1
|
Liu X, Shi X, Zhao H, Wang C. Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation. Int Immunopharmacol 2025; 146:113852. [PMID: 39733641 DOI: 10.1016/j.intimp.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood. OBJECTIVE This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs. METHODS We searched Gene Expression Omnibus databases and performed differential analyses using the limma package to identify the functional enrichment of differential genes. Next, we constructed regulatory networks to investigate the relationship between hub genes and autophagy, ferroptosis, and immunity. Furthermore, we predicted transcription factors by R package, constructed a miRNA network, performed the single-cell analysis of key gene expression, and predicted drug targeting of differential genes using the Connectivity Map database. RESULTS The datasets for MI and anxiety disorders were analyzed for up and down-regulated differential genes, resulting in 35 intersecting differential genes. The top 10 feature genes from each dataset were intersected using Random Forest, resulting in the identification of three intersecting genes: STK17B, AKIRIN2, and WDR77. Validation of the above key genes was carried out by in vitro experiments. We examined the gene expression of STK17B, WDR77 and AKIRIN2 in the hippocampus and myocardial infarction border zone respectively by qPCR and WB, and the results confirmed that the above are the key genes for myocardial infarction and anxiety. There is a significant correlation between the comorbidity mechanism of myocardial infarction and anxiety disorders with ferroptosis and immunity. The construction of the miRNA network revealed that miR-205 and let-7 had higher average connectivity among the three hub genes. The single-cell analysis revealed significant expression of key genes in Endothelial cells, Cardiomyocytes, Macrophages, and Fibroblasts datasets. Cd274 showed a higher correlation with key genes in myocardial infarction and anxiety disorders. CONCLUSION Validation by multiple datasets and in vitro experiments showed that STK17B, AKIRIN2, and WDR77 are the key genes in the comorbidity of myocardial infarction and anxiety disorders, and ferroptosis and immunity are the key links in the comorbidity mechanism of myocardial infarction and anxiety disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Celebi Coskun E, Coskun A, Sahin AB, Levent F, Coban E, Koca F, Sali S, Demir OF, Deligonul A, Tenekecioglu E, Cubukcu E, Evrensel T, Vatansever Agca F. Left ventricular global longitudinal strain in patients treated with immune checkpoint inhibitors. Front Oncol 2024; 14:1453721. [PMID: 39777349 PMCID: PMC11703718 DOI: 10.3389/fonc.2024.1453721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background Immune checkpoint inhibitors (ICI) are generally associated with rare cardiac side effects, yet instances like myocarditis can be fatal. Therefore, detecting and managing left ventricular dysfunction early in ICI therapy is vital. Objectives This study aims to evaluate whether left ventricular global longitudinal strain (LV GLS) is a predictor for early detection of cardiac dysfunction in patients receving ICI. Methods This retrospective cohort study included 44 cancer patients who received ICI therapy and underwent pre- and post- treatment assessments of left ventricular ejection fraction (LVEF) and LV GLS between May 2022 and November 2023. Retrospective comparisons and evaluations were conducted on pre-treatment and 3-month interval LVEF and LV GLS measurements during the first year of treatment. Results The median follow-up duration was 5.3 months (0.5-18.9). No statistically significant difference between baseline and subsequent time points was observed in LVEF and LV GLS values (p>0.05). At the 3-month evaluation, a notable decrease in LVEF and LV GLS was observed in two patients. One patient with reduced LVEF and LV GLS succumbed to myocarditis, and another experienced sudden death of unknown etiology. The other two patients had decreased LV GLS with normal LVEF. Subsequent follow-ups of the patients exhibiting decreased LV GLS alone revealed no further decline in LVEF or LV GLS. Conclusion In our study, a reduction in LV GLS did not demonstrate a significant role in the early prediction of ICI-related myocarditis or cardiac dysfunction. Further validation through multicenter, large-scale, prospective studies with extended follow-up periods is needed to confirm these findings.
Collapse
Affiliation(s)
- Ece Celebi Coskun
- Department of Cardiology, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| | - Alper Coskun
- Department of Medical Oncology, Bursa Uludag University School of Medicine, Bursa, Türkiye
| | - Ahmet Bilgehan Sahin
- Department of Medical Oncology, Bursa Uludag University School of Medicine, Bursa, Türkiye
| | - Fatih Levent
- Department of Cardiology, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| | - Eyup Coban
- Department of Medical Oncology, Bursa Uludag University School of Medicine, Bursa, Türkiye
| | - Fatih Koca
- Department of Cardiology, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| | - Seda Sali
- Department of Medical Oncology, University of Health Sciences Bursa City Hospital, Bursa, Türkiye
| | - Omer Furkan Demir
- Department of Cardiology, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| | - Adem Deligonul
- Department of Medical Oncology, Bursa Uludag University School of Medicine, Bursa, Türkiye
| | - Erhan Tenekecioglu
- Department of Cardiology, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| | - Erdem Cubukcu
- Department of Medical Oncology, Bursa Uludag University School of Medicine, Bursa, Türkiye
| | - Turkkan Evrensel
- Department of Medical Oncology, Bursa Uludag University School of Medicine, Bursa, Türkiye
| | - Fahriye Vatansever Agca
- Department of Cardiology, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| |
Collapse
|
3
|
Gamero MT, Patel A, Storozynsky E. The Good (Tumor Killing) and the Bad (Cardiovascular Complications) of Immunologic Checkpoint Inhibitors. Curr Cardiol Rep 2024; 26:1487-1498. [PMID: 39441327 DOI: 10.1007/s11886-024-02147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW This review details the significant advancement in knowledge of Immune-checkpoint inhibitor (ICI) and its potential deleterious cardiac immune-related adverse effects (irAE). We explore their mechanisms on the cardiac tissue, providing guidance on risk factors, clinical presentations, diagnostic strategies along with treatment. RECENT FINDINGS Recent findings have provided insights of cardiac irAEs that exist beyond the previously well-known ICI-induced myocarditis. We have a better understanding of the wide variety of cardiac irAEs pathologies both early and late onset. Moreover, there is more data on mechanisms of cardiotoxicity and patient and therapy-related risk factors, supporting closer routine cardiac monitoring with biomarkers and imaging for prevention and early detection. Diagnosing cardiac irAEs is a challenge given its broad clinical presentation. A high-level of suspicion in addition to early work-up is crucial to prevent serious cardiac events. A multi-disciplinary team including Cardiologists and Oncologists is essential for closely monitor patients' cardiac status on ICI therapy. There is a need of updated guidelines to establish clear recommendations in patients on ICIs.
Collapse
Affiliation(s)
- Maria T Gamero
- Department of Medicine, Division of Cardiovascular Disease, Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| | - Avish Patel
- Department of Medicine, Division of Cardiovascular Disease, Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Eugene Storozynsky
- Department of Medicine, Division of Cardiovascular Disease, Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
4
|
Liu L, Yao W, Wang M, Wang B, Kong F, Fan Z, Fan G. A systematic review of cardiovascular toxicities induced by cancer immune therapies: Underlying mechanisms, clinical manifestations and therapeutic approaches. Semin Cancer Biol 2024; 106-107:179-191. [PMID: 39442678 DOI: 10.1016/j.semcancer.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Immunotherapy has revolutionized the management of various types of cancers, even those previously deemed untreatable. Nonetheless, these medications have been associated with inflammation and damage across various organs. These challenges are exemplified by the adverse cardiovascular impacts of cancer immunotherapy, which need comprehensive understanding, clarification, and management integrated into the overall care of cancer patients. Numerous anticancer immunotherapies have been linked to the prevalence and severity of cardiovascular toxicity. These challenges emphasize the importance of conducting fundamental and applied research to elucidate disease causes, discover prognostic indicators, enhance diagnostic methods, and create successful therapies. Despite the acknowledged importance of T cells, there remains a knowledge gap regarding the inciting antigens, the reasons for their recognition, and the mechanisms of how they contribute to cardiac cell injury. In this review, we summarize the molecular mechanism, epidemiology, diagnosis, pathophysiology and corresponding treatment of cardiovascular toxicity induced by immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapies (ACT), and bi-specific T-cell engagers (BiTEs) among others. By elucidating these aspects, we aim to provide a better understanding of immunotherapies in cancer treatment and offer guidance for their clinical application.
Collapse
Affiliation(s)
- Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Mi Wang
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Baohui Wang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fanming Kong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhongguo Fan
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Cheng X, Wu Z, Lin J, Wang B, Huang S, Liu M, Yang J. A two-stage ensemble learning based prediction and grading model for PD-1/PD-L1 inhibitor-related cardiac adverse events: A multicenter retrospective study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108360. [PMID: 39163785 DOI: 10.1016/j.cmpb.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Immune-related cardiac adverse events (ircAEs) caused by programmed cell death protein-1 (PD-1) and programmed death-ligand-1 (PD-L1) inhibitors can lead to fulminant and even fatal consequences. This study aims to develop a prediction and grading model for ircAEs, enabling graded management of patients. METHODS This study utilized medical record systems from two medical institutions to develop a prediction and grading model for ircAEs using ten machine learning algorithms and two variable screening methods. The model was developed based on a two-stage ensemble learning framework. In the first stage, the ircAEs and non-ircAEs cases were classified. In the second stage, ircAEs cases were grouped into grades 1-2 and 3-5. The experiments were evaluated using five-fold cross-validation. The model's prediction performance was assessed using accuracy, precision, recall, F1 value, Brier score, receiver operating characteristic curve area (AUC), and area under the precision-recall curve (AUPR). RESULTS 615 patients were included in the study. 147 experienced ircAEs, and 44 experienced grade 3-5 ircAEs. The soft voting classifier trained using the variables screened by feature importance ranking performed better than other classifiers in both stages. The average AUC for the first and second stages is 84.18 % and 85.13 %, respectively. In the first stage, the three most important variables are N-terminal B-type natriuretic peptide (NT-proBNP), interleukin-2 (IL-2), and C-reactive protein (CRP). In the second stage, the patient's age, NT-proBNP, and left ventricular ejection fraction (LVEF) are the three most critical variables. CONCLUSIONS The prediction and grading model of ircAEs based on two-stage ensemble learning established in this study has good performance and potential clinical application.
