1
|
Cash A, Vernon SD, Rond C, Bateman L, Abbaszadeh S, Bell J, Yellman B, Kaufman DL. RESTORE ME: a RCT of oxaloacetate for improving fatigue in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front Neurol 2024; 15:1483876. [PMID: 39664752 PMCID: PMC11632837 DOI: 10.3389/fneur.2024.1483876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 12/13/2024] Open
Abstract
Background The energy metabolite oxaloacetate is significantly lower in the blood plasma of ME/CFS subjects. A previous open-label trial with oxaloacetate supplementation demonstrated a significant reduction in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-related fatigue. Methods In this follow-up trial, 82 ME/CFS subjects were enrolled in a 3-month randomized, double-blinded, controlled study, receiving either 2,000 mg of oxaloacetate or control per day. The primary endpoints were safety and reduction in fatigue from baseline. Secondary and exploratory endpoints included functional capacity and general health status. Results Anhydrous enol-oxaloacetate (oxaloacetate) was well tolerated at the tested doses. Oxaloacetate significantly reduced fatigue by more than 25% from baseline, while the control group showed a non-significant reduction of approximately 10%. Intergroup analysis showed a significant decrease in fatigue levels in the oxaloacetate group (p = 0.0039) with no notable change in the control group. A greater proportion of subjects in the oxaloacetate group achieved a reduction in fatigue greater than 25% compared to the control group (p < 0.05). Additionally, 40.5% of the oxaloacetate group were classified as "enhanced responders," with an average fatigue reduction of 63%. Both physical and mental fatigue improved with oxaloacetate supplementation. Conclusion Oxaloacetate is well tolerated and effectively helps reduce fatigue in ME/CFS patients. Clinical trial registration https://clinicaltrials.gov/study/NCT05273372.
Collapse
Affiliation(s)
- Alan Cash
- Terra Biological LLC, San Diego, CA, United States
| | | | - Candace Rond
- Bateman Horne Center, Salt Lake City, UT, United States
| | | | | | - Jennifer Bell
- Bateman Horne Center, Salt Lake City, UT, United States
| | | | | |
Collapse
|
2
|
Garneau L, Mulvihill EE, Smith SR, Sparks LM, Aguer C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int J Mol Sci 2024; 25:4889. [PMID: 38732106 PMCID: PMC11084395 DOI: 10.3390/ijms25094889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1β, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.
Collapse
Affiliation(s)
- Léa Garneau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Erin E. Mulvihill
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Lauren M. Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Céline Aguer
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
- Faculty of Medicine and Health Sciences, Department of Physiology, McGill University–Campus Outaouais, Gatineau, QC J8V 3T4, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
3
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
4
|
Yeo RX, Noone J, Sparks LM. Translating In Vitro Models of Exercise in Human Muscle Cells: A Mitocentric View. Exerc Sport Sci Rev 2024; 52:3-12. [PMID: 38126401 DOI: 10.1249/jes.0000000000000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human skeletal muscle cell (HSkMC) models provide the opportunity to examine in vivo training-induced muscle-specific mitochondrial adaptations, additionally allowing for deeper interrogation into the effect of in vitro exercise models on myocellular mitochondrial quality and quantity. As such, this review will compare and contrast the effects of in vivo and in vitro models of exercise on mitochondrial adaptations in HSkMCs.
Collapse
|
5
|
Astin R, Banerjee A, Baker MR, Dani M, Ford E, Hull JH, Lim PB, McNarry M, Morten K, O'Sullivan O, Pretorius E, Raman B, Soteropoulos DS, Taquet M, Hall CN. Long COVID: mechanisms, risk factors and recovery. Exp Physiol 2023; 108:12-27. [PMID: 36412084 PMCID: PMC10103775 DOI: 10.1113/ep090802] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
NEW FINDINGS What is the topic of this review? The emerging condition of long COVID, its epidemiology, pathophysiological impacts on patients of different backgrounds, physiological mechanisms emerging as explanations of the condition, and treatment strategies being trialled. The review leads from a Physiological Society online conference on this topic. What advances does it highlight? Progress in understanding the pathophysiology and cellular mechanisms underlying Long COVID and potential therapeutic and management strategies. ABSTRACT Long COVID, the prolonged illness and fatigue suffered by a small proportion of those infected with SARS-CoV-2, is placing an increasing burden on individuals and society. A Physiological Society virtual meeting in February 2022 brought clinicians and researchers together to discuss the current understanding of long COVID mechanisms, risk factors and recovery. This review highlights the themes arising from that meeting. It considers the nature of long COVID, exploring its links with other post-viral illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome, and highlights how long COVID research can help us better support those suffering from all post-viral syndromes. Long COVID research started particularly swiftly in populations routinely monitoring their physical performance - namely the military and elite athletes. The review highlights how the high degree of diagnosis, intervention and monitoring of success in these active populations can suggest management strategies for the wider population. We then consider how a key component of performance monitoring in active populations, cardiopulmonary exercise training, has revealed long COVID-related changes in physiology - including alterations in peripheral muscle function, ventilatory inefficiency and autonomic dysfunction. The nature and impact of dysautonomia are further discussed in relation to postural orthostatic tachycardia syndrome, fatigue and treatment strategies that aim to combat sympathetic overactivation by stimulating the vagus nerve. We then interrogate the mechanisms that underlie long COVID symptoms, with a focus on impaired oxygen delivery due to micro-clotting and disruption of cellular energy metabolism, before considering treatment strategies that indirectly or directly tackle these mechanisms. These include remote inspiratory muscle training and integrated care pathways that combine rehabilitation and drug interventions with research into long COVID healthcare access across different populations. Overall, this review showcases how physiological research reveals the changes that occur in long COVID and how different therapeutic strategies are being developed and tested to combat this condition.
Collapse
Affiliation(s)
- Rónan Astin
- Department of Respiratory MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK
- Centre for Human Health and PerformanceInstitute for Sport Exercise and HealthUniversity College LondonLondonUK
| | - Amitava Banerjee
- Institute of Health InformaticsUniversity College LondonLondonUK
- Department of CardiologyBarts Health NHS TrustLondonUK
| | - Mark R. Baker
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Melanie Dani
- Imperial Syncope UnitImperial College Healthcare NHS TrustLondonUK
| | | | - James H. Hull
- Institute of SportExercise and Health (ISEH)Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Royal Brompton HospitalLondonUK
| | - Phang Boon Lim
- Imperial Syncope UnitImperial College Healthcare NHS TrustLondonUK
| | - Melitta McNarry
- Applied Sports, Technology, Exercise and Medicine Research CentreSwansea UniversitySwanseaUK
| | - Karl Morten
- Applied Sports, Technology, Exercise and Medicine Research CentreSwansea UniversitySwanseaUK
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Oliver O'Sullivan
- Academic Department of Military RehabilitationDefence Medical Rehabilitation Centre Stanford HallLoughboroughUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Etheresia Pretorius
- Department of Physiological SciencesFaculty of ScienceStellenbosch UniversityStellenboschSouth Africa
- Department of Biochemistry and Systems BiologyInstitute of SystemsMolecular and Integrative BiologyFaculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Betty Raman
- Radcliffe Department of MedicineDivision of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Radcliffe Department of MedicineDivision of Cardiovascular MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Maxime Taquet
- Department of PsychiatryUniversity of OxfordOxfordUK
- Oxford Health NHS Foundation TrustOxfordUK
| | - Catherine N. Hall
- School of Psychology and Sussex NeuroscienceUniversity of SussexFalmerUK
| |
Collapse
|
6
|
Kavyani B, Lidbury BA, Schloeffel R, Fisher PR, Missailidis D, Annesley SJ, Dehhaghi M, Heng B, Guillemin GJ. Could the kynurenine pathway be the key missing piece of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) complex puzzle? Cell Mol Life Sci 2022; 79:412. [PMID: 35821534 PMCID: PMC9276562 DOI: 10.1007/s00018-022-04380-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/03/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and debilitating disease with a substantial social and economic impact on individuals and their community. Despite its importance and deteriorating impact, progresses in diagnosis and treatment of ME/CFS is limited. This is due to the unclear pathophysiology of the disease and consequently lack of prognostic biomarkers. To investigate pathophysiology of ME/CFS, several potential pathologic hallmarks have been investigated; however, these studies have failed to report a consistent result. These failures in introducing the underlying reason for ME/CFS have stimulated considering other possible contributing mechanisms such as tryptophan (TRP) metabolism and in particular kynurenine pathway (KP). KP plays a central role in cellular energy production through the production of nicotinamide adenine dinucleotide (NADH). In addition, this pathway has been shown to mediate immune response and neuroinflammation through its metabolites. This review, we will discuss the pathology and management of ME/CFS and provide evidence pertaining KP abnormalities and symptoms that are classic characteristics of ME/CFS. Targeting the KP regulation may provide innovative approaches to the management of ME/CFS.
