1
|
Troìa L, Ferrari S, Dotta A, Giacomini S, Mainolfi E, Spissu F, Tivano A, Libretti A, Surico D, Remorgida V. Does Insulin Treatment Affect Umbilical Artery Doppler Indices in Pregnancies Complicated by Gestational Diabetes? Healthcare (Basel) 2024; 12:1972. [PMID: 39408152 PMCID: PMC11477292 DOI: 10.3390/healthcare12191972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is one of the most common morbidities of pregnancy. The impact of increased maternal blood glucose on fetoplacental hemodynamics is not fully elucidated, especially in patients with uncontrolled GDM necessitating insulin therapy. The objective of this study was to assess the impact of insulin therapy on the umbilical artery dopplers in GDM pregnancies adequate for gestational-age fetuses. Methods: Retrospective observational study among 447 GDM pregnant women, divided according to their treatment (nutritional therapy (NT), long acting (LA) insulin, combined insulin) and 100 healthy controls with the same gestational age. The umbilical artery pulsatility index (UA-PI) was recorded at 28, 32 and 36 weeks. Results: UA-PI values declined in both GDM and healthy controls at all three time intervals. The combined insulin group showed reduced UA-PI values in comparison to the LA insulin group, but the difference never reached statistical significance. The combined insulin group exhibited significantly reduced UA-PI values at 32- and 36-weeks' gestation compared to the NT groups. Conclusions: A decreased impedance to blood flow in the umbilical artery of diabetic mothers on insulin therapy was observed. This was more pronounced during the last trimester. The extent to which umbilical artery PI can predict unfavorable outcomes has yet to be determined. Further additional studies are necessary to confirm the precise impact of glucose levels and medical interventions on the circulation of both the fetus and the mother.
Collapse
Affiliation(s)
- Libera Troìa
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Stefania Ferrari
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Anna Dotta
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Sonia Giacomini
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Erika Mainolfi
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Federica Spissu
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Alessia Tivano
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Alessandro Libretti
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
| | - Daniela Surico
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Valentino Remorgida
- Department of Gynaecology and Obstetrics, University Hospital Maggiore della Carità, 28100 Novara, Italy; (S.F.); (A.D.); (S.G.); (E.M.); (F.S.); (A.T.); (A.L.); (D.S.); (V.R.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
2
|
Pinheiro EA, DeKeyser JM, Lenny B, Sapkota Y, Burridge PW. Nilotinib-induced alterations in endothelial cell function recapitulate clinical vascular phenotypes independent of ABL1. Sci Rep 2024; 14:7123. [PMID: 38532120 DOI: 10.1038/s41598-024-57686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Nilotinib is a highly effective treatment for chronic myeloid leukemia but has been consistently associated with the development of nilotinib-induced arterial disease (NAD) in a subset of patients. To date, which cell types mediate this effect and whether NAD results from on-target mechanisms is unknown. We utilized human induced pluripotent stem cells (hiPSCs) to generate endothelial cells and vascular smooth muscle cells for in vitro study of NAD. We found that nilotinib adversely affects endothelial proliferation and migration, in addition to increasing intracellular nitric oxide. Nilotinib did not alter endothelial barrier function or lipid uptake. No effect of nilotinib was observed in vascular smooth muscle cells, suggesting that NAD is primarily mediated through endothelial cells. To evaluate whether NAD results from enhanced inhibition of ABL1, we generated multiple ABL1 knockout lines. The effects of nilotinib remained unchanged in the absence of ABL1, suggesting that NAD results from off- rather than on-target signaling. The model established in the present study can be applied to future mechanistic and patient-specific pharmacogenomic studies.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, 320 E Superior St, Searle 8-525, Chicago, IL, 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, 320 E Superior St, Searle 8-525, Chicago, IL, 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, 38105, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, 38105, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, 320 E Superior St, Searle 8-525, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
4
|
Jhuo SJ, Lin YH, Liu IH, Lin TH, Wu BN, Lee KT, Lai WT. Sodium Glucose Cotransporter 2 (SGLT2) Inhibitor Ameliorate Metabolic Disorder and Obesity Induced Cardiomyocyte Injury and Mitochondrial Remodeling. Int J Mol Sci 2023; 24:ijms24076842. [PMID: 37047815 PMCID: PMC10095421 DOI: 10.3390/ijms24076842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
Sodium-glucose transporter 2 inhibitors (SGLT2is) exert significant cardiovascular and heart failure benefits in type 2 diabetes mellitus (DM) patients and can help reduce cardiac arrhythmia incidence in clinical practice. However, its effect on regulating cardiomyocyte mitochondria remain unclear. To evaluate its effect on myocardial mitochondria, C57BL/6J mice were divided into four groups, including: (1) control, (2) high fat diet (HFD)-induced metabolic disorder and obesity (MDO), (3) MDO with empagliflozin (EMPA) treatment, and (4) MDO with glibenclamide (GLI) treatment. All mice were sacrificed after 16 weeks of feeding and the epicardial fat secretome was collected. H9c2 cells were treated with the different secretomes for 18 h. ROS production, Ca2+ distribution, and associated proteins expression in mitochondria were investigated to reveal the underlying mechanisms of SGLT2is on cardiomyocytes. We found that lipotoxicity, mitochondrial ROS production, mitochondrial Ca2+ overload, and the levels of the associated protein, SOD1, were significantly lower in the EMPA group than in the MDO group, accompanied with increased ATP production in the EMPA-treated group. The expression of mfn2, SIRT1, and SERCA were also found to be lower after EMPA-secretome treatment. EMPA-induced epicardial fat secretome in mice preserved a better cardiomyocyte mitochondrial biogenesis function than the MDO group. In addition to reducing ROS production in mitochondria, it also ameliorated mitochondrial Ca2+ overload caused by MDO-secretome. These findings provide evidence and potential mechanisms for the benefit of SGLT2i in heart failure and arrhythmias.
Collapse
Affiliation(s)
- Shih-Jie Jhuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - I-Hsin Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kun-Tai Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Expression of BmDHFR is up-regulated to trigger an increase in the BH4/BH2 ratio when the de novo synthesis of BH4 is blocked in silkworm, Bombyx mori. Int J Biol Macromol 2023; 225:625-633. [PMID: 36402389 DOI: 10.1016/j.ijbiomac.2022.11.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Tetrahydrobiopterin (BH4) is a vital coenzyme for several enzymes involved in diverse enzymatic reactions in animals. BH4 deficiency can lead to metabolic and neurological disorders due to dysfunction in its metabolism. Sepiapterin reductase (SPR) and dihydrofolate reductase (DHFR) are crucial enzymes in the BH4 de novo synthesis pathway and salvage pathway, respectively. Dihydrobiopterin (BH2) is an oxidized product of BH4 metabolism. The ratio of BH4/BH2 is a key indicator of the stability of BH4 levels. The de novo pathway of BH4 synthesis is well-defined; however, little is known about the mechanisms of the salvage pathway in insects. Herein, we used the natural BmSPR mutant silkworm (lem) as a resource material. Our results reveal that the BmDHFR expression and the BH4/BH2 ratio were remarkably higher in lem as compared to the wild-type silkworm. In BmN cells, knockdown of BmSpr showed increased BmDHFR expression, while the BH4/BH2 ratio decreased after BmDhfr knockdown by RNAi. Furthermore, simultaneous RNAi of BmSpr and BmDhfr showed a further decrease in the BH4/BH2 ratio. These manifest that the expression of BmDHFR is up-regulated to trigger an increase in the BH4/BH2 ratio when the de novo synthesis of BH4 is blocked in silkworm. Additionally, the knockdown of BmSpr in wild-type silkworms also showed an increased BmDHFR level and BH4/BH2 ratio. Taken together, when the silkworm BH4 de novo synthesis pathway is blocked, the salvage pathway is activated, and BmDHFR plays an important role in maintaining the metabolic balance of silkworm BH4. This study enriches our understanding of the molecular mechanism of the BH4 salvage pathway and lays a good foundation for further studies on BH4 using the silkworm as a model insect.