Collapse
Affiliation(s)
- Xitong Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, PR China; College of Pharmacy, Fujian Medical University, Fuzhou, PR China
| | - Zhaochun Wu
- Department of Pharmacy, Fujian Medical University Affiliated Nanping First Hospital, Nanping, PR China
| | - Jierong Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, PR China; College of Pharmacy, Fujian Medical University, Fuzhou, PR China
| | - Bitao Wang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, PR China; College of Pharmacy, Fujian Medical University, Fuzhou, PR China
| | - Shunming Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, PR China; College of Pharmacy, Fujian Medical University, Fuzhou, PR China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, PR China; College of Pharmacy, Fujian Medical University, Fuzhou, PR China
| | - Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, PR China; College of Pharmacy, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
6
|
Wang YY, Song JJ. A case report of the diagnosis and treatment of immune checkpoint inhibitor-related encephalitis induced by camrelizumab. AME Case Rep 2024; 8:101. [PMID: 39380870 PMCID: PMC11459425 DOI: 10.21037/acr-24-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/26/2024] [Indexed: 10/10/2024]
Abstract
Background Camrelizumab has been widely used in the treatment of various cancers, it is important to determine the side-effect of this drug and the corresponding treatment strategy. Case Description The current case report describes the clinic, diagnosis, treatment and prognosis of camrelizumab-related encephalitis. Camrelizumab was administrated to a 67-year-old man with squamous cell carcinoma (SCC), a form of non-small cell lung cancer (NSCLC). One month after the treatment, the patient showed typical encephalitis symptoms including systemic fatigue, numbness of extremities and walking instability. Furthermore, the total protein in cerebrospinal fluid (CSF) was significantly elevated (1,399 vs. normal range 120-600 mg/L). Importantly, magnetic resonance imaging showed there was no brain metastasis. The patient did not get better after two days of intravenous injection of thioctic acid (1.2 g) and cobamamide (1.5 mg) once daily. Therefore, this patient was diagnosed as camrelizumab-related encephalitis. Then, we put him on one-month regimen: oral taper corticoids (methylprednisolone, MP) at 500 mg (days 1-4), 120 mg (days 5-10) and 60 mg (days 11-15); MP was replaced with oral prednisone acetate at 30 mg (days 16-30). After the treatment, the total protein in CSF was decreased to 873 mg/L, and all of encephalitis-related symptom was completely lost. About one year after the onset of encephalitis, the patient showed no recurrence of neurological symptoms. Conclusions The present case proves the efficacy and safety of corticoids in the treatment of camrelizumab-related adverse effects.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Pharmacy, The First People’s Hospital of Jiashan, Jiaxing, China
| | - Jian-Jiang Song
- Department of Cardiovascular Medicine, The First People’s Hospital of Jiashan, Jiaxing, China
| |
Collapse
|
7
|
Michel L, Ferdinandy P, Rassaf T. Cellular Alterations in Immune Checkpoint Inhibitor Therapy-Related Cardiac Dysfunction. Curr Heart Fail Rep 2024; 21:214-223. [PMID: 38430308 PMCID: PMC11090976 DOI: 10.1007/s11897-024-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitor (ICI) therapy has emerged as a pivotal advancement in cancer treatment, but the widespread adoption has given rise to a growing number of reports detailing significant cardiovascular toxicity. This review concentrates on elucidating the mechanisms behind ICI-related cardiovascular complications, emphasizing preclinical and mechanistic data. RECENT FINDINGS Accumulating evidence indicates a more significant role of immune checkpoints in maintaining cardiac integrity than previously understood, and new key scientific data are available to improve our understanding of ICI-related cardiovascular toxicity, including hidden cardiotoxicity. New avenues for innovative concepts are hypothesized, and opportunities to leverage the knowledge from ICI-therapy for pioneering approaches in related scientific domains can be derived from the latest scientific projects. Cardiotoxicity from ICI therapy is a paramount challenge for cardio-oncology. Understanding the underlying effects builds the foundation for tailored cardioprotective approaches in the growing collective at risk for severe cardiovascular complications.
Collapse
Affiliation(s)
- Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
8
|
Watson RA, Ye W, Taylor CA, Jungkurth E, Cooper R, Tong O, James T, Shine B, Hofer M, Jenkins D, Pell R, Ieremia E, Jones S, Maldonado-Perez D, Roberts ISD, Coupe N, Middleton MR, Payne MJ, Fairfax BP. Severe acute myositis and myocarditis on initiation of 6-weekly pembrolizumab post-COVID-19 mRNA vaccination. J Immunother Cancer 2024; 12:e008151. [PMID: 38663935 PMCID: PMC11043765 DOI: 10.1136/jitc-2023-008151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
We describe three cases of critical acute myositis with myocarditis occurring within 22 days of each other at a single institution, all within 1 month of receiving the initial cycle of the anti-PD-1 drug pembrolizumab. Analysis of T cell receptor repertoires from peripheral blood and tissues revealed a high degree of clonal expansion and public clones between cases, with several T cell clones expanded within the skeletal muscle putatively recognizing viral epitopes. All patients had recently received a COVID-19 mRNA booster vaccine prior to treatment and were positive for SARS-CoV2 Spike antibody. In conclusion, we report a series of unusually severe myositis and myocarditis following PD-1 blockade and the COVID-19 mRNA vaccination.
Collapse
Affiliation(s)
- Robert A Watson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Weiyu Ye
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chelsea A Taylor
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Elsita Jungkurth
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Rosalin Cooper
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Orion Tong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Tim James
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Brian Shine
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuro Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Damian Jenkins
- Department of Clinical Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert Pell
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleni Ieremia
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stephanie Jones
- Oxford Centre for Histopathological Research, Oxford University Hospitals NHS Trust, Oxford, UK
| | - David Maldonado-Perez
- Oxford Centre for Histopathological Research, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ian S D Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nicholas Coupe
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, UK
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Miranda J Payne
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benjamin P Fairfax
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
9
|
Miyazaki S, Fujisue K, Yamanaga K, Sueta D, Usuku H, Tabata N, Ishii M, Hanatani S, Hoshiyama T, Kanazawa H, Takashio S, Arima Y, Araki S, Yamamoto E, Matsushita K, Tsujita K. Prognostic Significance of Soluble PD-L1 on Cardiovascular Outcomes in Patients with Coronary Artery Disease. J Atheroscler Thromb 2024; 31:355-367. [PMID: 37793811 PMCID: PMC10999719 DOI: 10.5551/jat.64183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023] Open
Abstract
AIMS Programmed cell death-1 (PD-1) and its ligand (PD-L1) regulate T cells, leading to immunotolerance. We previously demonstrated that patients with coronary artery disease (CAD) had increased circulating levels of soluble PD-L1 (sPD-L1). However, the prognostic significance of sPD-L1 on cardiovascular outcomes is unknown. In the present study, we evaluated the association between sPD-L1 and cardiovascular events in patients with CAD. METHODS We prospectively measured sPD-L1 in patients with CAD admitted to Kumamoto University Hospital between December 2017 and January 2020 and observed their cardiovascular event rate. The primary outcome was a composite of death from non-cardiovascular causes, death from cardiovascular causes, non-fatal myocardial infarction, unstable angina pectoris, revascularization, hospitalization for heart failure, and ischemic stroke. RESULTS Finally, 627 patients were enrolled, and 35 patients were lost to follow-up. The median follow-up duration was 522 days. In total, 124 events were recorded. The Kaplan-Meier curve showed that the event rate was higher in the higher sPD-L1 group (median ≥ 136 pg/dL) than in the lower sPD-L1 group (25.0% vs. 16.9%; p=0.028, log-rank test). Univariate Cox proportional hazards analysis showed that high-sensitivity C-reactive protein, an estimated glomerular filtration rate of <60 mL/min/1.73m2, B-type natriuretic peptide, left ventricular ejection fraction, and sPD-L1 were significantly associated with cardiovascular events. Multivariable Cox proportional hazards analysis of factors that were significant in univariate analysis identified that sPD-L1 was significantly and independently associated with cardiovascular events (hazard ratio: 1.364, 95% confidence interval: 1.018-1.828, p=0.038). CONCLUSIONS Higher sPD-L1 levels were significantly associated with future cardiovascular events in patients with CAD.
Collapse
Affiliation(s)
- Shuhei Miyazaki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Tadashi Hoshiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Kenichi Matsushita
- Division of Advanced Cardiovascular Therapeutics, Department of Cardiovascular Medicine, Kumamoto University Hospital,
Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Shi H, Duan L, Tong L, Pu P, Wei L, Wang L, Hu D, Tang H. Research Progress on Flavonoids in Traditional Chinese Medicine to Counteract Cardiotoxicity Associated with Anti-Tumor Drugs. Rev Cardiovasc Med 2024; 25:74. [PMID: 39076949 PMCID: PMC11263839 DOI: 10.31083/j.rcm2503074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 07/31/2024] Open
Abstract
The development of anti-tumor drugs has notably enhanced the survival rates and quality of life for patients with malignant tumors. However, the side effects of these drugs, especially cardiotoxicity, significantly limit their clinical application. The cardiotoxicity associated with anti-tumor drugs has been a subject of extensive attention and research. Traditional to mitigate these side effects have included reducing drug dosages, shortening treatment duration, modifying administration methods, and opting for drugs with lower toxicity. However, either approach may potentially compromise the anti-tumor efficacy of the medications. Therefore, exploring other effective methods for anti-cardiotoxicity will be the focus of future research. The potential of traditional Chinese medicine (TCM) in managing cardiovascular diseases and cancer treatment has gained widespread recognition. TCM is valued for its minimal side effects, affordability, and accessibility, offering promising avenues in the prevention and treatment of cardiotoxicity caused by anti-tumor drugs. Among its constituents, flavonoids, which are present in many TCMs, are particularly notable. These monomeric compounds with distinct structural components have been shown to possess both cardiovascular protective properties and anti-tumor capabilities. In this discussion, we will delve into the classification of anti-tumor drugs and explore the underlying mechanisms of their associated cardiotoxicity. Additionally, we will examine flavonoids found in TCM and investigate their mechanisms of cardiovascular protection. This will include an analysis of how these natural compounds can mitigate the cardiac side effects of anti-tumor therapies while potentially enhancing overall patient health and treatment outcomes.
Collapse
Affiliation(s)
- Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
- Department of Oncology, Renmin Hospital of Wuhan University, 430064 Wuhan, Hubei, China
| | - Lian Duan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Li Tong
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lai Wei
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| |
Collapse
|
11
|
McKenzie J, Sneath E, Trinh A, Nolan M, Spain L. Updates in the pathogenesis and management of immune-related enterocolitis, hepatitis and cardiovascular toxicities. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100704. [PMID: 38357008 PMCID: PMC10865026 DOI: 10.1016/j.iotech.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have become a cornerstone of treatment for many solid organ malignancies. Alongside increasing use, the occurrence of immune-related adverse events (irAEs) has also increased and remains a significant challenge when treating patients with ICI. The underlying pathophysiology of irAE development for many organ systems is yet to be elucidated, but may involve unmasking of latent autoimmunity, increased T-cell recognition of shared antigens on cancer and normal tissue and ICI-triggered immune dysregulation with overactivation of proinflammatory pathways and suppression of immune control pathways. Management strategies for irAEs have historically been borrowed from paradigms for conventional autoimmune conditions such as inflammatory bowel disease and autoimmune hepatitis; however, recent translational efforts have clearly demonstrated key differences in underlying immune signalling pathways. As we begin to understand these differences, we must adapt a more targeted approach to immunosuppression and exercise a more nuanced approach with the multiple biologic agents available to mitigate ICI-related toxicity without reversing the antitumour effect of ICI. In this review, we focus on three key immune-related toxicities where recent clinical and translational work has provided nuanced insights into pathogenesis and treatment strategies: enterocolitis, hepatitis and cardiovascular toxicity including myocarditis.