Collapse
Affiliation(s)
- Bahar Kavyani
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Brett A Lidbury
- The National Centre for Epidemiology and Population Health, RSPH, College of Health and Medicine, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard Schloeffel
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
- The Grove Health Pymble, Sydney, NSW, Australia
| | - Paul R Fisher
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Daniel Missailidis
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Sarah J Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Macquarie University, Sydney, Australia.
- Pandis.org, Melbourne, Australia.
| |
Collapse
|
7
|
Cash A, Kaufman DL. Oxaloacetate Treatment For Mental And Physical Fatigue In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long-COVID fatigue patients: a non-randomized controlled clinical trial. J Transl Med 2022; 20:295. [PMID: 35764955 PMCID: PMC9238249 DOI: 10.1186/s12967-022-03488-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is no approved pharmaceutical intervention for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS). Fatigue in these patients can last for decades. Long COVID may continue to ME/CFS, and currently, it is estimated that up to 20 million Americans have significant symptoms after COVID, and the most common symptom is fatigue. Anhydrous Enol-Oxaloacetate, (AEO) a nutritional supplement, has been anecdotally reported to relieve physical and mental fatigue and is dimished in ME/CFS patients. Here, we examine the use of higher dosage AEO as a medical food to relieve pathological fatigue. METHODS ME/CFS and Long-COVID patients were enrolled in an open label dose escalating "Proof of Concept" non-randomized controlled clinical trial with 500 mg AEO capsules. Control was provided by a historical ME/CFS fatigue trial and supporting meta-analysis study, which showed average improvement with oral placebo using the Chalder Scale of 5.9% improvement from baseline. At baseline, 73.7% of the ME/CFS patients were women, average age was 47 and length of ME/CFS from diagnosis was 8.9 years. The Long-COVID patients were a random group that responded to social media advertising (Face Book) with symptoms for at least 6 months. ME/CFS patients were given separate doses of 500 mg BID (N = 23), 1,000 mg BID (N = 29) and 1000 mg TID (N = 24) AEO for six weeks. Long COVID patients were given 500 mg AEO BID (N = 22) and 1000 mg AEO (N = 21), again over a six-week period. The main outcome measure was to compare baseline scoring with results at 6 weeks with the Chalder Fatigue Score (Likert Scoring) versus historical placebo. The hypothesis being tested was formulated prior to data collection. RESULTS 76 ME/CFS patients (73.7% women, median age of 47) showed an average reduction in fatigue at 6 weeks as measured by the "Chalder Fatigue Questionnaire" of 22.5% to 27.9% from baseline (P < 0.005) (Likert scoring). Both physical and mental fatigue were significantly improved over baseline and historical placebo. Fatigue amelioration in ME/CFS patients increased in a dose dependent manner from 21.7% for 500 mg BID to 27.6% for 1000 mg Oxaloacetate BID to 33.3% for 1000 mg TID. Long COVID patients' fatigue was significantly reduced by up to 46.8% in 6-weeks. CONCLUSIONS Significant reductions in physical and metal fatigue for ME/CFS and Long-COVID patients were seen after 6 weeks of treatment. As there has been little progress in providing fatigue relief for the millions of ME/CFS and Long COVID patients, anhydrous enol oxaloacetate may bridge this important medical need. Further study of oxaloacetate supplementation for the treatment of ME/CFS and Long COVID is warranted. Trial Registration https://clinicaltrials.gov/ct2/show/NCT04592354 Registered October 19, 2020. 1,000 mg BID Normalized Fatigue Data for Baseline, 2-weeks and 6-weeks evaluated by 3 Validated Fatigue Scoring Questionnaires.
Collapse
Affiliation(s)
- Alan Cash
- Terra Biological LLC, 3830 Valley Centre Drive, Ste 705 PMB 561, San Diego, CA, USA.
| | | |
Collapse
|
8
|
González-Cebrián A, Almenar-Pérez E, Xu J, Yu T, Huang WE, Giménez-Orenga K, Hutchinson S, Lodge T, Nathanson L, Morten KJ, Ferrer A, Oltra E. Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome With Partial Least Squares Discriminant Analysis: Relevance of Blood Extracellular Vesicles. Front Med (Lausanne) 2022; 9:842991. [PMID: 35433768 PMCID: PMC9011062 DOI: 10.3389/fmed.2022.842991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic disease characterized by long-lasting persistent debilitating widespread fatigue and post-exertional malaise, remains diagnosed by clinical criteria. Our group and others have identified differentially expressed miRNA profiles in the blood of patients. However, their diagnostic power individually or in combinations seems limited. A Partial Least Squares-Discriminant Analysis (PLS-DA) model initially based on 817 variables: two demographic, 34 blood analytic, 136 PBMC miRNAs, 639 Extracellular Vesicle (EV) miRNAs, and six EV features, selected an optimal number of five components, and a subset of 32 regressors showing statistically significant discriminant power. The presence of four EV-features (size and z-values of EVs prepared with or without proteinase K treatment) among the 32 regressors, suggested that blood vesicles carry relevant disease information. To further explore the features of ME/CFS EVs, we subjected them to Raman micro-spectroscopic analysis, identifying carotenoid peaks as ME/CFS fingerprints, possibly due to erythrocyte deficiencies. Although PLS-DA analysis showed limited capacity of Raman fingerprints for diagnosis (AUC = 0.7067), Raman data served to refine the number of PBMC miRNAs from our previous model still ensuring a perfect classification of subjects (AUC=1). Further investigations to evaluate model performance in extended cohorts of patients, to identify the precise ME/CFS EV components detected by Raman and to reveal their functional significance in the disease are warranted.
Collapse
Affiliation(s)
- Alba González-Cebrián
- Grupo de Ingeniería Estadística Multivariante, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Eloy Almenar-Pérez
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Tong Yu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Sarah Hutchinson
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Tiffany Lodge
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Lubov Nathanson
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Karl J. Morten
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Alberto Ferrer
- Grupo de Ingeniería Estadística Multivariante, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- *Correspondence: Elisa Oltra ; orcid.org/0000-0003-0598-2907
| |
Collapse
|
9
|
Nintou E, Karligiotou E, Vliora M, Fatouros IG, Jamurtas AZ, Sakellaridis N, Dimas K, Flouris AD. Effects of In Vitro Muscle Contraction on Thermogenic Protein Levels in Co-Cultured Adipocytes. Life (Basel) 2021; 11:life11111227. [PMID: 34833103 PMCID: PMC8625343 DOI: 10.3390/life11111227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between the exercising muscle and the adipose tissue, mediated by myokines and metabolites, derived from both tissues during exercise has created a controversy between animal and human studies with respect to the impact of exercise on the browning process. The aim of this study was to investigate whether co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of electrical pulse stimulation (EPS) mimicking muscle contraction can impact the expression of UCP1, PGC-1a, and IL-6 in adipocytes, therefore providing evidence on the direct crosstalk between adipocytes and stimulated muscle cells. In the co-cultured C2C12 cells, EPS increased the expression of PGC-1a (p = 0.129; d = 0.73) and IL-6 (p = 0.09; d = 1.13) protein levels. When EPS was applied, we found that co-culturing led to increases in UCP1 (p = 0.044; d = 1.29) and IL-6 (p = 0.097; d = 1.13) protein expression in the 3T3-L1 adipocytes. The expression of PGC-1a increased by EPS but was not significantly elevated after co-culturing (p = 0.448; d = 0.08). In vitro co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of EPS leads to increased expression of thermogenic proteins. These findings indicate changes in the expression pattern of proteins related to browning of adipose tissue, supporting the use of this in vitro model to study the crosstalk between adipocytes and contracting muscle.