Collapse
|
6
|
Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep 2022; 12:15278. [PMID: 36088464 PMCID: PMC9464215 DOI: 10.1038/s41598-022-19422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
The human placenta is a critical organ, mediating the exchange of nutrients, oxygen, and waste products between fetus and mother. Placental malaria (PM) resulted from Plasmodium falciparum infections causes up to 200 thousand newborn deaths annually, mainly due to low birth weight, as well as 10 thousand mother deaths. In this work, a placenta-on-a-chip model is developed to mimic the nutrient exchange between the fetus and mother under the influence of PM. In this model, trophoblasts cells (facing infected or uninfected blood simulating maternal blood and termed “trophoblast side”) and human umbilical vein endothelial cells (facing uninfected blood simulating fetal blood and termed “endothelial” side) are cultured on the opposite sides of an extracellular matrix gel in a compartmental microfluidic system, forming a physiological barrier between the co-flow tubular structure to mimic a simplified maternal–fetal interface in placental villi. The influences of infected erythrocytes (IEs) sequestration through cytoadhesion to chondroitin sulfate A (CSA) expressed on the surface of trophoblast cells, a critical feature of PM, on glucose transfer efficiency across the placental barrier was studied. To create glucose gradients across the barrier, uninfected erythrocyte or IE suspension with a higher glucose concentration was introduced into the “trophoblast side” and a culture medium with lower glucose concentration was introduced into the “endothelial side”. The glucose levels in the endothelial channel in response to CSA-adherent erythrocytes infected with CS2 line of parasites in trophoblast channel under flow conditions was monitored. Uninfected erythrocytes served as a negative control. The results demonstrated that CSA-binding IEs added resistance to the simulated placental barrier for glucose perfusion and decreased the glucose transfer across this barrier. The results of this study can be used for better understanding of PM pathology and development of models useful in studying potential treatment of PM.
Collapse
|
7
|
Sen A, Thakkar H, Vincent V, Rai S, Singh A, Mohanty S, Roy A, Ramakrishnan L. Endothelial colony forming cells' tetrahydrobiopterin level in coronary artery disease patients and its association with circulating endothelial progenitor cells. Can J Physiol Pharmacol 2022; 100:473-485. [PMID: 35180005 DOI: 10.1139/cjpp-2021-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial colony forming cells (ECFCs) participate in neovascularization. Endothelial nitric oxide synthase (eNOS) derived NO· helps in homing of endothelial progenitor cells (EPCs) at the site of vascular injury. The enzyme cofactor tetrahydrobiopterin (BH4) stabilizes the catalytic active state of eNOS. Association of intracellular ECFCs biopterins and ratio of reduced to oxidized biopterin (BH4:BH2) with circulatory EPCs and ECFCs functionality have not been studied. We investigated ECFCs biopterin levels and its association with circulatory EPCs as well as ECFCs proliferative potential in terms of day of appearance in culture. Circulatory EPCs were enumerated by flowcytometry in 53 coronary artery disease (CAD) patients and 42 controls. ECFCs were cultured, characterized, and biopterin levels assessed by high performance liquid chromatography. Appearance of ECFCs' colony and their number were recorded. Circulatory EPCs were significantly lower in CAD and ECFCs appeared in 56% and 33% of CAD and control subjects, respectively. Intracellular BH4 and BH4:BH2 were significantly reduced in CAD. BH4:BH2 was positively correlated with circulatory EPCs (p = 0.01), and negatively with day of appearance of ECFCs (p = 0.04). Circulatory EPCs negatively correlated with ECFCs appearance (p = 0.02). These findings suggest the role of biopterins in maintaining circulatory EPCs and functional integrity of ECFCs.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Rai
- Department of Laboratory Oncology, Institute of Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Center of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Sen A, Singh A, Roy A, Mohanty S, Naik N, Kalaivani M, Ramakrishnan L. Role of endothelial colony forming cells (ECFCs) Tetrahydrobiopterin (BH4) in determining ECFCs functionality in coronary artery disease (CAD) patients. Sci Rep 2022; 12:3076. [PMID: 35197509 PMCID: PMC8866483 DOI: 10.1038/s41598-022-06758-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/31/2022] [Indexed: 01/05/2023] Open
Abstract
Nitric oxide (NO.) is critical for functionality of endothelial colony forming cells (ECFCs). Dimerization of endothelial nitric oxide synthase (eNOS) is must to produce NO. and tetrahydrobiopterin (BH4) plays a crucial role in stabilizing this state. We investigated BH4 level in ECFCs and its effect on ECFCs functionality in CAD patients. Intracellular biopterin levels and ECFCs functionality in terms of cell viability, adhesion, proliferation, in vitro wound healing and angiogenesis were assessed. Guanosine Triphosphate Cyclohydrolase-1 (GTPCH-1) expression was studied in ECFCs. Serum total reactive oxygen/nitrogen species was measured and effect of nitrosative stress on ECFC's biopterins level and functionality were evaluated by treating with 3-morpholino sydnonimine (SIN-1). BH4 level was significantly lower in ECFCs from CAD patients. Cell proliferation, wound closure reflecting cellular migration as well as in vitro angiogenesis were impaired in ECFCs from CAD patients. Wound healing capacity and angiogenesis were positively correlated with ECFC's BH4. A negative effect of nitrosative stress on biopterins level and cell functionality was observed in SIN-1 treated ECFCs. ECFCs from CAD exhibited impaired functionality and lower BH4 level. Association of BH4 with wound healing capacity and angiogenesis suggest its role in maintaining ECFC's functionality. Oxidative stress may be a determinant of intracellular biopterin levels.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
The Blood-Brain Barrier, Oxidative Stress, and Insulin Resistance. Antioxidants (Basel) 2021; 10:antiox10111695. [PMID: 34829566 PMCID: PMC8615183 DOI: 10.3390/antiox10111695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a network of specialized endothelial cells that regulates substrate entry into the central nervous system (CNS). Acting as the interface between the periphery and the CNS, the BBB must be equipped to defend against oxidative stress and other free radicals generated in the periphery to protect the CNS. There are unique features of brain endothelial cells that increase the susceptibility of these cells to oxidative stress. Insulin signaling can be impacted by varying levels of oxidative stress, with low levels of oxidative stress being necessary for signaling and higher levels being detrimental. Insulin must cross the BBB in order to access the CNS, levels of which are important in peripheral metabolism as well as cognition. Any alterations in BBB transport due to oxidative stress at the BBB could have downstream disease implications. In this review, we cover the interactions of oxidative stress at the BBB, how insulin signaling is related to oxidative stress, and the impact of the BBB in two diseases greatly affected by oxidative stress and insulin resistance: diabetes mellitus and Alzheimer’s disease.
Collapse
|
10
|
Cornejo M, Fuentes G, Valero P, Vega S, Grismaldo A, Toledo F, Pardo F, Moore‐Carrasco R, Subiabre M, Casanello P, Faas MM, Goor H, Sobrevia L. Gestational diabesity and foetoplacental vascular dysfunction. Acta Physiol (Oxf) 2021; 232:e13671. [PMID: 33942517 DOI: 10.1111/apha.13671] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus (GDM) shows a deficiency in the metabolism of D-glucose and other nutrients, thereby negatively affecting the foetoplacental vascular endothelium. Maternal hyperglycaemia and hyperinsulinemia play an important role in the aetiology of GDM. A combination of these and other factors predisposes women to developing GDM with pre-pregnancy normal weight, viz. classic GDM. However, women with GDM and prepregnancy obesity (gestational diabesity, GDty) or overweight (GDMow) show a different metabolic status than women with classic GDM. GDty and GDMow are associated with altered l-arginine/nitric oxide and insulin/adenosine axis signalling in the human foetoplacental microvascular and macrovascular endothelium. These alterations differ from those observed in classic GDM. Here, we have reviewed the consequences of GDty and GDMow in the modulation of foetoplacental endothelial cell function, highlighting studies describing the modulation of intracellular pH homeostasis and the potential implications of NO generation and adenosine signalling in GDty-associated foetal vascular insulin resistance. Moreover, with an increase in the rate of obesity in women of childbearing age worldwide, the prevalence of GDty is expected to increase in the next decades. Therefore, we emphasize that women with GDty and GDMow should be characterized with a different metabolic state from that of women with classic GDM to develop a more specific therapeutic approach for protecting the mother and foetus.
