1
|
Garen JC, Michaletz ST. Fast Assimilation-Temperature Response: a FAsTeR method for measuring the temperature dependence of leaf-level photosynthesis. THE NEW PHYTOLOGIST 2024; 241:1361-1372. [PMID: 37984070 DOI: 10.1111/nph.19405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
We present the Fast Assimilation-Temperature Response (FAsTeR) method, a new method for measuring plant assimilation-temperature (AT) response that reduces measurement time and increases data density compared with conventional methods. The FAsTeR method subjects plant leaves to a linearly increasing temperature ramp while taking rapid, nonequilibrium measurements of gas exchange variables. Two postprocessing steps are employed to correct measured assimilation rates for nonequilibrium effects and sensor calibration drift. Results obtained with the new method are compared with those from two conventional stepwise methods. Our new method accurately reproduces results obtained from conventional methods, reduces measurement time by a factor of c. 3.3 (from c. 90 to 27 min), and increases data density by a factor of c. 55 (from c. 10 to c. 550 observations). Simulation results demonstrate that increased data density substantially improves confidence in parameter estimates and drastically reduces the influence of noise. By improving measurement speed and data density, the FAsTeR method enables users to ask fundamentally new kinds of ecological and physiological questions, expediting data collection in short-field campaigns, and improving the representativeness of data across species in the literature.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Dusenge ME, Warren JM, Reich PB, Ward EJ, Murphy BK, Stefanski A, Bermudez R, Cruz M, McLennan DA, King AW, Montgomery RA, Hanson PJ, Way DA. Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures. Nat Commun 2023; 14:4667. [PMID: 37537190 PMCID: PMC10400668 DOI: 10.1038/s41467-023-40248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts in ToptA of field-grown trees will keep pace with the temperatures predicted for the 21st century under elevated atmospheric CO2 concentrations. Here, using a whole-ecosystem warming controlled experiment under either ambient or elevated CO2 levels, we show that ToptA of mature boreal conifers increased with warming. However, shifts in ToptA did not keep pace with warming as ToptA only increased by 0.26-0.35 °C per 1 °C of warming. Net photosynthetic rates estimated at the mean growth temperature increased with warming in elevated CO2 spruce, while remaining constant in ambient CO2 spruce and in both ambient CO2 and elevated CO2 tamarack with warming. Although shifts in ToptA of these two species are insufficient to keep pace with warming, these boreal conifers can thermally acclimate photosynthesis to maintain carbon uptake in future air temperatures.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, Mount Allison University, Sackville, NB, E4L 1E4, Canada.
- Western Centre for Climate Change, Sustainable Livelihoods and Health, Department of Geography and Environment, The University of Western Ontario, London, ON, N6G 2V4, Canada.
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Jeffrey M Warren
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2753, Australia
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric J Ward
- US Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - Bridget K Murphy
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Graduate Program in Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Raimundo Bermudez
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Marisol Cruz
- Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogota, Colombia
| | - David A McLennan
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Anthony W King
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Rebecca A Montgomery
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Paul J Hanson
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
3
|
Crous KY, Uddling J, De Kauwe MG. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. THE NEW PHYTOLOGIST 2022; 234:353-374. [PMID: 35007351 PMCID: PMC9994441 DOI: 10.1111/nph.17951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 05/29/2023]
Abstract
Evergreen species are widespread across the globe, representing two major plant functional forms in terrestrial models. We reviewed and analysed the responses of photosynthesis and respiration to warming in 101 evergreen species from boreal to tropical biomes. Summertime temperatures affected both latitudinal gas exchange rates and the degree of responsiveness to experimental warming. The decrease in net photosynthesis at 25°C (Anet25 ) was larger with warming in tropical climates than cooler ones. Respiration at 25°C (R25 ) was reduced by 14% in response to warming across species and biomes. Gymnosperms were more sensitive to greater amounts of warming than broadleaved evergreens, with Anet25 and R25 reduced c. 30-40% with > 10°C warming. While standardised rates of carboxylation (Vcmax25 ) and electron transport (Jmax25 ) adjusted to warming, the magnitude of this adjustment was not related to warming amount (range 0.6-16°C). The temperature optimum of photosynthesis (ToptA ) increased on average 0.34°C per °C warming. The combination of more constrained acclimation of photosynthesis and increasing respiration rates with warming could possibly result in a reduced carbon sink in future warmer climates. The predictable patterns of thermal acclimation across biomes provide a strong basis to improve modelling predictions of the future terrestrial carbon sink with warming.