Collapse
Affiliation(s)
- Eleni Nintou
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Eleni Karligiotou
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Maria Vliora
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 341500 Larissa, Greece; (N.S.); (K.D.)
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 341500 Larissa, Greece; (N.S.); (K.D.)
| | - Andreas D. Flouris
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (E.N.); (E.K.); (M.V.); (I.G.F.); (A.Z.J.)
- Correspondence: ; Tel.: +30-2431-047-072
| |
Collapse
|
10
|
Catteau M, Passerieux E, Blervaque L, Gouzi F, Ayoub B, Hayot M, Pomiès P. Response to Electrostimulation Is Impaired in Muscle Cells from Patients with Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3002. [PMID: 34831227 PMCID: PMC8616440 DOI: 10.3390/cells10113002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Among the comorbidities associated with chronic obstructive pulmonary disease (COPD), skeletal muscle weakness and atrophy are known to affect patient survival rate. In addition to muscle deconditioning, various systemic and intrinsic factors have been implicated in COPD muscle dysfunction but an impaired COPD muscle adaptation to contraction has never been extensively studied. We submitted cultured myotubes from nine healthy subjects and nine patients with COPD to an endurance-type protocol of electrical pulse stimulation (EPS). EPS induced a decrease in the diameter, covered surface and expression of MHC1 in COPD myotubes. Although the expression of protein degradation markers was not affected, expression of the protein synthesis marker mTOR was not induced in COPD compared to healthy myotubes after EPS. The expression of the differentiation markers p16INK4a and p21 was impaired, while expression of Myf5 and MyoD tended to be affected in COPD muscle cells in response to EPS. The expression of mitochondrial biogenesis markers PGC1α and MFN2 was affected and expression of TFAM and COX1 tended to be reduced in COPD compared to healthy myotubes upon EPS. Lipid peroxidation was increased and the expression of the antioxidant enzymes SOD2 and GPx4 was affected in COPD compared to healthy myotubes in response to EPS. Thus, we provide evidence of an impaired response of COPD muscle cells to contraction, which might be involved in the muscle weakness observed in patients with COPD.
Collapse
Affiliation(s)
- Matthias Catteau
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Emilie Passerieux
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Léo Blervaque
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Farés Gouzi
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Bronia Ayoub
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Maurice Hayot
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| |
Collapse
|
11
|
ME/CFS: Past, Present and Future. Healthcare (Basel) 2021; 9:healthcare9080984. [PMID: 34442121 PMCID: PMC8394918 DOI: 10.3390/healthcare9080984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/16/2023] Open
Abstract
This review raises a number of compelling issues related to the condition of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Some historical perspective is necessary in order to highlight the nature of the controversy concerning its causation. Throughout history, a pattern tends to repeat itself when natural phenomena require explanation. Dogma usually arrives first, then it is eventually replaced by scientific understanding. The same pattern is unfolding in relation to ME/CFS, but supporters of the psychological dogma surrounding its causation remain stubbornly resistant, even in the face of compelling scientific evidence to the contrary. Acceptance of the latter is not just an academic issue; the route to proper understanding and treatment of ME/CFS is through further scientific research rather than psychological theorisation. Only then will a long-suffering patient group benefit.
Collapse
|
12
|
Vepkhvadze TF, Vorotnikov AV, Popov DV. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects. BIOCHEMISTRY (MOSCOW) 2021; 86:597-610. [PMID: 33993862 DOI: 10.1134/s0006297921050084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- Tatiana F Vepkhvadze
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Alexander V Vorotnikov
- National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, 121552, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Marino C, Grimaldi M, Sabatini P, Amato P, Pallavicino A, Ricciardelli C, D’Ursi AM. Fibromyalgia and Depression in Women: An 1H-NMR Metabolomic Study. Metabolites 2021; 11:429. [PMID: 34209136 PMCID: PMC8304744 DOI: 10.3390/metabo11070429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fibromyalgia is a chronic and systemic syndrome characterized by muscle, bone, and joint pain. It is a gender-specific condition with a 9:1 incidence ratio between women and men. Fibromyalgia is frequently associated with psychic disorders affecting the cognitive and emotional spheres. In the reported work, we compared 31 female fibromyalgia patients to 31 female healthy controls. They were analyzed for biochemical clinical parameters, for autoimmune markers, and were subjected to 1H-NMR metabolomics analysis. To identify a correlation between the metabolomic profile and the psychic condition, a subset of 19 fibromyalgia patients was subjected to HAM-A and HAM-D Hamilton depression tests. Multivariate statistical analysis showed the dysmetabolism of several metabolites involved in energy balance that are associated with systemic inflammatory conditions. The severity of depression worsens dysmetabolic conditions; conversely, glycine and glutamate, known for their critical role as neuromodulators, appear to be potential biomarkers of fibromyalgia and are associated with different severity depression conditions.
Collapse
Affiliation(s)
- Carmen Marino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Paola Sabatini
- U.O.C. Clinical Pathology D.E.A. III Umberto I, Viale S. Francesco D’Assisi, 84014 Nocera Inferiore, Italy;
| | - Patrizia Amato
- ASL Ser. T Cava de’ Tirreni, Piazza Matteo Galdi 1/3, 84013 Pregiato, Italy;
| | - Arianna Pallavicino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Carmen Ricciardelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| |
Collapse
|
14
|
Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts. Int J Mol Sci 2021; 22:ijms22042046. [PMID: 33669532 PMCID: PMC7921983 DOI: 10.3390/ijms22042046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid β-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10−4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10−4), mitochondrial fatty acid β-oxidation (p = 9.2 × 10−3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.
Collapse
|
15
|
Toogood PL, Clauw DJ, Phadke S, Hoffman D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol Res 2021; 165:105465. [PMID: 33529750 DOI: 10.1016/j.phrs.2021.105465] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease characterized by severe and disabling fatigue that fails to improve with rest; it is commonly accompanied by multifocal pain, as well as sleep disruption, and cognitive dysfunction. Even mild exertion can exacerbate symptoms. The prevalence of ME/CFS in the U.S. is estimated to be 0.5-1.5 % and is higher among females. Viral infection is an established trigger for the onset of ME/CFS symptoms, raising the possibility of an increase in ME/CFS prevalence resulting from the ongoing COVID-19 pandemic. Current treatments are largely palliative and limited to alleviating symptoms and addressing the psychological sequelae associated with long-term disability. While ME/CFS is characterized by broad heterogeneity, common features include immune dysregulation and mitochondrial dysfunction. However, the underlying mechanistic basis of the disease remains poorly understood. Herein, we review the current understanding, diagnosis and treatment of ME/CFS and summarize past clinical studies aimed at identifying effective therapies. We describe the current status of mechanistic studies, including the identification of multiple targets for potential pharmacological intervention, and ongoing efforts towards the discovery of new medicines for ME/CFS treatment.
Collapse
Affiliation(s)
- Peter L Toogood
- Michigan Drug Discovery, University of Michigan, Life Science Institute, 210 Washtenaw Avenue, Ann Arbor, MI, 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States.
| | - Daniel J Clauw
- Departments of Anesthesiology, Internal Medicine (Rheumatology) and Psychiatry, University of Michigan/Michigan Medicine, Chronic Pain and Fatigue Center, 24 Frank Lloyd Wright Drive, P.O. Box 3885, Ann Arbor, MI, 48109, United States
| | - Sameer Phadke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States
| | - David Hoffman
- Cayman Chemical Company, 1180 E. Ellsworth Road, Ann Arbor, MI, 48108, United States
| |
Collapse
|
16
|
Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 'long-haulers'? Chronic Dis Transl Med 2020; 7:14-26. [PMID: 33251031 PMCID: PMC7680046 DOI: 10.1016/j.cdtm.2020.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
A significant number of SARS-CoV-2 (COVID-19) pandemic patients have developed chronic symptoms lasting weeks or months which are very similar to those described for myalgic encephalomyelitis/chronic fatigue syndrome. This study reviews the current literature and understanding of the role that mitochondria, oxidative stress and antioxidants may play in the understanding of the pathophysiology and treatment of chronic fatigue. It describes what is known about the dysfunctional pathways which can develop in mitochondria and their relationship to chronic fatigue. It also reviews what is known about oxidative stress and how this can be related to the pathophysiology of fatigue, as well as examining the potential for specific therapy directed at mitochondria for the treatment of chronic fatigue in the form of antioxidants. This study identifies areas which require urgent, further research in order to fully elucidate the clinical and therapeutic potential of these approaches.
