1
|
Friedeman N, Carter E, Kingsbury BA, Ravesi MJ, Josimovich JM, Matthews M, Jordan MA. Environmental associations of Ophidiomyces ophidiicola, the causative agent of ophidiomycosis in snakes. PLoS One 2024; 19:e0310954. [PMID: 39436883 PMCID: PMC11495611 DOI: 10.1371/journal.pone.0310954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Emerging pathogenic fungi have become a topic of conservation concern due to declines observed in several host taxa. One emerging fungal pathogen, Ophidiomyces ophidiicola, is well documented as the causative agent of ophidiomycosis, otherwise known as snake fungal disease (SFD). O. ophidiicola has been found to cause disease in a variety of snake species across the United States, including the eastern massasauga (Sistrurus catenatus), a federally threatened rattlesnake species. Most work to date has involved detecting O. ophidiicola for diagnosis of infection through direct sampling of snakes, and attempts to detect O. ophidiicola in the abiotic environment to better understand its distribution, seasonality, and habitat associations are lacking. We collected topsoil and groundwater samples from four macrohabitat types across multiple seasons in northern Michigan at a site where Ophidiomyces infection has been confirmed in eastern massasauga. Using a quantitative PCR (qPCR) assay developed for O. ophidiicola, we detected Ophidiomyces DNA in topsoil but observed minimal to no detection in groundwater samples. Detection frequency did not differ between habitats, but samples grouped seasonally showed higher detection during mid-summer. We found no relationships of detection with hypothesized environmental correlates such as soil pH, temperature, or moisture content. Furthermore, the distribution of Ophidiomyces positive samples across the site was not linked to estimated space use of massasaugas. Our data suggests that season has some effect on the presence of Ophidiomyces. Differences in presence between habitats may exist but are likely more dependent on the time of sampling and currently uninvestigated soil or biotic parameters. These findings build on our understanding of Ophidiomyces ecology and epidemiology to help inform where and when snakes may be exposed to the fungus in the environment.
Collapse
Affiliation(s)
- Nicholas Friedeman
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Evin Carter
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Bruce A. Kingsbury
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Michael J. Ravesi
- Wildlife Division, Connecticut Department of Energy and Environmental Protection, Hartford, Connecticut, United States of America
| | - Jillian M. Josimovich
- Avon Park Air Force Range, U.S. Fish and Wildlife Service, Avon Park, Florida, United States of America
| | - Monica Matthews
- Santa Barbata County Fire Safe Council, Santa Barbara, California, United States of America
| | - Mark A. Jordan
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, Indiana, United States of America
| |
Collapse
|
2
|
McGrath-Blaser SE, McGathey N, Pardon A, Hartmann AM, Longo AV. Invasibility of a North American soil ecosystem to amphibian-killing fungal pathogens. Proc Biol Sci 2024; 291:20232658. [PMID: 38628130 PMCID: PMC11021929 DOI: 10.1098/rspb.2023.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.
Collapse
Affiliation(s)
| | - Natalie McGathey
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Allison Pardon
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Buttimer S, Moura-Campos D, Greenspan SE, Neely WJ, Ferrante L, Toledo LF, Becker CG. Skin microbiome disturbance linked to drought-associated amphibian disease. Ecol Lett 2024; 27:e14372. [PMID: 38288868 DOI: 10.1111/ele.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The onset of global climate change has led to abnormal rainfall patterns, disrupting associations between wildlife and their symbiotic microorganisms. We monitored a population of pumpkin toadlets and their skin bacteria in the Brazilian Atlantic Forest during a drought. Given the recognized ability of some amphibian skin bacteria to inhibit the widespread fungal pathogen Batrachochytrium dendrobatidis (Bd), we investigated links between skin microbiome health, susceptibility to Bd and host mortality during a die-off event. We found that rainfall deficit was an indirect predictor of Bd loads through microbiome disruption, while its direct effect on Bd was weak. The microbiome was characterized by fewer putative Bd-inhibitory bacteria following the drought, which points to a one-month lagged effect of drought on the microbiome that may have increased toadlet susceptibility to Bd. Our study underscores the capacity of rainfall variability to disturb complex host-microbiome interactions and alter wildlife disease dynamics.