Collapse
Affiliation(s)
- Kristine Y. Crous
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Johan Uddling
- Department of Biological and Environmental SciencesUniversity of GothenburgPO Box 461GothenburgSE‐405 30Sweden
| | | |
Collapse
|
4
|
Dusenge ME, Ward EJ, Warren JM, Stinziano JR, Wullschleger SD, Hanson PJ, Way DA. Warming induces divergent stomatal dynamics in co-occurring boreal trees. GLOBAL CHANGE BIOLOGY 2021; 27:3079-3094. [PMID: 33784426 DOI: 10.1111/gcb.15620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Climate warming will alter photosynthesis and respiration not only via direct temperature effects on leaf biochemistry but also by increasing atmospheric dryness, thereby reducing stomatal conductance and suppressing photosynthesis. Our knowledge on how climate warming affects these processes is mainly derived from seedlings grown under highly controlled conditions. However, little is known regarding temperature responses of trees growing under field settings. We exposed mature tamarack and black spruce trees growing in a peatland ecosystem to whole-ecosystem warming of up to +9°C above ambient air temperatures in an ongoing long-term experiment (SPRUCE: Spruce and Peatland Responses Under Changing Environments). Here, we report the responses of leaf gas exchange after the first two years of warming. We show that the two species exhibit divergent stomatal responses to warming and vapor pressure deficit. Warming of up to 9°C increased leaf N in both spruce and tamarack. However, higher leaf N in the warmer plots translate into higher photosynthesis in tamarack but not in spruce, with photosynthesis being more constrained by stomatal limitations in spruce than in tamarack under warm conditions. Surprisingly, dark respiration did not acclimate to warming in spruce, and thermal acclimation of respiration was only seen in tamarack once changes in leaf N were considered. Our results highlight how warming can lead to differing stomatal responses to warming in co-occurring species, with consequent effects on both vegetation carbon and water dynamics.
Collapse
Affiliation(s)
- Mirindi E Dusenge
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Eric J Ward
- US Geological Survey, Lafayette, LA, USA
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joseph R Stinziano
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Stan D Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
5
|
Dusenge ME, Madhavji S, Way DA. Contrasting acclimation responses to elevated CO 2 and warming between an evergreen and a deciduous boreal conifer. GLOBAL CHANGE BIOLOGY 2020; 26:3639-3657. [PMID: 32181545 DOI: 10.1111/gcb.15084] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 05/27/2023]
Abstract
Rising atmospheric carbon dioxide (CO2 ) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA ) increased and maximum photosynthetic rates declined in warm-grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax , and of electron transport, Jmax ) was reduced in warm-grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ , respectively) and the thermal optimum for Jmax . In both species, the ToptA was positively correlated with both EaV and EaJ , but negatively correlated with the ratio of Jmax /Vcmax . Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ ) show no response to elevated CO2 .
Collapse
Affiliation(s)
- Mirindi E Dusenge
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sasha Madhavji
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. WATER 2020. [DOI: 10.3390/w12051330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Soil–Water–Atmosphere–Plant (SWAP) model does not have a mulching module to simulate the effect of film mulching on soil water, heat dynamics and crop growth. In this study, SWAP model parameters were selected to simulate the soil water–heat process and crop growth, taking into account the effect of film mulching on soil evaporation, temperature, and crop growth, in order to predict the influence of future climate change on crop growth and evapotranspiration (ET). A most suitable scheme for high yield and water use efficiency (WUE) was studied by an experiment conducted in the Shiyang River Basin of Northwest China during 2017 and 2018. The experiment included mulching (M1) and non-mulching (M0) under three drip irrigation treatments, including full (WF), medium (WM), low (WL) water irrigation. Results demonstrated that SWAP simulated soil water storage (SWS) well, soil temperature at various depths, leaf area index (LAI) and aboveground dry biomass (ADB) with the normalized root mean square error (NRMSE) of 16.2%, 7.5%, 16.1% and 16.4%, respectively; and yield, ET, and WUE with the mean relative error (MRE) of 10.5%, 12.4% and 14.8%, respectively, under different treatments on average. The measured and simulated results showed film mulching could increase soil temperature, promote LAI during the early growth period, and ultimately improve ADB, yield and WUE. Among the treatments, M1WM treatment with moderate water deficit and film mulching could achieve the target of more WUE, higher yield, less irrigation water. Changes in atmospheric temperature, precipitation, and CO2 concentration are of worldwide concern. Three Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP8.5) showed a negative effect on LAI, ADB and yield of seed-maize. The yield of seed-maize on an average decreased by 33.2%, 13.9% under the three RCPs scenarios for film mulching and non-mulching, respectively. Predicted yields under film mulching were lower than that under non-mulching for the next 30 years demonstrating that current film mulching management might not be suitable for this area to improve crop production under the future climate scenarios.