Collapse
Affiliation(s)
- Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Faculty of Health Sciences Universidad de Talca Talca Chile
- Faculty of Health Sciences Universidad de Antofagasta Antofagasta Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Faculty of Health Sciences Universidad de Talca Talca Chile
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
| | - Paola Valero
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Faculty of Health Sciences Universidad de Talca Talca Chile
| | - Sofía Vega
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Medical School (Faculty of Medicine) Sao Paulo State University (UNESP) Sao Paulo Brazil
| | - Adriana Grismaldo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Department of Nutrition and Biochemistry Faculty of Sciences Pontificia Universidad Javeriana Bogotá D.C. Colombia
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Department of Basic Sciences Faculty of Sciences Universidad del Bío‐Bío Chillán Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Metabolic Diseases Research Laboratory Interdisciplinary Centre of Territorial Health Research (CIISTe) Biomedical Research Center (CIB) School of Medicine Faculty of Medicine Universidad de Valparaíso San Felipe Chile
| | | | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Paola Casanello
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
- Department of Obstetrics Division of Obstetrics and Gynaecology, and Department of Neonatology Division of Pediatrics School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Marijke M Faas
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
| | - Harry Goor
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
- Medical School (Faculty of Medicine) Sao Paulo State University (UNESP) Sao Paulo Brazil
- Department of Physiology Faculty of Pharmacy Universidad de Sevilla Seville Spain
- University of Queensland Centre for Clinical Research (UQCCR) Faculty of Medicine and Biomedical Sciences University of Queensland Herston QLD Australia
| |
Collapse
|
11
|
Adanaş Aydın G, Özdemir Akdur P, Özgen G. The effect of glucose tolerance test on fetoplacental circulation. Taiwan J Obstet Gynecol 2021; 60:723-727. [PMID: 34247814 DOI: 10.1016/j.tjog.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Acute hyperglycemia affects the fetoplacental circulation. This study aims to investigate the possible effect of acute hyperglycemia induced by 50 g oral glucose tolerance test (OGTT) on fetoplacental circulation in women between 24 and 28 weeks of gestation. MATERIALS AND METHODS Between January 2019 and April 2019, a total of 29 women who were between 24 and 28 weeks of gestation with a singleton gestation and were in low-risk group were included in this prospective study. All patients underwent fetal biometric measurements using ultrasonography (USG) and were administered 50 g OGTT. Before and 1 h after the test, Doppler USG was used to measure uterine artery, umbilical artery (UA), middle cerebral artery (MCA), pulsatility index (PI), resistance index (RI), and systolic/diastolic (S/D) ratio. The cerebroplacental ratio (CPR) was calculated as the ratio of the MCA-PI/UA-PI. RESULTS There was a decline in the MCA-RI (p = 0.008) and UA-PI (p = 0.021) at 1 h after the administration of 50 g OGTT. Z-scores of the mean UA-PI, MCA-PI, and CPR were calculated and a statistically significant increase in the Z-scores of the mean UA-PI was observed (p = 0.028). CONCLUSION Our study results show that acute hyperglycemia induced by OGTT significantly increases the Z-scores of the UA-PI, affecting the fetoplacental circulation.
Collapse
Affiliation(s)
- Gültekin Adanaş Aydın
- Bursa Yüksekİhtisas Training and Research Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey.
| | - Pınar Özdemir Akdur
- Bursa Yüksekİhtisas Training and Research Hospital, Department of Radiology, Bursa, Turkey
| | - Gülten Özgen
- Bursa Yüksekİhtisas Training and Research Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey
| |
Collapse
|
12
|
Williamson G. Protection against developing type 2 diabetes by coffee consumption: assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food Funct 2021; 11:4826-4833. [PMID: 32484174 DOI: 10.1039/d0fo01168a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show a convincing long-term and dose-dependent protection of coffee and decaffeinated coffee against developing type 2 diabetes. The mechanisms of this effect are still not understood even though several have been proposed, including a potential effect on blood glucose by chlorogenic acids. However, there is minimal effect of decaffeinated coffee on postprandial blood glucose and insulin when consumed with carbohydrates, although there may be effects on incretin hormones, but these have been measured in only a few studies. Although chlorogenic acids do not affect carbohydrate digestion directly, they may affect glucose absorption and subsequent utilisation, the latter through metabolites derived from endogenous pathways or action of the gut microbiota. To advance understanding of the protective effect of coffee chlorogenic acids, more chronic intervention studies are needed on decaffeinated coffee, coupled with mechanistic studies in vitro using more realistic concentrations of the relevant chlorogenic acid metabolites.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
13
|
Araujo-Chaves JC, Miranda ÉGA, Lopes DM, Yokomizo CH, Carvalho-Jr WM, Nantes-Cardoso IL. Antioxidant cytochrome c-like activity of para-Mn (III)TMPyP. Biochimie 2021; 184:116-124. [PMID: 33662439 DOI: 10.1016/j.biochi.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Manganese porphyrins are well-known protectors against the deleterious effects of pro-oxidant species such as superoxide ions and hydrogen peroxide. The present study investigated the antioxidant cytochrome c-like activities of Mn(III)TMPyP [meso-tetrakis (4-N-methyl pyridinium) porphyrin] against superoxide ion and hydrogen peroxide that remained unexplored for this porphyrin. The association of TMPyP with a model of the inner mitochondrial membrane, cardiolipin (CL)-containing liposomes, shifted +30 mV vs. NHE (normal hydrogen electrode) redox potential of the Mn(II)/Mn(III) redox couple. In CL-containing liposomes, Mn(III)TMPyP was reduced by superoxide ions and recycled by Fe(III)cytochrome c to the oxidized form. Similarly, isolated rat liver mitoplasts added to a sample of Mn(II)TMPyP promoted immediate porphyrin reoxidation by electron transfer to the respiratory chain. These results show that Mn(III)TMPyP can act as an additional pool of Fe(III)cytochrome c capable of transferring electrons that escape from the IV complex back into the respiratory chain. Unlike Fe(II)cytochrome c, Mn(II)TMPyP was not efficient for hydrogen peroxide clearance. Therefore, by reducing cytochrome c, Mn(II)TMPyP can indirectly contribute to hydrogen peroxide elimination.