Collapse
Affiliation(s)
- Shannon Buttimer
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Diego Moura-Campos
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Wesley J Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Lucas Ferrante
- Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Luís Felipe Toledo
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Neely WJ, Martins RA, Mendonça da Silva CM, Ferreira da Silva T, Fleck LE, Whetstone RD, Woodhams DC, Cook WH, Prist PR, Valiati VH, Greenspan SE, Tozetti AM, Earley RL, Becker CG. Linking microbiome and stress hormone responses in wild tropical treefrogs across continuous and fragmented forests. Commun Biol 2023; 6:1261. [PMID: 38087051 PMCID: PMC10716138 DOI: 10.1038/s42003-023-05600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Renato A Martins
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila M Mendonça da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Tainá Ferreira da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Lucas E Fleck
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ross D Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - W Harrison Cook
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Paula R Prist
- EcoHealth Alliance, 520 Eight Avenue, Suite 1200, New York, NY, 10018, USA
| | - Victor H Valiati
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Alexandro M Tozetti
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ryan L Earley
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Mulla L, Hernández-Gómez O. Wildfires disturb the natural skin microbiota of terrestrial salamanders. Environ Microbiol 2023; 25:2203-2215. [PMID: 37340556 DOI: 10.1111/1462-2920.16452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/04/2023] [Indexed: 06/22/2023]
Abstract
Environmental change can disturb natural associations between wildlife and microbial symbionts, in many cases to the detriment of host health. We used a North American terrestrial salamander system to assess how the skin microbiota of amphibians responds to wildfires. In northern California's redwood/oak forests, we assessed how recent wildfires affected the skin microbiota of three different salamander species (Taricha sp., Batrachoseps attenuatus, and Ensatina eschscholtzii) over two different sampling seasons in 2018 and 2021. We found species-specific responses to wildfire disturbance on the alpha diversity of the skin microbiota of terrestrial salamanders, although burning in general altered the composition of the skin microbiota. The effect of burning on alpha diversities and body condition indices varied by sampling season, suggesting an additional effect of annual climatic conditions on body condition and skin microbiota response. We tested all salamanders for Batrachochytrium dendrobatidis and found four infected individuals in 2018 and none in 2021. Our study documents correlations in the skin microbiota response to an increasing source of disturbance in western North American ecosystems. In addition, our results highlight the need to consider the effects of increased wildfire regimes/intensities and longitudinal effects on wildlife-associated microbiota and animal health.
Collapse
Affiliation(s)
- Lubna Mulla
- Department of Natural Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, San Rafael, California, USA
| | - Obed Hernández-Gómez
- Department of Natural Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
6
|
Leonhardt F, Keller A, Arranz Aveces C, Ernst R. From Alien Species to Alien Communities: Host- and Habitat-Associated Microbiomes in an Alien Amphibian. MICROBIAL ECOLOGY 2023; 86:2373-2385. [PMID: 37233803 PMCID: PMC10640505 DOI: 10.1007/s00248-023-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Alien species can host diverse microbial communities. These associated microbiomes may be important in the invasion process and their analysis requires a holistic community-based approach. We analysed the skin and gut microbiome of Eleutherodactylus johnstonei from native range populations in St Lucia and exotic range populations in Guadeloupe, Colombia, and European greenhouses along with their respective environmental microbial reservoir through a 16S metabarcoding approach. We show that amphibian-associated and environmental microbial communities can be considered as meta-communities that interact in the assembly process. High proportions of bacteria can disperse between frogs and environment, while respective abundances are rather determined by niche effects driven by the microbial community source and spatial environmental properties. Environmental transmissions appeared to have higher relevance for skin than for gut microbiome composition and variation. We encourage further experimental studies to assess the implications of turnover in amphibian-associated microbial communities and potentially invasive microbiota in the context of invasion success and impacts. Within this novel framework of "nested invasions," (meta-)community ecology thinking can complement and widen the traditional perspective on biological invasions.
