1
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
2
|
Yang DZ, Tang J, Cheng YL, Yang YS, Wei JF, Sun JL, Xu ZQ. Identification and Characterization of Pectate Lyase as a Novel Allergen in Artemisia sieversiana Pollen. Int Arch Allergy Immunol 2024; 185:1019-1032. [PMID: 38897183 DOI: 10.1159/000539375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Artemisia species are widely spread in north hemisphere. Artemisia sieversiana pollen is one of the common pollen allergens in the north of China. At present, seven allergens were identified and had been listed officially from A. sieversiana pollen, but the remaining allergens are still insufficiently studied, which need to be found. METHODS Pectate lyase was purified from the extracts of A. sieversiana pollen by anion exchange, size exclusion, and HPLC-hydrophobic interaction chromatography. The gene of A. sieversiana pectate lyase (Art si pectate lyase) was cloned and expressed in Escherichia coli. The enzyme activity and circular dichroism (CD) spectrum of natural and recombinant proteins were analyzed. The allergenicity of Art si pectate lyase was characterized by enzyme-linked immunosorbent assay (ELISA), Western blot, inhibition ELISA, and basophil activation test. The allergen's physicochemical properties, three-dimensional structure, sequence profiles with homologous allergens and phylogenetic tree were analyzed by in silico methods. RESULTS Natural Art si pectate lyase (nArt si pectate lyase) was purified from A. sieversiana pollen extracts by three chromatographic strategies. The cDNA sequence of Art si pectate lyase had a 1191-bp open reading frame encoding 396 amino acids. Both natural and recombinant pectate lyase (rArt si pectate lyase) exhibited similar CD spectrum, and nArt si pectate lyase had higher enzymatic activity. Moreover, the specific immunoglobulin E (IgE) binding rate against nArt si pectate lyase and rArt si pectate lyase was determined as 40% (6/15) in patients' serum with Artemisia species pollen allergy by ELISA. The nArt si pectate lyase and rArt si pectate lyase could inhibit 76.11% and 47.26% of IgE binding activities to the pollen extracts, respectively. Art si pectate lyase was also confirmed to activate patients' basophils. Its structure contains a predominant motif of classic parallel helical core, consisting of three parallel β-sheets, and two highly conserved features (vWiDH, RxPxxR) which may contribute to pectate lyase activity. Moreover, Art si pectate lyase shared the highest sequence identity of 73.0% with Art v 6 among currently recognized pectate lyase allergen, both were clustered into the same branch in the phylogenetic tree. CONCLUSION In this study, pectate lyase was identified and comprehensively characterized as a novel allergen in A. sieversiana pollen. The findings enriched the allergen information for this pollen and promoted the development of component-resolved diagnosis and molecular therapy of A. sieversiana pollen allergy.
Collapse
Affiliation(s)
- De-Zheng Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jian Tang
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ya-Li Cheng
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ji-Fu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhi-Qiang Xu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Buzan MR, Grijincu M, Zbîrcea LE, Haidar L, Tamaș TP, Cotarcă MD, Tănasie G, Weber M, Babaev E, Stolz F, Valenta R, Păunescu V, Panaitescu C, Chen KW. Insect Cell-Expressed Major Ragweed Allergen Amb a 1.01 Exhibits Similar Allergenic Properties to Its Natural Counterpart from Common Ragweed Pollen. Int J Mol Sci 2024; 25:5175. [PMID: 38791214 PMCID: PMC11121294 DOI: 10.3390/ijms25105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Common ragweed pollen allergy has become a health burden worldwide. One of the major allergens in ragweed allergy is Amb a 1, which is responsible for over 90% of the IgE response in ragweed-allergic patients. The major allergen isoform Amb a 1.01 is the most allergenic isoform in ragweed pollen. So far, no recombinant Amb a 1.01 with similar allergenic properties to its natural counterpart (nAmb a 1.01) has been produced. Hence, this study aimed to produce a recombinant Amb a 1.01 with similar properties to the natural isoform for improved ragweed allergy management. Amb a 1.01 was expressed in insect cells using a codon-optimized DNA construct with a removable N-terminal His-Tag (rAmb a 1.01). The recombinant protein was purified by affinity chromatography and physicochemically characterized. The rAmb a 1.01 was compared to nAmb a 1.01 in terms of the IgE binding (enzyme-linked immunosorbent assay (ELISA), immunoblot) and allergenic activity (mediator release assay) in well-characterized ragweed-allergic patients. The rAmb a 1.01 exhibited similar IgE reactivity to nAmb a 1.01 in different IgE-binding assays (i.e., IgE immunoblot, ELISA, quantitative ImmunoCAP inhibition measurements). Furthermore, the rAmb a 1.01 showed comparable dose-dependent allergenic activity to nAmb a 1.01 regarding basophil activation. Overall, the results showed the successful expression of an rAmb a 1.01 with comparable characteristics to the corresponding natural isoform. Our findings provide the basis for an improvement in ragweed allergy research, diagnosis, and immunotherapy.
Collapse
Affiliation(s)
- Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
| | - Tudor-Paul Tamaș
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
| | - Monica-Daniela Cotarcă
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elijahu Babaev
- Vienna Competence Center, Biomay AG, 1090 Vienna, Austria
| | - Frank Stolz
- Vienna Competence Center, Biomay AG, 1090 Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Kuan-Wei Chen
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| |
Collapse
|
4
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Hamasaki T, Teruya K, Katakura Y. Effect of Hita Tenryo Water™, a natural mineral water, on allergic symptoms induced by cedar in mice. Heliyon 2024; 10:e26915. [PMID: 38444511 PMCID: PMC10912610 DOI: 10.1016/j.heliyon.2024.e26915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
The number of patients with allergies to pollen and food is increasing worldwide. In Japan, the prevalence of cedar pollinosis, a type I allergy, is nearly 30% and accounts of hay fever are rising. A potential natural remedy for these allergic diseases may be Hita Tenryo Water™ (referred to simply as Hita Tenryo water), water that is pumped from deep underground in the Hita region of Oita, Japan, which has been the subject of various research reports. Here, we investigated the potential of using Hita Tenryo water to suppress the onset of cedar pollinosis in a mouse model and explored the immunological mechanism of the suppression. Test model mice were given Hita Tenryo water ad libitum to drink and received intraperitoneal administration of (i) tap water (Hw1), (ii) 25% Hita Tenryo water (Hw2) or (iii) 100% Hita Tenryo (Hw3). There were no significant differences in body weight change, feed intake, or water intake among the groups during the experimental period. We examined nose rubbing and sneezing as allergic symptoms. The frequency of rubbing and sneezing tended to decrease in the Hw1 and Hw2 group, and significantly decreased in the Hw3 group compared to control. Total IgE levels in serum were also significantly reduced in Hita Tenryo water intraperitoneal administration groups. In vitro examination of the rate of release of β-hexosaminidase from BL-2H3 cells showed that there were no significantly differences between Hita Tenryo water-treated and control cells. In addition, measurement of Th2-related cytokine levels in concanavalin A-stimulated peripheral blood mononuclear cells revealed a significant decrease in IL-4, IL-6, and IL-10 levels in medium (p < 0.01). In contrast, production of IFN-γ significantly increased (p < 0.01). These results indicate that Hita Tenryo water may alleviate and/or suppress allergic symptoms.