Collapse
Affiliation(s)
- J. McKenzie
- Department of Medical Oncology, Melbourne, Australia
| | - E. Sneath
- Department of Medical Oncology, Melbourne, Australia
| | - A. Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Australia
| | - M. Nolan
- Department of Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - L. Spain
- Department of Medical Oncology, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| |
Collapse
|
12
|
Wang Q, Xiao F, Zeng Y, Zhu Q, Zhang H. PD-1/PD-L1 inhibitors-associated cardiac adverse events: a retrospective and real-world study based on the FDA Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2024; 23:257-267. [PMID: 37070426 DOI: 10.1080/14740338.2023.2203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) inhibitors have reformed the treatment landscape for various malignancies and improved prognosis of patients. However, they also lead to events that although rare may prove to be fatal. RESEARCH DESIGN AND METHODS Data from July 2014 to June 2022 based on FDA Adverse Event Reporting System (FAERS) were analyzed. The signal index reporting odds ratio (ROR) was used to evaluate the correlation between cardiac AEs and given medications. The indications and the median time to onset (TTO) of different PD-1/PD-L1 inhibitors were compared. RESULTS Cardiac AEs are rare but may be fatal with particular profiles in primary tumor, onset time, and especially gender. We identified 11,538 reports that were related to cardiotoxicity of PD-1/PD-L1 inhibitors, in which 178 different preferred terms (PTs) were distinguished, and nivolumab reported the most PTs with signal. All targeted medications showed signals in myocardial disorders and pericardial disorders, which tend to occur in the first 1-2 months. Non-small cell neoplasm was the top and common indication during anti-PD-1 or anti-PD-L1 therapy with cardiotoxicity. CONCLUSIONS This study could help early diagnosis and surveillance of ICIs-related cardiotoxicity.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Fengjiao Xiao
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yanbin Zeng
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Qiaoling Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, China
| | - Haixia Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Hiraiwa H, Morimoto R, Tsuyuki Y, Ushida K, Ito R, Kazama S, Kimura Y, Araki T, Mizutani T, Oishi H, Kuwayama T, Kondo T, Okumura T, Murohara T. The Balance of CD8-Positive T Cells and PD-L1 Expression in the Myocardium Predicts Prognosis in Lymphocytic Fulminant Myocarditis. Cardiology 2023; 149:28-39. [PMID: 37827123 PMCID: PMC10836849 DOI: 10.1159/000534518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION The clinical significance and prognostic value of T cell involvement and programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) have not been established in lymphocytic fulminant myocarditis (FM). We investigated the prognostic impact of the number of CD4+, CD8+, FoxP3+, and PD-1+ T cells, as well as PD-L1 expression, in cardiomyocytes in lymphocytic FM. METHODS This is a single-center observational cohort study. Myocardial tissue was obtained from 16 consecutive patients at lymphocytic FM onset. The median follow-up was 140 days. Cardiac events were defined as a composite of cardiac death and left ventricular-assist device implantation. CD4, CD8, FoxP3, PD-1, and PD-L1 immunostaining were performed on myocardial specimens. RESULTS The median age of the patients was 52 years (seven men and nine women). There was no significant difference in the number of CD4+ cells. The number of CD8+ cells and the CD8+/CD4+ T cell ratio were higher in the cardiac event group (Event+) than in the group without cardiac events (Event-) (p = 0.048 and p = 0.022, respectively). The number of FoxP3+ T cells was higher in the Event+ group (p = 0.049). Although there was no difference in the number of PD-1+ cells, cardiomyocyte PD-L1 expression was higher in the Event+ group (p = 0.112). Event-free survival was worse in the group with a high CD8+ cell count (p = 0.012) and high PD-L1 expression (p = 0.049). When divided into three groups based on the number of CD8+ cells and PD-L1 expression (CD8highPD-L1high [n = 8], CD8lowPD-L1high [n = 1], and CD8lowPD-L1low [n = 7]), the CD8highPD-L1high group demonstrated the worst event-free survival, while the CD8lowPD-L1high group had a favorable prognosis without cardiac events (p = 0.041). CONCLUSION High myocardial expression of CD8+ T cells and PD-L1 may predict a poor prognosis in lymphocytic FM.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Tsuyuki
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
- Center for Clinical Pathology, Fujita Health University Hospital, Toyoake, Japan
| | - Kaori Ushida
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Ryota Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Araki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Mizutani
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Chitsazan M, Amin A, Ladel L, Baig A, Chitsazan M. Cardiovascular Toxicity Associated With Immune Checkpoint Inhibitor Therapy: A Comprehensive Review. Crit Pathw Cardiol 2023; 22:69-82. [PMID: 37363862 DOI: 10.1097/hpc.0000000000000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Immune checkpoint inhibitors (ICIs), a significant breakthrough treatment of cancer, exert their function through enhancing the immune system's ability to recognize and attack cancer cells. However, these revolutionary cancer treatments have been associated with a range of immune-related adverse effects, including cardiovascular toxicity. The most commonly reported cardiovascular toxicities associated with ICIs are myocarditis, pericarditis, arrhythmias, and vasculitis. These cardiovascular manifestations are often severe and can lead to life-threatening complications. Therefore, prompt identification and management of these toxicities is critical, and a multidisciplinary teamwork by cardiologists and oncologists are required to ensure optimal patient outcomes. In this review, we summarize the current knowledge on the mechanisms underlying ICI-associated cardiovascular toxicity, clinical presentations of these toxicities, potential risk factors, diagnosis, management, and surveillance strategies during ICI therapy. While ICIs have already transformed cancer treatment, further research is needed to better understand and manage their immune-related cardiovascular effects, and possibly, to identify biomarkers which can predict the occurrence of these cardiovascular complications.
Collapse
Affiliation(s)
| | - Ahmad Amin
- Medstar Union Memorial Hospital, Baltimore, MD
| | - Luisa Ladel
- From the Department of Medicine, Norwalk Hospital, Norwalk, CT
| | - Alyza Baig
- From the Department of Medicine, Norwalk Hospital, Norwalk, CT
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Inno A, Tarantini L, Parrini I, Spallarossa P, Maurea N, Bisceglia I, Silvestris N, Russo A, Gori S. Cardiovascular Effects of Immune Checkpoint Inhibitors: More Than Just Myocarditis. Curr Oncol Rep 2023; 25:743-751. [PMID: 37017825 DOI: 10.1007/s11912-023-01411-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors have reshaped the treatment of cancer, but they are characterized by peculiar toxicity consisting of immune-related adverse events that may potentially affect any organ or system. In this review, we summarize data on clinical presentation, diagnosis, pathogenesis, and management of the main immune-related cardiovascular toxicities of immune checkpoint inhibitors. RECENT FINDINGS The most relevant immune-related cardiovascular toxicity is myocarditis, but other non-negligible reported events include non-inflammatory heart failure, conduction abnormalities, pericardial disease, and vasculitis. More recently, growing evidence suggests a role for immune checkpoint inhibitors in accelerating atherosclerosis and promoting plaque inflammation, thus leading to myocardial infarction. Immune checkpoint inhibitors are associated with several forms of cardiovascular toxicity; thus, an accurate cardiovascular baseline evaluation and periodical monitoring are required. Furthermore, the optimization of cardiovascular risk factors before, during, and after treatment may contribute to mitigating both short-term and long-term cardiovascular toxicity of these drugs.
Collapse
Affiliation(s)
- Alessandro Inno
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A Sempreboni 5, 37024, Negrar Di Valpolicella, VR, Italy.
| | - Luigi Tarantini
- Cardiologia Ospedaliera, AUSL - IRCCS in Tecnologie Avanzate E Modelli Assistenziali in Oncologia, Reggio Emilia, Italy
| | - Iris Parrini
- Dipartimento Di Cardiologia, Ospedale Mauriziano, Turin, Italy
| | - Paolo Spallarossa
- Clinica Di Malattie Dell'Apparato Cardiovascolare, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Maurea
- Struttura Complessa Cardiologia, Istituto Nazionale Tumori Di Napoli IRCCS Fondazione G. Pascale, Naples, Italy
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Nicola Silvestris
- Oncologia Medica, Dipartimento Di Patologia Umana "G. Barresi", Università Di Messina, Messina, Italy
| | - Antonio Russo
- Dipartimento Di Discipline Chirurgiche, Oncologiche E Stomatologiche, Università Di Palermo, Palermo, Italy
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A Sempreboni 5, 37024, Negrar Di Valpolicella, VR, Italy
| |
Collapse
|
16
|
Luo L, Liu Y, Lu J, Zhang Y, Fan G, Tang X, Guo W. Risk factors for cardiovascular adverse events from immune checkpoint inhibitors. Front Oncol 2023; 13:1104888. [PMID: 37188194 PMCID: PMC10175812 DOI: 10.3389/fonc.2023.1104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 05/17/2023] Open
Abstract
Immune-related adverse events (irAEs), including skin injury, liver and kidney injury, colitis, as well as cardiovascular adverse events, are a series of complications arising during the treatment of immune checkpoint inhibitors (ICIs). Cardiovascular events are the most urgent and the most critical, as they can end life in a short period of time. With the widespread use of ICIs, the number of immune-related cardiovascular adverse events (irACEs) induced by ICIs has increased. More attention has been paid to irACEs, especially regarding cardiotoxicity, the pathogenic mechanism, diagnosis and treatment. This review aims to assess the risk factors for irACEs, to raise awareness and help with the risk assessment of irACEs at an early stage.
Collapse
Affiliation(s)
- Lingli Luo
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yuxin Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jingfen Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Zhang
- The First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Fan
- Urology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaojun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
17
|
He X, Xiao J, Li Z, Ye M, Lin J, Liu Z, Liang Y, Dai H, Jing R, Lin F. Inhibition of PD-1 Alters the SHP1/2-PI3K/Akt Axis to Decrease M1 Polarization of Alveolar Macrophages in Lung Ischemia-Reperfusion Injury. Inflammation 2023; 46:639-654. [PMID: 36357527 PMCID: PMC10024672 DOI: 10.1007/s10753-022-01762-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Polarization of alveolar macrophages (AMs) into the M1 phenotype contributes to inflammatory responses and tissue damage that occur during lung ischemia-reperfusion injury (LIRI). Programmed cell death factor-1 (PD-1) regulates polarization of macrophages, but its role in LIRI is unknown. We examined the role of PD-1 in AM polarization in models of LIRI in vivo and in vitro. Adult Sprague-Dawley rats were subjected to ischemia-reperfusion with or without pretreatment with a PD-1 inhibitor, SHP1/2 inhibitor, or Akt activator. Lung tissue damage and infiltration by M1-type AMs were assessed. As an in vitro complement to the animal studies, rat alveolar macrophages in culture were subjected to oxygen/glucose deprivation and reoxygenation. Levels of SHP1/2 and Akt proteins were evaluated using Western blots, while levels of pro-inflammatory cytokines were measured using enzyme-linked immunosorbent assays. Injury upregulated PD-1 both in vivo and in vitro. Inhibiting PD-1 reduced the number of M1-type AMs, expression of SHP1 and SHP2, and levels of inflammatory cytokines. At the same time, it partially restored Akt activation. Similar results were observed after inhibition of SHP1/2 or activation of the PI3K/Akt pathway. PD-1 promotes polarization of AMs to the M1 phenotype and inflammatory responses through the SHP1/2-PI3K/Akt axis. Inhibiting PD-1 may be an effective therapeutic strategy to limit LIRI.