Collapse
Affiliation(s)
- Franziska Leonhardt
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| | - Alexander Keller
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Clara Arranz Aveces
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70173, Stuttgart, Germany
| | - Raffael Ernst
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| |
Collapse
|
7
|
Robak MJ, Saenz V, de Cortie E, Richards-Zawacki CL. Effects of temperature on the interaction between amphibian skin bacteria and Batrachochytrium dendrobatidis. Front Microbiol 2023; 14:1253482. [PMID: 37942072 PMCID: PMC10628663 DOI: 10.3389/fmicb.2023.1253482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Symbiotic relationships between animals and microbes are important for a range of functions, from digestion to protection from pathogens. However, the impact of temperature variation on these animal-microbe interactions remains poorly understood. Amphibians have experienced population declines and even extinctions on a global scale due to chytridiomycosis, a disease caused by chytrid fungi in the genus Batrachochytrium. Variation in susceptibility to this disease exists within and among host species. While the mechanisms generating differences in host susceptibility remain elusive, differences in immune system components, as well as variation in host and environmental temperatures, have been associated with this variation. The symbiotic cutaneous bacteria of amphibians are another potential cause for variation in susceptibility to chytridiomycosis, with some bacterial species producing antifungal metabolites that prevent the growth of Bd. The growth of both Bd and bacteria are affected by temperature, and thus we hypothesized that amphibian skin bacteria may be more effective at preventing Bd growth at certain temperatures. To test this, we collected bacteria from the skins of frogs, harvested the metabolites they produced when grown at three different temperatures, and then grew Bd in the presence of those metabolites under those same three temperatures in a three-by-three fully crossed design. We found that both the temperature at which cutaneous bacteria were grown (and metabolites produced) as well as the temperature at which Bd is grown can impact the ability of cutaneous bacteria to inhibit the growth of Bd. While some bacterial isolates showed the ability to inhibit Bd growth across multiple temperature treatments, no isolate was found to be inhibitive across all combinations of bacterial incubation or Bd challenge temperatures, suggesting that temperature affects both the metabolites produced and the effectiveness of those metabolites against the Bd pathogen. These findings move us closer to a mechanistic understanding of why chytridiomycosis outbreaks and related amphibian declines are often limited to certain climates and seasons.
Collapse
Affiliation(s)
- Matthew J. Robak
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biology, The Pennsylvania State University, State College, PA, United States
| | - Esmee de Cortie
- Falk School of Sustainability and Environment, Chatham University, Pittsburgh, PA, United States
| | | |
Collapse
|
8
|
Davis CL, Muñoz DJ, Amburgey SM, Dinsmore CR, Teitsworth EW, Miller DAW. Multistate model to estimate sex‐specific dispersal rates and distances for a wetland‐breeding amphibian population. Ecosphere 2023. [DOI: 10.1002/ecs2.4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Courtney L. Davis
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
- Cornell Lab of Ornithology Cornell University Ithaca New York USA
| | - David J. Muñoz
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
| | - Staci M. Amburgey
- Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
- Washington Department of Fish and Wildlife Olympia Washington USA
| | - Carli R. Dinsmore
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
| | - Eric W. Teitsworth
- Department of Fisheries, Wildlife, and Conservation Biology North Carolina State University Raleigh North Carolina USA
| | - David A. W. Miller
- Department of Ecosystem Science and Management Pennsylvania State University University Park Pennsylvania USA
- Intercollege Graduate Ecology Program, Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
9
|
Zipkin EF, DiRenzo GV. Biodiversity is decimated by the cascading effects of the amphibian-killing chytrid fungus. PLoS Pathog 2022; 18:e1010624. [PMID: 35862362 PMCID: PMC9302726 DOI: 10.1371/journal.ppat.1010624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Elise F. Zipkin
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Graziella V. DiRenzo
- U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
10
|
Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML. A global ecological signal of extinction risk in terrestrial vertebrates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13852. [PMID: 34668599 PMCID: PMC9299904 DOI: 10.1111/cobi.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/13/2023]
Abstract
To determine the distribution and causes of extinction threat across functional groups of terrestrial vertebrates, we assembled an ecological trait data set for 18,016 species of terrestrial vertebrates and utilized phylogenetic comparative methods to test which categories of habitat association, mode of locomotion, and feeding mode best predicted extinction risk. We also examined the individual categories of the International Union for Conservation of Nature Red List extinction drivers (e.g., agriculture and logging) threatening each species and determined the greatest threats for each of the four terrestrial vertebrate groups. We then quantified the sum of extinction drivers threatening each species to provide a multistressor perspective on threat. Cave dwelling amphibians (p < 0.01), arboreal quadrupedal mammals (all of which are primates) (p < 0.01), aerial and scavenging birds (p < 0.01), and pedal (i.e., walking) squamates (p < 0.01) were all disproportionately threatened with extinction in comparison with the other assessed ecological traits. Across all threatened vertebrate species in the study, the most common risk factors were agriculture, threatening 4491 species, followed by logging, threatening 3187 species, and then invasive species and disease, threatening 2053 species. Species at higher risk of extinction were simultaneously at risk from a greater number of threat types. If left unabated, the disproportionate loss of species with certain functional traits and increasing anthropogenic pressures are likely to disrupt ecosystem functions globally. A shift in focus from species- to trait-centric conservation practices will allow for protection of at-risk functional diversity from regional to global scales.