Collapse
|
17
|
Valero-Breton M, Warnier G, Castro-Sepulveda M, Deldicque L, Zbinden-Foncea H. Acute and Chronic Effects of High Frequency Electric Pulse Stimulation on the Akt/mTOR Pathway in Human Primary Myotubes. Front Bioeng Biotechnol 2020; 8:565679. [PMID: 33224929 PMCID: PMC7674644 DOI: 10.3389/fbioe.2020.565679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Electrical pulse stimulation (EPS) has been suggested to be a useful method to investigate the mechanisms underlying the adaptations of human skeletal muscle to both endurance and resistance exercise. Although different myotube stimulation protocols mimicking acute and chronic endurance exercise have been developed, no convincing protocol mimicking resistance exercise exists. Adaptations to resistance exercise mainly ensue via the Akt/mTOR pathway. Therefore, the aim of this study was to develop a high frequency EPS protocol mimicking resistance exercise both acutely (100 Hz, 15 V, 0.4 ms with 4 s rest between each contraction for 30 min) and chronically (acute EPS protocol repeated on three consecutive days) on human myotubes. Compared to control conditions, the acute EPS protocol increased the phosphorylation of AktSer473 at 0 h (+91%, p = 0.02) and 3 h (+95%, p = 0.01), and mTORSer2448 at 0 h (+93%, p = 0.03), 1 h (+129%, p = 0.01), and 3 h (+104%, p = 0.0250) post-stimulation. The phosphorylation of ERK1/2Thr202/Tyr204 was increased at 0 h (+69%, p = 0.02) and 3 h (+117%, p = 0.003) post-stimulation compared to control conditions. In addition, both S6K1Thr389 (+157%, p = 0.009) and S6Ser240/244 (+153%, p = 0.003) phosphorylation increased 1 h after EPS compared to control conditions. Chronic EPS protocol increased the phosphorylation of S6K1Thr389 1 h (+105%, p = 0.03) and 3 h (+126%, p = 0.02) and the phosphorylation of S6Ser240/244 1 h (+32%, p = 0.02) after the end of the last stimulation. In conclusion, the present work shows that human muscle cells subjected to EPS can be used as an in vitro model of acute and chronic resistance exercise.
Collapse
Affiliation(s)
- Mayalen Valero-Breton
- Exercise Physiology Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile
| | | | | | | | - Hermann Zbinden-Foncea
- Exercise Physiology Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile.,Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium.,Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
18
|
Tomas C, Elson JL, Newton JL, Walker M. Substrate utilisation of cultured skeletal muscle cells in patients with CFS. Sci Rep 2020; 10:18232. [PMID: 33106563 PMCID: PMC7588462 DOI: 10.1038/s41598-020-75406-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic fatigue syndrome (CFS) patients often suffer from severe muscle pain and an inability to exercise due to muscle fatigue. It has previously been shown that CFS skeletal muscle cells have lower levels of ATP and have AMP-activated protein kinase dysfunction. This study outlines experiments looking at the utilisation of different substrates by skeletal muscle cells from CFS patients (n = 9) and healthy controls (n = 11) using extracellular flux analysis. Results show that CFS skeletal muscle cells are unable to utilise glucose to the same extent as healthy control cells. CFS skeletal muscle cells were shown to oxidise galactose and fatty acids normally, indicating that the bioenergetic dysfunction lies upstream of the TCA cycle. The dysfunction in glucose oxidation is similar to what has previously been shown in blood cells from CFS patients. The consistency of cellular bioenergetic dysfunction in different cell types supports the hypothesis that CFS is a systemic disease. The retention of bioenergetic defects in cultured cells indicates that there is a genetic or epigenetic component to the disease. This is the first study to use cells derived from skeletal muscle biopsies in CFS patients and healthy controls to look at cellular bioenergetic function in whole cells.
Collapse
Affiliation(s)
- Cara Tomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Joanna L Elson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Julia L Newton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Gao J, Yu L, Wang Z, Wang R, Liu X. Induction of mitophagy in C2C12 cells by electrical pulse stimulation involves increasing the level of the mitochondrial receptor FUNDC1 through the AMPK-ULK1 pathway. Am J Transl Res 2020; 12:6879-6894. [PMID: 33194079 PMCID: PMC7653589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The mitochondrial receptor protein FUN14 domain-containing-1 (FUNDC1) can induce mitophagy under hypoxic conditions, as well as playing important roles in normal metabolism and intracellular homeostasis. Exercise not only elevates mitochondrial biosynthesis, but also exerts a significant impact on mitochondrial fission, integration and mitophagy. However, it is still not clear whether FUNDC1 plays a regulatory role in this context. Electrical pulse stimulation (EPS) of cultured myotubes is widely used as an in vitro model of muscle contraction. We simulated the contraction of C2C12 myotubes by EPS (15 V, 1 Hz, 2 ms, 1 h) to examine the role of FUNDC1 in mitophagy. EPS was found to induce mitophagy by activating the AMPK-ULK1 pathway to an even greater extent than AICAR and FUNDC1 is involved in the associated mitophagy. However, when AMPK is inhibited, other pathways may regulate mitophagy. Our findings indicate that mitophagy helps maintain the normal functions of mitochondria. EPS of C2C12 myotubes results in contraction, induction of mitophagy and potential activation of the AMPK-ULK1 pathway that promotes the expression of FUNDC1.
Collapse
Affiliation(s)
- Jiuxiang Gao
- School of Sport Science, Beijing Sport UniversityBeijing, China
| | - Liang Yu
- School of Sport Science, Beijing Sport UniversityBeijing, China
| | - Zhen Wang
- School of Sport Science, Beijing Sport UniversityBeijing, China
| | - Ruiyuan Wang
- School of Sport Science, Beijing Sport UniversityBeijing, China
| | - Xiaoran Liu
- Capital University of Physical Education and SportsBeijing, China
| |
Collapse
|
20
|
Nacul L, O'Boyle S, Palla L, Nacul FE, Mudie K, Kingdon CC, Cliff JM, Clark TG, Dockrell HM, Lacerda EM. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. Front Neurol 2020; 11:826. [PMID: 32849252 PMCID: PMC7431524 DOI: 10.3389/fneur.2020.00826] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.
Collapse
Affiliation(s)
- Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- B.C. Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Shennae O'Boyle
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luigi Palla
- Department of Medical Statistics, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Flavio E. Nacul
- Pro-Cardiaco Hospital and Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kathleen Mudie
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline C. Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Cliff
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Two-Day Cardiopulmonary Exercise Testing in Females with a Severe Grade of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Comparison with Patients with Mild and Moderate Disease. Healthcare (Basel) 2020; 8:healthcare8030192. [PMID: 32629923 PMCID: PMC7551790 DOI: 10.3390/healthcare8030192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction: Effort intolerance along with a prolonged recovery from exercise and post-exertional exacerbation of symptoms are characteristic features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The gold standard to measure the degree of physical activity intolerance is cardiopulmonary exercise testing (CPET). Multiple studies have shown that peak oxygen consumption is reduced in the majority of ME/CFS patients, and that a 2-day CPET protocol further discriminates between ME/CFS patients and sedentary controls. Limited information is present on ME/CFS patients with a severe form of the disease. Therefore, the aim of this study was to compare the effects of a 2-day CPET protocol in female ME/CFS patients with a severe grade of the disease to mildly and moderately affected ME/CFS patients. Methods and results: We studied 82 female patients who had undergone a 2-day CPET protocol. Measures of oxygen consumption (VO2), heart rate (HR) and workload both at peak exercise and at the ventilatory threshold (VT) were collected. ME/CFS disease severity was graded according to the International Consensus Criteria. Thirty-one patients were clinically graded as having mild disease, 31 with moderate and 20 with severe disease. Baseline characteristics did not differ between the 3 groups. Within each severity group, all analyzed CPET parameters (peak VO2, VO2 at VT, peak workload and the workload at VT) decreased significantly from day-1 to day-2 (p-Value between 0.003 and <0.0001). The magnitude of the change in CPET parameters from day-1 to day-2 was similar between mild, moderate, and severe groups, except for the difference in peak workload between mild and severe patients (p = 0.019). The peak workload decreases from day-1 to day-2 was largest in the severe ME/CFS group (−19 (11) %). Conclusion: This relatively large 2-day CPET protocol study confirms previous findings of the reduction of various exercise variables in ME/CFS patients on day-2 testing. This is the first study to demonstrate that disease severity negatively influences exercise capacity in female ME/CFS patients. Finally, this study shows that the deterioration in peak workload from day-1 to day-2 is largest in the severe ME/CFS patient group.