Collapse
Affiliation(s)
- Xiaojing He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Jingyuan Xiao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Zhen Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Yubing Liang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China.
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China.
| |
Collapse
|
18
|
Korste S, Settelmeier S, Michel L, Odersky A, Stock P, Reyes F, Haj-Yehia E, Anker MS, Grüneboom A, Hendgen-Cotta UB, Rassaf T, Totzeck M. Anthracycline Therapy Modifies Immune Checkpoint Signaling in the Heart. Int J Mol Sci 2023; 24:ijms24076052. [PMID: 37047026 PMCID: PMC10094326 DOI: 10.3390/ijms24076052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer survival rates have increased significantly because of improvements in therapy regimes and novel immunomodulatory drugs. Recently, combination therapies of anthracyclines and immune checkpoint inhibitors (ICIs) have been proposed to maximize neoplastic cell removal. However, it has been speculated that a priori anthracycline exposure may prone the heart vulnerable to increased toxicity from subsequent ICI therapy, such as an anti-programmed cell death protein 1 (PD1) inhibitor. Here, we used a high-dose anthracycline mouse model to characterize the role of the PD1 immune checkpoint signaling pathway in cardiac tissue using flow cytometry and immunostaining. Anthracycline treatment led to decreased heart function, increased concentration of markers of cell death after six days and a change in heart cell population composition with fewer cardiomyocytes. At the same time point, the number of PD1 ligand (PDL1)-positive immune cells and endothelial cells in the heart decreased significantly. The results suggest that PD1/PDL1 signaling is affected after anthracycline treatment, which may contribute to an increased susceptibility to immune-related adverse events of subsequent anti-PD1/PDL1 cancer therapy.
Collapse
Affiliation(s)
- Sebastian Korste
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Andrea Odersky
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Pia Stock
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Fabrice Reyes
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Elias Haj-Yehia
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Markus S Anker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
19
|
Wang D, Bauersachs J, Berliner D. Immune Checkpoint Inhibitor Associated Myocarditis and Cardiomyopathy: A Translational Review. BIOLOGY 2023; 12:biology12030472. [PMID: 36979163 PMCID: PMC10045178 DOI: 10.3390/biology12030472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized oncology and transformed the treatment of various malignancies. By unleashing the natural immunological brake of the immune system, ICIs were initially considered an effective, gentle therapy with few side effects. However, accumulated clinical knowledge reveals that ICIs are associated with inflammation and tissue damage in multiple organs, leading to immune-related adverse effects (irAEs). Most irAEs involve the skin and gastrointestinal tract; however, cardiovascular involvement is associated with very high mortality rates, and its underlying pathomechanisms are poorly understood. Ranging from acute myocarditis to chronic cardiomyopathies, ICI-induced cardiotoxicity can present in various forms and entities. Revealing the inciting factors, understanding the pathogenesis, and identifying effective treatment strategies are needed to improve the care of tumor patients and our understanding of the immune and cardiovascular systems.
Collapse
Affiliation(s)
- Dong Wang
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dominik Berliner
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
20
|
Wienecke LM, Leid JM, Leuschner F, Lavine KJ. Imaging Targets to Visualize the Cardiac Immune Landscape in Heart Failure. Circ Cardiovasc Imaging 2023; 16:e014071. [PMID: 36649453 PMCID: PMC9858350 DOI: 10.1161/circimaging.122.014071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Laura M. Wienecke
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Jamison M. Leid
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Florian Leuschner
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Regenerative Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
21
|
Salles ÉL, Emami Naeini S, Bhandari B, Khodadadi H, Threlkeld E, Rezaee S, Meeks W, Meeks A, Awe A, El-Marakby A, Yu JC, Wang LP, Baban B. Sexual Dimorphism in the Polarization of Cardiac ILCs through Elabela. Curr Issues Mol Biol 2022; 45:223-232. [PMID: 36661503 PMCID: PMC9856941 DOI: 10.3390/cimb45010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Elabela is a component of the apelinergic system and may exert a cardioprotective role by regulating the innate immune responses. Innate lymphoid cells (ILCs) have a significant role in initiating and progressing immune-inflammatory responses. While ILCs have been intensively investigated during the last decade, little is known about their relationship with the apelinergic system and their cardiac diversity in a gender-based paradigm. In this study, we investigated the polarization of cardiac ILCs by Elabela in males versus females in a mouse model. Using flow cytometry and immunohistochemistry analyses, we showed a potential interplay between Elabela and cardiac ILCs and whether such interactions depend on sexual dimorphism. Our findings showed, for the first time, that Elabela is expressed by cardiac ILCs, and its expression is higher in females' ILC class 3 (ILC3s) compared to males. Females had higher frequencies of ILC1s, and Elabela was able to suppress T-cell activation and the expression of co-stimulatory CD28 in a mixed lymphocyte reaction assay (MLR). In conclusion, our results suggest, for the first time, a protective role for Elabela through its interplay with ILCs and that it can be used as an immunotherapeutic target in the treatment of cardiovascular disorders in a gender-based fashion.
Collapse
Affiliation(s)
- Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)-721-3181
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Edie Threlkeld
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sholeh Rezaee
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Avery Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Aderemi Awe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ahmed El-Marakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jack C. Yu
- Department of Plastic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lei P. Wang
- Medicinal Cannabis of Georgia LLC, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
22
|
Torrente M, Blanco M, Franco F, Garitaonaindia Y, Calvo V, Collazo-Lorduy A, Gutiérrez L, Sánchez JC, González-del-Alba A, Hernández R, Méndez M, Cantos B, Núñez B, Sousa PAC, Provencio M. Assessing the risk of cardiovascular events in patients receiving immune checkpoint inhibitors. Front Cardiovasc Med 2022; 9:1062858. [PMID: 36531707 PMCID: PMC9751318 DOI: 10.3389/fcvm.2022.1062858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, despite their excellent therapeutic effect, these medications typically result in a broad spectrum of toxicity reactions. Immune-related cardiotoxicity is uncommon but can be potentially fatal, and its true incidence is underestimated in clinical trials. The aim of this study is to assess the incidence and identify risk factors for developing a cardiac event in patients treated with ICIs. METHODS We conducted a single-institution retrospective study, including patients treated with ICIs in our center. The main outcomes were cardiac events (CE) and cardiovascular death. RESULTS A total of 378 patients were analyzed. The incidence of CE was 16.7%, during a median follow-up of 50.5 months. The multivariable analysis showed that age, a history of arrhythmia or ischemic heart disease, and prior immune-related adverse events were significantly associated with CE. CONCLUSION CE during ICI treatment are more common than currently appreciated. A complete initial cardiovascular evaluation is recommended, especially in high-risk patients, being necessary a multidisciplinary approach of a specialized cardio-oncology team.
Collapse
Affiliation(s)
- María Torrente
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
- Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain
| | - Mariola Blanco
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Fabio Franco
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Yago Garitaonaindia
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Virginia Calvo
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Ana Collazo-Lorduy
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Lourdes Gutiérrez
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Juan Cristóbal Sánchez
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | | | - Roberto Hernández
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Miriam Méndez
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Blanca Cantos
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Beatriz Núñez
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Pedro A. C. Sousa
- Department of Electrical Engineering, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mariano Provencio
- Department of Medical Oncology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| |
Collapse
|
23
|
Hayashi T, Tiwary SK, Lavine KJ, Acharya S, Brent M, Adamo L, Kovacs A, Mann DL. The Programmed Death-1 Signaling Axis Modulates Inflammation and LV Structure/Function in a Stress-Induced Cardiomyopathy Model. JACC Basic Transl Sci 2022; 7:1120-1139. [PMID: 36687266 PMCID: PMC9849278 DOI: 10.1016/j.jacbts.2022.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
The role of immune checkpoints in the setting of tissue injury remains unknown. Using an experimental model of isoproterenol (ISO)-induced stress cardiomyopathy, we show that ISO-induced myocardial injury provokes tissue-autonomous up-regulation of the programmed death-1 (PD-1):programmed death ligand (PD-L) axis in cardiac resident innate immune cells and T cells. PD-1 signaling was responsible for modulating the acute inflammatory response, as well as normalization of impaired left ventricular structure and function after ISO injection. Necrotic cardiac extracts were sufficient to increase the expression of PD-1 in macrophages and T cells in vitro. Viewed together these studies suggest that the PD-1:PD-L signaling axis regulates immune responses to cardiac tissue injury and is important for restoring myocardial homeostasis.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sajal K. Tiwary
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sandeep Acharya
- Department of Computer Science, Washington University, St Louis, Missouri, USA
| | - Michael Brent
- Department of Computer Science, Washington University, St Louis, Missouri, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Luigi Adamo
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
24
|
Ganesh S, Zhong P, Zhou X. Cardiotoxicity induced by immune checkpoint inhibitor: The complete insight into mechanisms, monitoring, diagnosis, and treatment. Front Cardiovasc Med 2022; 9:997660. [PMID: 36204564 PMCID: PMC9530557 DOI: 10.3389/fcvm.2022.997660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been taking cancer research by storm as they provide valuable therapeutic benefits to cancer patients in terms of immunotherapy. Melanoma and non-small cell lung cancer (NSCLC) are among the most prevalent cancer varieties that were utilized in ICI trials with many other cancer types being involved too. Despite impressive clinical benefits of overall response rate (ORR), progression-free survival (PFS), etc., ICIs are also accompanied by various immune-related adverse events (irAEs). Amongst the irAEs, cardiotoxicity bags a crucial role. It is of paramount importance that ICI-induced cardiotoxicity should be studied in detail due to its high mortality rate although the prevalence rate is low. Patients with ICI cardiotoxicity can have a greatly enhanced life quality despite adverse reactions from ICI therapy if diagnosed early and treated in time. As such, this review serves to provide a complete insight into the predisposing factors, mechanism, diagnostic methods and treatment plans revolving around ICI-induced cardiotoxicity.