Collapse
Affiliation(s)
- Takeki Hamasaki
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiichro Teruya
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Katakura
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Grewling Ł, Ribeiro H, Antunes C, Apangu GP, Çelenk S, Costa A, Eguiluz-Gracia I, Galveias A, Gonzalez Roldan N, Lika M, Magyar D, Martinez-Bracero M, Ørby P, O'Connor D, Penha AM, Pereira S, Pérez-Badia R, Rodinkova V, Xhetani M, Šauliene I, Skjøth CA. Outdoor airborne allergens: Characterization, behavior and monitoring in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167042. [PMID: 37709071 DOI: 10.1016/j.scitotenv.2023.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.
Collapse
Affiliation(s)
- Łukasz Grewling
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Helena Ribeiro
- Department of Geosciences, Environment and Spatial Plannings of the Faculty of Sciences, University of Porto and Earth Sciences Institute (ICT), Portugal
| | - Celia Antunes
- Department of Medical and Health Sciences, School of Health and Human Development & ICT-Institute of Earth Sciences, IIFA, University of Évora, 7000-671 Évora, Portugal
| | | | - Sevcan Çelenk
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Ana Costa
- Department of Medical and Health Sciences, School of Health and Human Development & ICT-Institute of Earth Sciences, IIFA, University of Évora, 7000-671 Évora, Portugal
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga 29010, Spain
| | - Ana Galveias
- Department of Medical and Health Sciences, School of Health and Human Development & ICT-Institute of Earth Sciences, IIFA, University of Évora, 7000-671 Évora, Portugal
| | - Nestor Gonzalez Roldan
- Group of Biofunctional Metabolites and Structures, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany; Pollen Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mirela Lika
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Donát Magyar
- National Center for Public Health and Pharmacy, Budapest, Hungary
| | | | - Pia Ørby
- Department of Environmental Science, Danish Big Data Centre for Environment and Health (BERTHA) Aarhus University, Aarhus, Denmark
| | - David O'Connor
- School of Chemical Sciences, Dublin City University, Dublin D09 E432, Ireland
| | - Alexandra Marchã Penha
- Water Laboratory, School of Sciences and Technology, ICT-Institute of Earth Sciences, IIFA, University of Évora. 7000-671 Évora, Portugal
| | - Sónia Pereira
- Department of Geosciences, Environment and Spatial Plannings of the Faculty of Sciences, University of Porto and Earth Sciences Institute (ICT), Portugal
| | - Rosa Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain
| | | | - Merita Xhetani
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | | | | |
Collapse
|
7
|
Negi SS, Schein CH, Braun W. The updated Structural Database of Allergenic Proteins (SDAP 2.0) provides 3D models for allergens and incorporated bioinformatics tools. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100162. [PMID: 37781674 PMCID: PMC10509899 DOI: 10.1016/j.jacig.2023.100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 10/03/2023]
Abstract
Background Allergenic proteins can cause IgE-mediated adverse reactions in sensitized individuals. Although the sequences of many allergenic proteins have been identified, bioinformatics data analysis with advanced computational methods and modeling is needed to identify the basis for IgE binding and cross-reactivity. Objective We aim to present the features and use of the updated Structural Database of Allergenic Proteins 2.0 (SDAP 2.0) webserver, a unique, publicly available resource to compare allergens using specially designed computational tools and new high-quality 3-D models for most known allergens. Methods Previously developed and novel software tools for identifying cross-reactive allergens using sequence and structure similarity are implemented in SDAP 2.0. A comprehensive set of high-quality 3-D models of most allergens was generated with the state-of-the-art AlphaFold 2 software. A graphics tool enables the interactive visualization of IgE epitopes on experimentally determined and modeled 3-D structures. Results A user can search for allergens similar to a given input sequence with the FASTA algorithm or the window-based World Health Organization/International Union of Immunological Societies (WHO/IUIS) guidelines on safety concerns of novel food products. Peptides similar to known IgE epitopes can be identified with the property distance tool and conformational epitopes by the Cross-React method. The updated database contains 1657 manually curated sequences including all allergens from the IUIS database, 334 experimentally determined X-ray or NMR structures, and 1565 3-D models. Each allergen/isoallergen is classified according to its protein family. Conclusions SDAP provides access to the steadily increasing information on allergenic structures and epitopes with integrated bioinformatics tools to identify and analyze their similarities. In addition to serving the research and regulatory community, it provides clinicians with tools to identify potential coallergies in a sensitive patient and can help companies to design hypoallergenic foods and immunotherapies.
Collapse
Affiliation(s)
- Surendra S. Negi
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Tex
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Catherine H. Schein
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Tex
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Tex
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| |
Collapse
|
8
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Identification of Potential IgE-Binding Epitopes Contributing to the Cross-Reactivity of the Major Cupressaceae Pectate-Lyase Pollen Allergens (Group 1). ALLERGIES 2022. [DOI: 10.3390/allergies2030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pectate-lyase allergens, the group 1 of allergens from Cupressaceae pollen, consist of glycoproteins exhibiting an extremely well-conserved three-dimensional structure and sequential IgE-binding epitopes. Up to 10 IgE-binding epitopic regions were identified on the molecular surface, which essentially cluster at both extremities of the long, curved β-prism-shaped allergens. Most of these IgE-binding epitopes possess very similar conformations that provide insight into the IgE-binding cross-reactivity and cross-allergenicity commonly observed among Cupressaceae pollen allergens. Some of these epitopic regions coincide with putative N-glycosylation sites that most probably consist of glycotopes or cross-reactive carbohydrate determinants, recognized by the corresponding IgE antibodies from allergic patients. Pectate-lyase allergens of Cupressaceae pollen offer a nice example of structurally conserved allergens that are widely distributed in closely-related plants (Chamæcyparis, Cryptomeria, Cupressus, Hesperocyparis, Juniperus, Thuja) and responsible for frequent cross-allergenicity.
Collapse
|
10
|
Liu SH, Kazemi S, Karrer G, Bellaire A, Weckwerth W, Damkjaer J, Hoffmann O, Epstein MM. Influence of the environment on ragweed pollen and their sensitizing capacity in a mouse model of allergic lung inflammation. FRONTIERS IN ALLERGY 2022; 3:854038. [PMID: 35991309 PMCID: PMC9390857 DOI: 10.3389/falgy.2022.854038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Common ragweed (Ambrosia artemisiifolia) is an invasive plant with allergenic pollen. Due to environmental changes, ragweed pollen (RWP) airborne concentrations are predicted to quadruple in Europe by 2050 and more than double allergic sensitization of Europeans by 2060. We developed an experimental RWP model of allergy in BALB/c mice to evaluate how the number of RWP and how RWP collected from different geographical environments influence disease. We administered RWP six times over 3 weeks intranasally to the mice and then evaluated disease parameters 72 h later or allowed the mice to recover for at least 90 days before rechallenging them with RWP to elicit a disease relapse. Doses over 300 pollen grains induced lung eosinophilia. Higher doses of 3,000 and 30,000 pollen grains increased both eosinophils and neutrophils and induced disease relapses. RWP harvested from diverse geographical regions induced a spectrum of allergic lung disease from mild inflammation to moderate eosinophilic and severe mixed eosinophilic-neutrophilic lung infiltrates. After a recovery period, mice rechallenged with pollen developed a robust disease relapse. We found no correlation between Amb a 1 content, the major immunodominant allergen, endotoxin content, or RWP structure with disease severity. These results demonstrate that there is an environmental impact on RWP with clinical consequences that may underlie the increasing sensitization rates and the severity of pollen-induced disease exacerbation in patients. The multitude of diverse environmental factors governing distinctive patterns of disease induced by RWP remains unclear. Further studies are necessary to elucidate how the environment influences the complex interaction between RWP and human health.
