1
|
Choudhury P, Dasgupta S, Kar A, Sarkar S, Chakraborty P, Bhattacharyya P, Roychowdhury S, Chaudhury K. Bioinformatics analysis of hypoxia associated genes and inflammatory cytokine profiling in COPD-PH. Respir Med 2024; 227:107658. [PMID: 38704051 DOI: 10.1016/j.rmed.2024.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), interleukin 1-beta (IL-1β), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, West Bengal, India
| | - Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
2
|
Chen Y, Liu J, Zhang Q, Chai L, Chen H, Li D, Wang Y, Qiu Y, Shen N, Zhang J, Wang Q, Wang J, Xie X, Li S, Li M. Activation of CaMKII/HDAC4 by SDF1 contributes to pulmonary arterial hypertension via stabilization Runx2. Eur J Pharmacol 2024; 970:176483. [PMID: 38479721 DOI: 10.1016/j.ejphar.2024.176483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Xu J, Miao S, Wu T, Hu C, Huang D, Zhang X. CXCR7 promotes pulmonary vascular remodeling via targeting p38/MMP2 pathway in pulmonary arterial hypertension. J Thorac Dis 2024; 16:2460-2471. [PMID: 38738224 PMCID: PMC11087638 DOI: 10.21037/jtd-24-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Background A hallmark feature of pulmonary arterial hypertension (PAH) is the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) in the pulmonary arteries. The exact role of C-X-C motif chemokine ligand 12 (CXCL12)/chemokine receptor type 7 (CXCR7) in the PASMCs remains unknown. This study was conducted to investigate CXCR7's role in p38/MMP2 pathway and its effect on PASMCs. Methods In this study, we examined the expression profile of CXCL12/CXCR7 in both hypoxic rats and PASMCs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to measure the level of proliferation in PASMCs. Enzyme-linked immunosorbent assay (ELISA) and western blotting assays were applied to investigate the protein expression of the related molecules. Results We found that a high level of CXCR7 was correlated with remodeled pulmonary arterioles in hypoxic rats. Moreover, CXCR7 protein levels were significantly increased by the induction of CXCL12, indicating that the CXCL12-CXCR7 axis participates in PAH. During hypoxia-PAH, CXCR7 inhibition reduces right ventricular systolic pressure (RVSP), the Fulton index, and pulmonary arteriosclerosis remodeling. Further study indicated inhibition CXCR7 reduced PASMCs by downregulating MMP2, via p38 MAPK pathway. It was additionally found that CXCL12/CXCR7 stimulated the phosphorylation of the p38 MAPK pathway, which was a contributing factor to the decrease in MMP2 expression following preconditioning with SB203580, which inhibited p38 MAPK. Conclusions In summary, these findings suggest that CXCL12/CXCR7 plays a critical role in PAH, the therapy of which can be developed further by targeting its potential targets.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shuai Miao
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tianjun Wu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Dongxiao Huang
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Xin Zhang
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Favoino E, Prete M, Liakouli V, Leone P, Sisto A, Navarini L, Vomero M, Ciccia F, Ruscitti P, Racanelli V, Giacomelli R, Perosa F. Idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH): Similarities, differences and the role of autoimmunity. Autoimmun Rev 2024; 23:103514. [PMID: 38181859 DOI: 10.1016/j.autrev.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Pre-capillary pulmonary arterial hypertension (PAH) is hemodynamically characterized by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg, pulmonary capillary wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) > 2. PAH is classified in six clinical subgroups, including idiopathic PAH (IPAH) and PAH associated to connective tissue diseases (CTD-PAH), that will be the main object of this review. The aim is to compare these two PAH subgroups in terms of epidemiology, histological and pathogenic findings in an attempt to define disease-specific features, including autoimmunity, that may explain the heterogeneity of response to therapy between IPAH and CTD-PAH.
Collapse
Affiliation(s)
- Elvira Favoino
- Laboratory of Cellular and Molecular Immunology, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Adriana Sisto
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Luca Navarini
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Marta Vomero
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
5
|
Bolin LP, Crane PB, Gunn LH. Exploring Cytokine Networks in Resistant Hypertension. Nurs Res 2024; 73:16-25. [PMID: 37878533 PMCID: PMC10841083 DOI: 10.1097/nnr.0000000000000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
BACKGROUND Controlling high blood pressure (BP) continues to be a major concern because the associated complications can lead to an increased risk of heart, brain, and kidney disease. Those with hypertension, despite lifestyle and diet modifications and pharmacotherapy, defined as resistant hypertension, are at increased risk for further risk for morbidity and mortality. Understanding inflammation in this population may provide novel avenues for treatment. OBJECTIVES This study aimed to examine a broad range of cytokines in adults with cardiovascular disease and identify specific cytokines associated with resistant hypertension. METHODS A secondary data analysis was conducted. The parent study included 156 adults with a history of myocardial infarction within the past 3-7 years and with a multiplex plasma analysis yielding a cytokine panel. A network analysis with lasso penalization for sparsity was performed to explore associations between cytokines and BP. Associated network centrality measures by cytokine were produced, and a community graph was extracted. A sensitivity analysis BP was also performed. RESULTS Cytokines with larger node strength measures were sTNFR2 and CX3. The graphical network highlighted six cytokines strongly associated with resistant hypertension. Cytokines IL-29 and CCL3 were found to be negatively associated with resistant hypertension, whereas CXCL12, MMP3, sCD163, and sIL6Rb were positively associated with resistant hypertension. DISCUSSION Understanding the network of associations through exploring oxidative stress and vascular inflammation may provide insight into treatment approaches for resistant hypertension.
