxins, a Still Unresolved Issue. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous microfungi on almost every agricultural commodity worldwide. After the infection of crop plants, mycotoxins are modified by plant enzymes or other fungi and often conjugated to more polar substances, like sugars. The formed—often less toxic—metabolites are stored in the vacuole in soluble form or bound to macromolecules. As these substances are usually not detected during routine analysis and no maximum limits are in force, they are called modified mycotoxins. While, in most cases, modified mycotoxins have lower intrinsic toxicity, they might be reactivated during mammalian metabolism. In particular, the polar group might be cleaved off (e.g., by intestinal bacteria), releasing the native mycotoxin. This review aims to provide an overview of the critical issues related to modified mycotoxins. The main conclusion is that analytical aspects, toxicological evaluation, and exposure assessment merit more investigation.
Collapse
|
10
|
Li K, Yu D, Yan Z, Liu N, Fan Y, Wang C, Wu A. Exploration of Mycotoxin Accumulation and Transcriptomes of Different Wheat Cultivars during Fusarium graminearum Infection. Toxins (Basel) 2022; 14:toxins14070482. [PMID: 35878220 PMCID: PMC9318452 DOI: 10.3390/toxins14070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium graminearum is one of the most devastating diseases of wheat worldwide, and can cause Fusarium head blight (FHB). F. graminearum infection and mycotoxin production mainly present in wheat and can be influenced by environmental factors and wheat cultivars. The objectives of this study were to examine the effect of wheat cultivars and interacting conditions of temperature and water activity (aw) on mycotoxin production by two strains of F. graminearum and investigate the response mechanisms of different wheat cultivars to F. graminearum infection. In this regard, six cultivars of wheat spikes under field conditions and three cultivars of post-harvest wheat grains under three different temperature conditions combined with five water activity (aw) conditions were used for F. graminearum infection in our studies. Liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis showed significant differences in the concentration of Fusarium mycotoxins deoxynivalenol (DON) and its derivative deoxynivalenol-3-glucoside (D3G) resulting from wheat cultivars and environmental factors. Transcriptome profiles of wheat infected with F. graminearum revealed the lower expression of disease defense-factor-related genes, such as mitogen-activated protein kinases (MAPK)-encoding genes and hypersensitivity response (HR)-related genes of infected Annong 0711 grains compared with infected Sumai 3 grains. These findings demonstrated the optimal temperature and air humidity resulting in mycotoxin accumulation, which will be beneficial in determining the conditions of the relative level of risk of contamination with FHB and mycotoxins. More importantly, our transcriptome profiling illustrated differences at the molecular level between wheat cultivars with different FHB resistances, which will lay the foundation for further research on mycotoxin biosynthesis of F. graminearum and regulatory mechanisms of wheat to F. graminearum.
Collapse
Affiliation(s)
- Kailin Li
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
| | - Yingying Fan
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China; (Y.F.); (C.W.)
| | - Cheng Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China; (Y.F.); (C.W.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (K.L.); (D.Y.); (Z.Y.); (N.L.)
- Correspondence: ; Tel.: +86-21-54920716
| |
Collapse
|
11
|
Nannuru VKR, Windju SS, Belova T, Dieseth JA, Alsheikh M, Dong Y, McCartney CA, Henriques MA, Buerstmayr H, Michel S, Meuwissen THE, Lillemo M. Genetic architecture of fusarium head blight disease resistance and associated traits in Nordic spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2247-2263. [PMID: 35597885 PMCID: PMC9271104 DOI: 10.1007/s00122-022-04109-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/19/2022] [Indexed: 05/05/2023]
Abstract
This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types. Quantitative trait loci (QTL) that are effective against several of the resistance types give valuable contributions to resistance breeding. A spring wheat panel of 300 cultivars and breeding lines of Nordic and exotic origins was tested in artificially inoculated field trials and subjected to visual FHB assessment in the years 2013-2015, 2019 and 2020. Deoxynivalenol (DON) content was measured on harvested grain samples, and anther extrusion (AE) was assessed in separate trials. Principal component analysis based on 35 and 25 K SNP arrays revealed the existence of two subgroups, dividing the panel into European and exotic lines. We employed a genome-wide association study to detect QTL associated with FHB traits and identify marker-trait associations that consistently influenced FHB resistance. A total of thirteen QTL were identified showing consistent effects across FHB resistance traits and environments. Haplotype analysis revealed a highly significant QTL on 7A, Qfhb.nmbu.7A.2, which was further validated on an independent set of breeding lines. Breeder-friendly KASP markers were developed for this QTL that can be used in marker-assisted selection. The lines in the wheat panel harbored from zero to five resistance alleles, and allele stacking showed that resistance can be significantly increased by combining several of these resistance alleles. This information enhances breeders´ possibilities for genomic prediction and to breed cultivars with improved FHB resistance.
Collapse
Affiliation(s)
| | | | - Tatiana Belova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318, Blindern, Norway
| | | | | | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Curt A McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Maria Antonia Henriques
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430, Tulln, Austria
| | - Theodorus H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
12
|
Khairullina A, Tsardakas Renhuldt N, Wiesenberger G, Bentzer J, Collinge DB, Adam G, Bülow L. Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins (Basel) 2022; 14:toxins14070446. [PMID: 35878183 PMCID: PMC9318758 DOI: 10.3390/toxins14070446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oat is susceptible to several Fusarium species that cause contamination with different trichothecene mycotoxins. The molecular mechanisms behind Fusarium resistance in oat have yet to be elucidated. In the present work, we identified and characterised two oat UDP-glucosyltransferases orthologous to barley HvUGT13248. Overexpression of the latter in wheat had been shown previously to increase resistance to deoxynivalenol (DON) and nivalenol (NIV) and to decrease disease the severity of both Fusarium head blight and Fusarium crown rot. Both oat genes are highly inducible by the application of DON and during infection with Fusarium graminearum. Heterologous expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae conferred high levels of resistance to DON, NIV and HT-2 toxins, but not C4-acetylated trichothecenes (T-2, diacetoxyscirpenol). Recombinant enzymes AsUGT1 and AsUGT2 expressed in Escherichia coli rapidly lost activity upon purification, but the treatment of whole cells with the toxin clearly demonstrated the ability to convert DON into DON-3-O-glucoside. The two UGTs could therefore play an important role in counteracting the Fusarium virulence factor DON in oat.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
- Correspondence:
| | - Nikos Tsardakas Renhuldt
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - Gerlinde Wiesenberger
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Johan Bentzer
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Gerhard Adam
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| |
Collapse
|
13
|
Wang Y, Li J, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Deoxynivalenol and its modified forms: key enzymes, inter-individual and interspecies differences in metabolism. Drug Metab Rev 2022; 54:331-342. [PMID: 35695207 DOI: 10.1080/03602532.2022.2088786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Deoxynivalenol (DON) and its modified forms, including DON-3-glucoside (DON-3G), pose a major agricultural and food safety issue in the world. Their metabolites are relatively well-characterized; however, their metabolizing enzymes have not been fully explored. UDP-glucuronosyltransferases, 3-O-acetyltransferase, and glutathione S-transferase are involved in the formation of DON-glucuronides, 3-acetyl-DON, and DON-glutathione, respectively. There are interindividual differences in the metabolism of these toxins, including variation with respect to sex. Furthermore, interspecies differences in DON metabolism have been revealed, including differences in the major metabolites of DON, the role of de-acetylation, and the hydrolysis of DON-3G. In this review, we summarized the major enzymes involved in metabolizing DON to its modified forms, focusing on the differences in metabolism of DON and its modified forms between individuals and species. This work provides important insight into the toxicity of DON and its derivatives in humans and animals, and provides scientific basis for the development of safer and more efficient biological detoxification methods.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
14
|
Mycotoxin DON Accumulation in Wheat Grains Caused by Fusarium Head Blight Are Significantly Subjected to Inoculation Methods. Toxins (Basel) 2022; 14:toxins14060409. [PMID: 35737070 PMCID: PMC9229350 DOI: 10.3390/toxins14060409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The disease severity and mycotoxin DON content in grains caused by fusarium head blight (FHB) have been two prioritized economical traits in wheat. Reliable phenotyping is a prerequisite for genetically improving wheat resistances to these two traits. In this study, three inoculation methods: upper bilateral floret injection (UBFI), basal bilateral floret injection (BBFI), and basal rachis internode injection (BRII), were applied in a panel of 22 near-isogenic lines (NILs) contrasting in Fhb1 alleles. The results showed that inoculation methods had significant influence on both disease severity and mycotoxin accumulation in grains, and the relationship between them. UBFI method caused chronic FHB symptom characterized as slow progress of the pathogen downward from the inoculation site, which minimized the difference in disease severity of the NILs, but, unexpectedly, maximized the difference in DON content between them. The BBFI method usually caused an acute FHB symptom in susceptible lines characterized as premature spike death (PSD), which maximized the difference in disease severity, but minimized the difference in DON content in grains between resistant and susceptible lines. The BRII method occasionally caused acute FHB symptoms for susceptible lines and had relatively balanced characteristics of disease severity and DON content in grains. Therefore, two or more inoculation methods are recommended for precise and reliable evaluation of the overall resistance to FHB, including resistances to both disease spread within a spike and DON accumulation in grains.