Collapse
Affiliation(s)
- Shu-Hua Liu
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sahar Kazemi
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Karrer
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anke Bellaire
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | | | - Oskar Hoffmann
- Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Michelle M. Epstein
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Michelle M. Epstein
| |
Collapse
|
11
|
Buzan M, Zbîrcea L, Gattinger P, Babaev E, Stolz F, Valenta R, Păunescu V, Panaitescu C, Chen K. Complex IgE sensitization patterns in ragweed allergic patients: Implications for diagnosis and specific immunotherapy. Clin Transl Allergy 2022; 12:e12179. [PMID: 35813977 PMCID: PMC9254219 DOI: 10.1002/clt2.12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Ragweed (Ambrosia artemisiifolia) is one of the most important allergen sources, worldwide, causing severe respiratory allergic reactions in late summer and fall, in sensitized patients. Amb a 1 has been considered as the most important allergen in ragweed but 12 ragweed pollen allergens are known. The aim of our study was to investigate IgE reactivity profiles of ragweed allergic patients and to associate them with clinical symptoms. Methods IgE sensitization profiles from clinically well-characterized ragweed allergic patients (n = 150) were analyzed using immunoblotted ragweed pollen extract. Immunoblot inhibition experiments were performed with two Amb a 1 isoforms and CCD markers and basophil activation experiments were performed with IgE serum before and after depletion of Amb a 1-specific IgE. Results By IgE-immunoblotting 19 different IgE reactivity patterns with and without Amb a 1-sensitization were found. The majority of patients (>95%) suffered from rhino-conjunctivitis, around 60% reported asthma-like symptoms and about 25% had skin reactions. Patients with complex IgE sensitization profiles tended to have more clinical symptoms. Serum with and without Amb a 1-specific IgE induced basophil activation. Conclusions Ragweed pollen allergic patients exhibit complex IgE reactivity profiles to ragweed allergens including Amb a 1 isoforms and cross-reactive carbohydrates indicating the importance of Amb a 1 isoforms and additional allergens for diagnosis and allergen-specific immunotherapy of ragweed allergy.
Collapse
Affiliation(s)
- Maria‐Roxana Buzan
- Center of Immuno‐Physiology and Biotechnologies, Department of Functional SciencesVictor Babes University of Medicine and PharmacyTimisoaraRomania
- OncoGen CenterPius Brinzeu County Clinical Emergency HospitalTimisoaraRomania
| | - Lauriana‐Eunice Zbîrcea
- Center of Immuno‐Physiology and Biotechnologies, Department of Functional SciencesVictor Babes University of Medicine and PharmacyTimisoaraRomania
- OncoGen CenterPius Brinzeu County Clinical Emergency HospitalTimisoaraRomania
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | | | - Frank Stolz
- Biomay AGVienna Competence CenterViennaAustria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Laboratory for Immunopathology, Department of Clinical Immunology and AllergologySechenov First Moscow State Medical UniversityMoscowRussia
- Karl Landsteiner University of Health SciencesKremsAustria
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| | - Virgil Păunescu
- Center of Immuno‐Physiology and Biotechnologies, Department of Functional SciencesVictor Babes University of Medicine and PharmacyTimisoaraRomania
- OncoGen CenterPius Brinzeu County Clinical Emergency HospitalTimisoaraRomania
| | - Carmen Panaitescu
- Center of Immuno‐Physiology and Biotechnologies, Department of Functional SciencesVictor Babes University of Medicine and PharmacyTimisoaraRomania
- OncoGen CenterPius Brinzeu County Clinical Emergency HospitalTimisoaraRomania
| | - Kuan‐Wei Chen
- OncoGen CenterPius Brinzeu County Clinical Emergency HospitalTimisoaraRomania
| |
Collapse
|
12
|
Guryanova SV, Finkina EI, Melnikova DN, Bogdanov IV, Bohle B, Ovchinnikova TV. How Do Pollen Allergens Sensitize? Front Mol Biosci 2022; 9:900533. [PMID: 35782860 PMCID: PMC9245541 DOI: 10.3389/fmolb.2022.900533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Plant pollen is one of the main sources of allergens causing allergic diseases such as allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also present in other allergen sources. As a result, sensitized individuals may also experience food allergies. The mechanism of sensitization and development of allergic inflammation is a consequence of the interaction of allergens with a large number of molecular factors that often are acting in a complex with other compounds, for example low-molecular-mass ligands, which contribute to the induction a type 2-driven response of immune system. In this review, special attention is paid not only to properties of allergens but also to an important role of their interaction with lipids and other hydrophobic molecules in pollen sensitization. The reactions of epithelial cells lining the nasal and bronchial mucosa and of other immunocompetent cells will also be considered, in particular the mechanisms of the activation of B and T lymphocytes and the formation of allergen-specific antibody responses.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia, The Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
| | - Ekaterina I. Finkina
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Daria N. Melnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Ivan V. Bogdanov
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatiana V. Ovchinnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Tatiana V. Ovchinnikova,
| |
Collapse
|
13
|
Negi SS, Goldblum RM, Braun W, Midoro-Horiuti T. Design of peptides with high affinity binding to a monoclonal antibody as a basis for immunotherapy. Peptides 2021; 145:170628. [PMID: 34411692 PMCID: PMC8484066 DOI: 10.1016/j.peptides.2021.170628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022]
Abstract
About half of the US population is sensitized to one or more allergens, as found by a National Health and Nutrition Examination Survey (NHANES). The most common treatment for seasonal allergic responses is the daily use of oral antihistamines, which can control some of the symptoms, but are not effective for nasal congestion, and can be debilitating in many patients. Peptide immunotherapy is a promising new approach to treat allergic airway diseases. The small size of the immunogens cannot lead to an unwanted allergic reaction in sensitized patients, and the production of peptides with sufficient amounts for immunotherapy is time- and cost-effective. However, it is not known what peptides are the most effective for an immunotherapy of allergens. We previously produced a unique monoclonal antibody (mAb) E58, which can inhibit the binding of multiple groups of mAbs and human IgEs from patients affected by the major group 1 allergens of ragweed (Amb a 1) and conifer pollens (Jun a 1, Cup s 1, and Cry j 1). Here, we demonstrated that a combined approach, starting from two linear E58 epitopes of the tree pollen allergen Jun a 1 and the ragweed pollen allergen Amb a 1, and residue modifications suggested by molecular docking calculations and peptide design could identify a large number of high affinity binding peptides. We propose that this combined experimental and computational approach by structural analysis of linear IgE epitopes and peptide design, can lead to potential new candidates for peptide immunotherapy.
Collapse
Affiliation(s)
- Surendra S Negi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0304, United States
| | - Randall M Goldblum
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0304, United States; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0372, United States
| | - Werner Braun
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0304, United States.
| | - Terumi Midoro-Horiuti
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555-0372, United States.
| |
Collapse
|
14
|
Mountain cedar allergy: A review of current available literature. Ann Allergy Asthma Immunol 2021; 128:645-651. [PMID: 34582944 DOI: 10.1016/j.anai.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To review the literature related to mountain cedar in terms of allergic disease and societal impact. DATA SOURCES English-language articles obtained through PubMed searches with relevance to mountain cedar allergies. STUDY SELECTIONS Articles with the following search terms were included: mountain cedar, Juniperus ashei, juniper, allergy, pollen, cedar fever, Jun a 1, and San Antonio. RESULTS A total of 61 relevant articles were selected regarding mountain cedar and its distribution, phylogenetics, allergens, potency, cross-reactivity, pollen counting and monitoring, symptoms, diagnosis, treatment, and future research. CONCLUSION Mountain cedar remains a major cause of allergic rhinoconjunctivitis in the south central United States during the winter months. Key treatment strategies involve a combination of allergen avoidance, pharmacologic therapy, and subcutaneous immunotherapy. Allergists can help affected patients in their management of "cedar fever."