Collapse
|
25
|
Irabor OC, Nelson N, Shah Y, Niazi MK, Poiset S, Storozynsky E, Singla DK, Hooper DC, Lu B. Overcoming the cardiac toxicities of cancer therapy immune checkpoint inhibitors. Front Oncol 2022; 12:940127. [PMID: 36185227 PMCID: PMC9523689 DOI: 10.3389/fonc.2022.940127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have led recent advances in the field of cancer immunotherapy improving overall survival in multiple malignancies with abysmal prognoses prior to their introduction. The remarkable efficacy of ICIs is however limited by their potential for systemic and organ specific immune-related adverse events (irAEs), most of which present with mild to moderate symptoms that can resolve spontaneously, with discontinuation of therapy or glucocorticoid therapy. Cardiac irAEs however are potentially fatal. The understanding of autoimmune cardiotoxicity remains limited due to its rareness. In this paper, we provide an updated review of the literature on the pathologic mechanisms, diagnosis, and management of autoimmune cardiotoxicity resulting from ICIs and their combinations and provide perspective on potential strategies and ongoing research developments to prevent and mitigate their occurrence.
Collapse
Affiliation(s)
- Omoruyi Credit Irabor
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Omoruyi Credit Irabor,
| | - Nicolas Nelson
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
| | - Yash Shah
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
| | - Muneeb Khan Niazi
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Spencer Poiset
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eugene Storozynsky
- Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Douglas Craig Hooper
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bo Lu
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Michel L, Korste S, Spomer A, Hendgen-Cotta UB, Rassaf T, Totzeck M. PD1 Deficiency Modifies Cardiac Immunity during Baseline Conditions and in Reperfused Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms23147533. [PMID: 35886878 PMCID: PMC9321105 DOI: 10.3390/ijms23147533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed cell death protein 1 (PD1) immune checkpoint prevents inflammatory tissue damage by inhibiting immune reactions. Understanding the relevance of cardiac PD1 signaling may provide new insights into the inflammatory events under baseline conditions and disease. Here, we demonstrate distinct immunological changes upon PD1 deficiency in healthy hearts and during reperfused acute myocardial infarction (repAMI). In PD1-deficient mice, upregulated inflammatory cytokines were identified under baseline conditions including cardiac interleukins and extracellular signal-related kinase 1/2 (ERK1/2). A murine in vivo repAMI model to determine inflammatory changes in the early phase showed downregulation of the ligand PDL1, paralleled by an endothelial injury, indicated by loss of the CD31 signal. Immunofluorescence imaging showed decreased PDL1 expression specifically in the infarct zone, highlighting an involvement in PDL1 in myocardial injury response. Pharmacological depletion of PD1 prior to repAMI did not alter the area of infarction but led to increased numbers of CD8+ T cells in treated mice. We conclude that PD1/PDL1 signaling plays a significant role in healthy hearts and repAMI, emphasizing the relevance of adaptive immunity during myocardial injury. The findings highlight the risk for adverse outcomes from acute myocardial infarction in the growing group of patients receiving immune checkpoint inhibitor therapy.
Collapse
|
27
|
Rallis KS, Makrakis D, Ziogas IA, Tsoulfas G. Immunotherapy for advanced hepatocellular carcinoma: From clinical trials to real-world data and future advances. World J Clin Oncol 2022; 13:448-472. [PMID: 35949435 PMCID: PMC9244967 DOI: 10.5306/wjco.v13.i6.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality worldwide. HCC is an inflammation-associated immunogenic cancer that frequently arises in chronically inflamed livers. Advanced HCC is managed with systemic therapies; the tyrosine kinase inhibitor (TKI) sorafenib has been used in 1st-line setting since 2007. Immunotherapies have emerged as promising treatments across solid tumors including HCC for which immune checkpoint inhibitors (ICIs) are licensed in 1st- and 2nd-line treatment setting. The treatment field of advanced HCC is continuously evolving. Several clinical trials are investigating novel ICI candidates as well as new ICI regimens in combination with other therapeutic modalities including systemic agents, such as other ICIs, TKIs, and anti-angiogenics. Novel immunotherapies including adoptive cell transfer, vaccine-based approaches, and virotherapy are also being brought to the fore. Yet, despite advances, several challenges persist. Lack of real-world data on the use of immunotherapy for advanced HCC in patients outside of clinical trials constitutes a main limitation hindering the breadth of application and generalizability of data to this larger and more diverse patient cohort. Consequently, issues encountered in real-world practice include patient ineligibly for immunotherapy because of contraindications, comorbidities, or poor performance status; lack of response, efficacy, and safety data; and cost-effectiveness. Further real-world data from high-quality large prospective cohort studies of immunotherapy in patients with advanced HCC is mandated to aid evidence-based clinical decision-making. This review provides a critical and comprehensive overview of clinical trials and real-world data of immunotherapy for HCC, with a focus on ICIs, as well as novel immunotherapy strategies underway.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, United Kingdom
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
| | - Dimitrios Makrakis
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
- Division of Oncology, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Ioannis A Ziogas
- Surgery Working Group, Society of Junior Doctors, Athens 15123, Greece
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Aristotle University School of Medicine, Thessaloniki 54622, Greece
| |
Collapse
|
28
|
Kushnareva E, Stepanova M, Artemeva E, Shuginova T, Kushnarev V, Simakova M, Moiseenko F, Moiseeva O. Case Report: Multiple Causes of Cardiac Death After the First Infusion of Atezolizumab: Histopathological and Immunohistochemical Findings. Front Immunol 2022; 13:871542. [PMID: 35432332 PMCID: PMC9008445 DOI: 10.3389/fimmu.2022.871542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Immune checkpoint inhibitors are promising agents for anticancer therapy. But despite their high efficacy in the treatment of solid tumors, there is still a problem with immune-related adverse events, especially cardiovascular complications with a very high mortality rate. Myocarditis or ischemic heart disease progression is not the only possible cause of cardiovascular death in patients treated with checkpoint inhibitors. We report a case of a patient with mucinous carcinoma of the lung, with a previous history of hypertension and moderate left ventricular dysfunction. The patient was prescribed atezolizumab, but the first atezolizumab infusion resulted in the patient cardiovascular death. Postmortem histopathological evaluation of myocardium revealed several possible reasons for hemodynamic instability: tumor embolism of the coronary arteries, micrometastases of mucinous carcinoma in the myocardium, and myocarditis diagnosed by both Dallas and immunohistochemistry criteria. In addition, testing for expression of PD-L1 detected the high levels of membranous and cytoplasmic PD-L1 protein even in the myocardium area free from tumor cells. The present clinical case demonstrates a problem of cardiovascular death in patients treated with checkpoint inhibitors and actualizes the need for future research of potential risk factors for cardiovascular complications.
Collapse
Affiliation(s)
- Ekaterina Kushnareva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Maria Stepanova
- Clinical Research and Practical Center for Specialized Oncological Care, Saint Petersburg, Russia
| | - Elizaveta Artemeva
- Clinical Research and Practical Center for Specialized Oncological Care, Saint Petersburg, Russia
| | - Tatyana Shuginova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Clinical Research and Practical Center for Specialized Oncological Care, Saint Petersburg, Russia
| | - Vladimir Kushnarev
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg, Russia
| | - Maria Simakova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Fedor Moiseenko
- Clinical Research and Practical Center for Specialized Oncological Care, Saint Petersburg, Russia.,N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg, Russia
| | - Olga Moiseeva
- Noncoronary Heart Disease Department, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
29
|
PD-1 inhibitor causes pathological injury to multiple organs in a Lewis lung cancer mouse model. Int Immunopharmacol 2022; 105:108551. [DOI: 10.1016/j.intimp.2022.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/19/2022]
|
30
|
Nardi Agmon I, Itzhaki Ben Zadok O, Kornowski R. The Potential Cardiotoxicity of Immune Checkpoint Inhibitors. J Clin Med 2022; 11:jcm11030865. [PMID: 35160316 PMCID: PMC8836470 DOI: 10.3390/jcm11030865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) as a mono- or adjuvant oncologic treatment is rapidly expanding to most fields of cancer. Alongside their efficacy, ICIs carry the risk of immune-related adverse events (irAEs) arising from misguided immune-mediated response to normal tissues. In the cardiovascular system, the cardiac toxicity of ICIs has been primarily related to the development of an acute, immune-mediated myocarditis; beyond this potentially fatal complication, evidence of an increased risk of cardiovascular events and accelerated atherosclerosis is emerging, as well as reports of other cardiovascular adverse events such as arrythmias, Takotsubo-like syndrome and vascular events. The absence of identified risk factors for cardiotoxic complications, specific monitoring strategies or diagnostic tests, pose challenges to the timely recognition and optimal management of such events. The rising numbers of patients being treated with ICIs make this potential cardiotoxic effect one of paramount importance for further investigation and understanding. This review will discuss the most recent data on different cardiotoxic effects of ICIs treatment.
Collapse
Affiliation(s)
- Inbar Nardi Agmon
- Department of Cardiology, Rabin Medical Center–Beilinson Hospital, Petach Tikva 4941492, Israel; (O.I.B.Z.); (R.K.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-54-2661422
| | - Osnat Itzhaki Ben Zadok
- Department of Cardiology, Rabin Medical Center–Beilinson Hospital, Petach Tikva 4941492, Israel; (O.I.B.Z.); (R.K.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center–Beilinson Hospital, Petach Tikva 4941492, Israel; (O.I.B.Z.); (R.K.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
31
|
Kushnareva E, Kushnarev V, Artemyeva A, Mitrofanova L, Moiseeva O. Myocardial PD-L1 Expression in Patients With Ischemic and Non-ischemic Heart Failure. Front Cardiovasc Med 2022; 8:759972. [PMID: 35096992 PMCID: PMC8792535 DOI: 10.3389/fcvm.2021.759972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: Immune checkpoints inhibitors are promising and wide-spread agents in anti-cancer therapy. However, despite their efficacy, these agents could cause cardiotoxicity, a rare but life-threatening event. In addition, there are still no well-described predictive factors for the development of immune-related adverse events and information on high risk groups. According to known experimental studies we hypothesized that cardiovascular diseases may increase myocardial PD-L1 expression, which could be an extra target for Checkpoint inhibitors and a potential basis for complications development. Methods: We studied patterns of myocardial PD-L1 expression in non-cancer-related cardiovascular diseases, particularly ischemic heart disease (n = 12) and dilated cardiomyopathy (n = 7), compared to patients without known cardiovascular diseases (n = 10) using mouse monoclonal anti-PD-L1 antibody (clone 22C3, 1:50, Dako). Correlation between immunohistochemical data and echocardiographic parameters was assessed. Statistical analyses were performed using R Statistical Software—R studio version 1.3.1093. Results: In the myocardium of cardiac patients, we found membranous, cytoplasmic, and endothelial expression of PD-L1 compared to control group. In samples from patients with a history of myocardial infarction, PD-L1 membrane and endothelial expression was more prominent and frequent, and cytoplasmic and intercalated discs staining was more localized. In contrast, samples from patients with dilated cardiomyopathy displayed very faint endothelial staining, negative membrane staining, and more diffuse PD-L1 expression in the cytoplasm and intercalated discs. In samples from the non-cardiac patients, no convincing PD-L1 expression was observed. Moreover, we discovered a significant negative correlation between PD-L1 expression level and left ventricular ejection fraction and a positive correlation between PD-L1 expression level and left ventricular end-diastolic volume. Conclusions: The present findings lay the groundwork for future experimental and clinical studies of the role of the PD-1/PD-L1 pathway in cardiovascular diseases. Further studies are required to find patients at potentially high risk of cardiovascular adverse events associated with immune checkpoint inhibitors therapy.