Collapse
|
6
|
Hong J, Wong B, Huynh C, Tang B, Ruffenach G, Li M, Umar S, Yang X, Eghbali M. Tm4sf1-marked Endothelial Subpopulation Is Dysregulated in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2023; 68:381-394. [PMID: 36252184 PMCID: PMC10112423 DOI: 10.1165/rcmb.2022-0020oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
The identification and role of endothelial progenitor cells in pulmonary arterial hypertension (PAH) remain controversial. Single-cell omics analysis can shed light on endothelial progenitor cells and their potential contribution to PAH pathobiology. We aim to identify endothelial cells that may have stem/progenitor potential in rat lungs and assess their relevance to PAH. Differential expression, gene set enrichment, cell-cell communication, and trajectory reconstruction analyses were performed on lung endothelial cells from single-cell RNA sequencing of Sugen-hypoxia, monocrotaline, and control rats. Relevance to human PAH was assessed in multiple independent blood and lung transcriptomic data sets. Rat lung endothelial cells were visualized by immunofluorescence in situ, analyzed by flow cytometry, and assessed for tubulogenesis in vitro. A subpopulation of endothelial cells (endothelial arterial type 2 [EA2]) marked by Tm4sf1 (transmembrane 4 L six family member 1), a gene strongly implicated in cancer, harbored a distinct transcriptomic signature enriched for angiogenesis and CXCL12 signaling. Trajectory analysis predicted that EA2 has a less differentiated state compared with other endothelial subpopulations. Analysis of independent data sets revealed that TM4SF1 is downregulated in lungs and endothelial cells from patients and PAH models, is a marker for hematopoietic stem cells, and is upregulated in PAH circulation. TM4SF1+CD31+ rat lung endothelial cells were visualized in distal pulmonary arteries, expressed hematopoietic marker CD45, and formed tubules in coculture with lung fibroblasts. Our study uncovered a novel Tm4sf1-marked subpopulation of rat lung endothelial cells that may have stem/progenitor potential and demonstrated its relevance to PAH. Future studies are warranted to further elucidate the role of EA2 and Tm4sf1 in PAH.
Collapse
Affiliation(s)
- Jason Hong
- Division of Pulmonary and Critical Care Medicine
| | - Brenda Wong
- Division of Pulmonary and Critical Care Medicine
| | | | - Brian Tang
- Department of Integrative Biology and Physiology, and
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| | - Min Li
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, and
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
DeVallance ER, Dustin CM, de Jesus DS, Ghouleh IA, Sembrat JC, Cifuentes-Pagano E, Pagano PJ. Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension. Antioxidants (Basel) 2022; 12:71. [PMID: 36670936 PMCID: PMC9854820 DOI: 10.3390/antiox12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.
Collapse
Affiliation(s)
- Evan R. DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Christopher M. Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Simoes de Jesus
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C. Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- *Correspondence: Jing Ye, ; Jun Wan,
| | - Jun Wan
- *Correspondence: Jing Ye, ; Jun Wan,
| |
Collapse
|
9
|
Chen X, He Y, Yu Z, Zuo J, Huang Y, Ruan Y, Zheng X, Ma Y. Polydatin Glycosides Improve Monocrotaline-Induced Pulmonary Hypertension Injury by Inhibiting Endothelial-To-Mesenchymal Transition. Front Pharmacol 2022; 13:862017. [PMID: 35370672 PMCID: PMC8972160 DOI: 10.3389/fphar.2022.862017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To study the effect of polydatin on the injury of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT).Methods: SD rats were induced to develop PAH injury by a single subcutaneous injection of MCT (60 mg/kg). From the second day, rats in the administration group were orally given sildenafil (20 mg/kg) and polydatin (30 or 60 mg/kg) for 3 weeks. At the end of the experiment, right ventricular hypertrophy (RVH) index of SD rats was calculated, pathological damage was assessed by HE staining, transcription levels of target genes were detected by RT-PCR and Elisa, and expression levels of Endothelial-to-mesenchymal transition (EndMT) related proteins were detected by immunohistochemistry (IHC) and immunofluorescence (IF). Finally, molecular docking analysis was used to verify the interaction of polydatin on the main targets.Results: Polydatin could significantly restore the body function, reduce MCT-induced PAH injury, reduce serum biochemical indices; polydatin could effectively inhibit EndMT process by decreasing the expression of N-cadherin, β-catenin and vimentin; polydatin could down-regulate TAGLN expression and increase PECAM1 expression to reduce pulmonary vascular remodeling. The interaction between polydatin and EndMT target was confirmed by molecular docking operation.Conclusion: Pharmacological experiments combined with Combining molecular docking was first used to clarify that polydatin can reduce the pulmonary endothelial dysfunction and pulmonary vascular remodeling induced by MCT by inhibiting EndMT. The results of the study provide new ideas for the further treatment of PAH injury.