Collapse
|
15
|
Japanese cedar and cypress pollinosis updated: New allergens, cross-reactivity, and treatment. Allergol Int 2021; 70:281-290. [PMID: 33962864 DOI: 10.1016/j.alit.2021.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Pollen from many tree species in the Cupressaceae family is a well-known cause of seasonal allergic diseases worldwide. Japanese cedar pollinosis and Japanese cypress pollinosis, which are caused by pollen from Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa), respectively, are the most prevalent seasonal allergic diseases in Japan. Recently, the novel major Japanese cypress allergen Cha o 3 and the homologous Japanese cedar allergen Cry j cellulase were identified, and it was shown, for the first time, that cellulase in plants is allergenic. Although the allergenic components of pollen from both species exhibit high amino acid sequence identity, their pollinosis responded differently to allergen-specific immunotherapy (ASIT) using a standardized extract of Japanese cedar pollen. Pharmacotherapy and ASIT for Japanese cedar and cypress pollinosis have advanced considerably in recent years. In particular, Japanese cedar ASIT has entered a new phase, primarily in response to the generation of updated efficacy data and the development of new formulations. In this review, we focus on both Japanese cypress and cedar pollinosis, and discuss the latest findings, newly identified causative allergens, and new treatments. To manage pollinosis symptoms during spring effectively, ASIT for both Japanese cedar and Japanese cypress pollen is considered necessary.
Collapse
|
16
|
Haidar L, Tamas TP, Stolz F, Patrascu RFP, Chen KW, Panaitescu C. Symptom patterns and comparison of diagnostic methods in ragweed pollen allergy. Exp Ther Med 2021; 21:525. [PMID: 33815598 PMCID: PMC8014962 DOI: 10.3892/etm.2021.9957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to determine the pattern of symptoms of ragweed pollen-induced allergic disease in sensitized patients from Romania and to compare the molecular diagnosis of allergy with the skin prick test, in order to better characterize allergic patients and to guide therapy. A total of 97 subjects, including patients with ragweed pollen-induced allergic rhinoconjunctivitis with/without asthma, as well as healthy controls, were recruited prospectively in one ragweed pollen season, submitted to allergy questionnaires, skin prick tests and multiplex specific IgE (immunoglobulin E) measurement by ImmunoCAP ISAC (ImmunoCAP Immuno-Solid phase Allergy Chip) assay. A total of 83 patients were sensitized to ragweed pollen. Most patients (73%) were diagnosed with moderate-severe intermittent allergic rhinoconjunctivitis and 25% of the patients also had allergic asthma. The most common symptoms were watery rhinorrhea (91.57%), nasal obstruction (86.75%), and sneezing (85.54%). Most patients were polysensitized (62.65%), especially to other pollens, house dust mites and animal danders. Only 90% of the patients with positive skin prick test to ragweed pollen extract also had increased specific serum IgE to Amb a 1. Current options for specific molecular diagnosis of ragweed allergy are limited, as they only contain one or few of the sensitizing allergens present in ragweed pollen. An improved component-resolved diagnosis, using several ragweed pollen allergens, is required for better patient characterization and subsequent selection of an appropriate allergen immunotherapy product, thereby enabling a more personalized approach to the management of the ragweed-allergic patient.
Collapse
Affiliation(s)
- Laura Haidar
- Discipline of Physiology, Department III Functional Sciences, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer-OncoGen, 'Pius Brinzeu' Clinical Emergency Hospital, 300723 Timisoara, Romania.,Center of Immuno-Physiology and Biotechnologies, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tudor-Paul Tamas
- Discipline of Physiology, Department III Functional Sciences, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer-OncoGen, 'Pius Brinzeu' Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Frank Stolz
- Department of Product Development, Biomay AG, A-1090 Vienna, Austria
| | - Raul Florian Petrisor Patrascu
- Discipline of Physiology, Department III Functional Sciences, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Kuan-Wei Chen
- Centre for Gene and Cellular Therapies in The Treatment of Cancer-OncoGen, 'Pius Brinzeu' Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Discipline of Physiology, Department III Functional Sciences, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Centre for Gene and Cellular Therapies in The Treatment of Cancer-OncoGen, 'Pius Brinzeu' Clinical Emergency Hospital, 300723 Timisoara, Romania.,Center of Immuno-Physiology and Biotechnologies, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
17
|
Ghosh N, Sircar G, Asam C, Wolf M, Hauser M, Saha S, Ferreira F, Bhattacharya SG. Purification and biochemical characterization of Hel a 6, a cross-reactive pectate lyase allergen from Sunflower (Helianthus annuus L.) pollen. Sci Rep 2020; 10:20177. [PMID: 33214682 PMCID: PMC7677321 DOI: 10.1038/s41598-020-77247-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Microbiology, Vidyasagar University, Paschim Medinipur, India.
- Division of Plant Biology, Bose Institute, Kolkata, India.
| | - Gaurab Sircar
- Department of Botany, Institute of Sciences, Visva-Bharati, Santiniketan, India
| | - Claudia Asam
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Wolf
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Cell Therapy Institute, (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Michael Hauser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
18
|
Pablos I, Egger M, Vejvar E, Reichl V, Briza P, Zennaro D, Rafaiani C, Pickl W, Bohle B, Mari A, Ferreira F, Gadermaier G. Similar Allergenicity to Different Artemisia Species Is a Consequence of Highly Cross-Reactive Art v 1-Like Molecules. ACTA ACUST UNITED AC 2019; 55:medicina55080504. [PMID: 31434264 PMCID: PMC6723817 DOI: 10.3390/medicina55080504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: Pollens of weeds are relevant elicitors of type I allergies. While many Artemisia species occur worldwide, allergy research so far has only focused on Artemisia vulgaris. We aimed to characterize other prevalent Artemisia species regarding their allergen profiles. Materials and Methods: Aqueous extracts of pollen from seven Artemisia species were characterized by gel electrophoresis and ELISA using sera from mugwort pollen-allergic patients (n = 11). The cDNA sequences of defensin–proline-linked proteins (DPLPs) were obtained, and purified proteins were tested in a competition ELISA, in rat basophil mediator release assays, and for activation of Jurkat T cells transduced with an Art v 1-specific TCR. IgE cross-reactivity to other allergens was evaluated using ImmunoCAP and ISAC. Results: The protein patterns of Artemisia spp. pollen extracts were similar in gel electrophoresis, with a major band at 24 kDa corresponding to DPLPs, like the previously identified Art v 1. Natural Art v 1 potently inhibited IgE binding to immobilized pollen extracts. Six novel Art v 1 homologs with high sequence identity and equivalent IgE reactivity were identified and termed Art ab 1, Art an 1, Art c 1, Art f 1, Art l 1, and Art t 1. All proteins triggered mediator release and cross-reacted at the T cell level. The Artemisia extracts contained additional IgE cross-reactive molecules from the nonspecific lipid transfer protein, pectate lyase, profilin, and polcalcin family. Conclusions: Our findings demonstrate that DPLPs in various Artemisia species have high allergenic potential. Therefore, related Artemisia species need to be considered to be allergen elicitors, especially due to the consideration of potential geographic expansion due to climatic changes.