Collapse
|
15
|
Eli K, Schaafsma A, Hooker D. Impact of agronomic practices on Fusarium mycotoxin accumulation in maize grain. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the Great Lakes region of North America, Gibberella ear rot (GER), caused by Fusarium graminearum, affects grain quality due to the accumulation of mycotoxins. GER severity is strongly influenced by environmental conditions; however, agronomic practices can also influence disease severity and mycotoxin accumulation. In this study, three separate small-plot experiments were conducted at Ridgetown, ON, Canada during 2019 and 2020 under an inoculated-misted system to determine Fusarium mycotoxin accumulation as affected by: (1) plant population density; (2) in-row-plant developmental variability; and (3) the effect of integrated Bt refuge genetics. In this study, DON concentrations were at least 49% higher in maize at 113,600 plants/ha compared to 79,000 plants/ha. Moreover, mycotoxin accumulation was higher in plants that were delayed developmentally in the crop row; total DON concentrations were at least 310% higher in late silked plants adjacent to early silked plants. Results of the plant population density and in-row-plant developmental variability suggest that the main driver for mycotoxin accumulation was stress induced by plant competition rather than environmental conditions; this highlights the importance of avoiding plant competitive stress as a strategy to reduce the risks of mycotoxin accumulation. In this study, there was no statistical difference in DON accumulation between the Bt component and the non-Bt component in each of the four hybrids tested; however, there was evidence that hybrids varied in susceptibility, including the Bt and non-Bt components that were paired commercially in a bag of seed maize. Reducing mycotoxins in maize requires integrated management, which includes agronomic considerations. These results indicate that mycotoxins are favoured with high plant populations and plant-to-plant variability in the row, especially in susceptible hybrids.
Collapse
Affiliation(s)
- K. Eli
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - A.W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - D.C. Hooker
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| |
Collapse
|
16
|
Chtioui W, Balmas V, Delogu G, Migheli Q, Oufensou S. Bioprospecting Phenols as Inhibitors of Trichothecene-Producing Fusarium: Sustainable Approaches to the Management of Wheat Pathogens. Toxins (Basel) 2022; 14:72. [PMID: 35202101 PMCID: PMC8875213 DOI: 10.3390/toxins14020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Fusarium spp. are ubiquitous fungi able to cause Fusarium head blight and Fusarium foot and root rot on wheat. Among relevant pathogenic species, Fusarium graminearum and Fusarium culmorum cause significant yield and quality loss and result in contamination of the grain with mycotoxins, mainly type B trichothecenes, which are a major health concern for humans and animals. Phenolic compounds of natural origin are being increasingly explored as fungicides on those pathogens. This review summarizes recent research activities related to the antifungal and anti-mycotoxigenic activity of natural phenolic compounds against Fusarium, including studies into the mechanisms of action of major exogenous phenolic inhibitors, their structure-activity interaction, and the combined effect of these compounds with other natural products or with conventional fungicides in mycotoxin modulation. The role of high-throughput analysis tools to decipher key signaling molecules able to modulate the production of mycotoxins and the development of sustainable formulations enhancing potential inhibitors' efficacy are also discussed.
Collapse
Affiliation(s)
- Wiem Chtioui
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy;
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (W.C.); (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
17
|
Mandalà G, Ceoloni C, Busato I, Favaron F, Tundo S. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111059. [PMID: 34763853 DOI: 10.1016/j.plantsci.2021.111059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Fusarium Head Blight (FHB) and Crown Rot (FCR) are major diseases of wheat crops, causing extensive damages and mycotoxin contamination. In this work, we investigated the possibility to improve resistance to either or both diseases by combining different resistance mechanisms. To this aim, we stacked in the same wheat genotype transgenes controlling the DON-to-D3G conversion by specific UDP-glucosyltransferases (UGT) and the inhibition of cell wall degrading enzymes (CWDEs) by glycosidase inhibitors. We obtained: i) a durum wheat UGT+PMEI double-transgenic line constitutively expressing the HvUGT13248 and AcPMEI genes, coding for a barley UGT and a kiwi pectin methylesterase inhibitor, respectively; ii) a bread wheat UGT+PGIP line, expressing in floral tissues the HvUGT13248 gene and constitutively the PvPGIP2 gene, coding for a bean polygalacturonase inhibiting protein. We observed that both UGT+PMEI and UGT+PGIP plants exhibited increased resistance against Fusarium graminearum in FHB, further reducing by 10-20 % FHB symptoms as compared to the lines carrying the individual transgenes, and of up to 50 % as compared to wild-type plants. On the other hand, double-transgenic UGT+PMEI seedlings exhibited similar FCR symptoms as the UGT single transgenic line after infection with F. culmorum, indicating no contribution of the PMEI transgene to FCR resistance. This result is also supported by the inability of AcPMEI or PvPGIP2, constitutively expressed in durum wheat transgenic lines, to counteract F. graminearum in FCR. We also verified that F. graminearum produces PG and PME activity on infected wheat crown. We conclude that CWDEs inhibition combined with UGT-based DON detoxification contribute in an additive manner to limiting F. graminearum in FHB. Conversely, UGT-based DON detoxification is the only mechanism contributing to resistance observed against FCR. Indeed, the reinforcement of pectin does not enhance resistance against FCR.