Collapse
Affiliation(s)
- Juliana C Araujo-Chaves
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Érica G A Miranda
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - David M Lopes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - César H Yokomizo
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Waldemir M Carvalho-Jr
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Iseli L Nantes-Cardoso
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil.
| |
Collapse
|
14
|
Ayaz R, Günay T, Yardımcı OD, Turgut A, Ankaralı H. The effect of 75-g oral glucose tolerance test on maternal and foetal Doppler parameters in healthy pregnancies: a cross-sectional observational study. J OBSTET GYNAECOL 2021; 41:83-88. [PMID: 33583317 DOI: 10.1080/01443615.2020.1849072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hyperglycaemia can alter placental resistance to blood flow and hyperglycaemia has adverse perinatal outcomes. Oral glucose tolerance testing (OGTT) increases the maternal plasma glucose levels temporarily and mimics metabolic hyperglycaemia. The blood flow of the uterine artery (UtA), umbilical artery (UA), middle cerebral artery (MCA) were assessed before, 1 and 2 h following the OGTT by using Doppler ultrasonography. Z-score of cerebroplacental ratio (CPR), pulsatility index (PI) for three vessels were evaluated separately. All measurements of the MCA, UA, UtA Doppler parameters were not statistically different for fasting, and 1 and 2 h following the 75 g OGTT in the 53 pregnant women with a singleton gestation in the low-risk group. This study results show that acute hyperglycaemia induced by OGTT has no effect on maternal and foetal Doppler parameters in healthy pregnancies.IMPACT STATEMENTWhat is already known on this subject? Foetal glucose is affected by maternal blood glucose concentrations and placental blood flow. Acute hyperglycaemia may have an effect on maternal, and foetal Doppler parameters among healthy pregnanciesWhat do the results of this study add? Our findings indicate that blood flow velocity metric measurements in the UA, MCA and UtA were not affected by the OGTT in healthy pregnant women.What are the implications of these findings for clinical practice and/or further research? Acute hyperglycaemia induced by OGTT does not have any effect on fetomaternal circulation, especially foetal brain blood flow. Other foetal vessels including ductus venosus, renal artery, etc. may be affected by maternal blood glucose levels during the OGTT or in diabetic patients. Future prospective studies consisting of diabetic patients are warranted to verify the exact effect of glucose levels on foetal and maternal circulation.
Collapse
Affiliation(s)
- Reyhan Ayaz
- Faculty of Medicine, Department of Perinatology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Taner Günay
- Faculty of Medicine, Department of Obstetrics and Gynecology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Oguz Devrim Yardımcı
- Faculty of Medicine, Department of Obstetrics and Gynecology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Abdulkadir Turgut
- Faculty of Medicine, Department of Obstetrics and Gynecology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Handan Ankaralı
- Faculty of Medicine, Department of Biostatistics, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
15
|
Tapia J, Vera N, Aguilar J, González M, Sánchez SA, Coelho P, Saavedra C, Staforelli J. Correlated flickering of erythrocytes membrane observed with dual time resolved membrane fluctuation spectroscopy under different D-glucose concentrations. Sci Rep 2021; 11:2429. [PMID: 33510337 PMCID: PMC7844050 DOI: 10.1038/s41598-021-82018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
A correlated human red blood cell membrane fluctuation dependent on D-glucose concentration was found with dual time resolved membrane fluctuation spectroscopy (D-TRMFS). This new technique is a modified version of the dual optical tweezers method that has been adapted to measure the mechanical properties of red blood cells (RBCs) at distant membrane points simultaneously, enabling correlation analysis. Mechanical parameters under different D-glucose concentrations were obtained from direct membrane flickering measurements, complemented with membrane fluidity measurements using Laurdan Generalized Polarization (GP) Microscopy. Our results show an increase in the fluctuation amplitude of the lipid bilayer, and a decline in tension value, bending modulus and fluidity as D-glucose concentration increases. Metabolic mechanisms are proposed as explanations for the results.
Collapse
Affiliation(s)
- J Tapia
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - N Vera
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - Joao Aguilar
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - M González
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - S A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - P Coelho
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - C Saavedra
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - J Staforelli
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
16
|
Mauri M, Calmarza P, Ibarretxe D. Dyslipemias and pregnancy, an update. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 33:41-52. [PMID: 33309071 DOI: 10.1016/j.arteri.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
During pregnancy there is a physiological increase in total cholesterol (TC) and triglycerides (TG) plasma concentrations, due to increased insulin resistance, oestrogens, progesterone, and placental lactogen, although their reference values are not exactly known, TG levels can increase up to 300mg/dL, and TC can go as high as 350mg/dL. When the cholesterol concentration exceeds the 95th percentile (familial hypercholesterolaemia (FH) and transient maternal hypercholesterolaemia), there is a predisposition to oxidative stress in foetal vessels, exposing the newborn to a greater fatty streaks formation and a higher risk of atherosclerosis. However, the current treatment of pregnant women with hyperlipidaemia consists of a diet and suspension of lipid-lowering drugs. The most prevalent maternal hypertriglyceridaemia (HTG) is due to secondary causes, like diabetes, obesity, drugs, etc. The case of severe HTG due to genetic causes is less prevalent, and can be a higher risk of maternal-foetal complications, such as, acute pancreatitis (AP), pre-eclampsia, preterm labour, and gestational diabetes. Severe HTG-AP is a rare but potentially lethal pregnancy complication, for the mother and the foetus, usually occurs during the third trimester or in the immediate postpartum period, and there are no specific protocols for its diagnosis and treatment. In conclusion, it is crucial that dyslipidaemia during pregnancy must be carefully evaluated, not just because of the acute complications, but also because of the future cardiovascular morbidity and mortality of the newborn child. That is why the establishment of consensus protocols or guidelines is essential for its management.
Collapse
Affiliation(s)
- Marta Mauri
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Barcelona, España
| | - Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, España.
| | - Daiana Ibarretxe
- Unidad de Medicina Vascular y Metabolismo (UVASMET), Hospital Universitario de Reus, Universidad Rovira y Virgili, IISPV, CIBERDEM, Reus, Tarragona, España
| |
Collapse
|
17
|
Olivares-Caro L, Radojkovic C, Chau SY, Nova D, Bustamante L, Neira JY, Perez AJ, Mardones C. Berberis microphylla G. Forst (Calafate) Berry Extract Reduces Oxidative Stress and Lipid Peroxidation of Human LDL. Antioxidants (Basel) 2020; 9:antiox9121171. [PMID: 33255435 PMCID: PMC7760614 DOI: 10.3390/antiox9121171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calafate (Berberis microphylla G. Forst) is a Patagonian barberry very rich in phenolic compounds. Our aim was to demonstrate, through in vitro models, that a comprehensive characterized calafate extract has a protective role against oxidative processes associated to cardiovascular disease development. Fifty-three phenolic compounds (17 of them not previously reported in calafate), were tentatively identified by Ultra-Liquid Chromatography with Diode Array Detector, coupled to Quadrupole-Time of Fly Mass Spectrometry (UHPLC-DAD-QTOF). Fatty acids profile and metals content were studied for the first time, by Gas Chromatography Mass Spectrometry (GC-MS) and Total X-ray Fluorescence (TXRF), respectively. Linolenic and linoleic acid, and Cu, Zn, and Mn were the main relevant compounds from these groups. The bioactivity of calafate extract associated to the cardiovascular protection was evaluated using Human Umbilical Vein Endothelial Cells (HUVECs) and human low density lipoproteins (LDL) to measure oxidative stress and lipid peroxidation. The results showed that calafate extract reduced intracellular Reactive Oxygen Species (ROS) production (51%) and completely inhibited LDL oxidation and malondialdehyde (MDA) formation. These findings demonstrated the potential of the relevant mix of compounds found in calafate extract on lipoperoxidation and suggest a promising protective effect for reducing the incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Lia Olivares-Caro
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (L.O.-C.); (D.N.); (L.B.); (J.Y.N.); (A.J.P.)
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (C.R.); (S.Y.C.)
| | - Claudia Radojkovic
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (C.R.); (S.Y.C.)
| | - Si Yen Chau
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (C.R.); (S.Y.C.)
| | - Daniela Nova
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (L.O.-C.); (D.N.); (L.B.); (J.Y.N.); (A.J.P.)
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (L.O.-C.); (D.N.); (L.B.); (J.Y.N.); (A.J.P.)
| | - Jose Yamil Neira
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (L.O.-C.); (D.N.); (L.B.); (J.Y.N.); (A.J.P.)
| | - Andy J. Perez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (L.O.-C.); (D.N.); (L.B.); (J.Y.N.); (A.J.P.)