Collapse
Affiliation(s)
- Isabel Pablos
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Matthias Egger
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Eva Vejvar
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Victoria Reichl
- Institute of Immunology, Center for Pathophysiology, Infection and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Danila Zennaro
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Chiara Rafaiani
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infection and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriano Mari
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | | |
Collapse
|
19
|
Gao Z, Fu WY, Sun Y, Gao B, Wang HY, Liu M, Luo FM, Zhou X, Jin J, Zhao L, Wu S, Liu Y, Wu L, Wang X, Tang NB, Guo BH, Feng Y, Zhou JY, Gadermaier G, Ferreira F, Versteeg SA, van Ree R. Artemisia pollen allergy in China: Component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy 2019; 74:284-293. [PMID: 30155917 PMCID: PMC6587742 DOI: 10.1111/all.13597] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022]
Abstract
Background Artemisia pollen allergy is a major cause of asthma in Northern China. Possible associations between IgE responses to Artemisia allergen components and clinical phenotypes have not yet been evaluated. This study was to establish sensitization patterns of four Artemisia allergens and possible associations with demographic characteristics and clinical phenotypes in three areas of China. Methods Two hundred and forty patients allergic to Artemisia pollen were examined, 178 from Shanxi and 30 from Shandong Provinces in Northern China, and 32 from Yunnan Province in Southwestern China. Allergic asthma, rhinitis, conjunctivitis, and eczema symptoms were diagnosed. All patients’ sera were tested by ImmunoCAP with mugwort pollen extract and the natural components nArt v 1, nArt ar 2, nArt v 3, and nArt an 7. Results The frequency of sensitization and the IgE levels of the four components in Artemisia allergic patients from Southwestern China were significantly lower than in those from the North. Art v 1 and Art an 7 were the most frequently recognized allergens (84% and 87%, respectively), followed by Art v 3 (66%) and Art ar 2 (48%). Patients from Northern China were more likely to have allergic asthma (50%) than patients from Southwestern China (3%), and being sensitized to more than two allergens increased the risk of allergic asthma, in which co‐sensitization to three major allergens Art v 1, Art v 3, and Art an 7 is prominent. Conclusions Component‐resolved diagnosis of Chinese Artemisia pollen‐allergic patients helps assess the potential risk of mugwort‐associated allergic asthma.
Collapse
Affiliation(s)
- Zhongshan Gao
- Allergy Research Center; Zhejiang University; Hangzhou China
- College of Agriculture and Biotechnology; Zhejiang University; Hangzhou China
- Department of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam The Netherlands
| | - Wan-Yi Fu
- College of Agriculture and Biotechnology; Zhejiang University; Hangzhou China
| | - Yuemei Sun
- Department of Allergy; Yu Huang Ding Hospital; Yantai China
| | - Biyuan Gao
- Hangzhou Aileji Biotech Ltd; Hangzhou China
| | - Hui-Ying Wang
- Department of Allergy; The Second Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou China
| | - Meiling Liu
- Department of Allergy; The Third People's Hospital of Datong; Shanxi China
| | - Fang-Mei Luo
- Department of Otorhinolaryngology; Qujing Chinese Traditional Medicine Hospital; Yunnan China
| | - Xiang Zhou
- College of Agriculture and Biotechnology; Zhejiang University; Hangzhou China
| | - Jing Jin
- College of Agriculture and Biotechnology; Zhejiang University; Hangzhou China
| | - Lan Zhao
- College of Agriculture and Biotechnology; Zhejiang University; Hangzhou China
| | - Shandong Wu
- Allergy Research Center; Zhejiang University; Hangzhou China
| | - Yi Liu
- Allergy Research Center; Zhejiang University; Hangzhou China
| | - Lingying Wu
- Department of Allergy; The Third People's Hospital of Datong; Shanxi China
| | - Xuefeng Wang
- Department of Allergy; The Third People's Hospital of Datong; Shanxi China
| | - Ning-Bo Tang
- Department of Allergy; Yu Huang Ding Hospital; Yantai China
| | - Bao-Hua Guo
- Department of Otorhinolaryngology; Qujing Chinese Traditional Medicine Hospital; Yunnan China
| | - Yan Feng
- Department of Otorhinolaryngology; The First Affiliated Hospital; Shanxi Medical University; Taiyuan China
| | - Jian Ying Zhou
- Department of Respiratory Disease; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou China
| | | | - Fatima Ferreira
- Department of Biosciences; University of Salzburg; Salzburg Austria
| | - Serge A. Versteeg
- Department of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam The Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
20
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Teixeira FM, Shah M, Domont GB, Nogueira FCS, Campos FAP. In-Depth Proteome Analysis of Ricinus communis Pollens. Proteomics 2018; 19:e1800347. [PMID: 30474183 DOI: 10.1002/pmic.201800347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/10/2018] [Indexed: 11/07/2022]
Abstract
Pollen grains are tiny structures vital for sexual reproduction and consequently seed and fruit production in angiosperms, and a source of many allergenic components responsible for deleterious implications for health worldwide. Current pollen research is mainly focused on unraveling the molecular mechanisms underlying the pollen germination and tube formation passing from the quiescent stage. In this context, an in-depth proteome analysis of the pollens from Ricinus communis at three different stages-that is, mature, hydrated, and in vitro germinated-is performed. This analysis results in the identification of 1950 proteins, including 1773, 1313, and 858, from mature, hydrated, and germinated pollens, respectively. Based on label-free quantification, 164 proteins are found to be significantly differentially abundant from mature to hydrated pollens, 40 proteins from hydrated to germinated, and 57 proteins from mature to germinated pollens, respectively. Most of the differentially abundant proteins are related to protein, carbohydrate, and energy metabolism and signaling. Besides other functional classes, a reasonable number of the proteins are predicted to be allergenic proteins, previously undiscovered. This is the first in-deep proteome analysis of the R. communis pollens and, to the best of our knowledge, one of the most complete proteome dataset identified from the pollens of any plant species, thus providing a reference proteome for researchers interested in pollen biology.
Collapse
Affiliation(s)
- Fabiano M Teixeira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, 60455-900, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Gilberto B Domont
- Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Fábio C S Nogueira
- Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, 60455-900, Brazil
| |
Collapse
|
22
|
|
23
|
Goldblum RM, Madagoda-Desilva RS, Zhang Y, van Bavel J, Midoro-Horiuti T. Molecular patterns in the isotype-specific antibody responses to the major cedar aeroallergen Jun a 1. Mol Immunol 2018; 101:527-530. [PMID: 30170300 DOI: 10.1016/j.molimm.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022]
Abstract
Most studies of the immune responses in allergic rhinitis have focused on IgE antibodies to mixtures of allergenic proteins. Based on our previous studies of the major mountain cedar allergen Jun a 1, we sought to describe a broader assessment of the humoral immune responses to a single, dominant allergen, in three groups of allergic subjects, all of whom had similarly exposures to the whole cedar pollen. The major outcomes of this study was that, with the onset of allergic rhinitis symptoms, and after treatment with immunotherapy, serum IgE and IgG (but not IgA) antibodies to Jun a 1 increased. Interestingly, both IgE and IgG4 antibodies to the Jun a 1 allergen were strongly focused on its conformation epitopes. These IgG antibodies to conformationalstructures may be a useful marker of the therapeutic response to immunotherapy.