Collapse
Affiliation(s)
- Giulia Mandalà
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Isabella Busato
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, 35020, Legnaro, Padova, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, 35020, Legnaro, Padova, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, 35020, Legnaro, Padova, Italy.
| |
Collapse
|
18
|
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins (Basel) 2021; 13:768. [PMID: 34822552 PMCID: PMC8619142 DOI: 10.3390/toxins13110768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
19
|
Eli K, Schaafsma A, Limay-Rios V, Hooker D. Effect of pydiflumetofen on Gibberella ear rot and Fusarium mycotoxin accumulation in maize grain. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Ontario, Canada, Fusarium graminearum Schwabe causes Gibberella ear rot (GER) in maize, resulting in the accumulation of mycotoxins, mainly deoxynivalenol (DON), DON-3-glucoside (DON-3G) and zearalenone (ZEN) in infected kernels. Fungicides can be an important tool for managing GER and DON and other Fusarium mycotoxins in maize. Until recently, all fungicides available to growers were triazoles, thus no resistance management strategy through fungicide use was possible. In this study, a novel carboxamide fungicide active ingredient (pydiflumetofen) was evaluated against conventional triazole fungicides and mixtures for: (1) effectiveness on mycotoxins (2) optimal application timing; and (3) efficacy of application, with and without an insecticide, under natural and inoculated-misted conditions. The best timing for fungicide application was at full silk, resulting in the highest reduction of GER symptoms and lowest accumulation of F. graminearum mycotoxins in harvested grain. DON and DON-3G concentrations were reduced by at least 50% with a fungicide application at full silk. Fungicide treatments did not affect fumonisin concentrations in grain. Pydiflumetofen (94 g active ingredients (AI)/ha) and fungicides containing pydiflumetofen (75-94 g AI/ha) were similar to standard triazole fungicides (prothioconazole at 200 g AI/ha and metconazole at 90 g AI/ha) for reducing GER and F. graminearum mycotoxins under misted-inoculated plots and commercial field conditions; as a result, we expect pydiflumetofen to be competitive with triazole-only chemistries in the marketplace, which should delay the onset of fungicide resistance.
Collapse
Affiliation(s)
- K. Eli
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - A.W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - V. Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| | - D.C. Hooker
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, 120 Main St. E, Ridgetown, ON, N0P 2C0, Canada
| |
Collapse
|
20
|
Tucker JR, Legge WG, Maiti S, Hiebert CW, Simsek S, Yao Z, Xu W, Badea A, Fernando WGD. Transcriptome Alterations of an in vitro-Selected, Moderately Resistant, Two-Row Malting Barley in Response to 3ADON, 15ADON, and NIV Chemotypes of Fusarium graminearum. FRONTIERS IN PLANT SCIENCE 2021; 12:701969. [PMID: 34456945 PMCID: PMC8385242 DOI: 10.3389/fpls.2021.701969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 06/01/2023]
Abstract
Fusarium head blight caused by Fusarium graminearum is a devastating disease of malting barley. Mycotoxins associated with contaminated grain can be transferred from malt to beer and pose a health risk to consumers. In western Canada, F. graminearum has undergone an adaptive shift from 15ADON constituency to dominance by virulent 3ADON-producers; likewise, NIV-producers have established in regions of southern United States. Lack of adapted resistance sources with adequate malting quality has promoted the use of alternative breeding methodologies, such as in vitro selection. We studied the low-deoxynivalenol characteristic of in vitro selected, two-row malting barley variety "Norman" by RNAseq in contrast to its parental line "CDC Kendall," when infected by 15ADON-, 3ADON-, and NIV-producing isolates of F. graminearum. The current study documents higher mycotoxin accumulation by 3ADON isolates, thereby representing increased threat to barley production. At 72-96-h post infection, significant alterations in transcription patterns were observed in both varieties with pronounced upregulation of the phenylpropanoid pathway and detoxification gene categories (UGT, GST, CyP450, and ABC), particularly in 3ADON treatment. Defense response was multitiered, where differential expression in "Norman" associated with antimicrobial peptides (thionin 2.1, defensing, non-specific lipid-transfer protein) and stress-related proteins, such as late embryogenesis abundant proteins, heat-shock, desiccation related, and a peroxidase (HvPrx5). Several gene targets identified in "Norman" would be useful for application of breeding varieties with reduced deoxynivalenol content.
Collapse
Affiliation(s)
- James R. Tucker
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - William G. Legge
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Sujit Maiti
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Senay Simsek
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Ana Badea
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | | |
Collapse
|
21
|
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J Fungi (Basel) 2021; 7:348. [PMID: 33946920 PMCID: PMC8145935 DOI: 10.3390/jof7050348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.
Collapse
Affiliation(s)
- Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000 Osijek, Croatia;
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (J.B.)
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia;
| |
Collapse
|
22
|
Tan J, De Zutter N, De Saeger S, De Boevre M, Tran TM, van der Lee T, Waalwijk C, Willems A, Vandamme P, Ameye M, Audenaert K. Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. FRONTIERS IN PLANT SCIENCE 2021; 12:641890. [PMID: 33679858 PMCID: PMC7928387 DOI: 10.3389/fpls.2021.641890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB) in wheat (Triticum aestivum L.) is caused by a consortium of mutually interacting Fusarium species. In the field, the weakly pathogenic F. poae often thrives on the infection sites of the virulent F. graminearum. In this ecological context, we investigated the efficacy of chemical and biocontrol agents against F. graminearum in wheat ears. For this purpose, one fungicide comprising prothioconazole + spiroxamine and two bacterial biocontrol strains, Streptomyces rimosus LMG 19352 and Rhodococcus sp. R-43120 were tested for their efficacy to reduce FHB symptoms and mycotoxin (deoxynivalenol, DON) production by F. graminearum in presence or absence of F. poae. Results showed that the fungicide and both actinobacterial strains reduced FHB symptoms and concomitant DON levels in wheat ears inoculated with F. graminearum. Where Streptomyces rimosus appeared to have direct antagonistic effects, Rhodococcus and the fungicide mediated suppression of F. graminearum was linked to the archetypal salicylic acid and jasmonic acid defense pathways that involve the activation of LOX1, LOX2 and ICS. Remarkably, this chemical- and biocontrol efficacy was significantly reduced when F. poae was co-inoculated with F. graminearum. This reduced efficacy was linked to a suppression of the plant's intrinsic defense system and increased levels of DON. In conclusion, our study shows that control strategies against the virulent F. graminearum in the disease complex causing FHB are hampered by the presence of the weakly pathogenic F. poae. This study provides generic insights in the complexity of control strategies against plant diseases caused by multiple pathogens.
Collapse
Affiliation(s)
- Jiang Tan
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Trang Minh Tran
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Theo van der Lee
- Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
| | - Cees Waalwijk
- Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Alisaac E, Rathgeb A, Karlovsky P, Mahlein AK. Fusarium Head Blight: Effect of Infection Timing on Spread of Fusarium graminearum and Spatial Distribution of Deoxynivalenol within Wheat Spikes. Microorganisms 2020; 9:microorganisms9010079. [PMID: 33396894 PMCID: PMC7823776 DOI: 10.3390/microorganisms9010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
Most studies of Fusarium head blight (FHB) focused on wheat infection at anthesis. Less is known about infections at later stages. In this study, the effect of infection timing on the development of FHB and the distribution of fungal biomass and deoxynivalenol (DON) along wheat spikes was investigated. Under greenhouse conditions, two wheat varieties were point-inoculated with Fusarium graminearum starting from anthesis until 25 days after anthesis. The fungus and fungal DNA were isolated from the centers and the bases of all the spikes but not from the tips for all inoculation times and both varieties. In each variety, the amount of fungal DNA and the content of DON and deoxynivalenol-3-glucoside (DON-3-G) were higher in the center than in the base for all inoculation times. A positive correlation was found between the content of fungal DNA and DON in the centers as well as the bases of both varieties. This study showed that F. graminearum grows downward within infected wheat spikes and that the accumulation of DON is largely confined to the colonized tissue. Moreover, F. graminearum was able to infect wheat kernels and cause contamination with mycotoxins even when inoculated 25 days after anthesis.