Collapse
Affiliation(s)
- Maya J. Munstermann
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| | - Noel A. Heim
- Department of Earth & Ocean SciencesTufts UniversityMedfordMassachusettsUSA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan L. Payne
- Department of Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Nathan S. Upham
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Steve C. Wang
- Department of Mathematics and StatisticsSwarthmore CollegeSwarthmorePennsylvaniaUSA
| | - Matthew L. Knope
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| |
Collapse
|
11
|
SUCCESSFUL TREATMENT OF BATRACHOCHYTRIUM DENDROBATIDIS IN EASTERN HELLBENDERS (CRYPTOBRANCHUS ALLEGANIENSIS ALLEGANIENSIS) WITH TERBINAFINE. J Zoo Wildl Med 2022; 53:228-231. [DOI: 10.1638/2020-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/21/2022] Open
|
12
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
13
|
Urgiles VL, Ramírez ER, Villalta CI, Siddons DC, Savage AE. Three Pathogens Impact Terrestrial Frogs from a High-Elevation Tropical Hotspot. ECOHEALTH 2021; 18:451-464. [PMID: 34894333 DOI: 10.1007/s10393-021-01570-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Three infectious pathogens Batrachochytrium dendrobatidis (Bd), Ranavirus (Rv) and Perkinsea (Pr) are associated with widespread and ongoing amphibian population declines. Although their geographic and host ranges vary widely, recent studies have suggested that the occurrence of these pathogens could be more common than previously thought, even in direct-developing terrestrial species traditionally considered less likely to harbor these largely aquatic pathogens. Here, we characterize Bd, Rv, and Pr infections in direct-developing terrestrial amphibians of the Pristimantis genus from the highland Ecuadorean Andes. We confirm the first detection of Pr in terrestrial-breeding amphibians and in the Andean region, present the first report of Rv in Ecuador, and we add to the handful of studies finding Bd infecting Pristimantis. Infection prevalence did not differ significantly among pathogens, but infection intensity was significantly higher for Bd compared to Pr. Neither prevalence nor intensity differed significantly across locality and elevation for Bd and Rv, although low prevalence in our dataset and lack of seasonal sampling could have prevented important epidemiological patterns from emerging. Our study highlights the importance of incorporating pathogen surveillance in biodiversity monitoring in the Andean region and serves as starting point to understand pathogen dynamics, transmission, and impacts in terrestrial-breeding frogs.
Collapse
Affiliation(s)
- Veronica L Urgiles
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA.
- Instituto Nacional de Biodiversidad del Ecuador, Pasaje Rumipamba 341 y Avenida de los Shirys, Quito, Ecuador.
| | - Ervin R Ramírez
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Cristian I Villalta
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - David C Siddons
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Anna E Savage
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA
| |
Collapse
|
14
|
Browne E, Driessen MM, Cross PC, Escobar LE, Foley J, López-Olvera JR, Niedringhaus KD, Rossi L, Carver S. Sustaining Transmission in Different Host Species: The Emblematic Case of Sarcoptes scabiei. Bioscience 2021. [DOI: 10.1093/biosci/biab106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Some pathogens sustain transmission in multiple different host species, but how this epidemiologically important feat is achieved remains enigmatic. Sarcoptes scabiei is among the most host generalist and successful of mammalian parasites. We synthesize pathogen and host traits that mediate sustained transmission and present cases illustrating three transmission mechanisms (direct, indirect, and combined). The pathogen traits that explain the success of S. scabiei include immune response modulation, on-host movement capacity, off-host seeking behaviors, and environmental persistence. Sociality and host density appear to be key for hosts in which direct transmission dominates, whereas in solitary hosts, the use of shared environments is important for indirect transmission. In social den-using species, combined direct and indirect transmission appears likely. Empirical research rarely considers the mechanisms enabling S. scabiei to become endemic in host species—more often focusing on outbreaks. Our review may illuminate parasites’ adaptation strategies to sustain transmission through varied mechanisms across host species.