Collapse
Affiliation(s)
- Xing Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
- *Correspondence: Xing Chen, ; Xiaoyuan Zheng, ; Yu Ma,
| | - Yao He
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Jianli Zuo
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Yan Huang
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
- *Correspondence: Xing Chen, ; Xiaoyuan Zheng, ; Yu Ma,
| | - Yu Ma
- Chongqing Emergency Medical Center, Chongqing, China
- *Correspondence: Xing Chen, ; Xiaoyuan Zheng, ; Yu Ma,
| |
Collapse
|
10
|
Abstract
Pulmonary arterial hypertension is characterized by obliteration and obstruction of the pulmonary arterioles that in turn results in high right ventricular afterload and right heart failure. The pathobiology of pulmonary arterial hypertension is complex, with contributions from multiple pathophysiologic processes that are regulated by a variety of molecular mechanisms. This nature likely explains the limited efficacy of our current therapies, which only target a small portion of the pathobiological mechanisms that underlie advanced disease. Here we review the pathobiology of pulmonary arterial hypertension, focusing on the systemic, cellular, and molecular mechanisms that underlie the disease.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Room 128A Hanes House, 330 Trent Drive, Durham, NC 27710, USA.
| | - Yen-Rei A Yu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, 12605 E. 16th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Sweatt AJ, Miyagawa K, Rhodes CJ, Taylor S, Del Rosario PA, Hsi A, Haddad F, Spiekerkoetter E, Bental-Roof M, Bland RD, Swietlik EM, Gräf S, Wilkins MR, Morrell NW, Nicolls MR, Rabinovitch M, Zamanian RT. Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest 2021; 160:1442-1458. [PMID: 34181952 PMCID: PMC8546243 DOI: 10.1016/j.chest.2021.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preclinical evidence implicates neutrophil elastase (NE) in pulmonary arterial hypertension (PAH) pathogenesis, and the NE inhibitor elafin is under early therapeutic investigation. RESEARCH QUESTION Are circulating NE and elafin levels abnormal in PAH and are they associated with clinical severity? STUDY DESIGN AND METHODS In an observational Stanford University PAH cohort (n = 249), plasma NE and elafin levels were measured in comparison with those of healthy control participants (n = 106). NE and elafin measurements were then related to PAH clinical features and relevant ancillary biomarkers. Cox regression models were fitted with cubic spline functions to associate NE and elafin levels with survival. To validate prognostic relationships, we analyzed two United Kingdom cohorts (n = 75 and n = 357). Mixed-effects models evaluated NE and elafin changes during disease progression. Finally, we studied effects of NE-elafin balance on pulmonary artery endothelial cells (PAECs) from patients with PAH. RESULTS Relative to control participants, patients with PAH were found to have increased NE levels (205.1 ng/mL [interquartile range (IQR), 123.6-387.3 ng/mL] vs 97.6 ng/mL [IQR, 74.4-126.6 ng/mL]; P < .0001) and decreased elafin levels (32.0 ng/mL [IQR, 15.3-59.1 ng/mL] vs 45.5 ng/mL [IQR, 28.1-92.8 ng/mL]; P < .0001) independent of PAH subtype, illness duration, and therapies. Higher NE levels were associated with worse symptom severity, shorter 6-min walk distance, higher N-terminal pro-type brain natriuretic peptide levels, greater right ventricular dysfunction, worse hemodynamics, increased circulating neutrophil levels, elevated cytokine levels, and lower blood BMPR2 expression. In Stanford patients, NE levels of > 168.5 ng/mL portended increased mortality risk after adjustment for known clinical predictors (hazard ratio [HR], 2.52; CI, 1.36-4.65, P = .003) or prognostic cytokines (HR, 2.63; CI, 1.42-4.87; P = .001), and the NE level added incremental value to established PAH risk scores. Similar prognostic thresholds were identified in validation cohorts. Longitudinal NE changes tracked with clinical trends and outcomes. PAH PAECs exhibited increased apoptosis and attenuated angiogenesis when exposed to NE at the level observed in patients' blood. Elafin rescued PAEC homeostasis, yet the required dose exceeded levels found in patients. INTERPRETATION Blood levels of NE are increased while elafin levels are deficient across PAH subtypes. Higher NE levels are associated with worse clinical disease severity and outcomes, and this target-specific biomarker could facilitate therapeutic development of elafin.
Collapse
Affiliation(s)
- Andrew J Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA.