Collapse
Affiliation(s)
- Elias Alisaac
- Institute of Crop Science and Resource Conservation (INRES), Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-68711
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, 37077 Goettingen, Germany; (A.R.); (P.K.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, 37077 Goettingen, Germany; (A.R.); (P.K.)
| | | |
Collapse
|
24
|
Shostak K, Bonner C, Sproule A, Thapa I, Shields SWJ, Blackwell B, Vierula J, Overy D, Subramaniam R. Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol 2020; 114:664-680. [PMID: 32692880 DOI: 10.1111/mmi.14575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022]
Abstract
In F. graminearum, the transcription factor TRI6 positively regulates the trichothecene biosynthetic gene cluster (BGC) leading to the production of the secondary metabolite 15-acetyl deoxynivalenol. Secondary metabolites are not essential for survival, instead, they enable the pathogen to successfully infect its host. F. graminearum has the potential to produce a diverse array of secondary metabolites (SMs). However, given high functional specificity and energetic cost, most of these clusters remain silent, unless the organism is subjected to an environment conducive to SM production. Alternatively, secondary metabolite gene clusters (SMCs) can be activated by genetically manipulating their activators or repressors. In this study, a combination of transcriptomic and metabolomics analyses with a deletion and overexpressor mutants of TRI6 was used to establish the role of TRI6 in the regulation of several BGCs in F. graminearum. Evidence for direct and indirect regulation of BGCs by TRI6 was obtained by chromatin immunoprecipitation and yeast two-hybrid experiments. The results showed that the trichothecene genes are under direct control, while the gramillin gene cluster is indirectly controlled by TRI6 through its interaction with the pathway-specific transcription factor GRA2.
Collapse
Affiliation(s)
- Kristina Shostak
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Indira Thapa
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Samuel W J Shields
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Barbara Blackwell
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - John Vierula
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
25
|
Flasch M, Bueschl C, Woelflingseder L, Schwartz-Zimmermann HE, Adam G, Schuhmacher R, Marko D, Warth B. Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chem Biol 2020; 15:970-981. [PMID: 32167285 PMCID: PMC7171601 DOI: 10.1021/acschembio.9b01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Xenobiotics are ubiquitous in the environment and modified
in the human body by phase I and II metabolism. Liquid chromatography
coupled to high resolution mass spectrometry is a powerful tool to
investigate these biotransformation products. We present a workflow
based on stable isotope-assisted metabolomics and the bioinformatics
tool MetExtract II for deciphering xenobiotic metabolites produced
by human cells. Its potential was demonstrated by the investigation
of the metabolism of deoxynivalenol (DON), an abundant food contaminant,
in a liver carcinoma cell line (HepG2) and a model for colon carcinoma
(HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate
2, and DON-10-glutathione as well as DON-cysteine. Conjugation with
amino acids and an antibiotic was confirmed for the first time. The
approach allows the untargeted elucidation of human xenobiotic products
in tissue culture. It may be applied to other fields of research including
drug metabolism, personalized medicine, exposome research, and systems
biology to better understand the relevance of in vitro experiments.
Collapse
Affiliation(s)
- Mira Flasch
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
26
|
Abstract
Mycotoxins are secondary metabolites of microscopic fungi, which commonly contaminate cereal grains. Contamination of small-grain cereals and maize with toxic metabolites of fungi, both pathogenic and saprotrophic, is one of the particularly important problems in global agriculture. Fusarium species are among the dangerous cereal pathogens with a high toxicity potential. Secondary metabolites of these fungi, such as deoxynivalenol, zearalenone and fumonisin B1 are among five most important mycotoxins on a European and world scale. The use of various methods to limit the development of Fusarium cereal head diseases and grain contamination with mycotoxins, before and after harvest, is an important element of sustainable agriculture and production of safe food. The applied strategies utilize chemical and non-chemical methods, including agronomic, physical and biological treatments. Biological methods now occupy a special place in plant protection as an element of biocontrol of fungal pathogens by inhibiting their development and reducing mycotoxins in grain. According to the literature, Good Agricultural Practices are the best line of defense for controlling Fusarium toxin contamination of cereal and maize grains. However, fluctuations in weather conditions can significantly reduce the effectiveness of plants protection methods against infection with Fusarium spp. and grain accumulation of mycotoxins.
Collapse
|
27
|
Righetti L, Damiani T, Rolli E, Galaverna G, Suman M, Bruni R, Dall'Asta C. Exploiting the potential of micropropagated durum wheat organs as modified mycotoxin biofactories: The case of deoxynivalenol. PHYTOCHEMISTRY 2020; 170:112194. [PMID: 31731239 DOI: 10.1016/j.phytochem.2019.112194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the potential of in vitro wheat model as biofactory for masked mycotoxin production. Micropropagated durum wheat organs (leaves and roots) were treated during a 14-day time span on a proper medium spiked with deoxynivalenol (DON). After the treatment, DON absorption from culture media was evaluated while roots and leaves were profiled by UHPLC-HRMS to investigate the DON biotransformation products. A total of 10 metabolites have been annotated in both roots and leaves. In particular, 5 phase I metabolites never reported before were putatively identified, suggesting the viability of the model as a tool to investigate the interplay between mycotoxins and wheat. In addition, 5 phase II metabolites previously reported in wheat grown under open field conditions, were identified in both roots and leaves, thus demonstrating the reliability of the cultured organs as model system for wheat plants. An organ-dependent difference in DON uptake and biotransformation was observed, since roots contained a high amount of untransformed DON, while leaves were able to effectively biotransform DON to its glycosylated form and other relevant metabolites. With the perspective of using cultured organs as biofactories for modified mycotoxin production, leaves seemed therefore to offer the best absorption and production yield.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| | - Tito Damiani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Enrico Rolli
- Deparment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Via Università 12, 43121, Parma, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Michele Suman
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, Parma, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
28
|
Dual Function of a Novel Bacterium, Slackia sp. D-G6: Detoxifying Deoxynivalenol and Producing the Natural Estrogen Analogue, Equol. Toxins (Basel) 2020; 12:toxins12020085. [PMID: 31991913 PMCID: PMC7076803 DOI: 10.3390/toxins12020085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023] Open
Abstract
Deoxynivalenol (DON) is a highly abundant mycotoxin that exerts many adverse effects on humans and animals. Much effort has been made to control DON in the past, and bio-transformation has emerged as the most promising method. However, useful and effective application of bacterial bio-transformation for the purpose of inhibiting DON remains urgently needed. The current study isolated a novel DON detoxifying bacterium, Slackia sp. D-G6 (D-G6), from chicken intestines. D-G6 is a Gram-positive, non-sporulating bacterium, which ranges in size from 0.2–0.4 μm × 0.6–1.0 μm. D-G6 de-epoxidizes DON into a non-toxic form called DOM-1. Optimum conditions required for degradation of DON are 37–47 °C and a pH of 6–10 in WCA medium containing 50% chicken intestinal extract. Besides DON detoxification, D-G6 also produces equol (EQL) from daidzein (DZN), which shows high estrogenic activity, and prevents estrogen-dependent and age-related diseases effectively. Furthermore, the genome of D-G6 was sequenced and characterized. Thirteen genes that show potential for DON de-epoxidation were identified via comparative genomics. In conclusion, a novel bacterium that exhibits the dual function of detoxifying DON and producing the beneficial natural estrogen analogue, EQL, was identified.