Collapse
|
22
|
van Campen CMC, Rowe PC, Verheugt FWA, Visser FC. Physical activity measures in patients with myalgic encephalomyelitis/chronic fatigue syndrome: correlations between peak oxygen consumption, the physical functioning scale of the SF-36 questionnaire, and the number of steps from an activity meter. J Transl Med 2020; 18:228. [PMID: 32513266 PMCID: PMC7282044 DOI: 10.1186/s12967-020-02397-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background Most studies to assess effort intolerance in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) have used questionnaires. Few studies have compared questionnaires with objective measures like an actometer or an exercise test. This study compared three measures of physical activity in ME/CFS patients: the physical functioning scale (PFS) of the SF-36, the number of steps/day (Steps) using an actometer, and the %peak VO2 of a cardiopulmonary stress test. Methods Female ME/CFS patients were selected from a clinical database if the three types of measurements were available, and the interval between measurements was ≤ 3 months. Data from the three measures were compared by linear regression. Results In 99 female patients the three different measures were linearly, significantly, and positively correlated (PFS vs Steps, PFS vs %peak VO2 and Steps vs %peak VO2: all P < 0.001). Subgroup analysis showed that the relations between the three measures were not different in patients with versus without fibromyalgia and with versus without a maximal exercise effort (RER ≥ 1.1). In 20 patients re-evaluated for symptom worsening, the mean of all three measures was significantly lower (P < 0.0001), strengthening the observation of the relations between them. Despite the close correlation, we observed a large variation between the three measures in individual patients. Conclusions Given the large variation in ME/CFS patients, the use of only one type of measurement is inadequate. Integrating the three modalities may be useful for patient care by detecting overt discrepancies in activity and may inform studies that compare methods of improving exercise capacity.
Collapse
Affiliation(s)
- C M C van Campen
- Stichting CardioZorg, Planetenweg 5, 2132 HN, Hoofddorp, The Netherlands
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Freek W A Verheugt
- Onze Lieve Vrouwe Gasthuis (OLVG), Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - Frans C Visser
- Stichting CardioZorg, Planetenweg 5, 2132 HN, Hoofddorp, The Netherlands
| |
Collapse
|
23
|
Tomas C, Elson JL, Strassheim V, Newton JL, Walker M. The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function. PLoS One 2020; 15:e0231136. [PMID: 32275686 PMCID: PMC7147788 DOI: 10.1371/journal.pone.0231136] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/ Chronic fatigue syndrome (ME/CFS) has been associated with abnormalities in mitochondrial function. In this study we have analysed previous bioenergetics data in peripheral blood mononuclear cells (PBMCs) using new techniques in order to further elucidate differences between ME/CFS and healthy control cohorts. We stratified our ME/CFS cohort into two individual cohorts representing moderately and severely affected patients in order to determine if disease severity is associated with bioenergetic function in PBMCs. Both ME/CFS cohorts showed reduced mitochondrial function when compared to a healthy control cohort. This shows that disease severity does not correlate with mitochondrial function and even those with a moderate form of the disease show evidence of mitochondrial dysfunction. Equations devised by another research group have enabled us to calculate ATP-linked respiration rates and glycolytic parameters. Parameters of glycolytic function were calculated by taking into account respiratory acidification. This revealed severely affected ME/CFS patients to have higher rates of respiratory acidification and showed the importance of accounting for respiratory acidification when calculating parameters of glycolytic function. Analysis of previously published glycolysis data, after taking into account respiratory acidification, showed severely affected patients have reduced glycolysis compared to moderately affected patients and healthy controls. Rates of ATP-linked respiration were also calculated and shown to be lower in both ME/CFS cohorts. This study shows that severely affected patients have mitochondrial and glycolytic impairments, which sets them apart from moderately affected patients who only have mitochondrial impairment. This may explain why these patients present with a more severe phenotype.
Collapse
Affiliation(s)
- Cara Tomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Joanna L. Elson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Victoria Strassheim
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Julia L. Newton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Missailidis D, Annesley SJ, Allan CY, Sanislav O, Lidbury BA, Lewis DP, Fisher PR. An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients. Int J Mol Sci 2020; 21:ijms21031074. [PMID: 32041178 PMCID: PMC7036826 DOI: 10.3390/ijms21031074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an enigmatic condition characterized by exacerbation of symptoms after exertion (post-exertional malaise or “PEM”), and by fatigue whose severity and associated requirement for rest are excessive and disproportionate to the fatigue-inducing activity. There is no definitive molecular marker or known underlying pathological mechanism for the condition. Increasing evidence for aberrant energy metabolism suggests a role for mitochondrial dysfunction in ME/CFS. Our objective was therefore to measure mitochondrial function and cellular stress sensing in actively metabolizing patient blood cells. We immortalized lymphoblasts isolated from 51 ME/CFS patients diagnosed according to the Canadian Consensus Criteria and an age- and gender-matched control group. Parameters of mitochondrial function and energy stress sensing were assessed by Seahorse extracellular flux analysis, proteomics, and an array of additional biochemical assays. As a proportion of the basal oxygen consumption rate (OCR), the rate of ATP synthesis by Complex V was significantly reduced in ME/CFS lymphoblasts, while significant elevations were observed in Complex I OCR, maximum OCR, spare respiratory capacity, nonmitochondrial OCR and “proton leak” as a proportion of the basal OCR. This was accompanied by a reduction of mitochondrial membrane potential, chronically hyperactivated TOR Complex I stress signaling and upregulated expression of mitochondrial respiratory complexes, fatty acid transporters, and enzymes of the β-oxidation and TCA cycles. By contrast, mitochondrial mass and genome copy number, as well as glycolytic rates and steady state ATP levels were unchanged. Our results suggest a model in which ME/CFS lymphoblasts have a Complex V defect accompanied by compensatory upregulation of their respiratory capacity that includes the mitochondrial respiratory complexes, membrane transporters and enzymes involved in fatty acid β-oxidation. This homeostatically returns ATP synthesis and steady state levels to “normal” in the resting cells, but may leave them unable to adequately respond to acute increases in energy demand as the relevant homeostatic pathways are already activated.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Sarah J. Annesley
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Claire Y. Allan
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Oana Sanislav
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
| | - Brett A. Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Paul R. Fisher
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (D.M.); (S.J.A.); (C.Y.A.); (O.S.)
- Correspondence: ; Tel.: +61-3-9479-2229
| |
Collapse
|
25
|
Abstract
Muscle failure has been demonstrated in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Neurophysiological tools demonstrate the existence of both central and peripheral fatigue in these patients. Central fatigue is deduced from the reduced amplitude of myopotentials evoked by transcranial magnetic stimulation of the motor cortex as well as by the muscle response to interpolated twitches during sustained fatiguing efforts. An impaired muscle membrane conduction velocity assessed by the reduced amplitude and lengthened duration of myopotentials evoked by direct muscle stimulation is the defining feature of peripheral fatigue. Some patients with ME/CFS show an increased oxidative stress response to exercise. The formation of lipid hydroperoxides in the sarcolemma, which alters ionic fluxes, could explain the reduction of muscle membrane excitability and potassium outflow often measured in these patients. In patients with ME/CFS, the formation of heat shock proteins (HSPs) is also reduced. Because HSPs protect muscle cells against the deleterious effects of reactive oxygen species, the lack of their production could explain the augmented oxidative stress and the consecutive alterations of myopotentials which could open a way for future treatment of ME/CFS.