| | - Kazuya Miyagawa
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Christopher J Rhodes
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London
| | - Shalina Taylor
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Patricia A Del Rosario
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Andrew Hsi
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Michal Bental-Roof
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Richard D Bland
- Department of Pediatrics-Neonatology, Stanford University, Stanford, CA
| | | | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, England; NIHR BioResource for Translational Research, University of Cambridge, Cambridge, England; Department of Haematology, University of Cambridge, Cambridge, England; on behalf of the British Heart Foundation/Medical Research Council UK PAH Consortium (C. J. Rhodes, E. M. Swietlik, S. Gräf, M. R. Wilkins, and N. W. Morrell)
| | - Martin R Wilkins
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, England; NIHR BioResource for Translational Research, University of Cambridge, Cambridge, England
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Marlene Rabinovitch
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Roham T Zamanian
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Li Z, Jiang J, Gao S. Potential of C-X-C motif chemokine ligand 1/8/10/12 as diagnostic and prognostic biomarkers in idiopathic pulmonary arterial hypertension. CLINICAL RESPIRATORY JOURNAL 2021; 15:1302-1309. [PMID: 34260815 DOI: 10.1111/crj.13421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the clinical role of C-X-C motif chemokine ligand (CXCL) family members in idiopathic pulmonary arterial hypertension (IPAH) patients. METHODS CXCL1, CXCL8, CXCL10 and CXCL12 expressions in the serum samples of IPAH patients (N=39) and age/gender-matched controls (N=40) were detected by enzyme-linked immunosorbent assay. In IPAH patients, clinical features were collected and survival information was documented. RESULTS CXCL1 (P<0.001), CXCL8 (P=0.001), CXCL10 (P<0.001) and CXCL12 (P<0.001) were increased in IPAH patients compared with controls, and receiver's operating characteristic curves showed that their combination was highly correlated with IPAH risk (area under curve: 0.881, 95% confidence interval: 0.805-0.958). Meanwhile, CXCL1 was positively correlated with mean pulmonary artery pressure (mPAP) (P=0.029) and high sensitive C-reactive protein (HsCRP) (P=0.015); CXCL8 was positively correlated with mPAP (P=0.044) and HsCRP (P=0.018) but negatively correlated with 6-minute walk test (6MWT) distance (P=0.029); CXCL10 was positively correlated with mean right artery pressure (P=0.002); and CXCL12 was positively correlated with World Health Organization functional class (P=0.047), mPAP (P=0.009), pulmonary vascular resistance (P=0.004), HsCRP (P=0.003) but negatively correlated with 6MWT distance (P=0.003) in IPAH patients. Moreover, CXCL12 was negatively correlated with overall survival (OS) (P=0.025), while CXCL1, CXCL8 and CXCL10 only showed minor tendencies to be negatively correlated with OS in IPAH patients without statistical significance (all P>0.05). CONCLUSION CXCL1, CXCL8, CXCL10 and CXCL12 associate with increased IPAH risk, unfavorable clinical features; besides, CXCL12 correlates with worse OS in IPAH patients.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jie Jiang
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shan Gao
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
13
|
Yi D, Liu B, Wang T, Liao Q, Zhu MM, Zhao YY, Dai Z. Endothelial Autocrine Signaling through CXCL12/CXCR4/FoxM1 Axis Contributes to Severe Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:3182. [PMID: 33804745 PMCID: PMC8003962 DOI: 10.3390/ijms22063182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial autocrine signaling is essential to maintain vascular homeostasis. There is limited information about the role of endothelial autocrine signaling in regulating severe pulmonary vascular remodeling during the onset of pulmonary arterial hypertension (PAH). In this study, we employed the first severe pulmonary hypertension (PH) mouse model, Egln1Tie2Cre (Tie2Cre-mediated disruption of Egln1) mice, to identify the novel autocrine signaling mediating the pulmonary vascular endothelial cell (PVEC) proliferation and the pathogenesis of PAH. PVECs isolated from Egln1Tie2Cre lung expressed upregulation of many growth factors or angiocrine factors such as CXCL12, and exhibited pro-proliferative phenotype coincident with the upregulation of proliferation-specific transcriptional factor FoxM1. Treatment of CXCL12 on PVECs increased FoxM1 expression, which was blocked by CXCL12 receptor CXCR4 antagonist AMD3100 in cultured human PVECs. The endothelial specific deletion of Cxcl12(Egln1/Cxcl12Tie2Cre) or AMD3100 treatment in Egln1Tie2Cre mice downregulated FoxM1 expression in vivo. We then generated and characterized a novel mouse model with endothelial specific FoxM1 deletion in Egln1Tie2Cre mice (Egln1/Foxm1Tie2Cre), and found that endothelial FoxM1 deletion reduced pulmonary vascular remodeling and right ventricular systolic pressure. Together, our study identified a novel mechanism of endothelial autocrine signaling in regulating PVEC proliferation and pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Dan Yi
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| | - Bin Liu
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo 315211, China;
| | - Maggie M. Zhu
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.M.Z.); (Y.-Y.Z.)
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (M.M.Z.); (Y.-Y.Z.)
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhiyu Dai
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; (D.Y.); (B.L.); (T.W.)