Collapse
|
29
|
Uhlig S, Ivanova L, Miles CO. Oxidative Release of Thiol-Conjugated Forms of the Mycotoxin 4-Deoxynivalenol. Chem Res Toxicol 2020; 33:515-521. [PMID: 31867960 DOI: 10.1021/acs.chemrestox.9b00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin that is produced by several species of Fusarium, which may infect grain crops. DON, as well as other type-B trichothecenes, contain an α,β-unsaturated carbonyl group that may react with sulfhydryl groups in, for example, amino acids and peptides. Such conjugates have been shown to occur in plants. Nucleophilic addition of thiols to the conjugated double bond in DON afforded several isomeric reaction products, and the thermodynamically favored isomers of DON-10-cysteine and DON-10-glutathione have been prepared and characterized previously. This study reports the preparation and characterization of the kinetically favored DON-10-cysteine isomer. We subsequently studied and compared the rate of the deconjugation reaction of the two DON-10-cysteine isomers and the thermodynamically favored DON-10-glutathione adduct. The deconjugation rate of the thermodynamically favored thiol conjugates was slow with half-lives of weeks even at pH 10.7, while the kinetically favored DON-10-cysteine isomer deconjugated within a few hours, affording free DON. We adapted a simple and rapid oxidation protocol in which the sulfide linkage was oxidized to a sulfoxide or sulfone that, when treated with the base, rapidly eliminated the adducted thiol as its sulfenate or sulfinate to afford free DON. The deconjugation reactions of the sulfoxides and sulfones of thermodynamically favored DON-10-thiols were complete within hours or minutes at pH 10.7, respectively. The increase in deconjugation rates for the kinetically favored DON-10-cysteine were less dramatic. Oxidation of sulfides to sulfoxides is known to occur in vivo, and thus, our data show that thiol-conjugated DON might become bioavailable via sulfide oxidation followed by elimination to regenerate DON. The oxidation-elimination approach could also be useful for the indirect quantification of DON-10-thiol conjugates in plant and animal tissues.
Collapse
Affiliation(s)
- Silvio Uhlig
- Toxinology Research Group , Norwegian Veterinary Institute , Ullevålsveien 68 , 0454 Oslo , Norway
| | - Lada Ivanova
- Toxinology Research Group , Norwegian Veterinary Institute , Ullevålsveien 68 , 0454 Oslo , Norway
| | - Christopher O Miles
- Biotoxin Metrology , National Research Council , 1411 Oxford Street , Halifax , NS B3H 3Z1 , Canada
| |
Collapse
|
30
|
Battilani P, Palumbo R, Giorni P, Dall’Asta C, Dellafiora L, Gkrillas A, Toscano P, Crisci A, Brera C, De Santis B, Rosanna Cammarano R, Della Seta M, Campbell K, Elliot C, Venancio A, Lima N, Gonçalves A, Terciolo C, Oswald IP. Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach:. ACTA ACUST UNITED AC 2020. [DOI: 10.2903/sp.efsa.2020.en-1757] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
32
|
Doppler M, Kluger B, Bueschl C, Steiner B, Buerstmayr H, Lemmens M, Krska R, Adam G, Schuhmacher R. Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. FRONTIERS IN PLANT SCIENCE 2019; 10:1137. [PMID: 31736983 PMCID: PMC6831647 DOI: 10.3389/fpls.2019.01137] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
The major Fusarium mycotoxin deoxynivalenol (DON) is a virulence factor in wheat and has also been shown to induce defense responses in host plant tissue. In this study, global and tracer labeling with 13C were combined to annotate the overall metabolome of wheat spikes and to evaluate the response of phenylalanine-related pathways upon treatment with DON. At anthesis, spikes of resistant and susceptible cultivars as well as two related near isogenic wheat lines (NILs) differing in the presence/absence of the major resistance QTL Fhb1 were treated with 1 mg DON or water (control), and samples were collected at 0, 12, 24, 48, and 96 h after treatment (hat). A total of 172 Phe-derived wheat constituents were detected with our untargeted approach employing 13C-labeled phenylalanine and subsequently annotated as flavonoids, lignans, coumarins, benzoic acid derivatives, hydroxycinnamic acid amides (HCAAs), as well as peptides. Ninety-six hours after the DON treatment, up to 30% of the metabolites biosynthesized from Phe showed significantly increased levels compared to the control samples. Major metabolic changes included the formation of precursors of compounds implicated in cell wall reinforcement and presumed antifungal compounds. In addition, also dipeptides, which presumably are products of proteolytic degradation of truncated proteins generated in the presence of the toxin, were significantly more abundant upon DON treatment. An in-depth comparison of the two NILs with correlation clustering of time course profiles revealed some 70 DON-responsive Phe derivatives. While several flavonoids had constitutively different abundance levels between the two NILs differing in resistance, other Phe-derived metabolites such as HCAAs and hydroxycinnamoyl quinates were affected differently in the two NILs after treatment with DON. Our results suggest a strong activation of the general phenylpropanoid pathway and that coumaroyl-CoA is mainly diverted towards HCAAs in the presence of Fhb1, whereas the metabolic route to monolignol(-conjugates), lignans, and lignin seems to be favored in the absence of the Fhb1 resistance quantitative trait loci.
Collapse
Affiliation(s)
- Maria Doppler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Bernhard Kluger
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
33
|
Benkerroum N. Retrospective and Prospective Look at Aflatoxin Research and Development from a Practical Standpoint. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3633. [PMID: 31569703 PMCID: PMC6801849 DOI: 10.3390/ijerph16193633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Among the array of structurally and toxicologically diverse mycotoxins, aflatoxins have attracted the most interest of scientific research due to their high toxicity and incidence in foods and feeds. Despite the undeniable progress made in various aspects related to aflatoxins, the ultimate goal consisting of reducing the associated public health risks worldwide is far from being reached due to multiplicity of social, political, economic, geographic, climatic, and development factors. However, a reasonable degree of health protection is attained in industrialized countries owing to their scientific, administrative, and financial capacities allowing them to use high-tech agricultural management systems. Less fortunate situations exist in equatorial and sub-equatorial developing countries mainly practicing traditional agriculture managed by smallholders for subsistence, and where the climate is suitable for mould growth and aflatoxin production. This situation worsens due to climatic change producing conditions increasingly suitable for aflatoxigenic mould growth and toxin production. Accordingly, it is difficult to harmonize the regulatory standards of aflatoxins worldwide, which prevents agri-foods of developing countries from accessing the markets of industrialized countries. To tackle the multi-faceted aflatoxin problem, actions should be taken collectively by the international community involving scientific research, technological and social development, environment protection, awareness promotion, etc. International cooperation should foster technology transfer and exchange of pertinent technical information. This review presents the main historical discoveries leading to our present knowledge on aflatoxins and the challenges that should be addressed presently and in the future at various levels to ensure higher health protection for everybody. In short, it aims to elucidate where we come from and where we should go in terms of aflatoxin research/development.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry, Macdonald-Stewart Building, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
34
|
Tucker JR, Badea A, Blagden R, Pleskach K, Tittlemier SA, Fernando WGD. Deoxynivalenol-3-Glucoside Content Is Highly Associated with Deoxynivalenol Levels in Two-Row Barley Genotypes of Importance to Canadian Barley Breeding Programs. Toxins (Basel) 2019; 11:E319. [PMID: 31195591 PMCID: PMC6628427 DOI: 10.3390/toxins11060319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023] Open
Abstract
Barley (Hordeum vulgare L.) is a multipurpose crop that can be harvested as grain or cut prior to maturity for use as forage. Fusarium head blight (FHB) is a devastating disease of barley that reduces quality of grain. FHB can also result in the accumulation of mycotoxins such as deoxynivalenol (DON). Breeding FHB resistant varieties has been a long-term goal of many barley-producing countries, including Canada. While the genetic basis of DON detoxification via production of less-phytotoxic conjugates such as DON-3-glucoside (DON3G) is well documented in barley, little information exists in reference to varietal response. Over two years, 16 spring, two-row barley genotypes, of importance to western Canadian barley breeding programs, were grown as short-rows and inoculated following spike emergence with a Fusarium graminearum conidia suspension. Half of the plots were harvested at soft dough stage and then dissected into rachis and grain components, whereas the remainder was harvested at maturity. Multiple Fusarium-mycotoxins were assayed using liquid chromatography-mass spectrometry. Mycotoxin content was elevated at the earlier harvest point, especially in the rachis tissue. DON3G constituted a significant percentage (26%) of total trichothecene content and thus its co-occurrence with DON should be considered by barley industries. DON3G was highly correlated with DON and 3-acetyl-deoxynivalenol (3ADON). The ratio of D3G/DON exhibited consistency across genotypes, however more-resistant genotypes were characterized by a higher ratio at the soft-dough stage followed by a decrease at maturity. Plant breeding practices that use DON content as a biomarker for resistance would likely result in the development of barley cultivars with lower total DON-like compounds.