Collapse
|
7
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
8
|
Kurepin LV, Stangl ZR, Ivanov AG, Bui V, Mema M, Hüner NPA, Öquist G, Way D, Hurry V. Contrasting acclimation abilities of two dominant boreal conifers to elevated CO 2 and temperature. PLANT, CELL & ENVIRONMENT 2018; 41:1331-1345. [PMID: 29411877 DOI: 10.1111/pce.13158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/04/2018] [Accepted: 01/21/2018] [Indexed: 05/22/2023]
Abstract
High latitude forests will experience large changes in temperature and CO2 concentrations this century. We evaluated the effects of future climate conditions on 2 dominant boreal tree species, Pinus sylvestris L. and Picea abies (L.) H. Karst, exposing seedlings to 3 seasons of ambient (430 ppm) or elevated CO2 (750 ppm) and ambient temperatures, a + 4 °C warming or a + 8 °C warming. Pinus sylvestris responded positively to warming: seedlings developed a larger canopy, maintained high net CO2 assimilation rates (Anet ), and acclimated dark respiration (Rdark ). In contrast, carbon fluxes in Picea abies were negatively impacted by warming: maximum rates of Anet decreased, electron transport was redirected to alternative electron acceptors, and thermal acclimation of Rdark was weak. Elevated CO2 tended to exacerbate these effects in warm-grown Picea abies, and by the end of the experiment Picea abies from the +8 °C, high CO2 treatment produced fewer buds than they had 3 years earlier. Treatments had little effect on leaf and wood anatomy. Our results highlight that species within the same plant functional type may show opposite responses to warming and imply that Picea abies may be particularly vulnerable to warming due to low plasticity in photosynthetic and respiratory metabolism.
Collapse
Affiliation(s)
- Leonid V Kurepin
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
- Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Zsofia R Stangl
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
| | - Alexander G Ivanov
- Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Vi Bui
- Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Marin Mema
- Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Norman P A Hüner
- Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Gunnar Öquist
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
| | - Danielle Way
- Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Vaughan Hurry
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
9
|
Benomar L, Lamhamedi MS, Pepin S, Rainville A, Lambert MC, Margolis HA, Bousquet J, Beaulieu J. Thermal acclimation of photosynthesis and respiration of southern and northern white spruce seed sources tested along a regional climatic gradient indicates limited potential to cope with temperature warming. ANNALS OF BOTANY 2018; 121:443-457. [PMID: 29300870 PMCID: PMC5838847 DOI: 10.1093/aob/mcx174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/04/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Knowledge of thermal acclimation of physiological processes of boreal tree species is necessary to determine their ability to adapt to predicted global warming and reduce the uncertainty around the anticipated feedbacks of forest ecosystems and global carbon cycle to climate change. The objective of this work was to examine the extent of thermal acclimation of net photosynthesis (An) and dark respiration (Rd) of two distant white spruce (Picea glauca) seed sources (from south and north of the commerial forest zone in Québec) in response to latitudinal and seasonal variations in growing conditions. METHODS The temperature responses of An, its biochemical and biophysical limitations, and Rd were measured in 1-year-old needles of seedlings from the seed sources growing in eight forest plantations along a regional thermal gradient of 5.5 °C in Québec, Canada. KEY RESULTS The average optimum temperature (Topt) for An was 19 ± 1.2 °C and was similar among seed sources and plantation sites along the thermal gradient. Net photosynthesis at Topt (Aopt) varied significantly among plantation sites and was quadratically related to the mean July temperature (MJT) of plantation sites. Topt for mesophyll conductance, maximum electron transport rate and maximum rate of carboxylation were 28, 22 and 30 °C, respectively. Basal respiration rate (Rd at 10 °C) was linearly and negatively associated with MJT. Q10 of Rd (the rate of change in Rd with a 10 °C increase in temperature) did not show any significant relationship with MJT and averaged 1.5 ± 0.1. The two seed sources were similar in their thermal responses to latitudinal and seasonal variations in growing conditions. CONCLUSIONS The results showed moderate thermal acclimation of respiration and no evidence for thermal acclimation of photosynthesis or local genetic adaptation for traits related to thermal acclimation. Therefore, growth of local white spruces may decline in future climates.