| |
Collapse
|
14
|
Xu J, Li X, Zhou S, Wang R, Wu M, Tan C, Chen J, Wang Z. Inhibition of CXCR4 ameliorates hypoxia-induced pulmonary arterial hypertension in rats. Am J Transl Res 2021; 13:1458-1470. [PMID: 33841670 PMCID: PMC8014346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Pulmonary vascular remodeling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) is the main characteristic of pulmonary arterial hypertension (PAH). CXCR4 is a specific stem cell surface receptor of cytokine CXCL12 which could regulate homing of hematopoietic progenitor cells and their mobilization. There is evidence that bone marrow-derived CXCR4 proangiogenic cell accumulation take an important part in the development of pulmonary arterial hypertension; however, the underlying mechanisms still remain unknown. Here, we explored the expression profile of CXCR4 both in hypoxia rats and PAH patients by measuring proliferation and migration of PASMCs. We performed western blot analysis to detect downstream molecules. We demonstrated that CXCR4 expression level was increased in both rats exposed to chronic hypoxia and PAH patients in reconstructed pulmonary arterioles. The inhibition of CXCR4 expression slowed down the process of hypoxic-PAH by reducing the mean right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling in vivo experimental mode. CXCR4 overexpression and inhibition regulated the cell growth of PASMCs in hypoxia condition, which are the critical cellular events in vascular disease. Furthermore, activation of β-catenin signaling and upregulation of CXCR4 could be blocked by AMD3100 both in vivo and vitro. Taken together, inhibition of CXCR4 expression could downregulate β-catenin, reduced pulmonary artery smooth muscle cell proliferation, and ameliorated pulmonary vascular remodeling in hypoxia rats. These findings suggest that CXCL12/CXCR4 is critical in driving PAH and uncover a correlation between β-catenin dependent signaling.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People’s Hospital of YanchengYancheng, Jiangsu Province, China
| | - Siqi Zhou
- Department of Digestive Internal Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing, Jiangsu Province, China
| | - Rui Wang
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Mengxi Wu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Cheng Tan
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Jingyu Chen
- Department of Lung Transplant Group, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
- Department of Jiangsu Key Laboratory of Organ Transplantation, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Klouda T, Yuan K. Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:351-372. [PMID: 33788202 DOI: 10.1007/978-3-030-63046-1_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery hypertension (PAH) is a devastating cardiopulmonary disease characterized by vascular remodeling and obliteration of the precapillary pulmonary arterioles. Alterations in the structure and function of pulmonary vessels result in the resistance of blood flow and can progress to right-sided heart failure, causing significant morbidity and mortality. There are several types of PAH, and the disease can be familial or secondary to an underlying medical condition such as a connective tissue disorder or infection. Regardless of the cause, the exact pathophysiology and cellular interactions responsible for disease development and progression are largely unknown.There is significant evidence to suggest altered immune and vascular cells directly participate in disease progression. Inflammation has long been hypothesized to play a vital role in the development of PAH, as an altered or skewed immune response favoring a proinflammatory environment that can lead to the infiltration of cells such as lymphocytes, macrophages, and neutrophils. Current treatment strategies focus on the dilation of partially occluded vessels; however, such techniques have not resulted in an effective strategy to reverse or prevent vascular remodeling. Therefore, current studies in human and animal models have attempted to understand the underlying pathophysiology of pulmonary hypertension (PH), specifically focusing on the inflammatory cascade predisposing patients to disease so that better therapeutic targets can be developed to potentially reverse or prevent disease progression.The purpose of this chapter is to provide a comprehensive review of the expanding literature on the inflammatory process that participates in PH development while highlighting important and current studies in both animal and human models. While our primary focus will be on cells found in the adaptive and innate immune system, we will review all potential causes of PAH, including cells of the endothelium, pulmonary lymphatics, and genetic mutations predisposing patients. In addition, we will discuss current therapeutic options while highlighting potential future treatments and the questions that still remain unanswered.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Liang S, Desai AA, Black SM, Tang H. Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:275-303. [PMID: 33788198 DOI: 10.1007/978-3-030-63046-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Yuan K, Liu Y, Zhang Y, Nathan A, Tian W, Yu J, Sweatt AJ, Shamshou EA, Condon D, Chakraborty A, Agarwal S, Auer N, Zhang S, Wu JC, Zamanian RT, Nicolls MR, de Jesus Perez VA. Mural Cell SDF1 Signaling Is Associated with the Pathogenesis of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 62:747-759. [PMID: 32084325 DOI: 10.1165/rcmb.2019-0401oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Yu Liu
- Stanford Cardiovascular Institute
| | | | - Abinaya Nathan
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Wen Tian
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and.,VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, California; and
| | - Joyce Yu
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Andrew J Sweatt
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and
| | - Elya A Shamshou
- Department of Immunology, University of Washington, Seattle, Washington
| | - David Condon
- Division of Pulmonary and Critical Care Medicine
| | - Ananya Chakraborty
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Stuti Agarwal
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Natasha Auer
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Serena Zhang
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | | | - Roham T Zamanian
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and
| | - Mark R Nicolls
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and.,VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, California; and
| | | |
Collapse
|
18
|
Bordenave J, Thuillet R, Tu L, Phan C, Cumont A, Marsol C, Huertas A, Savale L, Hibert M, Galzi JL, Bonnet D, Humbert M, Frossard N, Guignabert C. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovasc Res 2020; 116:686-697. [PMID: 31173066 DOI: 10.1093/cvr/cvz153] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023] Open
Abstract
AIMS The progressive accumulation of cells in pulmonary vascular walls is a key pathological feature of pulmonary arterial hypertension (PAH) that results in narrowing of the vessel lumen, but treatments targeting this mechanism are lacking. The C-X-C motif chemokine 12 (CXCL12) appears to be crucial in these processes. We investigated the activity of two CXCL12 neutraligands on experimental pulmonary hypertension (PH), using two complementary animal models. METHODS AND RESULTS Male Wistar rats were injected with monocrotaline (MCT) or were subjected to SU5416 followed by 3-week hypoxia to induce severe PH. After PH establishment, assessed by pulsed-wave Doppler echocardiography, MCT-injected or SU5416 plus chronic hypoxia (SuHx) rats were randomized to receive CXCL12 neutraligands chalcone 4 or LIT-927 (100 mg/kg/day), the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100 (5 mg/kg/day), or vehicle, for 2 or 3 weeks, respectively. At the end of these treatment periods, echocardiographic and haemodynamic measurements were performed and tissue samples were collected for protein expression and histological analysis. Daily treatment of MCT-injected or SuHx rats with established PH with chalcone 4 or LIT-927 partially reversed established PH, reducing total pulmonary vascular resistance, and remodelling of pulmonary arterioles. Consistent with these observations, we found that neutralization of CXCL12 attenuates right ventricular hypertrophy, pulmonary vascular remodelling, and decreases pulmonary artery smooth muscle cell (PA-SMC) proliferation in lungs of MCT-injected rats and SuHx rats. Importantly, CXCL12 neutralization with either chalcone 4 or LIT-927 inhibited the migration of PA-SMCs and pericytes in vitro with a better efficacy than AMD3100. Finally, we found that CXCL12 neutralization decreases vascular pericyte coverage and macrophage infiltration in lungs of both MCT-injected and SuHx rats. CONCLUSION We report here a greater beneficial effect of CXCL12 neutralization vs. the conventional CXCR4 blockade with AMD3100 in the MCT and SuHx rat models of severe PH, supporting a role for CXCL12 in the progression of vascular complications in PH and opening to new therapeutic options.