Collapse
Affiliation(s)
- James R Tucker
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, R.R. 3, Brandon, MB R7A 5Y3, Canada.
- Department of Plant Science, 66 Dafoe Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, R.R. 3, Brandon, MB R7A 5Y3, Canada.
| | - Richard Blagden
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - Kerri Pleskach
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - Sheryl A Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 303 Main St., Winnipeg, MB R3C 3G8, Canada.
| | - W G Dilantha Fernando
- Department of Plant Science, 66 Dafoe Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
35
|
Mandalà G, Tundo S, Francesconi S, Gevi F, Zolla L, Ceoloni C, D'Ovidio R. Deoxynivalenol Detoxification in Transgenic Wheat Confers Resistance to Fusarium Head Blight and Crown Rot Diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:583-592. [PMID: 30422742 DOI: 10.1094/mpmi-06-18-0155-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fusarium diseases, including Fusarium head blight (FHB) and Fusarium crown rot (FCR), reduce crop yield and grain quality and are major agricultural problems worldwide. These diseases also affect food safety through fungal production of hazardous mycotoxins. Among these, deoxynivalenol (DON) acts as a virulence factor during pathogenesis on wheat. The principal mechanism underlying plant tolerance to DON is glycosylation by specific uridine diphosphate-dependent glucosyltransferases (UGTs), through which DON-3-β-d-glucoside (D3G) is produced. In this work, we tested whether DON detoxification by UGT could confer to wheat a broad-spectrum resistance against Fusarium graminearum and F. culmorum. These widespread Fusarium species affect different plant organs and developmental stages in the course of FHB and FCR. To assess DON-detoxification potential, we produced transgenic durum wheat plants constitutively expressing the barley HvUGT13248 and bread wheat plants expressing the same transgene in flower tissues. When challenged with F. graminearum, FHB symptoms were reduced in both types of transgenic plants, particularly during early to mid-infection stages of the infection progress. The transgenic durum wheat displayed much greater DON-to-D3G conversion ability and a considerable decrease of total DON+D3G content in flour extracts. The transgenic bread wheat exhibited a UGT dose-dependent efficacy of DON detoxification. In addition, we showed, for the first time, that DON detoxification limits FCR caused by F. culmorum. FCR symptoms were reduced throughout the experiment by nearly 50% in seedlings of transgenic plants constitutively expressing HvUGT13248. Our results demonstrate that limiting the effect of the virulence factor DON via in planta glycosylation restrains FHB and FCR development. Therefore, ability for DON detoxification can be a trait of interest for wheat breeding targeting FHB and FCR resistance.
Collapse
Affiliation(s)
- Giulia Mandalà
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvio Tundo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Sara Francesconi
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Federica Gevi
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lello Zolla
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Renato D'Ovidio
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
36
|
Zhang Z, Nie D, Fan K, Yang J, Guo W, Meng J, Zhao Z, Han Z. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Crit Rev Food Sci Nutr 2019; 60:1523-1537. [DOI: 10.1080/10408398.2019.1578944] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
37
|
Kuzmanović L, Mandalà G, Tundo S, Ciorba R, Frangella M, Ruggeri R, Rossini F, Gevi F, Rinalducci S, Ceoloni C. Equipping Durum Wheat- Thinopyrum ponticum Recombinant Lines With a Thinopyrum elongatum Major QTL for Resistance to Fusarium Diseases Through a Cytogenetic Strategy. FRONTIERS IN PLANT SCIENCE 2019; 10:1324. [PMID: 31695716 PMCID: PMC6817583 DOI: 10.3389/fpls.2019.01324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 05/08/2023]
Abstract
Prompted by recent changes in climate trends, cropping areas, and management practices, Fusarium head blight (FHB), a threatening disease of cereals worldwide, is also spreading in unusual environments, where bread wheat (BW) and durum wheat (DW) are largely cultivated. The scarcity of efficient resistance sources within adapted germplasm is particularly alarming for DW, mainly utilized for human consumption, which is therefore at high risk of kernel contamination by health-dangerous mycotoxins (e.g., deoxynivalenol = DON). To cope with this scenario, we looked outside the wheat primary gene pool and recently transferred an exceptionally effective FHB resistance QTL (Fhb-7EL) from Thinopyrum elongatum 7EL chromosome arm onto a Thinopyrum ponticum 7el1L arm segment, containing additional valuable genes (including Lr19 for leaf rust resistance and Yp for yellow pigment content), distally inserted onto 7DL of BW lines. Two such lines were crossed with two previously developed DW-Th. ponticum recombinants, having 7el1L distal portions on 7AL arms. Genomic in situ hybridization (GISH) analysis showed homologous pairing, which is enabled by 7el1L segments common to the BW and DW recombinant chromosomes, to occur with 42-78% frequency, depending on the shared 7el1L amount. Aided by 7EL/7el1L-linked markers, 7EL+7el1L tetraploid recombinant types were isolated in BC1 progenies to DW of all cross combinations. Homozygous 7EL+7el1L recombinant plants and null segregates selected in BC2F2 progenies were challenged by Fusarium graminearum spike inoculation to verify the Fhb-7EL efficacy in DW. Infection outcomes confirmed previous observations in BW, with >90% reduction of disease severity associated with Fhb-7EL presence vs. its absence. The same differential effect was detected on seed set and weight of inoculated spikes, with genotypes lacking Fhb-7EL having ∼80% reduction compared with unaffected values of Fhb-7EL carriers. In parallel, DON content in flour extracts of resistant recombinants averaged 0.67 ppm, a value >800 times lower than that of susceptible controls. Furthermore, as observed in BW, the same Fhb-7EL also provided the novel DW recombinants with resistance to Fusarium crown rot (∼60% symptom reduction) as from seedling infection with Fusarium culmorum. Through alien segment stacking, we succeeded in equipping DW with a very effective barrier against different Fusarium diseases and other positive attributes for crop security and safety.
Collapse
Affiliation(s)
- Ljiljana Kuzmanović
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giulia Mandalà
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Silvio Tundo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Ciorba
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Matteo Frangella
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Ruggeri
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Rossini
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
- *Correspondence: Carla Ceoloni,
| |
Collapse
|
38
|
Góral T, Wiśniewska H, Ochodzki P, Nielsen LK, Walentyn-Góral D, Stępień Ł. Relationship between Fusarium Head Blight, Kernel Damage, Concentration of Fusarium Biomass, and Fusarium Toxins in Grain of Winter Wheat Inoculated with Fusarium culmorum. Toxins (Basel) 2018; 11:E2. [PMID: 30577649 PMCID: PMC6357003 DOI: 10.3390/toxins11010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Winter wheat lines were evaluated for their reaction to Fusarium head blight (FHB) after inoculation with Fusarium culmorum in two field experiments. A mixture of two F. culmorum chemotypes was applied (3ADON-deoxynivalenol producing, NIV-nivalenol producing). Different types of resistance were evaluated, including head infection, kernel damage, Fusarium biomass content and trichothecenes B (deoxynivalenol (DON), and nivalenol (NIV)) accumulation in grain. The aim of the study was to find relationships between different types of resistance. Head infection (FHB index) and Fusarium damaged kernels (FDK) were visually scored. Fusarium biomass was analysed using real-time PCR. Trichothecenes B accumulation was analysed using gas chromatography. Wheat lines differ in their reaction to inoculation for all parameters describing FHB resistance. We found a wide variability of FHB indexes, FDK, and Fusarium biomass content. Both toxins were present. DON content was about 60% higher than NIV and variability of this proportion between lines was observed. Significant correlation was found between head infection symptoms and FDK. Head infection was correlated with F. culmorum biomass and NIV concentration in grain. No correlation was found between the FHB index and DON concentration. Similarly, FDK was not correlated with DON content, but it was with NIV content; however, the coefficients were higher than for the FHB index. Fusarium biomass amount was positively correlated with both toxins as well as with the FHB index and FDK. Environmental conditions significantly influenced the DON/NIV ratio in grain. In locations where less F. culmorum biomass was detected, the DON amount was higher than NIV, while in locations where more F. culmorum biomass was observed, NIV prevailed over DON.