Collapse
Affiliation(s)
- Yves Jammes
- C2VN Inserm Inra, Faculty of Medicine, Aix Marseille University, Marseille, France, France
| | - Frédérique Retornaz
- Department of Internal Medicine, European Hospital, Marseille, France, France
| |
Collapse
|
26
|
Missailidis D, Annesley SJ, Fisher PR. Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2019; 9:E80. [PMID: 31330791 PMCID: PMC6787592 DOI: 10.3390/diagnostics9030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying molecular basis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is not well understood. Characterized by chronic, unexplained fatigue, a disabling payback following exertion ("post-exertional malaise"), and variably presenting multi-system symptoms, ME/CFS is a complex disease, which demands a concerted biomedical investigation from disparate fields of expertise. ME/CFS research and patient treatment have been challenged by the lack of diagnostic biomarkers and finding these is a prominent direction of current work. Despite these challenges, modern research demonstrates a tangible biomedical basis for the disorder across many body systems. This evidence is mostly comprised of disturbances to immunological and inflammatory pathways, autonomic and neurological dysfunction, abnormalities in muscle and mitochondrial function, shifts in metabolism, and gut physiology or gut microbiota disturbances. It is possible that these threads are together entangled as parts of an underlying molecular pathology reflecting a far-reaching homeostatic shift. Due to the variability of non-overlapping symptom presentation or precipitating events, such as infection or other bodily stresses, the initiation of body-wide pathological cascades with similar outcomes stemming from different causes may be implicated in the condition. Patient stratification to account for this heterogeneity is therefore one important consideration during exploration of potential diagnostic developments.
Collapse
Affiliation(s)
- Daniel Missailidis
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, VIC 3086, Australia.
| |
Collapse
|
27
|
Lien K, Johansen B, Veierød MB, Haslestad AS, Bøhn SK, Melsom MN, Kardel KR, Iversen PO. Abnormal blood lactate accumulation during repeated exercise testing in myalgic encephalomyelitis/chronic fatigue syndrome. Physiol Rep 2019; 7:e14138. [PMID: 31161646 PMCID: PMC6546966 DOI: 10.14814/phy2.14138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
Post-exertional malaise and delayed recovery are hallmark symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Studies on repeated cardiopulmonary exercise testing (CPET) show that previous exercise negatively affects oxygen uptake (VO2 ) and power output (PO) in ME/CFS. Whether this affects arterial lactate concentrations ([Laa ]) is unknown. We studied 18 female patients (18-50 years) fulfilling the Canadian Consensus Criteria for ME/CFS and 15 healthy females (18-50 years) who underwent repeated CPETs 24 h apart (CPET1 and CPET2 ) with [Laa ] measured every 30th second. VO2 at peak exercise (VO2peak ) was lower in patients than in controls on CPET1 (P < 0.001) and decreased in patients on CPET2 (P < 0.001). However, the difference in VO2peak between CPETs did not differ significantly between groups. [Laa ] per PO was higher in patients during both CPETs (Pinteraction < 0.001), but increased in patients and decreased in controls from CPET1 to CPET2 (Pinteraction < 0.001). Patients had lower VO2 (P = 0.02) and PO (P = 0.002) at the gas exchange threshold (GET, the point where CO2 production increases relative to VO2 ), but relative intensity (%VO2peak ) and [Laa ] at GET did not differ significantly from controls on CPET1 . Patients had a reduction in VO2 (P = 0.02) and PO (P = 0.01) at GET on CPET2 , but no significant differences in %VO2peak and [Laa ] at GET between CPETs. Controls had no significant differences in VO2 , PO or %VO2peak at GET between CPETs, but [Laa ] at GET was reduced on CPET2 (P = 0.008). In conclusion, previous exercise deteriorates physical performance and increases [Laa ] during exercise in patients with ME/CFS while it lowers [Laa ] in healthy subjects.
Collapse
Affiliation(s)
- Katarina Lien
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- CFS/ME CentreDivision of MedicineOslo University HospitalOsloNorway
| | - Bjørn Johansen
- Department of Respiratory DiseasesRikshospitaletOslo University HospitalOsloNorway
| | - Marit B. Veierød
- Oslo Centre for Biostatistics and EpidemiologyDepartment of BiostatisticsInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Annicke S. Haslestad
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Siv K. Bøhn
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Kristin R. Kardel
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Per O. Iversen
- Department of NutritionInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of HematologyOslo University HospitalOsloNorway
| |
Collapse
|
28
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
29
|
Venter M, Tomas C, Pienaar IS, Strassheim V, Erasmus E, Ng WF, Howell N, Newton JL, Van der Westhuizen FH, Elson JL. MtDNA population variation in Myalgic encephalomyelitis/Chronic fatigue syndrome in two populations: a study of mildly deleterious variants. Sci Rep 2019; 9:2914. [PMID: 30814539 PMCID: PMC6393470 DOI: 10.1038/s41598-019-39060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME), also known as Chronic Fatigue Syndrome (CFS) is a debilitating condition. There is growing interest in a possible etiologic or pathogenic role of mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation in ME/CFS. Supporting such a link, fatigue is common and often severe in patients with mitochondrial disease. We investigate the role of mtDNA variation in ME/CFS. No proven pathogenic mtDNA mutations were found. We then investigated population variation. Two cohorts were analysed, one from the UK (n = 89 moderately affected; 29 severely affected) and the other from South Africa (n = 143 moderately affected). For both cohorts, ME/CFS patients had an excess of individuals without a mildly deleterious population variant. The differences in population variation might reflect a mechanism important to the pathophysiology of ME/CFS.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Cara Tomas
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Victoria Strassheim
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Elardus Erasmus
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Wan-Fai Ng
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Neil Howell
- Department of Radiation Therapy, UTMB, Galveston, Texas, USA
| | - Julia L Newton
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| |
Collapse
|
30
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
31
|
Pietrangelo T, Fulle S, Coscia F, Gigliotti PV, Fanò-Illic G. Old muscle in young body: an aphorism describing the Chronic Fatigue Syndrome. Eur J Transl Myol 2018; 28:7688. [PMID: 30344981 PMCID: PMC6176399 DOI: 10.4081/ejtm.2018.7688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/27/2022] Open
Abstract
The chronic fatigue syndrome (CFS) otherwise known as myalgic encephalomyelitis (ME), is a debilitating syndrome whose identification is very complex due to lack of precise diagnostic criteria. This pathology begins with limitations in duration and intensity of exercise and rapid onset of pain during physical activity. Its etiology is unknown, and symptoms are not limited to the muscles. Epidemiology is rather difficult to delimit, even if it affects mainly young (20-40 years), female subjects. The results of muscular research show some peculiarities that can justify what has been observed in vivo. In particular, 1. presence of oxidative damage of lipid component of biological membranes and DNA not compensated by the increase of the scavenger activity; 2. Excitation-Contraction (E-C) alteration with modification of Ca2+ transport; 3. passage from slow to fast fiber phenotype; 4. inability to increase glucose uptake; 5. presence of mitochondrial dysfunction; and 6. genes expressed differentially (particularly those involved in energy production). The skeletal muscles of CFS / ME patients show a significant alteration of the oxidative balance due to mitochondrial alteration and of the fiber phenotype composition as shown in sarcopenic muscles of the elderly. Vice versa, the muscle catabolism does not appear to be involved in the onset of this syndrome. The data support the hypothesis that patients with CFS are subjected to some of the problems typical for muscle aging, which is probably related to disorders of muscle protein synthesis and biogenesis of mitochondria. Patients with CFS can benefit from an appropriate training program because no evidence suggests that physical exercise worsens symptoms. Type, intensity and duration of any physical activity that activates muscle contraction (including Electrical Stimulation) require further investigation even if it is known that non-exhaustive physical activity decreases painful symptomatology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Italy
| | - Francesco Coscia
- Sport Medicine Service of Autonome Provinz Bozen, San Candido-Innichen, Italy
- Laboratory of Sport Physiology, San Candido-Innichen, Italy
| | - Paola Virginia Gigliotti
- Sport Medicine Service of Autonome Provinz Bozen, San Candido-Innichen, Italy
- Laboratory of Sport Physiology, San Candido-Innichen, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
- Free University of Alcatraz, Santa Cristina di Gubbio, Italy
| |
Collapse
|
32
|
Pharmacological activation of AMPK and glucose uptake in cultured human skeletal muscle cells from patients with ME/CFS. Biosci Rep 2018; 38:BSR20180242. [PMID: 29654166 PMCID: PMC5938427 DOI: 10.1042/bsr20180242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/24/2023] Open
Abstract
Skeletal muscle fatigue and post-exertional malaise are key symptoms of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (ME/CFS). We have previously shown that AMP-activated protein kinase (AMPK) activation and glucose uptake are impaired in primary human skeletal muscle cell cultures derived from patients with ME/CFS in response to electrical pulse stimulation (EPS), a method which induces contraction of muscle cells in vitro. The aim of the present study was to assess if AMPK could be activated pharmacologically in ME/CFS. Primary skeletal muscle cell cultures from patients with ME/CFS and healthy controls were treated with either metformin or compound 991. AMPK activation was assessed by Western blot and glucose uptake measured. Both metformin and 991 treatment significantly increased AMPK activation and glucose uptake in muscle cell cultures from both controls and ME/CFS. Cellular ATP content was unaffected by treatment although ATP content was significantly decreased in ME/CFS compared with controls. Pharmacological activation of AMPK can improve glucose uptake in muscle cell cultures from patients with ME/CFS. This suggests that the failure of EPS to activate AMPK in these muscle cultures is due to a defect proximal to AMPK. Further work is required to delineate the defect and determine whether pharmacological activation of AMPK improves muscle function in patients with ME/CFS.