Collapse
MESH Headings
- Animals
- Benzylamines
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chalcones/pharmacology
- Chemokine CXCL2/antagonists & inhibitors
- Chemokine CXCL2/metabolism
- Cyclams
- Disease Models, Animal
- Heterocyclic Compounds/pharmacology
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Pyrimidinones/pharmacology
- Rats, Wistar
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Resistance/drug effects
Collapse
Affiliation(s)
- Jennifer Bordenave
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Carole Phan
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Amélie Cumont
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Claire Marsol
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Jean-Luc Galzi
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
- Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242 CNRS/Université de Strasbourg, 67400 Illkirch, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
The role of miRNA-155 in monocrotaline-induced pulmonary arterial hypertension through c-Fos/NLRP3/caspase-1. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Bordenave J, Tu L, Berrebeh N, Thuillet R, Cumont A, Le Vely B, Fadel E, Nadaud S, Savale L, Humbert M, Huertas A, Guignabert C. Lineage Tracing Reveals the Dynamic Contribution of Pericytes to the Blood Vessel Remodeling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2020; 40:766-782. [PMID: 31969018 DOI: 10.1161/atvbaha.119.313715] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Excessive accumulation of resident cells within the pulmonary vascular wall represents the hallmark feature of the remodeling occurring in pulmonary arterial hypertension (PAH). Furthermore, we have previously demonstrated that pulmonary arterioles are excessively covered by pericytes in PAH, but this process is not fully understood. The aim of our study was to investigate the dynamic contribution of pericytes in PAH vascular remodeling. Approach and Results: In this study, we performed in situ, in vivo, and in vitro experiments. We isolated primary cultures of human pericytes from controls and PAH lung specimens then performed functional studies (cell migration, proliferation, and differentiation). In addition, to follow up pericyte number and fate, a genetic fate-mapping approach was used with an NG2CreER;mT/mG transgenic mice in a model of pulmonary arteriole muscularization occurring during chronic hypoxia. We identified phenotypic and functional abnormalities of PAH pericytes in vitro, as they overexpress CXCR (C-X-C motif chemokine receptor)-7 and TGF (transforming growth factor)-βRII and, thereby, display a higher capacity to migrate, proliferate, and differentiate into smooth muscle-like cells than controls. In an in vivo model of chronic hypoxia, we found an early increase in pericyte number in a CXCL (C-X-C motif chemokine ligand)-12-dependent manner whereas later, from day 7, activation of the canonical TGF-β signaling pathway induces pericytes to differentiate into smooth muscle-like cells. CONCLUSIONS Our findings reveal a pivotal role of pulmonary pericytes in PAH and identify CXCR-7 and TGF-βRII as 2 intrinsic abnormalities in these resident progenitor vascular cells that foster the onset and maintenance of PAH structural changes in blood lung vessels.
Collapse
Affiliation(s)
- Jennifer Bordenave
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Ly Tu
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Nihel Berrebeh
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Raphaël Thuillet
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Amélie Cumont
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Benjamin Le Vely
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Elie Fadel
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Sophie Nadaud
- Sorbonne Université, Institute of Cardiometabolism and Nutrition (ICAN), INSERM, UMR_S 1166, Facultê de mêdecine Pitiê Salpêtriêre, Paris, France (S.N.)