Collapse
Affiliation(s)
- Lahcen Benomar
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
- For correspondence. E-mail
| | - Mohammed S Lamhamedi
- Direction de la recherche forestière, ministère des Forêts, de la Faune et des Parcs, 2700 rue Einstein, Québec, Canada
| | - Steeve Pepin
- Faculté des sciences de l’agriculture et de l’alimentation, Pavillon de l’Envirotron, Université Laval, Québec, Canada
| | - André Rainville
- Direction de la recherche forestière, ministère des Forêts, de la Faune et des Parcs, 2700 rue Einstein, Québec, Canada
| | - Marie-Claude Lambert
- Direction de la recherche forestière, ministère des Forêts, de la Faune et des Parcs, 2700 rue Einstein, Québec, Canada
| | - Hank A Margolis
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
| | - Jean Bousquet
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
| | - Jean Beaulieu
- Centre d’étude de la forêt, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi Price, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Aspinwall MJ, Vårhammar A, Blackman CJ, Tjoelker MG, Ahrens C, Byrne M, Tissue DT, Rymer PD. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. TREE PHYSIOLOGY 2017; 37:1095-1112. [PMID: 28460131 DOI: 10.1093/treephys/tpx047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Short-term acclimation and long-term adaptation represent two ways in which forest trees can respond to changes in temperature. Yet, the relative contribution of thermal acclimation and adaptation to tree physiological responses to temperature remains poorly understood. Here, we grew two cool-origin and two warm-origin populations of a widespread broad-leaved evergreen tree species (Corymbia calophylla (Lindl.) K.D.Hill & L.A.S.Johnson) from a Mediterranean climate in southwestern Australia under two growth temperatures representative of the cool- and warm-edge of the species distribution. The populations selected from each thermal environment represented both high and low precipitation sites. We measured the short-term temperature response of leaf photosynthesis (A) and dark respiration (R), and attributed observed variation to acclimation, adaptation or the combination of both. We observed limited variation in the temperature optimum (Topt) of A between temperature treatments or among populations, suggesting little plasticity or genetic differentiation in the Topt of A. Yet, other aspects of the temperature response of A and R were dependent upon population and growth temperature. Under cooler growth temperatures, the population from the coolest, wettest environment had the lowest A (at 25 °C) among all four populations, but exhibited the highest A (at 25 °C) under warmer growth temperatures. Populations varied in R (at 20 °C) and the temperature sensitivity of R (i.e., Q10 or activation energy) under cool, but not warm growth temperatures. However, populations showed similar yet lower R (at 20 °C) and no differences in the temperature sensitivity of R under warmer growth temperatures. We conclude that C. calophylla populations from contrasting climates vary in physiological acclimation to temperature, which might influence how this ecologically important tree species and the forests of southwestern Australia respond to climate change.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Collin Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Margaret Byrne
- Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
11
|
Warming puts the squeeze on photosynthesis – lessons from tropical trees. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2073-2077. [PMCID: PMC5447882 DOI: 10.1093/jxb/erx114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
12
|
Kinoshita M, Kim JY, Kume S, Lin Y, Mok KH, Kataoka Y, Ishimori K, Markova N, Kurisu G, Hase T, Lee YH. Energetic basis on interactions between ferredoxin and ferredoxin NADP + reductase at varying physiological conditions. Biochem Biophys Res Commun 2017; 482:909-915. [DOI: 10.1016/j.bbrc.2016.11.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
|
13
|
Kroner Y, Way DA. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. GLOBAL CHANGE BIOLOGY 2016; 22:2913-28. [PMID: 26728638 DOI: 10.1111/gcb.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/29/2015] [Indexed: 05/21/2023]
Abstract
Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .
Collapse
Affiliation(s)
- Yulia Kroner
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Stinziano JR, Hüner NPA, Way DA. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). TREE PHYSIOLOGY 2015; 35:1303-13. [PMID: 26543154 DOI: 10.1093/treephys/tpv118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/01/2015] [Indexed: 05/23/2023]
Abstract
Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests.
Collapse
Affiliation(s)
- Joseph R Stinziano
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, 1151 Richmond St, London, ON, Canada N6A 5B6
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, 1151 Richmond St, London, ON, Canada N6A 5B6
| | - Danielle A Way
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, 1151 Richmond St, London, ON, Canada N6A 5B6 Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA
| |
Collapse
|