Collapse
Affiliation(s)
- Tomasz Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute⁻National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Halina Wiśniewska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute⁻National Research Institute, Radzików, 05-870 Błonie, Poland.
| | | | - Dorota Walentyn-Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute⁻National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
39
|
Gatti M, Choulet F, Macadré C, Guérard F, Seng JM, Langin T, Dufresne M. Identification, Molecular Cloning, and Functional Characterization of a Wheat UDP-Glucosyltransferase Involved in Resistance to Fusarium Head Blight and to Mycotoxin Accumulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1853. [PMID: 30619419 PMCID: PMC6300724 DOI: 10.3389/fpls.2018.01853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
Plant uridine diphosphate (UDP)-glucosyltransferases (UGT) catalyze the glucosylation of xenobiotic, endogenous substrates and phytotoxic agents produced by pathogens such as mycotoxins. The Bradi5g03300 UGT-encoding gene from the model plant Brachypodium distachyon was previously shown to confer tolerance to the mycotoxin deoxynivalenol (DON) through glucosylation into DON 3-O-glucose (D3G). This gene was shown to be involved in early establishment of quantitative resistance to Fusarium Head Blight, a major disease of small-grain cereals. In the present work, using a translational biology approach, we identified and characterized a wheat candidate gene, Traes_2BS_14CA35D5D, orthologous to Bradi5g03300 on the short arm of chromosome 2B of bread wheat (Triticum aestivum L.). We showed that this UGT-encoding gene was highly inducible upon infection by a DON-producing Fusarium graminearum strain while not induced upon infection by a strain unable to produce DON. Transformation of this wheat UGT-encoding gene into B. distachyon revealed its ability to confer FHB resistance and root tolerance to DON as well as to potentially conjugate DON into D3G in planta and its impact on total DON reduction. In conclusion, we provide a UGT-encoding candidate gene to include in selection process for FHB resistance.
Collapse
Affiliation(s)
- Miriam Gatti
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Frédéric Choulet
- Unité Génétique Diversité et Ecophysiologie des Céréales INRA, UMR1095, Clermont-Ferrand, France
| | - Catherine Macadré
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Florence Guérard
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Jean-Marc Seng
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Thierry Langin
- Unité Génétique Diversité et Ecophysiologie des Céréales INRA, UMR1095, Clermont-Ferrand, France
| | - Marie Dufresne
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
40
|
Yesterday masked, today modified; what do mycotoxins bring next? Arh Hig Rada Toksikol 2018; 69:196-214. [DOI: 10.2478/aiht-2018-69-3108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi in crops worldwide. In (micro)organisms such as plants, fungi, bacteria, or animals they may be further metabolised and modified, but this is also true for food processing, which may lead to a wide range of masked mycotoxin forms. These often remain undetected by analytical methods and are the culprits for underestimates in risk assessments. Furthermore, once ingested, modified mycotoxins can convert back to their parent forms. This concern has raised the need for analytical methods that can detect and quantify modified mycotoxins as essential for accurate risk assessment. The promising answer is liquid chromatography-mass spectrometry. New masked mycotoxin forms are now successfully detected by iontrap, time-of-flight, or high-resolution orbitrap mass spectrometers. However, the toxicological relevance of modified mycotoxins has not been fully clarified.
Collapse
|
41
|
Woelflingseder L, Del Favero G, Blažević T, Heiss EH, Haider M, Warth B, Adam G, Marko D. Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicol Lett 2018; 299:104-117. [PMID: 30244016 DOI: 10.1016/j.toxlet.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
DON, NX-3 and butenolide (BUT) are secondary metabolites formed by Fusarium graminearum. Evidence for formation of DON-glutathione adducts exists in plants, and also in human liver (HepG2) cells mass spectrometric evidence for GSH-adduct formation was reported. NX-3 is a DON derivative lacking structural features for Thiol-Michael addition, while BUT has the structural requirements (conjugated double bond and keto group). In the present study, we addressed whether these structural differences affect levels of intracellular reactive oxygen species in HepG2 cells, and if intracellular GSH levels influence toxic effects induced by DON, NX-3 and BUT. Pre-treatment with an inhibitor of GSH bio-synthesis, L-buthionine-[S,R]-sulfoximine, aggravated substantially BUT-induced cytotoxicity (≥50 μM, 24 h), but only marginally affected the cytotoxicity of DON and NX-3 indicating that GSH-mediated detoxification is of minor importance in HepG2 cells. We further investigated whether BUT, a compound inducing alone low oral toxicity, might affect the toxicity of DON. Under different experimental designs with respect to pre- and/or co-incubations, BUT was found to contribute to the combinatorial cytotoxicity, exceeding the toxic effect of DON alone. The observed combinatorial effects underline the potential contribution of secondary metabolites like BUT, considered to be alone of low toxicological relevance, to the toxicity of DON or structurally related trichothecenes, arguing for further studies on the toxicological relevance of naturally occurring mixtures.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Tina Blažević
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Maximilian Haider
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| |
Collapse
|
42
|
Righetti L, Dellafiora L, Cavanna D, Rolli E, Galaverna G, Bruni R, Suman M, Dall’Asta C. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry. Anal Bioanal Chem 2018; 410:5583-5592. [DOI: 10.1007/s00216-018-1066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 11/27/2022]
|
43
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
44
|
Michlmayr H, Varga E, Malachová A, Fruhmann P, Piątkowska M, Hametner C, Šofrová J, Jaunecker G, Häubl G, Lemmens M, Berthiller F, Adam G. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides. Toxins (Basel) 2018; 10:E111. [PMID: 29509722 PMCID: PMC5869399 DOI: 10.3390/toxins10030111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/17/2022] Open
Abstract
Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-D-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Alexandra Malachová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
- CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH, Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria.
| | - Marta Piątkowska
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Jana Šofrová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | | | - Georg Häubl
- Romerlabs Division Holding GmbH, Technopark 1, 3430 Tulln, Austria.
| | - Marc Lemmens
- Biotechnology in Plant Production, IFA-Tulln, BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
| |
Collapse
|
45
|
Malachová A, Stránská M, Václavíková M, Elliott CT, Black C, Meneely J, Hajšlová J, Ezekiel CN, Schuhmacher R, Krska R. Advanced LC-MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal Bioanal Chem 2018; 410:801-825. [PMID: 29273904 PMCID: PMC5775372 DOI: 10.1007/s00216-017-0750-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
Liquid chromatography (LC) coupled with mass spectrometry (MS) is widely used for the determination of mycotoxins in cereals and cereal-based products. In addition to the regulated mycotoxins, for which official control is required, LC-MS is often used for the screening of a large range of mycotoxins and/or for the identification and characterization of novel metabolites. This review provides insight into the LC-MS methods used for the determination of co-occurring mycotoxins with special emphasis on multiple-analyte applications. The first part of the review is focused on targeted LC-MS approaches using cleanup methods such as solid-phase extraction and immunoaffinity chromatography, as well as on methods based on minimum cleanup (quick, easy, cheap, effective, rugged, and safe; QuEChERS) and dilute and shoot. The second part of the review deals with the untargeted determination of mycotoxins by LC coupled with high-resolution MS, which includes also metabolomics techniques to study the fate of mycotoxins in plants.