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile; (L.O.-C.); (D.N.); (L.B.); (J.Y.N.); (A.J.P.)
- Correspondence: ; Tel.: +56-983-6163-40
| |
Collapse
|
18
|
Sabando C, Rodríguez-Díaz M, Ide W, Pastene E, Avello M, Simirgiotis M, Rojas S, Villarroel E, Silva-Grecchi T, Gutiérrez C, Bouza R, Cicchelli B, González M, Rodríguez-Llamazares S. Improvement of endothelial function by Gunnera tinctoria extract with antioxidant properties. Biol Res 2020; 53:55. [PMID: 33228801 PMCID: PMC7684749 DOI: 10.1186/s40659-020-00322-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Gunnera tinctoria has been collected by Mapuche-Pewenche people for food and medicinal purposes. The high polyphenol content of methanolic extract from G. tinctoria leaves with chemical constituents such as ellagic acid and quercetin derivatives suggests its application to prevent endothelial dysfunction and oxidative stress. The aim of this study was to provide evidence of the protective effect of this extract on endothelial function by reducing oxidative stress induced by high D-glucose and H2O2, as well as by stimulating nitric oxide (NO) levels in human umbilical vein endothelial cells (HUVECs). RESULTS A methanolic extract with a high content of polyphenols (520 ± 30 mg gallic acid equivalents/g dry extract) was obtained from G. tinctoria leaves. Its main constituent was ellagic acid. The results of Ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays of the extract confirmed its antioxidant activity by inhibition pathway of radical species. The incubation of HUVECs with the extract decreased the apoptosis and reactive oxygen species (ROS) synthesis induced by high extracellular concentration of D-glucose or hydrogen peroxide. The extract increased endothelial NO levels and reduced vasoconstriction in human placental vessels. CONCLUSIONS This study provides evidence about the antioxidant and endothelial protective properties of methanolic G. tinctoria leaf extract. The extract improves the availability of NO in HUVECs, inhibiting the production of ROS and vasoconstriction.
Collapse
Affiliation(s)
- Constanza Sabando
- Centro de Investigación de Polímeros Avanzados (CIPA), Avda. Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | | | - Walther Ide
- Centro de Investigación de Polímeros Avanzados (CIPA), Avda. Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Edgar Pastene
- Laboratorio de Farmacognosia, Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bío-Bío, Avda. Andrés Bello 720, Chillán, Chile
| | - Marcia Avello
- Laboratorio de Farmacognosia, Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Susana Rojas
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Enrique Villarroel
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Cristian Gutiérrez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Rebeca Bouza
- Departamento de Física, E.U.P. Ferrol, Universidad de A Coruña, Avda. 19 de Febrero, s/n, 15405, Ferrol, Spain
| | - Bárbara Cicchelli
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. .,Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. .,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados (CIPA), Avda. Collao 1202, Edificio de Laboratorios, Concepción, Chile. .,Unidad de Desarrollo Tecnológico, Universidad de Concepción, Avda. Cordillera 2634, Coronel, Chile.
| |
Collapse
|
19
|
Mosavati B, Oleinikov AV, Du E. Development of an Organ-on-a-Chip-Device for Study of Placental Pathologies. Int J Mol Sci 2020; 21:E8755. [PMID: 33228194 PMCID: PMC7699553 DOI: 10.3390/ijms21228755] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
The human placenta plays a key role in reproduction and serves as a major interface for maternofetal exchange of nutrients. Study of human placenta pathology presents a great experimental challenge because it is not easily accessible. In this paper, a 3D placenta-on-a-chip model is developed by bioengineering techniques to simulate the placental interface between maternal and fetal blood in vitro. In this model, trophoblasts cells and human umbilical vein endothelial cells are cultured on the opposite sides of a porous polycarbonate membrane, which is sandwiched between two microfluidic channels. Glucose diffusion across this barrier is analyzed under shear flow conditions. Meanwhile, a numerical model of the 3D placenta-on-a-chip model is developed. Numerical results of concentration distributions and the convection-diffusion mass transport is compared to the results obtained from the experiments for validation. Finally, effects of flow rate and membrane porosity on glucose diffusion across the placental barrier are studied using the validated numerical model. The placental model developed here provides a potentially helpful tool to study a variety of other processes at the maternal-fetal interface, for example, effects of drugs or infections like malaria on transport of various substances across the placental barrier.
Collapse
Affiliation(s)
- Babak Mosavati
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Andrew V. Oleinikov
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - E. Du
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA;
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
20
|
Mani BK, Osborne-Lawrence S, Metzger N, Zigman JM. Lowering oxidative stress in ghrelin cells stimulates ghrelin secretion. Am J Physiol Endocrinol Metab 2020; 319:E330-E337. [PMID: 32543942 PMCID: PMC7473909 DOI: 10.1152/ajpendo.00119.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is a predominantly stomach-derived peptide hormone with many actions including regulation of food intake, body weight, and blood glucose. Plasma ghrelin levels are robustly regulated by feeding status, with its levels increasing upon caloric restriction and decreasing after food intake. At least some of this regulation might be due to direct responsiveness of ghrelin cells to changes in circulating nutrients, including glucose. Indeed, oral and parental glucose administration to humans and mice lower plasma ghrelin. Also, dissociated mouse gastric mucosal cell preparations, which contain ghrelin cells, decrease ghrelin secretion when cultured in high ambient glucose. Here, we used primary cultures of mouse gastric mucosal cells in combination with an array of pharmacological tools to examine the potential role of changed intracellular oxidative stress in glucose-restricted ghrelin secretion. The antioxidants resveratrol, SRT1720, and curcumin all markedly increased ghrelin secretion. Furthermore, three different selective activators of Nuclear factor erythroid-derived-2-like 2 (Nrf2), a master regulator of the antioxidative cellular response to oxidative stress, increased ghrelin secretion. These antioxidant compounds blocked the inhibitory effects of glucose on ghrelin secretion. Therefore, we conclude that lowering oxidative stress within ghrelin cells stimulates ghrelin secretion and blocks the direct effects of glucose on ghrelin cells to inhibit ghrelin secretion.
Collapse
Affiliation(s)
- Bharath K Mani
- Center for Hypothalamic Research and Division of Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research and Division of Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathan Metzger
- Center for Hypothalamic Research and Division of Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Center for Hypothalamic Research and Division of Endocrinology, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
21
|
Endothelial Hyper-Permeability Induced by T1D Sera Can be Reversed by iNOS Inactivation. Int J Mol Sci 2020; 21:ijms21082798. [PMID: 32316573 PMCID: PMC7215952 DOI: 10.3390/ijms21082798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 Diabetes Mellitus (T1D) is associated with accelerated atherosclerosis that is responsible for high morbidity and mortality. Endothelial hyperpermeability, a feature of endothelial dysfunction, is an early step of atherogenesis since it favours intimal lipid uptake. Therefore, we tested endothelial leakage by loading the sera from T1D patients onto cultured human endothelial cells and found it increased by hyperglycaemic sera. These results were phenocopied in endothelial cells cultured in a medium containing high concentrations of glucose, which activates inducible nitric oxide synthase with a consequent increase of nitric oxide. Inhibition of the enzyme prevented high glucose-induced hyperpermeability, thus pointing to nitric oxide as the mediator involved in altering the endothelial barrier function. Since nitric oxide is much higher in sera from hyperglycaemic than normoglycaemic T1D patients, and the inhibition of inducible nitric oxide synthase prevents sera-dependent increased endothelial permeability, this enzyme might represent a promising biochemical marker to be monitored in T1D patients to predict alterations of the vascular wall, eventually promoting intimal lipid accumulation.