| | - Laurent Savale
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Marc Humbert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Alice Huertas
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Christophe Guignabert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| |
Collapse
|
21
|
Mamazhakypov A, Viswanathan G, Lawrie A, Schermuly RT, Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol 2019; 178:72-89. [PMID: 31399998 DOI: 10.1111/bph.14826] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary artery remodelling leading to increased right ventricular pressure overload, which results in right heart failure and premature death. Inflammation plays a central role in the development of PAH, and the recruitment and function of immune cells are tightly regulated by chemotactic cytokines called chemokines. A number of studies have shown that the development and progression of PAH are associated with the dysregulated expression of several chemokines and chemokine receptors in the pulmonary vasculature. Moreover, some chemokines are differentially regulated in the pressure-overloaded right ventricle. Recent studies have tested the efficacy of pharmacological agents targeting several chemokines and chemokine receptors for their effects on the development of PAH, suggesting that these receptors could serve as useful therapeutic targets. In this review, we provide recent insights into the role of chemokines and chemokine receptors in PAH and RV remodelling and the opportunities and roadblocks in targeting them. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Dai Z, Zhu MM, Peng Y, Jin H, Machireddy N, Qian Z, Zhang X, Zhao YY. Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 198:788-802. [PMID: 29664678 DOI: 10.1164/rccm.201709-1835oc] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Angioproliferative vasculopathy is a hallmark of pulmonary arterial hypertension (PAH). However, little is known about how endothelial cell (EC) and smooth muscle cell (SMC) crosstalk regulates the angioproliferative vascular remodeling. OBJECTIVES To investigate the role of EC and SMC interaction and underlying signaling pathways in pulmonary hypertension (PH) development. METHODS SMC-specific Foxm1 (forkhead box M1) or Cxcr4 knockout mice, EC-specific Foxm1 or Egln1 knockout mice, and EC-specific Egln1/Cxcl12 double knockout mice were used to assess the role of FoxM1 on SMC proliferation and PH. Lung tissues and cells from patients with PAH were used to validate clinical relevance. FoxM1 inhibitor thiostrepton was used in Sugen 5416/hypoxia- and monocrotaline-challenged rats. MEASUREMENTS AND MAIN RESULTS FoxM1 expression was markedly upregulated in lungs and pulmonary arterial SMCs of patients with idiopathic PAH and four discrete PH rodent models. Mice with SMC- (but not EC-) specific deletion of Foxm1 were protected from hypoxia- or Sugen 5416/hypoxia-induced PH. The upregulation of FoxM1 in SMCs induced by multiple EC-derived factors (PDGF-B, CXCL12, ET-1, and MIF) mediated SMC proliferation. Genetic deletion of endothelial Cxcl12 in Egln1Tie2Cre mice or loss of its cognate receptor Cxcr4 in SMCs in hypoxia-treated mice inhibited FoxM1 expression, SMC proliferation, and PH. Accordingly, pharmacologic inhibition of FoxM1 inhibited severe PH in both Sugen 5416/hypoxia and monocrotaline-challenged rats. CONCLUSIONS Multiple factors derived from dysfunctional ECs induced FoxM1 expression in SMCs and activated FoxM1-dependent SMC proliferation, which contributes to pulmonary vascular remodeling and PH. Thus, targeting FoxM1 signaling represents a novel strategy for treatment of idiopathic PAH.
Collapse
Affiliation(s)
- Zhiyu Dai
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Maggie M Zhu
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Yi Peng
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Hua Jin
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Narsa Machireddy
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Zhijian Qian
- 5 Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Xianming Zhang
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - You-Yang Zhao
- 1 Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,2 Division of Critical Care, Department of Pediatrics.,6 Department of Pharmacology, and.,7 Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,3 Department of Pharmacology and.,4 The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois; and
| |
Collapse
|
23
|
SDF-1 and its receptor in the ventricles of rat with monocrotaline-induced pulmonary hypertension. EUROPEAN PHARMACEUTICAL JOURNAL 2018. [DOI: 10.2478/afpuc-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim: Chemokine stromal cell derived factor-1 (SDF-1) plays an important role in many processes such as apoptosis, proliferation, migration and angiogenesis, and these effects are mediated mostly by the receptor CXCR4. The aim of this study was to determine the expression of SDF-1 and CXCR4 in the ventricles of rats with monocrotaline-induced pulmonary hypertension.
Methods: 10–12 weeks old male Wistar rats were injected with monocrotaline (s. c., 60mg/kg; MON) or vehicle (CON). Rats were sacrificed 1 week (1W-MON, 1W-CON), 2 weeks (2W-MON, 2W-CON) and 4 weeks after monocrotaline administration (4W-MON, 4W-CON). Gene expression of SDF-1 and CXCR4 was determined by qRT-PCR.
Results: We observed a decrease in the SDF-1 expression on mRNA level in the right ventricle in 2W-MON and 4W-MON rats without any changes in the left ventricles and a decrease in CXCR4 expression in 1W-MON in both ventricles with an increase of CXCR4 expression in 4W-MON in the left ventricle (*P ˂ 0.05).
Conclusion: SDF-1/CXCR4 axis is affected in both ventricles of rats with monocrotaline model of pulmonary hypertension.
Collapse
|
24
|
Serum cytokine profiles in patients with chronic obstructive pulmonary disease associated pulmonary hypertension identified using protein array. Cytokine 2018; 111:342-349. [PMID: 30273784 DOI: 10.1016/j.cyto.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 11/24/2022]
Abstract
Pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD) and is a significant risk factor for hospitalization and shortened life expectancy. Therefore, developing new serum biomarkers for early diagnosis and prognosis of COPD associated PH is crucial. In the present study, a solid-phase antibody array simultaneously detecting multiple proteins was used to search specific COPD associated PH biomarkers, with COPD patients and healthy subjects as control groups. As a result, compared to the COPD and healthy groups, the levels of MCP-4, SDF-1 alpha, CCL28, Adipsin, IL-28A, CD40 and AgRP were uniquely altered in COPD patient serum with pulmonary hypertension. Among these proteins, CCL28, MCP-4, CD40, AgRP and IL-28A were identified to be differentially expressed in COPD patients with hypertension, indicating that these cytokines may serve as novel biomarkers for the diagnosis and prognosis of COPD associated pulmonary hypertension.