Collapse
Affiliation(s)
- Elizabeth Browne
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael M Driessen
- Department of Primary Industries, Parks, Water, and Environment, Hobart, Tasmania
| | - Paul C Cross
- US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Jorge R López-Olvera
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kevin D Niedringhaus
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States
| | - Luca Rossi
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
15
|
Social group size influences pathogen transmission in salamanders. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Mutnale MC, Reddy GS, Vasudevan K. Bacterial Community in the Skin Microbiome of Frogs in a Coldspot of Chytridiomycosis Infection. MICROBIAL ECOLOGY 2021; 82:554-558. [PMID: 33442763 PMCID: PMC8384794 DOI: 10.1007/s00248-020-01669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Chytridiomycosis is a fungal disease caused by the pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), which has caused declines in amphibian populations worldwide. Asia is considered as a coldspot of infection, since adult frogs are less susceptible to Bd-induced mortality or morbidity. Using the next-generation sequencing approach, we assessed the cutaneous bacterial community composition and presence of anti-Bd bacteria in six frog species from India using DNA isolated from skin swabs. All the six frog species sampled were tested using nested PCR and found Bd negative. We found a total of 551 OTUs on frog skin, of which the bacterial phyla such as Proteobacteria (56.15% average relative abundance) was dominated followed by Actinobacteria (21.98% average relative abundance) and Firmicutes (13.7% average relative abundance). The contribution of Proteobacteria in the anti-Bd community was highest and represented by 175 OTUs. Overall, the anti-Bd bacterial community dominated (51.7% anti-Bd OTUs) the skin microbiome of the frogs. The study highlights the putative role of frog skin microbiome in affording resistance to Bd infections in coldspots of infection.
Collapse
Affiliation(s)
- Milind C Mutnale
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Gundlapally S Reddy
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
| |
Collapse
|
17
|
TEMPERATURE AS A DRIVER OF THE PATHOGENICITY AND VIRULENCE OF AMPHIBIAN CHYTRID FUNGUS BATRACHOCHYTRIUM DENDROBATIDIS: A SYSTEMATIC REVIEW. J Wildl Dis 2021; 57:477-494. [PMID: 34019674 DOI: 10.7589/jwd-d-20-00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is a leading cause of global amphibian declines. Severe infections with Bd can lead to cardiac arrest, and mass deaths during epidemics have been reported. Temperature, pH, salinity, and moisture are important determinants of the survival, growth, reproduction, and pathogenicity of Bd, as well as its effect on amphibian populations. Here, we synthesize current knowledge on the role of temperature as a driver of the pathogenicity and virulence of Bd to better understand the effects of temperature on amphibian defense mechanisms against infection. This review advises on research direction and management approaches to benefit amphibian populations affected by Bd. We conclude by offering guidelines for four levels of temperature monitoring in amphibian field studies to improve consistency between studies: regional climate, habitat, microhabitat, and amphibian host.
Collapse
|
18
|
Bielby J, Price SJ, Monsalve-CarcaÑo C, Bosch J. Host contribution to parasite persistence is consistent between parasites and over time, but varies spatially. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02256. [PMID: 33164249 DOI: 10.1002/eap.2256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/11/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Most parasites and pathogens infect multiple hosts, but a great deal of variation exists in the role of those hosts in persistence of infection. Understanding which hosts are most important in maintaining parasites can provide a clearer target for infection control. Recently developed empirical and theoretical approaches provide a way to quantify the relative contribution of hosts within a community and place them in a multi-host framework to better direct control efforts. Amphibians provide a framework for better understanding multi-host-multi-parasite dynamics. Two well-studied amphibian parasites, Batrachochytrium dendrobatidis (Bd) and Ranavirus, infect multiple host species and exhibit a great deal of heterogeneity in how they affect hosts. We used these two parasites and a community of five amphibian species to investigate the relative importance of hosts in parasite persistence, and how any patterns varied spatially and temporally. At two sites (Lake Ercina and Lake Lloroza in the Picos de Europa National Park, Spain) we collected data on the prevalence and shedding rate of parasite infection for both Bd and Ranavirus, and the abundance of each species' life stages. We used these data to parameterize a recently developed modeling framework, which was used to quantify the relative contribution of each host to the community reproductive number, R0 . By comparing each host-category over time and between sites we were able to identify consistencies in which host was responsible for the maintenance of these two parasites. Within a site one species consistently contributed the most to the persistence of both parasites. This consistency did not transfer between sites, the maintenance host species being different for each. At one site (Ercina), life stages of the common midwife toad, Alytes obstetricans, acted as the maintenance host for both Bd and Ranavirus. In contrast, at the second site, Lloroza, the alpine newt, Ichthyosaura alpestris, fulfilled that role. A single host species was responsible for infection persistence of both parasites at each lake. Attempts to control the infection levels and impacts of multiple parasites can benefit from a community epidemiology approach, and provide clarity on which hosts are the foci of mitigation efforts. However, at a small spatial scale, the target host may vary according to the physical qualities of those sites and the demographics of the host community.