Collapse
|
22
|
Rojas S, Basualto E, Valdivia L, Vallejos N, Ceballos K, Peña E, Rivas C, Nualart F, Guzmán-Gutiérrez E, Escudero C, Toledo F, Sobrevia L, Cid M, González M. The activity of IKCa and BKCa channels contributes to insulin-mediated NO synthesis and vascular tone regulation in human umbilical vein. Nitric Oxide 2020; 99:7-16. [PMID: 32165314 DOI: 10.1016/j.niox.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 01/16/2023]
Abstract
Insulin regulates the l-arginine/nitric oxide (NO) pathway in human umbilical vein endothelial cells (HUVECs), increasing the plasma membrane expression of the l-arginine transporter hCAT-1 and inducing vasodilation in umbilical and placental veins. Placental vascular relaxation induced by insulin is dependent of large conductance calcium-activated potassium channels (BKCa), but the role of KCa channels on l-arginine transport and NO synthesis is still unknown. The aim of this study was to determine the contribution of KCa channels in both insulin-induced l-arginine transport and NO synthesis, and its relationship with placental vascular relaxation. HUVECs, human placental vein endothelial cells (HPVECs) and placental veins were freshly isolated from umbilical cords and placenta from normal pregnancies. Cells or tissue were incubated in absence or presence of insulin and/or tetraethylammonium, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, iberiotoxin or NG-nitro-l-arginine methyl ester. l-Arginine uptake, plasma membrane polarity, NO levels, hCAT-1 expression and placenta vascular reactivity were analyzed. The inhibition of intermediate-conductance KCa (IKCa) and BKCa increases l-arginine uptake, which was related with protein abundance of hCAT-1 in HUVECs. IKCa and BKCa activities contribute to NO-synthesis induced by insulin but are not directly involved in insulin-stimulated l-arginine uptake. Long term incubation (8 h) with insulin increases the plasma membrane hyperpolarization and hCAT-1 expression in HUVECs and HPVECs. Insulin-induced relaxation in placental vasculature was reversed by KCa inhibition. The results show that the activity of IKCa and BKCa channels are relevant for both physiological regulations of NO synthesis and vascular tone regulation in the human placenta, acting as a part of negative feedback mechanism for autoregulation of l-arginine transport in HUVECs.
Collapse
Affiliation(s)
- Susana Rojas
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Emerita Basualto
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Luz Valdivia
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Natalia Vallejos
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile; Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karen Ceballos
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departmento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia Rivas
- Departmento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Laboratorio de Neurobiología y Células Madres Neuro-CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Enrique Guzmán-Gutiérrez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile; Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD, Queensland, Australia
| | - Marcela Cid
- Departmento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile; Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile.
| |
Collapse
|
23
|
Cabou C, Honorato P, Briceño L, Ghezali L, Duparc T, León M, Combes G, Frayssinhes L, Fournel A, Abot A, Masri B, Parada N, Aguilera V, Aguayo C, Knauf C, González M, Radojkovic C, Martinez LO. Pharmacological inhibition of the F 1 -ATPase/P2Y 1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol (Oxf) 2019; 226:e13268. [PMID: 30821416 DOI: 10.1111/apha.13268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
AIM The contribution of apolipoprotein A1 (APOA1), the major apolipoprotein of high-density lipoprotein (HDL), to endothelium-dependent vasodilatation is unclear, and there is little information regarding endothelial receptors involved in this effect. Ecto-F1 -ATPase is a receptor for APOA1, and its activity in endothelial cells is coupled to adenosine diphosphate (ADP)-sensitive P2Y receptors (P2Y ADP receptors). Ecto-F1 -ATPase is involved in APOA1-mediated cell proliferation and HDL transcytosis. Here, we investigated the effect of lipid-free APOA1 and the involvement of ecto-F1 -ATPase and P2Y ADP receptors on nitric oxide (NO) synthesis and the regulation of vascular tone. METHOD Nitric oxide synthesis was assessed in human endothelial cells from umbilical veins (HUVECs) and isolated mouse aortas. Changes in vascular tone were evaluated by isometric force measurements in isolated human umbilical and placental veins and by assessing femoral artery blood flow in conscious mice. RESULTS Physiological concentrations of lipid-free APOA1 enhanced endothelial NO synthesis, which was abolished by inhibitors of endothelial nitric oxide synthase (eNOS) and of the ecto-F1 -ATPase/P2Y1 axis. Accordingly, APOA1 inhibited vasoconstriction induced by thromboxane A2 receptor agonist and increased femoral artery blood flow in mice. These effects were blunted by inhibitors of eNOS, ecto-F1 -ATPase and P2Y1 receptor. CONCLUSIONS Using a pharmacological approach, we thus found that APOA1 promotes endothelial NO production and thereby controls vascular tone in a process that requires activation of the ecto-F1 -ATPase/P2Y1 pathway by APOA1. Pharmacological targeting of this pathway with respect to vascular diseases should be explored.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
- Department of Human Physiology, Faculty of Pharmacy University Paul Sabatier Toulouse France
| | - Paula Honorato
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Luis Briceño
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Lamia Ghezali
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Thibaut Duparc
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Marcelo León
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Guillaume Combes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Laure Frayssinhes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Audren Fournel
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Anne Abot
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Bernard Masri
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Nicol Parada
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
| | - Claude Knauf
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Marcelo González
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, and Department of Obstetrics and Gynecology, Faculty of Medicine Universidad de Concepción Concepción Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Laurent O. Martinez
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| |
Collapse
|
24
|
Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med 2019; 66:40-48. [DOI: 10.1016/j.mam.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
|
25
|
Involvement of A2B adenosine receptors as anti-inflammatory in gestational diabesity. Mol Aspects Med 2019; 66:31-39. [DOI: 10.1016/j.mam.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
|
26
|
Opheim GL, Zucknick M, Henriksen T, Haugen G. A maternal meal affects clinical Doppler parameters in the fetal middle cerebral artery. PLoS One 2018; 13:e0209990. [PMID: 30596747 PMCID: PMC6312248 DOI: 10.1371/journal.pone.0209990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Middle cerebral artery (MCA) and umbilical artery (UA) Doppler blood flow pulsatility indices (PIs) and MCA peak systolic velocity (PSV) are essential variables for clinically evaluating fetal well-being. Here we examined how a maternal meal influenced these Doppler blood flow velocity variables. METHODS This prospective cohort study included 89 healthy Caucasian women with normal singleton pregnancies (median age, 32 years). Measurements were performed at gestational weeks 30 and 36, representing the start and near the end of the energy-depositing period. Measured variables included the MCA-PI, UA-PI, fetal heart rate (FHR) and MCA-PSV. The cerebroplacental ratio (CPR) was calculated as the ratio of MCA-PI to UA-PI. The first examination was performed in the fasting state at 08:30 a.m. Then participants ate a standard breakfast (approximate caloric intake, 400kcal), and the examination was repeated ~105 min after the meal. RESULTS Without adjustment for FHR, fetal MCA-PI decreased after the meal at week 30 (‒0.115; p = 0.012) and week 36 (‒0.255; p < 0.001). All PI values were negatively correlated with FHR. After adjustment for FHR, MCA-PI still decreased after the meal at week 30 (‒0.087; p = 0.044) and week 36 (‒0.194; p < 0.001). The difference between the two gestational weeks was non-significant (p = 0.075). UA-PI values did not significantly change at week 30 (p = 0.253) or week 36 (p = 0.920). CPR revealed significant postprandial decreases of -0.17 at week 30 (p = 0.006) and -0.22 at week 36 (p = 0.001). Compared to fasting values, MCA-PSV was significantly higher after food intake: +3.9 cm/s at week 30 (p < 0.001) and +5.9 cm/s at week 36 (p < 0.001). CONCLUSION In gestational weeks 30 and 36, we observed a postprandial influence that was apparently specific to fetal cerebral blood flow.