Collapse
|
25
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
26
|
Kazimierczyk R, Blaszczak P, Jasiewicz M, Knapp M, Ptaszynska-Kopczynska K, Sobkowicz B, Waszkiewicz E, Grzywna R, Musial WJ, Kaminski KA. Increased platelet content of SDF-1alpha is associated with worse prognosis in patients with pulmonary prterial hypertension. Platelets 2018; 30:445-451. [PMID: 29617176 DOI: 10.1080/09537104.2018.1457780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inflammatory processes and platelet activity play an important role in the pathophysiology of pulmonary arterial hypertension (PAH). Enhanced IL-6 signaling and higher concentration of stromal-derived factor alpha (SDF-1) have been previously shown to be linked with prognosis in PAH. We hypothesized that platelets of PAH patients have higher content of IL-6 and SDF-1 and thus are involved in disease progression. We enrolled into study 22 PAH patients and 18 healthy controls. Patients with PAH presented significantly higher plasma concentrations and platelet contents of IL-6, sIL-6R, and SDF-1 than healthy subjects (platelet content normalized to protein concentration: IL-6 (0.85*10-10 [0.29 - 1.37] vs. 0.45*10-10 [0.19-0.65], sIL-6R 1.54*10-7 [1.32-2.21] vs. 1.14*10-7 [1.01-1.28] and SDF-1 (2.72*10-7 [1.85-3.23] vs. 1.70*10-7 [1.43-2.60], all p < 0.05). Patients with disease progression (death, WHO class worsening, or therapy escalation, n = 10) had a significantly higher platelet SDF-1/total platelet protein ratio (3.68*10-7 [2.45-4.62] vs. 1.69*10-7 [1.04-2.28], p = 0.001), with no significant differences between plasma levels. Kaplan-Meier analysis revealed that patients with higher platelet SDF-1/total platelet protein ratio had more frequently deterioration of PAH in the follow-up (15.24 ± 4.26 months, log-rank test, p = 0.01). Concentrations of IL-6, sIL-6 receptor and SDF-1 in plasma and platelets are elevated in PAH patients. Higher content of SDF-1 in platelets is associated with poorer prognosis. Our study, despite of limitation due to small number of enrolled patients, suggests that activated platelets may be an important source of cytokines at the site of endothelial injury, but their exact role in the pathogenesis of PAH requires further investigation.
Collapse
Affiliation(s)
| | - Piotr Blaszczak
- b Department of Cardiology , Cardinal Wyszynski Hospital , Lublin , Poland
| | - Małgorzata Jasiewicz
- a Department of Cardiology , Medical University of Bialystok , Bialystok , Poland
| | - Małgorzata Knapp
- a Department of Cardiology , Medical University of Bialystok , Bialystok , Poland
| | | | - Bozena Sobkowicz
- a Department of Cardiology , Medical University of Bialystok , Bialystok , Poland
| | - Ewa Waszkiewicz
- a Department of Cardiology , Medical University of Bialystok , Bialystok , Poland
| | - Ryszard Grzywna
- b Department of Cardiology , Cardinal Wyszynski Hospital , Lublin , Poland
| | - Wlodzimierz J Musial
- a Department of Cardiology , Medical University of Bialystok , Bialystok , Poland
| | - Karol A Kaminski
- a Department of Cardiology , Medical University of Bialystok , Bialystok , Poland.,c Department of Population Medicine and Civilization Diseases Prevention , Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
27
|
Lei W, He Y, Shui X, Li G, Yan G, Zhang Y, Huang S, Chen C, Ding Y. Expression and analyses of the HIF-1 pathway in the lungs of humans with pulmonary arterial hypertension. Mol Med Rep 2016; 14:4383-4390. [PMID: 27667582 DOI: 10.3892/mmr.2016.5752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial dysfunction and structural remodeling of the pulmonary vasculature, mediated initially by reduced oxygen availability in the lungs. Hypoxia inducible factor (HIF), consisting of the functional subunit, HIF‑1α, and the constitutively expressed HIF‑1β, is involved in the pathological processes associated with hypoxia. In the current study, the sequences of cDNAs and amino acids of HIF were characterized and analyzed using online bioinformatics tools. To further evaluate whether HIF accounts for the occurrence of PAH, the present study determine the expression and phosphorylation levels of HIF and its associated pathways, including extracellular signal‑regulated kinase (Erk)1/2 and phosphoinositide 3‑kinase (PI3K)/Akt, in the lungs of patients with PAH by reverse transcription‑quantitative polymerase chain reaction and western blotting. The mRNA expression levels of PI3K, Erk2, and HIF‑1α in the patients with PAH were significantly higher, compared with those in the control group, by 3.6‑fold (P<0.01), 4.06‑fold and 2.64‑fold (P<0.05), respectively. No significant differences were found in the mRNA and protein levels of Akt between the two groups (P>0.05). The protein levels of phosphorylated (p‑)Akt, Erk1/2, p‑Erk1/2, HIF‑1α and HIF‑1β were significantly increased by 5.89‑, 0.5‑, 0.59‑, 1.46‑ and 0.92‑fold, respectively, in the patients with PAH, compared with those in the controls group (P<0.01 for p‑Akt, Erk1/2; P<0.05 for p‑Erk1/2, HIF‑1α and HIF‑1β). These findings suggested that the mitogen‑activated protein kinase and PI3K/Akt signaling pathways, and HIF‑1 may perform a specific function in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Wei Lei
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Guoming Li
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Guosen Yan
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yu Zhang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Can Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuanlin Ding
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|