Collapse
Affiliation(s)
- Alexandra Malachová
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Milena Stránská
- Department of Food Analysis & Nutrition, Faculty of Food & Biochemical Technology, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Marta Václavíková
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Connor Black
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Jana Hajšlová
- Department of Food Analysis & Nutrition, Faculty of Food & Biochemical Technology, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, 121103, Nigeria
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria.
| |
Collapse
|
46
|
Sharma P, Gangola MP, Huang C, Kutcher HR, Ganeshan S, Chibbar RN. Single Nucleotide Polymorphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain. PHYTOPATHOLOGY 2018; 108:124-132. [PMID: 29063821 DOI: 10.1094/phyto-04-17-0159-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An in vitro spike culture method was optimized to evaluate Fusarium head blight (FHB) resistance in wheat (Triticum aestivum) and used to screen a population of ethyl methane sulfonate treated spike culture-derived variants (SCDV). Of the 134 SCDV evaluated, the disease severity score of 47 of the variants was ≤30%. Single nucleotide polymorphisms (SNP) in the UDP-glucosyltransferase (UGT) genes, TaUGT-2B, TaUGT-3B, and TaUGT-EST, differed between AC Nanda (an FHB-susceptible wheat variety) and Sumai-3 (an FHB-resistant wheat cultivar). SNP at 450 and 1,558 bp from the translation initiation site in TaUGT-2B and TaUGT-3B, respectively were negatively correlated with FHB severity in the SCDV population, whereas the SNP in TaUGT-EST was not associated with FHB severity. Fusarium graminearum strain M7-07-1 induced early expression of TaUGT-2B and TaUGT-3B in FHB-resistant SCDV lines, which were associated with deoxynivalenol accumulation and reduced FHB disease progression. At 8 days after inoculation, deoxynivalenol concentration varied from 767 ppm in FHB-resistant variants to 2,576 ppm in FHB-susceptible variants. The FHB-resistant SCDV identified can be used as new sources of FHB resistance in wheat improvement programs.
Collapse
Affiliation(s)
- Pallavi Sharma
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Manu P Gangola
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Chen Huang
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - H Randy Kutcher
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Seedhabadee Ganeshan
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Ravindra N Chibbar
- All authors: Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
47
|
Kim SH, Vujanovic V. Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica. AMB Express 2017; 7:145. [PMID: 28687037 PMCID: PMC5500597 DOI: 10.1186/s13568-017-0446-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 11/10/2022] Open
Abstract
A fungus Sphaerodes mycoparasitica SMCD 2220-01 is a host specific mycoparasite against plant pathogenic Fusarium species. Fusarium spp. are producing a plethora of mycotoxins including zearalenone (ZEN), deoxynivalenol (DON) and its acetylated derivatives, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON). The SMCD 2220-01 strain substantially reduced DON, 3-ADON, 15-ADON, and ZEN production capacity in co-culture system. Degradation and detoxification of the pure mycotoxins were also achieved when exposed to SMCD 2220-01 in shake flasks. The thin layer chromatography (TLC) combined with high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) revealed that the amount of mycotoxins exposed to SMCD 2220-01 was considerably reduced compared to control. ZEN level was decreased by 97%, while zearalenone sulfate ([M-H+SO3]- at m/z 397.1052 C18H21O8S1) was detected as a metabolite of ZEN converted to less toxic molecule by the mycoparasite. Further, the mycoparasite appeared to degrade DON, 3-ADON, and 15-ADON by 89, 58, and 72%, respectively. The deoxynivalenol sulfate ([M-COCH3+SO3-CH2O]- at m/z 345.2300 C14H17O8S1) was detected as a less toxic metabolic product of DON and 3-ADON. These findings report the SMCD 2220-01 effectiveness to lower mycotoxins-producing capacities of Fusarium, degrade pure mycotoxins and transform them to less toxic metabolites, opening new opportunities for research and innovation for detoxification of mycotoxins.
Collapse
|
48
|
Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem Toxicol 2017; 111:189-205. [PMID: 29158197 DOI: 10.1016/j.fct.2017.11.021] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
Modified mycotoxins are metabolites that normally remain undetected during the testing for parent mycotoxin. These modified forms of mycotoxins can be produced by fungi or generated as part of the defense mechanism of the infected plant. In some cases, they are formed during food processing. The various processing steps greatly affect mycotoxin levels present in the final product (free and modified), although the results are still controversial regarding the increase or reduction of these levels, being strongly related to the type of process and the composition of the food in question. Evidence exists that some modified mycotoxins can be converted into the parent mycotoxin during digestion in humans and animals, potentially leading to adverse health effects. Some of these formed compounds can be even more toxic, in case they have higher bioaccessibility and bioavailability than the parent mycotoxin. The modified mycotoxins can occur simultaneously with the free mycotoxin, and, in some cases, the concentration of modified mycotoxins may exceed the level of free mycotoxin in processed foods. Even though toxicological data are scarce, the possibility of modified mycotoxin conversion to its free form may result in a potential risk to human and animal health. This review aims to update information on the formation, detection, occurrence, and toxic effects caused by modified mycotoxin.
Collapse
|
49
|
Selectivity of commercial immunoaffinity columns for modified forms of the mycotoxin 4-deoxynivalenol (DON). J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:322-326. [PMID: 28780485 DOI: 10.1016/j.jchromb.2017.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/25/2017] [Accepted: 07/09/2017] [Indexed: 11/20/2022]
Abstract
Commercial immunoaffinity columns (IACs) are today available for all major mycotoxins. However, manufacturers give usually no or very limited information on the epitope, i.e. the specific part of the toxin molecule that binds to the antibody. 4-Deoxynivalenol (DON) is a trichothecene mycotoxin that is produced by plant pathogenic field fungi and is regulated in many countries worldwide. DON was shown to be biotransformed via different metabolic pathways, and thus many different biotransformation products may be found in different products or organisms. In addition, several structurally similar mycotoxins may co-occur with DON. We compared five commercial IACs for their retention of a range of DON derivatives modified in the C-3, C-8, C-10, C-13 or C-15 positions, as well as nivalenol (NIV) and T-2 tetraol. The DON-derivatives were deepoxy-DON, DON 3-, 8- and 15-O-β-d-glucuronides, 3- and 15-O-acetyl-DON, DON-3-O-β-d-glucoside, 10- and 13-cysteinyl-adducts of DON, and the 13-mercaptoethanol and 10,13-dimercaptoethanol adducts of DON. The C-3 derivatives and deepoxy-DON were retained by most of the columns. Only one of the five IACs retained C-15 and C-8 derivatives, but it did not retain C-3 derivatives or deepoxy-DON. The antibodies in two of the IACs bound C-10 conjugates, but C-13 derivatives were not retained by any of the columns. This study shows that all of the antibodies in commercial IACs bind a range of DON derivatives, especially those that are modified at C-3. NIV was retained by three of the columns, and T-2 tetraol was partially retained by one IAC.
Collapse
|
50
|
Michlmayr H, Varga E, Lupi F, Malachová A, Hametner C, Berthiller F, Adam G. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077. Toxins (Basel) 2017; 9:E58. [PMID: 28208765 PMCID: PMC5331437 DOI: 10.3390/toxins9020058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023] Open
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s-1·mM-1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s-1·mM-1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Francesca Lupi
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via-Napoli 25, 71122 Foggia, Italy.
| | - Alexandra Malachová
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Franz Berthiller
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
| |
Collapse
|