Collapse
Affiliation(s)
- Gun Lisbet Opheim
- Department of Fetal Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Norwegian Advisory Unit on Woman`s Health, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Tore Henriksen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Obstetrics, Oslo University Hospital–Rikshospitalet, Oslo, Norway
| | - Guttorm Haugen
- Department of Fetal Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Contreras-Duarte S, Carvajal L, Fuenzalida B, Cantin C, Sobrevia L, Leiva A. Maternal Dyslipidaemia in Pregnancy with Gestational Diabetes Mellitus: Possible Impact on Foetoplacental Vascular Function and Lipoproteins in the Neonatal Circulation. Curr Vasc Pharmacol 2018; 17:52-71. [DOI: 10.2174/1570161115666171116154247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/06/2023]
Abstract
Dyslipidaemia occurs in pregnancy to secure foetal development. The mother shows a physiological
increase in plasma total cholesterol and Triglycerides (TG) as pregnancy progresses (i.e. maternal
physiological dyslipidaemia in pregnancy). However, in some women pregnancy-associated dyslipidaemia
exceeds this physiological adaptation. The consequences of this condition on the developing
fetus include endothelial dysfunction of the foetoplacental vasculature and development of foetal aortic
atherosclerosis. Gestational Diabetes Mellitus (GDM) associates with abnormal function of the foetoplacental
vasculature due to foetal hyperglycaemia and hyperinsulinaemia, and associates with development
of cardiovascular disease in adulthood. Supraphysiological dyslipidaemia is also detected in
GDM pregnancies. Although there are several studies showing the alteration in the maternal and neonatal
lipid profile in GDM pregnancies, there are no studies addressing the effect of dyslipidaemia in the
maternal and foetal vasculature. The literature reviewed suggests that dyslipidaemia in GDM pregnancy
should be an additional factor contributing to worsen GDM-associated endothelial dysfunction by altering
signalling pathways involving nitric oxide bioavailability and neonatal lipoproteins.
Collapse
Affiliation(s)
- Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Lorena Carvajal
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Claudette Cantin
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| |
Collapse
|
28
|
Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1192-1202. [DOI: 10.1016/j.bbadis.2018.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
|
29
|
Sáez T, Salsoso R, Leiva A, Toledo F, de Vos P, Faas M, Sobrevia L. Human umbilical vein endothelium-derived exosomes play a role in foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2018; 1864:499-508. [DOI: 10.1016/j.bbadis.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
|
30
|
Sáez T, de Vos P, Sobrevia L, Faas MM. Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus? Placenta 2017; 61:48-54. [PMID: 29277271 DOI: 10.1016/j.placenta.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/18/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with endothelial dysfunction in the foetoplacental vasculature. Foetoplacental endothelial dysfunction is characterized by changes in the l-arginine-adenosine signalling pathway and inflammation. The mechanisms involved in these alterations are suggested to be hyperglycaemia, hyperinsulinemia, and oxidative stress. These conditions increase the release of exosomes, nanovesicles that are generated from diverse cell types, including endothelial cells. Since exosomes can modulate vascular function, they may play an important role in foetoplacental endothelial dysfunction seen in GDM pregnancies. In this review, we summarized current knowledge on the potential role of exosomes in foetoplacental endothelial dysfunction seen in this disease of pregnancy.
Collapse
Affiliation(s)
- Tamara Sáez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Department of Obstetrics and Gynaecology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
31
|
Subiabre M, Silva L, Villalobos-Labra R, Toledo F, Paublo M, López MA, Salsoso R, Pardo F, Leiva A, Sobrevia L. Maternal insulin therapy does not restore foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2987-2998. [DOI: 10.1016/j.bbadis.2017.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
|
32
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
33
|
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal 2017; 26:501-518. [PMID: 27225690 PMCID: PMC5372767 DOI: 10.1089/ars.2016.6755] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. CRITICAL ISSUES Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. FUTURE DIRECTIONS Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Cabrera L, Saavedra A, Rojas S, Cid M, Valenzuela C, Gallegos D, Careaga P, Basualto E, Haensgen A, Peña E, Rivas C, Vera JC, Gallardo V, Zúñiga L, Escudero C, Sobrevia L, Wareing M, González M. Insulin Induces Relaxation and Decreases Hydrogen Peroxide-Induced Vasoconstriction in Human Placental Vascular Bed in a Mechanism Mediated by Calcium-Activated Potassium Channels and L-Arginine/Nitric Oxide Pathways. Front Physiol 2016; 7:529. [PMID: 27920724 PMCID: PMC5118463 DOI: 10.3389/fphys.2016.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
HIGHLIGHTSShort-term incubation with insulin increases the L-arginine transport in HUVECs. Short-term incubation with insulin increases the NO synthesis in HUVECs. Insulin induces relaxation in human placental vascular bed. Insulin attenuates the constriction induced by hydrogen peroxide in human placenta. The relaxation induced by insulin is dependent on BKCa channels activity in human placenta.
Insulin induces relaxation in umbilical veins, increasing the expression of human amino acid transporter 1 (hCAT-1) and nitric oxide synthesis (NO) in human umbilical vein endothelial cells (HUVECs). Short-term effects of insulin on vasculature have been reported in healthy subjects and cell cultures; however, its mechanisms remain unknown. The aim of this study was to characterize the effect of acute incubation with insulin on the regulation of vascular tone of placental vasculature. HUVECs and chorionic vein rings were isolated from normal pregnancies. The effect of insulin on NO synthesis, L-arginine transport, and hCAT-1 abundance was measured in HUVECs. Isometric tension induced by U46619 (thromboxane A2 analog) or hydrogen peroxide (H2O2) were measured in vessels previously incubated 30 min with insulin and/or the following pharmacological inhibitors: tetraethylammonium (KCa channels), iberiotoxin (BKCa channels), genistein (tyrosine kinases), and wortmannin (phosphatidylinositol 3-kinase). Insulin increases L-arginine transport and NO synthesis in HUVECs. In the placenta, this hormone caused relaxation of the chorionic vein, and reduced perfusion pressure in placental cotyledons. In vessels pre-incubated with insulin, the constriction evoked by H2O2 and U46619 was attenuated and the effect on H2O2-induced constriction was blocked with tetraethylammonium and iberiotoxin, but not with genistein, or wortmannin. Insulin rapidly dilates the placental vasculature through a mechanism involving activity of BKCa channels and L-arginine/NO pathway in endothelial cells. This phenomenon is related to quick increases of hCAT-1 abundance and higher capacity of endothelial cells to take up L-arginine and generate NO.
Collapse
Affiliation(s)
- Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Andrea Saavedra
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Susana Rojas
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Marcela Cid
- Department of Obstetrics and Childcare, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - Cristina Valenzuela
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Pamela Careaga
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Emerita Basualto
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Astrid Haensgen
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Eduardo Peña
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Coralia Rivas
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Juan Carlos Vera
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Victoria Gallardo
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas (CIM), School of Medicine, Universidad de Talca Talca, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile; Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del BiobíoChillán, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of QueenslandHerston, QLD, Australia
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science CentreManchester, UK
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| |
Collapse
|
35
|
Thom NJ, Early AR, Hunt BE, Harris RA, Herring MP. Eating and arterial endothelial function: a meta-analysis of the acute effects of meal consumption on flow-mediated dilation. Obes Rev 2016; 17:1080-1090. [PMID: 27469597 DOI: 10.1111/obr.12454] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 01/15/2023]
Abstract
Given that endothelial dysfunction precedes atherosclerotic cardiovascular disease, exploring the parameters that modify postprandial flow-mediated dilation (FMD) is important for public health. The objectives of the study are to estimate the population effect of meal ingestion on FMD and to determine how the effect varied based on patient characteristics and modifiable methodological features. Articles published before June 2015 were located using MEDLINE, PubMed and Web of Science. One hundred fifty-four effects were derived from 78 articles involving 2,548 subjects were selected. Included articles required measurement of FMD in adults before and after meal ingestion. Effects were analysed using an unstandardized mean gain random effects model, and significant moderators were analysed using meta-regression. Meal consumption significantly reduced FMD by a heterogeneous mean effect size delta (Δ) of -2.03 (95% CI: [-2.28, -1.77]), an ~2% reduction in FMD. FMD reductions were larger among normal weight individuals, males, those with a cardio-metabolic disorder, those with elevated baseline FMD, and individuals with impaired glucose tolerance at baseline. Macronutrient meal ingestion significantly reduced FMD, an effect that was moderated by body mass index, sex and two-way interactions between disease status and both baseline FMD and baseline blood glucose levels.