Collapse
Affiliation(s)
- Randall M Goldblum
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA.
| | - Rumali S Madagoda-Desilva
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA.
| | - Yueqing Zhang
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA.
| | - Julius van Bavel
- Isis Clinical Research, LLC., 6836 Austin Center Blvd Ste 180, Austin, TX 78731, USA.
| | - Terumi Midoro-Horiuti
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0366, USA.
| |
Collapse
|
24
|
Chen KW, Marusciac L, Tamas PT, Valenta R, Panaitescu C. Ragweed Pollen Allergy: Burden, Characteristics, and Management of an Imported Allergen Source in Europe. Int Arch Allergy Immunol 2018; 176:163-180. [PMID: 29788026 DOI: 10.1159/000487997] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Ambrosia artemisiifolia, also known as common or short ragweed, is an invasive annual flowering herbaceous plant that has its origin in North America. Nowadays, ragweed can be found in many areas worldwide. Ragweed pollen is known for its high potential to cause type I allergic reactions in late summer and autumn and represents a major health problem in America and several countries in Europe. Climate change and urbanization, as well as long distance transport capacity, enhance the spread of ragweed pollen. Therefore ragweed is becoming domestic in non-invaded areas which in turn will increase the sensitization rate. So far 11 ragweed allergens have been described and, according to IgE reactivity, Amb a 1 and Amb a 11 seem to be major allergens. Sensitization rates of the other allergens vary between 10 and 50%. Most of the allergens have already been recombinantly produced, but most of them have not been characterized regarding their allergenic activity, therefore no conclusion on the clinical relevance of all the allergens can be made, which is important and necessary for an accurate diagnosis. Pharmacotherapy is the most common treatment for ragweed pollen allergy but fails to impact on the course of allergy. Allergen-specific immunotherapy (AIT) is the only causative and disease-modifying treatment of allergy with long-lasting effects, but currently it is based on the administration of ragweed pollen extract or Amb a 1 only. In order to improve ragweed pollen AIT, new strategies are required with higher efficacy and safety.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Laura Marusciac
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Paul Tudor Tamas
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Carmen Panaitescu
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
25
|
Distinguishing allergens from non-allergenic homologues using Physical-Chemical Property (PCP) motifs. Mol Immunol 2018; 99:1-8. [PMID: 29627609 DOI: 10.1016/j.molimm.2018.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
Quantitative guidelines to distinguish allergenic proteins from related, but non-allergenic ones are urgently needed for regulatory agencies, biotech companies and physicians. In a previous study, we found that allergenic proteins populate a relatively small number of protein families, as characterized by the Pfam database. However, these families also contain non-allergenic proteins, meaning that allergenic determinants must lie within more discrete regions of the sequence. Thus, new methods are needed to discriminate allergenic proteins within those families. Physical-Chemical Properties (PCP)-motifs specific for allergens within a Pfam class were determined for 17 highly populated protein domains. A novel scoring method based on PCP-motifs that characterize known allergenic proteins within these families was developed, and validated for those domains. The motif scores distinguished sequences of allergens from a large selection of 80,000 randomly selected non-allergenic sequences. The motif scores for the birch pollen allergen (Bet v 1) family, which also contains related fruit and nut allergens, correlated better than global sequence similarities with clinically observed cross-reactivities among those allergens. Further, we demonstrated that the average scores of allergen specific motifs for allergenic profilins are significantly different from the scores of non-allergenic profilins. Several of the selective motifs coincide with experimentally determined IgE epitopes of allergenic profilins. The motifs also discriminated allergenic pectate lyases, including Jun a 1 from mountain cedar pollen, from similar proteins in the human microbiome, which can be assumed to be non-allergens. The latter lacked key motifs characteristic of the known allergens, some of which correlate with known IgE binding sites.
Collapse
|
26
|
Pablos I, Eichhorn S, Machado Y, Briza P, Neunkirchner A, Jahn-Schmid B, Wildner S, Soh WT, Ebner C, Park JW, Pickl WF, Arora N, Vieths S, Ferreira F, Gadermaier G. Distinct epitope structures of defensin-like proteins linked to proline-rich regions give rise to differences in their allergenic activity. Allergy 2018; 73:431-441. [PMID: 28960341 PMCID: PMC5771466 DOI: 10.1111/all.13298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 01/17/2023]
Abstract
Background Art v 1, Amb a 4, and Par h 1 are allergenic defensin‐polyproline–linked proteins present in mugwort, ragweed, and feverfew pollen, respectively. We aimed to investigate the physicochemical and immunological features underlying the different allergenic capacities of those allergens. Methods Recombinant defensin‐polyproline–linked proteins were expressed in E. coli and physicochemically characterized in detail regarding identity, secondary structure, and aggregation status. Allergenic activity was assessed by mediator releases assay, serum IgE reactivity, and IgE inhibition ELISA using sera of patients from Austria, Canada, and Korea. Endolysosomal protein degradation and T‐cell cross‐reactivity were studied in vitro. Results Despite variations in the proline‐rich region, similar secondary structure elements were observed in the defensin‐like domains. Seventy‐four percent and 52% of the Austrian and Canadian patients reacted to all three allergens, while Korean patients were almost exclusively sensitized to Art v 1. This was reflected by IgE inhibition assays demonstrating high cross‐reactivity for Austrian, medium for Canadian, and low for Korean sera. In a subgroup of patients, IgE reactivity toward structurally altered Amb a 4 and Par h 1 was not changed suggesting involvement of linear epitopes. Immunologically relevant endolysosomal stability of the defensin‐like domain was limited to Art v 1 and no T‐cell cross‐reactivity with Art v 125‐36 was observed. Conclusions Despite structural similarity, different IgE‐binding profiles and proteolytic processing impacted the allergenic capacity of defensin‐polyproline–linked molecules. Based on the fact that Amb a 4 demonstrated distinct IgE‐binding epitopes, we suggest inclusion in molecule‐based allergy diagnosis.
Collapse
Affiliation(s)
- I. Pablos
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - S. Eichhorn
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - Y. Machado
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - P. Briza
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - A. Neunkirchner
- Center for Pathophysiology, Infectiology and Immunology; Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - B. Jahn-Schmid
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - S. Wildner
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
- Christian Doppler Laboratory for Biosimilar Characterization; University of Salzburg; Salzburg Austria
| | - W. T. Soh
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - C. Ebner
- Allergy Clinic Reumannplatz; Vienna Austria
| | - J.-W. Park
- Department of Internal Medicine and Institute of Allergy; Yonsei University College of Medicine; Seoul Korea
| | - W. F. Pickl
- Center for Pathophysiology, Infectiology and Immunology; Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - N. Arora
- Allergy and Immunology Section; CSIR-Institute of Genomic and Integrative Biology; Delhi India
| | - S. Vieths
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - F. Ferreira
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - G. Gadermaier
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
27
|
Wolf M, Twaroch TE, Huber S, Reithofer M, Steiner M, Aglas L, Hauser M, Aloisi I, Asam C, Hofer H, Parigiani MA, Ebner C, Bohle B, Briza P, Neubauer A, Stolz F, Jahn-Schmid B, Wallner M, Ferreira F. Amb a 1 isoforms: Unequal siblings with distinct immunological features. Allergy 2017; 72:1874-1882. [PMID: 28464293 PMCID: PMC5700413 DOI: 10.1111/all.13196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/24/2022]
Abstract
Background Ragweed pollen represents a major allergy risk factor. Ragweed extracts contain five different isoforms of the major allergen Amb a 1. However, the immunological characteristics of Amb a 1 isoforms are not fully investigated. Here, we compared the physicochemical and immunological properties of three most important Amb a 1 isoforms. Methods After purification, the isoforms were physicochemically characterized, tested for antibody binding and induction of human T‐cell proliferative responses. Their immunological properties were further evaluated in vitro and in vivo in a mouse model. Results Amb a 1 isoforms exhibited distinct patterns of IgE binding and immunogenicity. Compared to Amb a 1.02 or 03 isoforms, Amb a 1.01 showed higher IgE‐binding activity. Isoforms 01 and 03 were the most potent stimulators of patients’ T cells. In a mouse model of immunization, Amb a 1.01 induced higher levels of IgG and IgE antibodies when compared to isoforms 02 and 03. Interestingly, ragweed‐sensitized patients also displayed an IgG response to Amb a 1 isoforms. However, unlike therapy‐induced antibodies, sensitization‐induced IgG did not show IgE‐blocking activity. Conclusion The present study showed that naturally occurring isoforms of Amb a 1 possess different immunogenic and sensitizing properties. These findings should be considered when selecting sequences for molecule‐based diagnosis and therapy for ragweed allergy. Due to its high IgE‐binding activity, isoform Amb a 1.01 should be included in diagnostic tests. In contrast, due to their limited B‐ and T‐cell cross‐reactivity patterns, a combination of different isoforms might be a more attractive strategy for ragweed immunotherapy.