Collapse
Affiliation(s)
- Ekaterina Kushnareva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Vladimir Kushnarev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia.,N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Anna Artemyeva
- N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Lubov Mitrofanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Moiseeva
- Non-coronary Heart Disease Department, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
32
|
Viswanathan T, Lang CC, Petty RD, Baxter MA. Cardiotoxicity and Chemotherapy-The Role of Precision Medicine. Diseases 2021; 9:90. [PMID: 34940028 PMCID: PMC8699963 DOI: 10.3390/diseases9040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer and cardiovascular disease are the leading causes of death in the United Kingdom. Many systemic anticancer treatments are associated with short- and long-term cardiotoxicity. With improving cancer survival and an ageing population, identifying those patients at the greatest risk of cardiotoxicity from their cancer treatment is becoming a research priority and has led to a new subspecialty: cardio-oncology. In this concise review article, we discuss cardiotoxicity and systemic anticancer therapy, with a focus on chemotherapy. We also discuss the challenge of identifying those at risk and the role of precision medicine as we strive for a personalised approach to this clinical scenario.
Collapse
Affiliation(s)
- Thyla Viswanathan
- Dundee School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD2 1SY, UK;
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 1SY, UK; (C.C.L.); (R.D.P.)
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Russell D. Petty
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 1SY, UK; (C.C.L.); (R.D.P.)
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee DD2 1SY, UK
| | - Mark A. Baxter
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 1SY, UK; (C.C.L.); (R.D.P.)
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee DD2 1SY, UK
| |
Collapse
|
33
|
Divisi D, De Vico A, Zaccagna G, Irelli A, Aielli F, Cannita K, Martella F. NSCLC Immunotherapy and Related Rare Toxicities: A Monocentric Real-Life Experience. CANCER MEDICINE JOURNAL 2021; 4:115-119. [PMID: 34746934 PMCID: PMC8570570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the last years immunotherapy has revolutionized the treatment of non-small cell lung cancer (NSCLC) not supported by a driver mutation. Immunotherapy related adverse events (irAEs) have a unique toxicity profiles distinct from the toxicities of classical chemotherapy treatment relating to their mechanism of action. We analyzed some serious and uncommon life-threatening irAEs, needing a change in the therapeutic strategy. METHOD Between October 2018 and October 2020, 63 NSCLC patients underwent immunotherapy. Thirty-eight patients underwent first-line Pembrolizumab, 200 mg every 21 days (Group A). Twenty patients were treated in second line with Pembrolizumab 200 mg every 21 days or Nivolumab 240 mg every 14 days or Atezolizumab 800 mg every 14 days (Group B). Five stage III patients treated after radio chemotherapy with Durvalumab 1500 mg every 14 days (Group C). RESULTS We experienced: a) 2 bowel perforations (3.2%), necessitating Hartmann's resection. Only one of the two patients restored immunotherapy; b) 1 chronic renal insufficiency (1.6%, creatinine up to 8 mg/dL) and 2 severe hypertransaminasemias (3.2%, up to 65 U/L), requiring the immediate and definitive interruption of ICIs; c) 2 pericardial effusions (3.2%), of which one needed subxiphoid pericardiocentesis for cardiac tamponade. Patient restored immunotherapy after resolution of the acute event. CONCLUSIONS Immunotherapy include monoclonal antibodies reducing the suppression of effector T cells and improving the tumor-specific immune responses. Most common irAEs are evident in mild and reversible form, but sometimes life-threatening irEAs show up. Therefore, further clinical trials needed to increase knowledge of drugs and prevent unexpected irAEs.
Collapse
Affiliation(s)
- Duilio Divisi
- Department of MeSVA, University of L’Aquila, Thoracic Surgery Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| | - Andrea De Vico
- Department of MeSVA, University of L’Aquila, Thoracic Surgery Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| | - Gino Zaccagna
- Department of MeSVA, University of L’Aquila, Thoracic Surgery Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| | - Azzurra Irelli
- Medical Oncology Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| | - Federica Aielli
- Medical Oncology Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| | - Katia Cannita
- Medical Oncology Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| | - Francesco Martella
- Medical Oncology Unit, “Giuseppe Mazzini” Hospital, Piazza Italia 1, 64100 Teramo, Italy
| |
Collapse
|
34
|
Fujisue K, Yamamoto E, Sueta D, Takae M, Nishihara T, Komorita T, Usuku H, Yamanaga K, Ito M, Hoshiyama T, Kanazawa H, Takashio S, Arima Y, Araki S, Soejima H, Kaikita K, Matsushita K, Tsujita K. Increased soluble programed cell death-ligand 1 is associated with acute coronary syndrome. Int J Cardiol 2021; 349:1-6. [PMID: 34843822 DOI: 10.1016/j.ijcard.2021.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Programmed cell death (PD)-1 and its ligand (PD-L1) plays crucial roles in T-cell tolerance as immune checkpoint. Previous studies reported that increased serum levels of soluble PD-L1 (sPD-L1) reflect myocardial and vascular inflammation. However, little is known about the clinical relationship between sPD-L1 and acute coronary syndrome (ACS). We investigated the relation of sPD-L1 and ACS. METHODS We prospectively measured serum levels of sPD-L1 using a commercially available enzyme-linked immunosorbent assay kit in patients with coronary artery disease (CAD) and continuous non-CAD admitted to Kumamoto University Hospital between December 2017 and June 2019. All malignant diseases, patients who underwent hemodialysis, active collagen diseases, and severe infectious diseases were excluded. RESULTS Totally, 446 CAD patients [ACS, n = 124; chronic coronary syndrome (CCS), n = 322] and 24 non-CAD patients were analyzed. The levels of sPD-L1 were significantly higher in patients with ACS than those both with non-CAD and CCS {ACS, 188.7 (111.0-260.8) pg/mL, p < 0.001 vs. non-CAD [83.5 (70.8-130.4) pg/mL]; and p = 0.009 vs. CCS [144.2 (94.8-215.5) pg/mL], respectively}. Univariate logistic regression analysis identified that sPD-L1 was significantly associated with ACS [odds ratio (OR): 1.459, 95% confidence interval (CI): 1.198-1.778, p < 0.001]. Multivariable logistic regression analysis with nine significant factors identified from the univariate analysis revealed that sPD-L1 was significantly and independently associated with ACS (OR: 1.561, 95% CI: 1.215-2.006, p < 0.001). CONCLUSIONS This is the first clinical study to demonstrate the increased level of sPD-L1 in patients with CAD, and the significant association with ACS.
Collapse
Affiliation(s)
- Koichiro Fujisue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan.
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Masafumi Takae
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Taiki Nishihara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Takashi Komorita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Tadashi Hoshiyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Hirofumi Soejima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Kenichi Matsushita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences and Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Bracamonte-Baran W, Gilotra NA, Won T, Rodriguez KM, Talor MV, Oh BC, Griffin J, Wittstein I, Sharma K, Skinner J, Johns RA, Russell SD, Anders RA, Zhu Q, Halushka MK, Brandacher G, Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8 + T-Cell Infiltration After Heart Transplantation. Circ Heart Fail 2021; 14:e007982. [PMID: 34555935 PMCID: PMC8550427 DOI: 10.1161/circheartfailure.120.007982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The role of checkpoint axes in transplantation has been partially addressed in animal models but not in humans. Occurrence of fulminant myocarditis with allorejection-like immunologic features in patients under anti-PD1 (programmed death cell protein 1) treatment suggests a key role of the PD1/PD-L1 (programmed death ligand 1) axis in cardiac immune homeostasis. METHODS We cross-sectionally studied 23 heart transplant patients undergoing surveillance endomyocardial biopsy. Endomyocardial tissue and peripheral blood mononuclear cells were analyzed by flow cytometry. Multivariate logistic regression analyses including demographic, clinical, and hemodynamic parameters were performed. Murine models were used to evaluate the impact of PD-L1 endothelial graft expression in allorejection. RESULTS We found that myeloid cells dominate the composition of the graft leukocyte compartment in most patients, with variable T-cell frequencies. The CD (cluster of differentiation) 4:CD8 T-cell ratios were between 0 and 1.5. The proportion of PD-L1 expressing cells in graft endothelial cells, fibroblasts, and myeloid leukocytes ranged from negligible up to 60%. We found a significant inverse logarithmic correlation between the proportion of PD-L1+HLA (human leukocyte antigen)-DR+ endothelial cells and CD8+ T cells (slope, -18.3 [95% CI, -35.3 to -1.3]; P=0.030). PD-L1 expression and leukocyte patterns were independent of demographic, clinical, and hemodynamic parameters. We confirmed the importance of endothelial PD-L1 expression in a murine allogeneic heart transplantation model, in which Tie2Crepdl1fl/fl grafts lacking PD-L1 in endothelial cells were rejected significantly faster than controls. CONCLUSIONS Loss of graft endothelial PD-L1 expression may play a role in regulating CD8+ T-cell infiltration in human heart transplantation. Murine model results suggest that loss of graft endothelial PD-L1 may facilitate alloresponses and rejection.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Medicine, Texas Tech University Health Sciences Center – Permian Basin, Odessa, TX, 79763, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Katrina M Rodriguez
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monica V Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jan Griffin
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Current Address: Department of Medicine, Columbia University, New York, NY
| | - Ilan Wittstein
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - John Skinner
- Department of Anesthesiology and Critical Care Medicine, Division of Adult Anesthesia, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Division of Adult Anesthesia, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stuart D Russell
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Current Address: Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert A Anders
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qingfeng Zhu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc K Halushka
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Čiháková
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
36
|
Zhu H, Ivanovic M, Nguyen A, Nguyen PK, Wu SM. Immune checkpoint inhibitor cardiotoxicity: Breaking barriers in the cardiovascular immune landscape. J Mol Cell Cardiol 2021; 160:121-127. [PMID: 34303670 DOI: 10.1016/j.yjmcc.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors (ICI) have changed the landscape of cancer therapy, but their use carries a high risk of cardiac immune related adverse events (iRAEs). With the expanding utilization of ICI therapy, there is a growing need to understand the underlying mechanisms behind their anti-tumor activity as well as their immune-mediated toxicities. In this review, we will focus on clinical characteristics and immune pathways of ICI cardiotoxicity, with an emphasis on single-cell technologies used to gain insights in this field. We will focus on three key areas of ICI-mediated immune pathways, including the anti-tumor immune response, the augmentation of the immune response by ICIs, and the pathologic "autoimmune" response in some individuals leading to immune-mediated toxicity, as well as local factors in the myocardial immune environment predisposing to autoimmunity. Discerning the underlying mechanisms of these immune pathways is necessary to inform the development of targeted therapies for ICI cardiotoxicities and reduce treatment related morbidity and mortality.