Collapse
|
33
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
34
|
Metabolic abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: a mini-review. Biochem Soc Trans 2018; 46:547-553. [PMID: 29666214 DOI: 10.1042/bst20170503] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Chronic fatigue syndrome (CFS), commonly known as myalgic encephalomyelitis (ME), is a debilitating disease of unknown etiology. CFS/ME is a heterogeneous disease associated with a myriad of symptoms but with severe, prolonged fatigue as the core symptom associated with the disease. There are currently no known biomarkers for the disease, largely due to the lack of knowledge surrounding the eitopathogenesis of CFS/ME. Numerous studies have been conducted in an attempt to identify potential biomarkers for the disease. This mini-review offers a brief summary of current research into the identification of metabolic abnormalities in CFS/ME which may represent potential biomarkers for the disease. The progress of research into key areas including immune dysregulation, mitochondrial dysfunction, 5'-adenosine monophosphate-activated protein kinase activation, skeletal muscle cell acidosis, and metabolomics are presented here. Studies outlined in this mini-review show many potential causes for the pathogenesis of CFS/ME and identify many potential metabolic biomarkers for the disease from the aforementioned research areas. The future of CFS/ME research should focus on building on the potential biomarkers for the disease using multi-disciplinary techniques at multiple research sites in order to produce robust data sets. Whether the metabolic changes identified in this mini-review occur as a cause or a consequence of the disease must also be established.
Collapse
|
35
|
Tomas C, Brown A, Strassheim V, Elson J, Newton J, Manning P. Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS One 2017; 12:e0186802. [PMID: 29065167 PMCID: PMC5655451 DOI: 10.1371/journal.pone.0186802] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is a highly debilitating disease of unknown aetiology. Abnormalities in bioenergetic function have been cited as one possible cause for CFS. Preliminary studies were performed to investigate cellular bioenergetic abnormalities in CFS patients. A series of assays were conducted using peripheral blood mononuclear cells (PBMCs) from CFS patients and healthy controls. These experiments investigated cellular patterns in oxidative phosphorylation (OXPHOS) and glycolysis. Results showed consistently lower measures of OXPHOS parameters in PBMCs taken from CFS patients compared with healthy controls. Seven key parameters of OXPHOS were calculated: basal respiration, ATP production, proton leak, maximal respiration, reserve capacity, non-mitochondrial respiration, and coupling efficiency. While many of the parameters differed between the CFS and control cohorts, maximal respiration was determined to be the key parameter in mitochondrial function to differ between CFS and control PBMCs due to the consistency of its impairment in CFS patients found throughout the study (p≤0.003). The lower maximal respiration in CFS PBMCs suggests that when the cells experience physiological stress they are less able to elevate their respiration rate to compensate for the increase in stress and are unable to fulfil cellular energy demands. The metabolic differences discovered highlight the inability of CFS patient PBMCs to fulfil cellular energetic demands both under basal conditions and when mitochondria are stressed during periods of high metabolic demand.
Collapse
Affiliation(s)
- Cara Tomas
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Audrey Brown
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Strassheim
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joanna Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Julia Newton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Philip Manning
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
Scheibenbogen C, Freitag H, Blanco J, Capelli E, Lacerda E, Authier J, Meeus M, Castro Marrero J, Nora-Krukle Z, Oltra E, Strand EB, Shikova E, Sekulic S, Murovska M. The European ME/CFS Biomarker Landscape project: an initiative of the European network EUROMENE. J Transl Med 2017; 15:162. [PMID: 28747192 PMCID: PMC5530475 DOI: 10.1186/s12967-017-1263-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a common and severe disease with a considerable social and economic impact. So far, the etiology is not known, and neither a diagnostic marker nor licensed treatments are available yet. The EUROMENE network of European researchers and clinicians aims to promote cooperation and advance research on ME/CFS. To improve diagnosis and facilitate the analysis of clinical trials surrogate markers are urgently needed. As a first step for developing such biomarkers for clinical use a database of active biomarker research in Europe was established called the ME/CFS EUROMENE Biomarker Landscape project and the results are presented in this review. Further we suggest strategies to improve biomarker development and encourage researchers to take these into consideration for designing and reporting biomarker studies.
Collapse
Affiliation(s)
- Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1/Sudstrasse 2, 13353 Berlin, Germany
| | - Helma Freitag
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1/Sudstrasse 2, 13353 Berlin, Germany
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa-HIVACAT, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, IGTP, UAB, Carretera del Canyet, s/n, 08916 Badalona, Spain
- Universitat de Vic-UCC, Carrer de la Sagrada Família, 7, 08500 Vic Barcelona, Spain
| | - Enrica Capelli
- Deptartment of Earth and Environmental Sciences, University of Pavia, Via Ferrata 7, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Eliana Lacerda
- Clinical Research Department, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT UK
| | - Jerome Authier
- Faculty of Medicine, Paris Est-Creteil University, 8 rue du General Sarrail, 94000 Creteil, France
| | - Mira Meeus
- Pain in Motion International Research Group, Brussels, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St. Pietersnieuwstraat 33, 9000 Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy (MOVANT), Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
| | - Jesus Castro Marrero
- Vall d’Hebron University Hospital, CFS/ME Unit, Universitat Autònoma de Barcelona, 119-129, Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Zaiga Nora-Krukle
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Rīga, 1007 Latvia
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, San Vicente Mártir, Carrer de Quevedo, 2, 46001 Valencia, Spain
- Instituto Valenciano de Patología (IVP) de la Universidad Católica de Valencia San Vicente Mártir, Centro de Investigación Príncipe Felipe (CIPF), Carrer d’Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Elin Bolle Strand
- Division of Medicine, CFS/ME Center, Oslo University Hospital, Aker, Trondheimsveien 235, 0586 Oslo, Norway
- Department of Paediatrics, Norwegian National Advisory Unit on CFS/ME, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Evelina Shikova
- Department of Virology, National Center of Infectious and Parasitic Diseases, 44A General Stoletov blvd., 1233 Sofia, Bulgaria
| | - Slobodan Sekulic
- Department of Neurology, Medical Faculty Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Modra Murovska
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Rīga, 1007 Latvia
| |
Collapse
|
37
|
Nikolić N, Görgens SW, Thoresen GH, Aas V, Eckel J, Eckardt K. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol (Oxf) 2017; 220:310-331. [PMID: 27863008 DOI: 10.1111/apha.12830] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
The beneficial health-related effects of exercise are well recognized, and numerous studies have investigated underlying mechanism using various in vivo and in vitro models. Although electrical pulse stimulation (EPS) for the induction of muscle contraction has been used for quite some time, its application on cultured skeletal muscle cells of animal or human origin as a model of in vitro exercise is a more recent development. In this review, we compare in vivo exercise and in vitro EPS with regard to effects on signalling, expression level and metabolism. We provide a comprehensive overview of different EPS protocols and their applications, discuss technical aspects of this model including critical controls and the importance of a proper maintenance procedure and finally discuss the limitations of the EPS model.