Collapse
Affiliation(s)
- M. Wolf
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | | | - S. Huber
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. Reithofer
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Steiner
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
- Laboratory for Immunological and
Molecular Cancer Research; Paracelsus Medical University; Salzburg Austria
| | - L. Aglas
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. Hauser
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - I. Aloisi
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - C. Asam
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - H. Hofer
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. A. Parigiani
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - C. Ebner
- Allergy Clinic Reumannplatz; Vienna Austria
| | - B. Bohle
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - P. Briza
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - A. Neubauer
- Biomay AG; Vienna Competence Center; Vienna Austria
| | - F. Stolz
- Biomay AG; Vienna Competence Center; Vienna Austria
| | - B. Jahn-Schmid
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Wallner
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - F. Ferreira
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
28
|
Patel S, Rani A, Goyal A. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling. Comput Biol Chem 2017; 70:31-39. [PMID: 28780227 DOI: 10.1016/j.compbiolchem.2017.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
Abstract
Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Aruna Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
29
|
Pablos I, Eichhorn S, Briza P, Asam C, Gartner U, Wolf M, Ebner C, Bohle B, Arora N, Vieths S, Ferreira F, Gadermaier G. Proteomic profiling of the weed feverfew, a neglected pollen allergen source. Sci Rep 2017; 7:6049. [PMID: 28729676 PMCID: PMC5519751 DOI: 10.1038/s41598-017-06213-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/08/2017] [Indexed: 11/10/2022] Open
Abstract
Feverfew (Parthenium hysterophorus), an invasive weed from the Asteraceae family, has been reported as allergen source. Despite its relevance, knowledge of allergens is restricted to a partial sequence of a hydroxyproline-rich glycoprotein. We aimed to obtain the entire sequence for recombinant production and characterize feverfew pollen using proteomics and immunological assays. Par h 1, a defensin-proline fusion allergen was obtained by cDNA cloning and recombinantly produced in E. coli. Using two complementary proteomic strategies, a total of 258 proteins were identified in feverfew pollen among those 47 proteins belonging to allergenic families. Feverfew sensitized patients’ sera from India revealed IgE reactivity with a pectate lyase, PR-1 protein and thioredoxin in immonoblot. In ELISA, recombinant Par h 1 was recognized by 60 and 40% of Austrian and Indian sera, respectively. Inhibition assays demonstrated the presence of IgE cross-reactive Par h 1, pectate lyase, lipid-transfer protein, profilin and polcalcin in feverfew pollen. This study reveals significant data on the allergenic composition of feverfew pollen and makes recombinant Par h 1 available for cross-reactivity studies. Feverfew might become a global player in weed pollen allergy and inclusion of standardized extracts in routine allergy diagnosis is suggested in exposed populations.
Collapse
Affiliation(s)
- Isabel Pablos
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Stephanie Eichhorn
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Peter Briza
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Claudia Asam
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Ulrike Gartner
- University of Salzburg, Department of Ecology and Evolution, Salzburg, Austria
| | - Martin Wolf
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | | | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Naveen Arora
- CSIR-Institute of Genomic and Integrative Biology, Allergy and Immunology Section, Delhi, India
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Fatima Ferreira
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Gabriele Gadermaier
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria.
| |
Collapse
|
30
|
Abstract
INTRODUCTION fungi produce substances that contain pathogen-associated molecular patterns (pamps) and damage-associated molecular patterns (damps) which bind to pattern recognition receptors, stimulating innate immune responses in humans. they also produce allergens that induce production of specific ige. Areas covered: In this review we cover both innate and adaptive immune responses to fungi. Some fungal products can activate both innate and adaptive responses and in doing so, cause an intense and complex health effects. Methods of testing for fungal allergy and evidence for clinical treatment including environmental control are also discussed. In addition, we describe controversial issues including the role of Stachybotrys and mycotoxins in adverse health effects. Expert commentary: Concerns about long-term exposure to fungi have led some patients, attorneys and fungus advocates to promote fears about a condition that has been termed toxic mold syndrome. This syndrome is associated with vague symptoms and is believed to be due to exposure to mycotoxins, though this connection has not been proven. Ultimately, more precise methods are needed to measure both fungal exposure and the resulting health effects. Once that such methods become available, much of the speculation will be replaced by knowledge.
Collapse
Affiliation(s)
- Amanda Rudert
- a Division of Allergy, Asthma & Immunology , Children's Mercy Hospitals & Clinics , Kansas City , MO , USA
| | - Jay Portnoy
- a Division of Allergy, Asthma & Immunology , Children's Mercy Hospitals & Clinics , Kansas City , MO , USA
| |
Collapse
|
31
|
Stemeseder T, Klinglmayr E, Moser S, Lueftenegger L, Lang R, Himly M, Oostingh GJ, Zumbach J, Bathke AC, Hawranek T, Gadermaier G. Cross-sectional study on allergic sensitization of Austrian adolescents using molecule-based IgE profiling. Allergy 2017; 72:754-763. [PMID: 27753449 DOI: 10.1111/all.13071] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Allergen-specific IgE antibodies are a hallmark of type I allergy. The aim of this cross-sectional study was to analyze the sensitization profiles of an Austrian adolescent population utilizing molecule-based IgE diagnosis. METHODS Serum samples of 501 nonselected pupils from Salzburg, Austria, were tested in ImmunoCAP ISAC® for IgE reactivity to 112 single allergens. Sensitization profiles were assessed and statistically coordinated with reported allergies. RESULTS In the population aged 12-21 years, 53.5% showed IgE reactivity to at least one allergen tested. The highest prevalence was found for Phl p 1 from grass pollen (26.5%), group 2 mite allergens (18.2%), Bet v 1 from birch pollen (16.3%) and Fel d 1 from cat (14.4%). The majority of participants showed a complex sensitization profile and reacted on average to 9 allergens. Pollen sensitization was highly prevalent (41.7%) and mainly driven by group I grass and PR-10 allergens of the Betulaceae family, while Pla l 1 represented the most relevant weed. Diagnosed and self-reported allergies were noted in 21.9% and 45.5% of participants, respectively, and correlated well with in vitro results. Among atopic individuals, 71.4% reported to suffer from at least one allergy; concordance was found for grass and cat sensitization, while venom- and weed pollen-positive individuals were frequently asymptomatic. CONCLUSIONS More than half of the tested adolescent population had already established an atopic status presenting a complex IgE reactivity profile dominated by pollen sensitization. Detailed molecule-based analysis allows determining relevant biomarkers and monitoring of the atopic status in populations.