Collapse
Affiliation(s)
- Han Zhu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Maja Ivanovic
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Andrew Nguyen
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Patricia K Nguyen
- Department of Medicine, Stanford University, Stanford, California 94305, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | - Sean M Wu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
37
|
Baik AH, Oluwole OO, Johnson DB, Shah N, Salem JE, Tsai KK, Moslehi JJ. Mechanisms of Cardiovascular Toxicities Associated With Immunotherapies. Circ Res 2021; 128:1780-1801. [PMID: 33934609 PMCID: PMC8159878 DOI: 10.1161/circresaha.120.315894] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune-based therapies have revolutionized cancer treatments. Cardiovascular sequelae from these treatments, however, have emerged as critical complications, representing new challenges in cardio-oncology. Immune therapies include a broad range of novel drugs, from antibodies and other biologics, including immune checkpoint inhibitors and bispecific T-cell engagers, to cell-based therapies, such as chimeric-antigen receptor T-cell therapies. The recognition of immunotherapy-associated cardiovascular side effects has also catapulted new research questions revolving around the interactions between the immune and cardiovascular systems, and the signaling cascades affected by T cell activation, cytokine release, and immune system dysregulation. Here, we review the specific mechanisms of immune activation from immunotherapies and the resulting cardiovascular toxicities associated with immune activation and excess cytokine production.
Collapse
Affiliation(s)
- Alan H Baik
- Division of Cardiovascular Medicine, Department of Medicine, UCSF, San Francisco, CA (A.H.B.)
| | - Olalekan O Oluwole
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Douglas B Johnson
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nina Shah
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA (N.S., K.K.T.)
| | - Joe-Elie Salem
- Department of Pharmacology, Cardio-oncology Program, CIC-1901, APHP.Sorbonne Université, Paris, France (J.-E.S.)
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| | - Katy K Tsai
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA (N.S., K.K.T.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| |
Collapse
|
38
|
Kadowaki H, Akazawa H, Ishida J, Komuro I. Mechanisms and Management of Immune Checkpoint Inhibitor-Related Cardiac Adverse Events. JMA J 2021; 4:91-98. [PMID: 33997442 PMCID: PMC8118963 DOI: 10.31662/jmaj.2021-0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Onco-cardiology recently emerged as a novel discipline to provide effective cardioprotective care against cancer therapeutics-related cardiac adverse events (CAEs) and support the continuity of optimal cancer treatment. Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy and dramatically improved outcomes in patients with advanced or refractory cancers. However, ICIs intrinsically stimulate systemic immune responses and can potentially induce a spectrum of immune-related adverse events (irAEs), which can affect any organs of the body. The manifestation of cardiac irAEs includes myocarditis, arrhythmias and conduction abnormalities, and pericardial diseases. Takotsubo-like cardiomyopathy is also included as a manifestation of ICI-related CAEs, but the pathophysiological relevance is unclear. Although the incidence is rare, ICI-related CAEs are life-threatening and potentially fatal. Elucidating pathophysiology and establishing management measures of ICI-related CAEs are one of the most urgent challenges in the field of onco-cardiology.
Collapse
Affiliation(s)
- Hiroshi Kadowaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Xu S, Sharma UC, Tuttle C, Pokharel S. Immune Checkpoint Inhibitors: Cardiotoxicity in Pre-clinical Models and Clinical Studies. Front Cardiovasc Med 2021; 8:619650. [PMID: 33614750 PMCID: PMC7887301 DOI: 10.3389/fcvm.2021.619650] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Since the approval of the first immune checkpoint inhibitor (ICI) 9 years ago, ICI-therapy have revolutionized cancer treatment. Lately, antibodies blocking the interaction of programmed cell death protein (PD-1) and ligand (PD-L1) are gaining momentum as a cancer treatment, with multiple agents and cancer types being recently approved for treatment by the US Food and Drug Administration (FDA). Unfortunately, immunotherapy often leads to a wide range of immune related adverse events (IRAEs), including several severe cardiac effects and most notably myocarditis. While increased attention has been drawn to these side effects, including publication of multiple clinical observational data, the underlying mechanisms are unknown. In the event of IRAEs, the most widely utilized clinical solution is administration of high dose corticosteroids and in severe cases, discontinuation of these ICIs. This is detrimental as these therapies are often the last line of treatment options for many types of advanced cancer. In this review, we have systematically described the pathophysiology of the PD-1/PD-L1 axis (including a historical perspective) and cardiac effects in pre-clinical models, clinical trials, autoimmune mechanisms, and immunotherapy in combination with other cancer treatments. We have also reviewed the current challenges in the diagnosis of cardiac events and future directions in the field. In conclusion, this review will delve into this expanding field of cancer immunotherapy and the emerging adverse effects that should be quickly detected and prevented.
Collapse
Affiliation(s)
- Shirley Xu
- Division of Thoracic Pathology and Oncology, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Umesh C Sharma
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Cheyanna Tuttle
- Division of Thoracic Pathology and Oncology, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Saraswati Pokharel
- Division of Thoracic Pathology and Oncology, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
40
|
Safi M, Ahmed H, Al-Azab M, Xia YL, Shan X, Al-radhi M, Al-danakh A, Shopit A, Liu J. PD-1/PDL-1 Inhibitors and Cardiotoxicity; Molecular, Etiological and Management Outlines. J Adv Res 2020; 29:45-54. [PMID: 33842004 PMCID: PMC8020146 DOI: 10.1016/j.jare.2020.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Background The US Food and Drug Administration (FDA) has approved several immunotherapeutic drugs for cancer since 2010, and many more are still being evaluated in other clinical studies. These inhibitors significantly increase response rates and result in the treatment of patients with advanced cancer. However, cancer immunotherapy leads to essential cardiac toxicity properties that have become distinct from other cancer patients' care and are mostly related to their etiology. Aim of review As potential implications, the occurrence of cardiovascular adverse events is particularly challenging and needs a comprehensive understanding of overall cancer-related etiology, clinical outcomes with different variable severity, and management. Key scientific concepts of review In terms of improving the overall survival of patients with cancer, clinicians should be careful in selecting either programmed cell death-1 (PD-1) or its programmed cell death ligand (PDL-1) inhibitors by evaluating their risk and clinical benefit for early intervention and decrease the level of morbidity and mortality of their patients. This review focuses on the effectiveness of PD-1/PL-1 antibodies and associated cardiotoxicity adverse events, including etiological mechanisms, diagnosis, and treatment.
Collapse
Affiliation(s)
- Mohammed Safi
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Hyat Ahmed
- Department of Stomatology, Oral Pathology, Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yun-long Xia
- Head of Department of Cardiology, Vice president of the First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116021, Liaoning, China
| | - Xiu Shan
- First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Mohammed Al-radhi
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Abdullah Al-danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Abdullah Shopit
- Department of Pharmacology, Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Jiwei Liu
- Head of Department of Oncology First Affiliated Hospital of Dalian Medical University, Zhongshan Road Dalian, Dalian Liaoning Province 116044, China
- Corresponding author.
| |
Collapse
|
41
|
Sławiński G, Wrona A, Dąbrowska-Kugacka A, Raczak G, Lewicka E. Immune Checkpoint Inhibitors and Cardiac Toxicity in Patients Treated for Non-Small Lung Cancer: A Review. Int J Mol Sci 2020; 21:E7195. [PMID: 33003425 PMCID: PMC7582741 DOI: 10.3390/ijms21197195] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a major cause of cancer-related mortality worldwide, both in men and women. The vast majority of patients are diagnosed with non-small-cell lung cancer (NSCLC, 80-85% of lung cancer cases). Therapeutics named immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment in the last decade. They are monoclonal antibodies, and those directed against PD-1 (programmed cell death protein 1) or PD-L1 (programmed cell death-ligand 1) have been used in the treatment of lung cancer and significantly improved the prognosis of NSCLC patients. However, during treatment with ICIs, immune-related adverse events (irAEs) can occur in any organ and any tissue. At the same time, although cardiac irAEs are relatively rare compared to irAEs in other organs, they have a high mortality rate. The two most common clinical manifestations of immunotherapy-related cardiotoxicity are myocarditis and pericarditis. Various types of arrhythmias have been reported in patients treated with ICIs, including the occurrence of life-threatening complete atrioventricular block or ventricular tachyarrhythmias. Here, we aim to summarize the incidence, clinical manifestations, underlying mechanisms, diagnosis, and treatment strategies for ICI-associated cardiotoxicity as these issues become very important in view of the increasing use of ICI in the treatment of lung cancer.
Collapse
Affiliation(s)
- Grzegorz Sławiński
- Department of Cardiology & Electrotherapy, Medical University of Gdańsk, Debinki 7 Street, 80-952 Gdańsk, Poland; (G.S.); (A.D.-K.); (G.R.)
| | - Anna Wrona
- Department of Oncology & Radiotherapy, Medical University of Gdańsk, 80-952 Gdańsk, Poland;
| | - Alicja Dąbrowska-Kugacka
- Department of Cardiology & Electrotherapy, Medical University of Gdańsk, Debinki 7 Street, 80-952 Gdańsk, Poland; (G.S.); (A.D.-K.); (G.R.)
| | - Grzegorz Raczak
- Department of Cardiology & Electrotherapy, Medical University of Gdańsk, Debinki 7 Street, 80-952 Gdańsk, Poland; (G.S.); (A.D.-K.); (G.R.)
| | - Ewa Lewicka
- Department of Cardiology & Electrotherapy, Medical University of Gdańsk, Debinki 7 Street, 80-952 Gdańsk, Poland; (G.S.); (A.D.-K.); (G.R.)
| |
Collapse
|
42
|
Samejima Y, Iuchi A, Kanai T, Noda Y, Nasu S, Tanaka A, Morishita N, Suzuki H, Okamoto N, Harada H, Ezumi A, Ueda K, Kawahara K, Hirashima T. Development of Severe Heart Failure in a Patient with Squamous Non-small-cell Lung Cancer During Nivolumab Treatment. Intern Med 2020; 59:2003-2008. [PMID: 32448839 PMCID: PMC7492128 DOI: 10.2169/internalmedicine.4550-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiac side effects associated with immune checkpoint inhibitors (ICIs) are an uncommon but serious complication with a relatively high mortality. We experienced a case of cardiomyopathy induced by nivolumab. Echocardiography showed diffuse hypo-kinesis of the left ventricular cardiac wall and a significant decrease in the ejection fraction, like dilated cardiomyopathy. The myocardial biopsy showed non-inflammatory change; cardiac function gradually improved after treatment of acute heart failure without a corticosteroid. Although non-inflammatory left ventricular dysfunction induced by ICIs is rare, it is a reported cardiovascular toxicity. Physicians should consider this complication when treating patients with ICIs for malignant diseases.