Collapse
Affiliation(s)
- Jon Bielby
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Stephen J Price
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
- Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, United Kingdom
| | | | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, Madrid, 28006, Spain
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University-Campus Mieres, Mieres, Spain
| |
Collapse
|
19
|
Sánchez CA, Ragonese IG, de Roode JC, Altizer S. Thermal tolerance and environmental persistence of a protozoan parasite in monarch butterflies. J Invertebr Pathol 2021; 183:107544. [PMID: 33582107 DOI: 10.1016/j.jip.2021.107544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Many parasites have external transmission stages that persist in the environment prior to infecting a new host. Understanding how long these stages can persist, and how abiotic conditions such as temperature affect parasite persistence, is important for predicting infection dynamics and parasite responses to future environmental change. In this study, we explored environmental persistence and thermal tolerance of a debilitating protozoan parasite that infects monarch butterflies. Parasite transmission occurs when dormant spores, shed by adult butterflies onto host plants and other surfaces, are later consumed by caterpillars. We exposed parasite spores to a gradient of ecologically-relevant temperatures for 2, 35, or 93 weeks. We tested spore viability by feeding controlled spore doses to susceptible monarch larvae, and examined relationships between temperature, time, and resulting infection metrics. We also examined whether distinct parasite genotypes derived from replicate migratory and resident monarch populations differed in their thermal tolerance. Finally, we examined evidence for a trade-off between short-term within-host replication and long-term persistence ability. Parasite viability decreased in response to warmer temperatures over moderate-to-long time scales. Individual parasite genotypes showed high heterogeneity in viability, but differences did not cluster by migratory vs. resident monarch populations. We found no support for a negative relationship between environmental persistence and within-host replication, as might be expected if parasites invest in short-term reproduction at the cost of longer-term survival. Findings here indicate that dormant spores can survive for many months under cooler conditions, and that heat dramatically shortens the window of transmission for this widespread and virulent butterfly parasite.
Collapse
Affiliation(s)
- Cecilia A Sánchez
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Isabella G Ragonese
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | | | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
20
|
LaBumbard B, Shepack A, Catenazzi A. After the epizootic: Host–pathogen dynamics in montane tropical amphibian communities with high prevalence of chytridiomycosis. Biotropica 2020. [DOI: 10.1111/btp.12824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon LaBumbard
- Department of Zoology Southern Illinois University Carbondale IL USA
- Department of Biology University of Massachusetts Boston Boston MA USA
| | - Alexander Shepack
- Department of Biological Sciences Florida International University Miami FL USA
| | | |
Collapse
|
21
|
Amphibian Infection Risk Changes with Host Life Stage and across a Landscape Gradient. J HERPETOL 2020. [DOI: 10.1670/19-107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Sette CM, Vredenburg VT, Zink AG. Differences in Fungal Disease Dynamics in Co-occurring Terrestrial and Aquatic Amphibians. ECOHEALTH 2020; 17:302-314. [PMID: 33237500 DOI: 10.1007/s10393-020-01501-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/14/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The fungal pathogen, Batrachochytrium dendrobatidis (Bd), has devastated biodiversity and ecosystem health and is implicated as a driver of mass amphibian extinctions. This 100-year study investigates which environmental factors contribute to Bd prevalence in a fully terrestrial species, and determines whether infection patterns differ between a fully terrestrial amphibian and more aquatic host species. We performed a historical survey to quantify Bd prevalence in 1127 Batrachoseps gregarius museum specimens collected from 1920 to 2000, and recent data from 16 contemporary (live-caught) B. gregarius populations from the southwestern slopes of the Sierra Nevada mountains in California, USA. We compared these results to Bd detection rates in 1395 historical and 1033 contemporary specimens from 10 species of anurans and 427 historical Taricha salamander specimens collected throughout the Sierra Nevada mountains. Our results indicate that Bd dynamics in the entirely terrestrial species, B. gregarius, differ from aquatic species in the same region in terms of both seasonal patterns of Bd abundance and in the possible timing of Bd epizootics.