Collapse
Affiliation(s)
- T. Stemeseder
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - E. Klinglmayr
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - S. Moser
- School of Education; University of Salzburg; Salzburg Austria
- TUM School of Education; Technical University of Munich; Munich Germany
| | - L. Lueftenegger
- Department of Dermatology; Paracelsus Medical University Salzburg; Salzburg Austria
- Biomedical Sciences; Salzburg University of Applied Sciences; Puch Salzburg Austria
| | - R. Lang
- Department of Dermatology; Paracelsus Medical University Salzburg; Salzburg Austria
| | - M. Himly
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - G. J. Oostingh
- Biomedical Sciences; Salzburg University of Applied Sciences; Puch Salzburg Austria
| | - J. Zumbach
- School of Education; University of Salzburg; Salzburg Austria
| | - A. C. Bathke
- Department of Mathematics; University of Salzburg; Salzburg Austria
| | - T. Hawranek
- Department of Dermatology; Paracelsus Medical University Salzburg; Salzburg Austria
| | - G. Gadermaier
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
32
|
|
33
|
Mousavi F, Majd A, Shahali Y, Ghahremaninejad F, Shokouhi Shoormasti R, Pourpak Z. Immunoproteomics of tree of heaven (Ailanthus atltissima) pollen allergens. J Proteomics 2016; 154:94-101. [PMID: 28041857 DOI: 10.1016/j.jprot.2016.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Ailanthus altissima pollen (AAP) is considered as an emerging cause of respiratory allergy in United States, Italy and Iran. However, the allergenic composition of AAP is still unknown and has yet to be characterized. The present study aimed to identify AAP allergens using a proteomics-based approach. For this purpose, optimized AAP protein extracts were analyzed using 1D- and 2D- gel electrophoresis and confronted to twenty sera from individuals with respiratory allergy during the AAP season. Candidate allergens were detected using the serum from an allergic patient with clinical history of AAP pollinosis. IgE-binding spots were identified using MALDI-TOF/TOF mass spectrometry and database searching. According to our results, AAP extracts were rich in proteins (up to 16.25mg/ml) with a molecular-weight distribution ranging from 10 to 175kDa. Two-D electrophoresis of AAP extracts revealed 125 protein spots from which 13 were IgE reactive. These IgE-binding proteins were identified as enolase, calreticulin, probable pectate lyase 6, conserved hypothetical protein and ras-related protein RHN1-like. By our knowledge, this study is the first report identifying AAP allergens. These findings will open up further avenues for the diagnosis and immunotherapy of the AAP allergy as well as for the cloning and molecular characterization of relevant allergens. BIOLOGICAL SIGNIFICANCE Ailanthus altissima colonizes new areas every year in Iran and is spreading aggressively worldwide. According to USDA, the tree of heaven is now present as an invasive plant in 30 states in US (www.invasivespeciesinfo.gov/plants/treeheaven.shtml) and come to dominate large areas in many regions. Up to now, several cases of allergy to A. altissima pollen have been reported in United States, Italy and Iran [1-4]. However, there is still no information on the sensitizing allergens and the molecular origin of these clinical symptoms, which constitutes a serious threat to patients suffering from respiratory allergies in these regions. To our knowledge, the current study describes, therefore, the first panel of proteins responsible for IgE-mediated A. altissima pollinosis by using a gel-based proteomic approach. This work represents the pioneer proteomic investigation on Simaroubaceae spp. and provides useful insights for further studies on the allergens of this widely distributed plant family.
Collapse
Affiliation(s)
- Fateme Mousavi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Majd
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Department of Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Youcef Shahali
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Pham J, Oseroff C, Hinz D, Sidney J, Paul S, Greenbaum J, Vita R, Phillips E, Mallal S, Peters B, Sette A. Sequence conservation predicts T cell reactivity against ragweed allergens. Clin Exp Allergy 2016; 46:1194-205. [PMID: 27359111 DOI: 10.1111/cea.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ragweed is a major cause of seasonal allergy, affecting millions of people worldwide. Several allergens have been defined based on IgE reactivity, but their relative immunogenicity in terms of T cell responses has not been studied. OBJECTIVE We comprehensively characterized T cell responses from atopic, ragweed-allergic subjects to Amb a 1, Amb a 3, Amb a 4, Amb a 5, Amb a 6, Amb a 8, Amb a 9, Amb a 10, Amb a 11, and Amb p 5 and examined their correlation with serological reactivity and sequence conservation in other allergens. METHODS Peripheral blood mononuclear cells (PBMCs) from donors positive for IgE towards ragweed extracts after in vitro expansion for secretion of IL-5 (a representative Th2 cytokine) and IFN-γ (Th1) in response to a panel of overlapping peptides spanning the above-listed allergens were assessed. RESULTS Three previously identified dominant T cell epitopes (Amb a 1 176-191, 200-215, and 344-359) were confirmed, and three novel dominant epitopes (Amb a 1 280-295, 304-319, and 320-335) were identified. Amb a 1, the dominant IgE allergen, was also the dominant T cell allergen, but dominance patterns for T cell and IgE responses for the other ragweed allergens did not correlate. Dominance for T cell responses correlated with conservation of ragweed epitopes with sequences of other well-known allergens. CONCLUSIONS AND CLINICAL RELEVANCE These results provide the first assessment of the hierarchy of T cell reactivity in ragweed allergens, which is distinct from that observed for IgE reactivity and influenced by T cell epitope sequence conservation. The results suggest that ragweed allergens associated with lesser IgE reactivity and significant T cell reactivity may be targeted for T cell immunotherapy, and further support the development of immunotherapies against epitopes conserved across species to generate broad reactivity against many common allergens.
Collapse
Affiliation(s)
- J Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - C Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - D Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - S Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - R Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - E Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - B Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - A Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
35
|
Abstract
Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.
Collapse
Affiliation(s)
- Isabel Pablos
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Sabrina Wildner
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Claudia Asam
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Michael Wallner
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Gabriele Gadermaier
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
36
|
Williams PB, Barnes CS, Portnoy JM. Innate and Adaptive Immune Response to Fungal Products and Allergens. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:386-95. [PMID: 26755096 DOI: 10.1016/j.jaip.2015.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.
Collapse
Affiliation(s)
- P Brock Williams
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Charles S Barnes
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Jay M Portnoy
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo.
| | | |
Collapse
|
37
|
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Asam C, Hofer H, Wolf M, Aglas L, Wallner M. Tree pollen allergens-an update from a molecular perspective. Allergy 2015; 70:1201-11. [PMID: 26186076 PMCID: PMC5102629 DOI: 10.1111/all.12696] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 12/30/2022]
Abstract
It is estimated that pollen allergies affect approximately 40% of allergic individuals. In general, tree pollen allergies are mainly elicited by allergenic trees belonging to the orders Fagales, Lamiales, Proteales, and Pinales. Over 25 years ago, the gene encoding the major birch pollen allergen Bet v 1 was the first such gene to be cloned and its product characterized. Since that time, 53 tree pollen allergens have been identified and acknowledged by the WHO/IUIS allergen nomenclature subcommittee. Molecule‐based profiling of allergic sensitization has helped to elucidate the immunological connections of allergen cross‐reactivity, whereas advances in biochemistry have revealed structural and functional aspects of allergenic proteins. In this review, we provide a comprehensive overview of the present knowledge of the molecular aspects of tree pollen allergens. We analyze the geographic distribution of allergenic trees, discuss factors pivotal for allergic sensitization, and describe the role of tree pollen panallergens. Novel allergenic tree species as well as tree pollen allergens are continually being identified, making research in this field highly competitive and instrumental for clinical applications.
Collapse
Affiliation(s)
- C. Asam
- Department of Molecular Biology University of Salzburg Salzburg Austria
| | - H. Hofer
- Department of Molecular Biology University of Salzburg Salzburg Austria
| | - M. Wolf
- Department of Molecular Biology University of Salzburg Salzburg Austria
| | - L. Aglas
- Department of Molecular Biology University of Salzburg Salzburg Austria
| | - M. Wallner
- Department of Molecular Biology University of Salzburg Salzburg Austria
| |
Collapse
|