Collapse
Affiliation(s)
- Yumiko Samejima
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Atsuhiko Iuchi
- Department of Cardiovascular Medicine, Osaka Habikino Medical Center, Japan
| | - Tomohiro Kanai
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Yoshimi Noda
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Shingo Nasu
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Ayako Tanaka
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Naoko Morishita
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Hidekazu Suzuki
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Norio Okamoto
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Japan
| | - Hiroshi Harada
- Department of Cardiovascular Medicine, Osaka Habikino Medical Center, Japan
| | - Akira Ezumi
- Department of Cardiovascular Medicine, Osaka Habikino Medical Center, Japan
| | - Kayo Ueda
- Department of Clinical Pathology, Osaka Habikino Medical Center, Japan
| | | | | |
Collapse
|
43
|
Waliany S, Lee D, Witteles RM, Neal JW, Nguyen P, Davis MM, Salem JE, Wu SM, Moslehi JJ, Zhu H. Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annu Rev Pharmacol Toxicol 2020; 61:113-134. [PMID: 32776859 DOI: 10.1146/annurev-pharmtox-010919-023451] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA
| | - Ronald M Witteles
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joel W Neal
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patricia Nguyen
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joe-Elie Salem
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-Oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France.,Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Sean M Wu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Javid J Moslehi
- Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Han Zhu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
44
|
Abstract
Remarkable progress has been made in the development of new therapies for cancer, dramatically changing the landscape of treatment approaches for several malignancies and continuing to increase patient survival. Accordingly, adverse effects of cancer therapies that interfere with the continuation of best-possible care, induce life-threatening risks or lead to long-term morbidity are gaining increasing importance. Cardiovascular toxic effects of cancer therapeutics and radiation therapy are the epitome of such concerns, and proper knowledge, interpretation and management are needed and have to be placed within the context of the overall care of individual patients with cancer. Furthermore, the cardiotoxicity spectrum has broadened to include myocarditis with immune checkpoint inhibitors and cardiac dysfunction in the setting of cytokine release syndrome with chimeric antigen receptor T cell therapy. An increase in the incidence of arrhythmias related to inflammation such as atrial fibrillation can also be expected, in addition to the broadening set of cancer therapeutics that can induce prolongation of the corrected QT interval. Therefore, cardiologists of today have to be familiar not only with the cardiotoxicity associated with traditional cancer therapies, such as anthracycline, trastuzumab or radiation therapy, but even more so with an ever-increasing repertoire of therapeutics. This Review provides this information, summarizing the latest developments at the juncture of cardiology, oncology and haematology.
Collapse
Affiliation(s)
- Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Abstract
Cancer therapies can lead to a broad spectrum of cardiovascular complications. Among these, cardiotoxicities remain of prime concern, but vascular toxicities have emerged as the second most common group. The range of cancer therapies with a vascular toxicity profile and the clinical spectrum of vascular toxic effects are quite broad. Historically, venous thromboembolism has received the greatest attention but, over the past decade, the arterial toxic effects, which can present as acute vasospasm, acute thrombosis and accelerated atherosclerosis, of cancer therapies have gained greater recognition. This Review focuses on these types of cancer therapy-related arterial toxicity, including their mechanisms, and provides an update on venous thromboembolism and pulmonary hypertension associated with cancer therapies. Recommendations for the screening, treatment and prevention of vascular toxic effects of cancer therapies are outlined in the context of available evidence and society guidelines and consensus statements. The shift towards greater awareness of the vascular toxic effects of cancer therapies has further unveiled the urgent needs in this area in terms of defining best clinical practices. Well-designed and well-conducted clinical studies and registries are needed to more precisely define the incidence rates, risk factors, primary and secondary modes of prevention, and best treatment modalities for vascular toxicities related to cancer therapies. These efforts should be complemented by preclinical studies to outline the pathophysiological concepts that can be translated into the clinic and to identify drugs with vascular toxicity potential even before their widespread clinical use.
Collapse
Affiliation(s)
- Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
Cutroneo PM, Isgrò V, Ientile V, Santarpia M, Ferlazzo G, Fontana A, Carrega P, Matarangolo E, Barnaba S, Spina E, Trifirò G. Safety profile of immune checkpoint inhibitors: An analysis of the Italian spontaneous reporting system database. Br J Clin Pharmacol 2020; 87:527-541. [PMID: 32495965 DOI: 10.1111/bcp.14413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS To provide an overview of immune checkpoint inhibitors (ICIs) safety profile using the Italian spontaneous adverse drug reaction (ADR) reporting system. METHODS We selected all ADR reports attributed to ipilimumab (CTLA-4 inhibitor), nivolumab, pembrolizumab, atezolizumab (PD-1/PD-L1 inhibitors) from the Italian spontaneous reporting system (2011-2018). Descriptive analyses of reports for ICIs have been conducted. Time to onset of adverse effects was stratified by system organ class. Reporting odds ratio was used as measure of ADR reporting disproportionality. ICI-related ADR reports were compared with 2 reference groups, i.e. all other suspected drugs or all other antineoplastic agents. RESULTS Overall, 2217 (0.7%) reports were related to ICIs (nivolumab: 72.2% of those reports; ipilimumab: 14.3%; pembrolizumab: 10.3%; and atezolizumab: 3.5%). ICI-related ADR reports mostly involved males (65%) and median age was 67 (interquartile range 59-73) years. Serious reports accounted for 48.8%. Frequencies of endocrine, general, hepatobiliary, metabolism, musculoskeletal, respiratory disorders, infections and neoplasms were significantly higher for ICIs than for all other drugs (P < .001). Except for infections, similar results emerged through comparison with other anticancer drugs. Colitis, hypophysitis and skin disorders were more frequently reported for anti-CTLA-4 drugs than PD-1/PD-L1 ICIs, and the opposite for musculoskeletal effects, pneumonia, and thyroid dysfunctions. ICIs were disproportionally associated also with less known risks, e.g. ischaemic heart disease, cardiac failure and optic nerve disorders. CONCLUSION The most frequently reported safety issues were probably immune-related adverse events including general, gastrointestinal and respiratory disorders. Potentially emerging safety signals, such as ischaemic heart disease and cardiac failure, requiring further investigation were detected.
Collapse
Affiliation(s)
- Paola Maria Cutroneo
- Sicilian Regional Pharmacovigilance Center, University Hospital of Messina, Messina, Italy
| | - Valentina Isgrò
- Dept. of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Messina, Italy
| | - Valentina Ientile
- Dept. of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, A.O.U. Policlinico "G. Martino", Dept. of Human Pathology, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Research Center Cell Factory UniMe, Dept. of Human Pathology, University of Messina and Cell Therapy Program, A.O.U. Policlinico "G. Martino", Messina, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Paolo Carrega
- Research Center Cell Factory UniMe, Dept. of Human Pathology, University of Messina and Cell Therapy Program, A.O.U. Policlinico "G. Martino", Messina, Italy
| | | | - Simona Barnaba
- Italian Medicines Agency, Pharmacovigilance Office, Rome, Italy
| | - Edoardo Spina
- Sicilian Regional Pharmacovigilance Center, University Hospital of Messina, Messina, Italy.,Dept. of Clinical and Experimental medicine, University of Messina, Messina, Italy
| | - Gianluca Trifirò
- Dept. of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
47
|
Incidence of Pericardial Effusion in Patients with Advanced Non-Small Cell Lung Cancer Receiving Immunotherapy. Adv Ther 2020; 37:3178-3184. [PMID: 32436027 PMCID: PMC7467401 DOI: 10.1007/s12325-020-01386-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/31/2022]
Abstract
Introduction Cardiovascular toxicity of immunotherapy represents an underreported but potentially fatal side effect. A relatively high incidence of pericardial disease has been noticed in patients with non-small cell lung cancer (NSCLC). Methods We retrospectively analyzed a population of patients with advanced NSCLC receiving immune checkpoint inhibitors (ICIs) looking for the presence of pericardial effusion at baseline or during treatment. The study population was compared with a control group treated with chemotherapy. All patients were checked for the presence of concomitant pleural effusion. Results We identify 60 patients (36 male/24 female, median age 70 years [range 43–81]). Prevalent histology was adenocarcinoma (65%) followed by squamous cell carcinoma (28%) and large cell or not otherwise specified (NOS) carcinoma (7%). Treatment consisted of nivolumab 3 mg/kg every 14 days (52 cases; 45 as second-line and 7 as third-line treatment) or pembrolizumab 200 mg (8 cases; all first-line treatment) for a total of 302 cycles delivered. Four out of 60 patients (6.7%) developed pericardial effusion during treatment, in two cases (3.3%) without concomitant pleural effusion, compared to 2 out of 60 (3.3%) in the control group in one case without concomitant pleural effusion (1.6%). Median time of onset was 40 days. Myocarditis was not observed. Conclusion Our findings confirm pericardial effusion as a relatively frequent side effect of immunotherapy in NSCLC. Clinicians should be aware of this specific toxicity in patients with metastatic NSCLC receiving immunotherapy and refer to a cardiologist for a multidisciplinary approach.
Collapse
|
48
|
Michel L, Totzeck M, Lehmann L, Finke D. Emerging role of immune checkpoint inhibitors and their relevance for the cardiovascular system. Herz 2020; 45:645-651. [DOI: 10.1007/s00059-020-04954-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Khunger A, Battel L, Wadhawan A, More A, Kapoor A, Agrawal N. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr Oncol Rep 2020; 22:65. [DOI: 10.1007/s11912-020-00925-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Brown SA, Ray JC, Herrmann J. Precision Cardio-Oncology: a Systems-Based Perspective on Cardiotoxicity of Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. J Cardiovasc Transl Res 2020; 13:402-416. [PMID: 32253744 PMCID: PMC8855704 DOI: 10.1007/s12265-020-09992-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Cancer therapies have been evolving from conventional chemotherapeutics to targeted agents. This has fulfilled the hope of greater efficacy but unfortunately not of greater safety. In fact, a broad spectrum of toxicities can be seen with targeted therapies, including cardiovascular toxicities. Among these, cardiomyopathy and heart failure have received greatest attention, given their profound implications for continuation of cancer therapies and cardiovascular morbidity and mortality. Prediction of risk has always posed a challenge and even more so with the newer targeted agents. The merits of accurate risk prediction, however, are very evident, e.g. facilitating treatment decisions even before the first dose is given. This is important for agents with a long half-life and high potential to induced life-threatening cardiac complications, such as myocarditis with immune checkpoint inhibitors. An opportunity to address these needs in the field of cardio-oncology is provided by the expanding repertoire of "-omics" and other tools in precision medicine and their integration in a systems biology approach. This may allow for new insights into patho-mechanisms and the creation of more precise and cost-effective risk prediction tools with the ultimate goals of improved therapy decisions and prevention of cardiovascular complications. Herein, we explore this topic as a future approach to translating the complexity of cardio-oncology to the reality of patient care.
Collapse
Affiliation(s)
- Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jordan C Ray
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|