Collapse
Affiliation(s)
- N J Thom
- Department of Biology, Wheaton College, Wheaton, IL, USA.
| | - A R Early
- Applied Health Science Department, Wheaton College, Wheaton, IL, USA
| | - B E Hunt
- Applied Health Science Department, Wheaton College, Wheaton, IL, USA
| | - R A Harris
- Georgia Prevention Institute, August University, Augusta, GA, USA
| | - M P Herring
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
36
|
Lightfoot Vidal S, Rojas C, Bouza Padín R, Pérez Rivera M, Haensgen A, González M, Rodríguez-Llamazares S. Synthesis and characterization of polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for encapsulation of quercetin. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516635839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyhydroxybutyrate- co-hydroxyvalerate has been identified as a useful polymer for biomedical application due to its biocompatibility and processability. Polyhydroxybutyrate- co-hydroxyvalerate nanoparticles loaded with quercetin, an antimicrobial, anti-inflammatory, and antiviral polyphenol with limited solubility, were obtained using a high-speed double-emulsion technique. The nanoparticle size and the dissolution of quercetin were controlled simultaneously through high-speed stirring (15,000 r/min) in the emulsification process. The size range of quercetin-loaded polyhydroxybutyrate- co-hydroxyvalerate nanoparticles was between 250 and 650 nm. Spherical shape with no aggregation of nanoparticles was confirmed by electron microscopy. Loaded nanoparticles showed less thermal degradation than unloaded nanoparticles. An encapsulation efficiency of 51% was found. Most of the quercetin was released from the nanoparticles within the first 5 h of water immersion. A biocompatibility analysis of the nanoparticles showed no cytotoxicity and no significant difference between loaded and unloaded nanoparticles.
Collapse
Affiliation(s)
- Sarah Lightfoot Vidal
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Centro de Investigación de Polímeros Avanzados (CIPA), Concepción, Chile
| | - Claudio Rojas
- Centro de Investigación de Polímeros Avanzados (CIPA), Concepción, Chile
| | - Rebeca Bouza Padín
- Grupo de Polímeros, Departamento de Física, E.U.P. Ferrol, Universidad de A Coruña, Ferrol, Spain
| | - Mónica Pérez Rivera
- Department of Polymers, Faculty of Chemical Science, Universidad de Concepción, Concepción, Chile
| | - Astrid Haensgen
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | | |
Collapse
|
37
|
Leiva A, Fuenzalida B, Salsoso R, Barros E, Toledo F, Gutiérrez J, Pardo F, Sobrevia L. Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2016; 1862:536-544. [DOI: 10.1016/j.bbadis.2016.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/03/2016] [Accepted: 01/19/2016] [Indexed: 01/20/2023]
|
38
|
Dubó S, Gallegos D, Cabrera L, Sobrevia L, Zúñiga L, González M. Cardiovascular Action of Insulin in Health and Disease: Endothelial L-Arginine Transport and Cardiac Voltage-Dependent Potassium Channels. Front Physiol 2016; 7:74. [PMID: 27014078 PMCID: PMC4791397 DOI: 10.3389/fphys.2016.00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Impairment of insulin signaling on diabetes mellitus has been related to cardiovascular dysfunction, heart failure, and sudden death. In human endothelium, cationic amino acid transporter 1 (hCAT-1) is related to the synthesis of nitric oxide (NO) and insulin has a vascular effect in endothelial cells through a signaling pathway that involves increases in hCAT-1 expression and L-arginine transport. This mechanism is disrupted in diabetes, a phenomenon potentiated by excessive accumulation of reactive oxygen species (ROS), which contribute to lower availability of NO and endothelial dysfunction. On the other hand, electrical remodeling in cardiomyocytes is considered a key factor in heart failure progression associated to diabetes mellitus. This generates a challenge to understand the specific role of insulin and the pathways involved in cardiac function. Studies on isolated mammalian cardiomyocytes have shown prolongated action potential in ventricular repolarization phase that produces a long QT interval, which is well explained by attenuation in the repolarizing potassium currents in cardiac ventricles. Impaired insulin signaling causes specific changes in these currents, such a decrease amplitude of the transient outward K(+) (Ito) and the ultra-rapid delayed rectifier (IKur) currents where, together, a reduction of mRNA and protein expression levels of α-subunits (Ito, fast; Kv 4.2 and IKs; Kv 1.5) or β-subunits (KChIP2 and MiRP) of K(+) channels involved in these currents in a MAPK mediated pathway process have been described. These results support the hypothesis that lack of insulin signaling can produce an abnormal repolarization in cardiomyocytes. Furthermore, the arrhythmogenic potential due to reduced Ito current can contribute to an increase in the incidence of sudden death in heart failure. This review aims to show, based on pathophysiological models, the regulatory function that would have insulin in vascular system and in cardiac electrophysiology.
Collapse
Affiliation(s)
- Sebastián Dubó
- Department of Kinesiology, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of QueenslandHerston, QLD, Queensland, Australia
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca Talca, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS-Health)Chillán, Chile
| |
Collapse
|
39
|
Potential benefits of physical activity during pregnancy for the reduction of gestational diabetes prevalence and oxidative stress. Early Hum Dev 2016; 94:57-62. [PMID: 26833143 DOI: 10.1016/j.earlhumdev.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/28/2023]
Abstract
Changes in quality of nutrition, habits, and physical activity in modern societies increase susceptibility to obesity, which can deleteriously affect pregnancy outcome. In particular, a sedentary lifestyle causes dysfunction in blood flow, which impacts the cardiovascular function of pregnant women. The main molecular mechanism responsible for this effect is the synthesis and bioavailability of nitric oxide, a phenomenon regulated by the antioxidant capacity of endothelial cells. These alterations affect the vascular health of the mother and vascular performance of the placenta, the key organ responsible for the healthy development of the fetus. In addition to the increases in systemic vascular resistance in the mother, placental oxidative stress also affects the feto-placental blood flow. These changes can be integrated into the proteomics and metabolomics of newborns.
Collapse
|
40
|
What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance. Blood 2016; 127:1719-27. [PMID: 26755708 DOI: 10.1182/blood-2015-10-676114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/25/2015] [Indexed: 12/27/2022] Open
Abstract
Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations.
Collapse
|
41
|
Leiva A, Fuenzalida B, Westermeier F, Toledo F, Salomón C, Gutiérrez J, Sanhueza C, Pardo F, Sobrevia L. Role for Tetrahydrobiopterin in the Fetoplacental Endothelial Dysfunction in Maternal Supraphysiological Hypercholesterolemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:5346327. [PMID: 26697136 PMCID: PMC4677232 DOI: 10.1155/2016/5346327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development.
Collapse
Affiliation(s)
- Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Francisco Westermeier
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, 8380492 Santiago, Chile
- Faculty of Science, Universidad San Sebastián, 7510157 Santiago, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, 3780000 Chillán, Chile
| | - Carlos Salomón
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Cellular Signaling and Differentiation Laboratory (CSDL), Health Sciences Faculty, Universidad San Sebastian, 7510157 Santiago, Chile
| | - Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
42
|
Nyberg M, Gliemann L, Hellsten Y. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scand J Med Sci Sports 2015; 25 Suppl 4:60-73. [DOI: 10.1111/sms.12591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Affiliation(s)
- M. Nyberg
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|