Collapse
Affiliation(s)
- N. Nikolić
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - G. H. Thoresen
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
- Department of Pharmacology; Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - V. Aas
- Department of Life Sciences and Health; Oslo and Akershus University College of Applied Sciences; Oslo Norway
| | - J. Eckel
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
- German Center for Diabetes Research (DZD e.V.); Düsseldorf Germany
| | - K. Eckardt
- Department of Nutrition; Institute for Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
38
|
Shepherd CB. PACE trial claims for recovery in myalgic encephalomyelitis/chronic fatigue syndrome - true or false? It's time for an independent review of the methodology and results. J Health Psychol 2017; 22:1187-1191. [PMID: 28805522 DOI: 10.1177/1359105317703786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The PACE trial set out to discover whether cognitive behaviour therapy and graded exercise therapy are safe and effective forms of treatment for myalgic encephalomyelitis/chronic fatigue syndrome. It concluded that these interventions could even result in recovery. However, patient evidence has repeatedly found that cognitive behaviour therapy is ineffective and graded exercise therapy can make the condition worse. The PACE trial methodology has been heavily criticised by clinicians, academics and patients. A re-analysis of the data has cast serious doubts on the recovery rates being claimed. The trust of patients has been lost. The medical profession must start listening to people with myalgic encephalomyelitis/chronic fatigue syndrome if trust is going to be restored.
Collapse
|
39
|
Schoeman EM, Van Der Westhuizen FH, Erasmus E, van Dyk E, Knowles CVY, Al-Ali S, Ng WF, Taylor RW, Newton JL, Elson JL. Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. BMC MEDICAL GENETICS 2017; 18:29. [PMID: 28302057 PMCID: PMC5356238 DOI: 10.1186/s12881-017-0387-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic Fatigue Syndrome (CFS) is a prevalent debilitating condition that affects approximately 250,000 people in the UK. There is growing interest in the role of mitochondrial function and mitochondrial DNA (mtDNA) variation in CFS. It is now known that fatigue is common and often severe in patients with mitochondrial disease irrespective of their age, gender or mtDNA genotype. More recently, it has been suggested that some CFS patients harbour clinically proven mtDNA mutations. METHODS MtDNA sequencing of 93 CFS patients from the United Kingdom (UK) and South Africa (RSA) was performed using an Ion Torrent Personal Genome Machine. The sequence data was examined for any evidence of clinically proven mutations, currently; more than 200 clinically proven mtDNA mutations point mutations have been identified. RESULTS We report the complete mtDNA sequence of 93 CFS patients from the UK and RSA, without finding evidence of clinically proven mtDNA mutations. This finding demonstrates that clinically proven mtDNA mutations are not a common element in the aetiology of disease in CFS patients. That is patients having a clinically proven mtDNA mutation and subsequently being misdiagnosed with CFS are likely to be rare. CONCLUSION The work supports the assertion that CFS should not be considered to fall within the spectrum of mtDNA disease. However, the current study cannot exclude a role for nuclear genes with a mitochondrial function, nor a role of mtDNA population variants in susceptibility to disease. This study highlights the need for more to be done to understand the pathophysiology of CFS.
Collapse
Affiliation(s)
- Elizna M. Schoeman
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Elardus Erasmus
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Etresia van Dyk
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Charlotte V. Y. Knowles
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Shereen Al-Ali
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Biology, College of Science, University of Basrah, Basrah, Iraq
| | - Wan-Fai Ng
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Julia L. Newton
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joanna L. Elson
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Fluge Ø, Mella O, Bruland O, Risa K, Dyrstad SE, Alme K, Rekeland IG, Sapkota D, Røsland GV, Fosså A, Ktoridou-Valen I, Lunde S, Sørland K, Lien K, Herder I, Thürmer H, Gotaas ME, Baranowska KA, Bohnen LM, Schäfer C, McCann A, Sommerfelt K, Helgeland L, Ueland PM, Dahl O, Tronstad KJ. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI Insight 2016; 1:e89376. [PMID: 28018972 DOI: 10.1172/jci.insight.89376] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.
Collapse
Affiliation(s)
- Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Irini Ktoridou-Valen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sigrid Lunde
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanne Thürmer
- Telemark Hospital, Department of Medicine, Notodden, Norway
| | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | | | - Louis Mlj Bohnen
- Division of Rehabilitation Services, University Hospital of Northern Norway, Tromsø, Norway
| | - Christoph Schäfer
- Division of Rehabilitation Services, University Hospital of Northern Norway, Tromsø, Norway
| | | | | | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Bevital AS, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
Agra RM, Al-Daghri NM, Badimon L, Bodi V, Carbone F, Chen M, Cubedo J, Dullaart RPF, Eiras S, García-Monzón C, Gary T, Gnoni A, González-Rodríguez Á, Gremmel T, Hafner F, Hakala T, Huang B, Ickmans K, Irace C, Kholová I, Kimer N, Kytö V, März W, Miazgowski T, Møller S, Montecucco F, Niccoli G, Nijs J, Ozben S, Ozben T, Papassotiriou I, Papastamataki M, Reina-Couto M, Rios-Navarro C, Ritsch A, Sabico S, Seetho IW, Severino A, Sipilä J, Sousa T, Taszarek A, Taurino F, Tietge UJF, Tripolino C, Verloop W, Voskuil M, Wilding JPH. Research update for articles published in EJCI in 2014. Eur J Clin Invest 2016; 46:880-94. [PMID: 27571922 DOI: 10.1111/eci.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Rosa María Agra
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Vicente Bodi
- Cardiology Department, Hospital Clinico Universitario, INCLIVA, University of Valencia, Valencia, Spain
| | - Federico Carbone
- First Clinical of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sonia Eiras
- Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, CIBEREHD, Madrid, Spain
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Águeda González-Rodríguez
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, CIBEREHD, Madrid, Spain
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Franz Hafner
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tommi Hakala
- Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Baotao Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kelly Ickmans
- Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Concetta Irace
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Ivana Kholová
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Nina Kimer
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ville Kytö
- Heart Center, Turku University Hospital, Turku, Finland.,Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Augsburg, Germany
| | - Tomasz Miazgowski
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino-IST, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Jo Nijs
- Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Serkan Ozben
- Department of Neurology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Maria Papastamataki
- Department of Clinical Biochemistry, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Marta Reina-Couto
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal.,Departamento de Medicina Intensiva, Centro Hospitalar São João, Porto, Portugal
| | - Cesar Rios-Navarro
- Cardiology Department, Hospital Clinico Universitario, INCLIVA, University of Valencia, Valencia, Spain
| | - Andreas Ritsch
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian W Seetho
- Obesity and Endocrinology Research Group, University Hospital Aintree, University of Liverpool, Liverpool, UK
| | | | - Jussi Sipilä
- North Karelia Central Hospital, Joensuu, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Teresa Sousa
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Aleksandra Taszarek
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Federica Taurino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cesare Tripolino
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Willemien Verloop
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - John P H Wilding
- Obesity and Endocrinology Research Group, University Hospital Aintree, University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Edwards JCW, McGrath S, Baldwin A, Livingstone M, Kewley A. The biological challenge of myalgic encephalomyelitis/chronic fatigue syndrome: a solvable problem. FATIGUE-BIOMEDICINE HEALTH AND BEHAVIOR 2016; 4:63-69. [PMID: 27226928 PMCID: PMC4867862 DOI: 10.1080/21641846.2016.1160598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Understanding Muscle Dysfunction in Chronic Fatigue Syndrome. J Aging Res 2016; 2016:2497348. [PMID: 26998359 PMCID: PMC4779819 DOI: 10.1155/2016/2497348] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/12/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME.
Collapse
|
44
|
Saugstad OD. Re: Kronisk utmattelsessyndrom/myalgisk encefalopati – sykdomsmekanismer, diagnostikk og behandling. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2016; 136:205. [DOI: 10.4045/tidsskr.16.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
45
|
Egeland T, Angelsen A, Haug R, Henriksen JO, Lea TE, Saugstad OD. What exactly is myalgic encephalomyelitis? TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2015; 135:1756-9. [PMID: 26486672 DOI: 10.4045/tidsskr.15.0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|