Collapse
Affiliation(s)
- Carla M Sette
- University of California, Santa Cruz, EEB/CBB mailstop, UCSC/Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA, 95060, USA.
| | | | | |
Collapse
|
23
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
24
|
Forti LR, Pontes MR, Alcantara EP, Morais DH, Silva RJ, Dodonov P, Toledo LF. Torrent frogs have fewer macroparasites but higher rates of chytrid infection in landscapes with smaller forest cover. Ecosphere 2020. [DOI: 10.1002/ecs2.3169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lucas Rodriguez Forti
- Instituto de Biologia Universidade Federal da Bahia Campus de Ondina Salvador Bahia40170‐115Brazil
| | - Mariana Retuci Pontes
- Laboratório Multiusuário de Bioacústica (LMBio) e Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB) Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas Campinas Sao Paulo13083‐970Brazil
- Programa de Pós‐Graduação em Ecologia Instituto de Biologia Universidade Estadual de Campinas Campinas Sao Paulo13083‐970Brazil
| | - Edna Paulino Alcantara
- Setor de Parasitologia, Instituto de Biologia Universidade Estadual de São Paulo/UNESP Rua Professor Doutor Antônio Celso Wagner Zanin, s/n Botucatu Sao Paulo18618‐689Brazil
| | - Drausio Honorio Morais
- Instituto de Ciências Agrárias UFU – Universidade Federal de Uberlândia LMG‐746, Km 1 Monte Carmelo Minas Gerais38500‐000Brazil
| | - Reinaldo José Silva
- Setor de Parasitologia, Instituto de Biologia Universidade Estadual de São Paulo/UNESP Rua Professor Doutor Antônio Celso Wagner Zanin, s/n Botucatu Sao Paulo18618‐689Brazil
| | - Pavel Dodonov
- Instituto de Biologia Universidade Federal da Bahia Campus de Ondina Salvador Bahia40170‐115Brazil
| | - Luís Felipe Toledo
- Laboratório Multiusuário de Bioacústica (LMBio) e Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB) Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas Campinas Sao Paulo13083‐970Brazil
| |
Collapse
|
25
|
Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe mechanisms by which invasive species negatively affect native species include competition, predation, and the introduction of novel pathogens. Moreover, if an invasive species is a competent disease reservoir, it may facilitate the long-term maintenance and spread of pathogens in ecological assemblages and drive the extinction of less tolerant or less resistant species. Disease-driven loss of biodiversity is exemplified by the amphibian–chytrid fungus system. The disease chytridiomycosis is caused by the aquatic chytrid fungus Batrachochytrium dendrobatidis (Bd) in anurans and is associated with worldwide amphibian population declines and extinctions. For amphibian species that metamorphose and leave infected aquatic habitats, the mechanisms by which Bd persists over winter in these habitats remains a critical open question. A leading hypothesis is that American bullfrogs (Rana catesbeiana), a worldwide invasive species, are tolerant to Bd and serve as a reservoir host for Bd during winter months and subsequently infect native species that return to breed in spring. Using outdoor mesocosms, we experimentally examined if two strains of Bd could overwinter in aquatic systems, in the presence or absence of bullfrog tadpoles, and if overwintered Bd could be transmitted to tadpoles of two spring-breeding species: Pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). We found that only 4 of 448 total animals (one bullfrog and three spring breeders) tested positive for Bd after overwintering. Moreover, two of the three infected spring breeders emerged from tanks that contained overwintered Bd but in the absence of infected bullfrogs. This suggests that Bd can persist over winter without bullfrogs as a reservoir host. We found no effect of Bd strain on bullfrog survival after overwintering. For Pacific treefrogs, Bd exposure did not significantly affect mass at or time to metamorphosis while exposure to bullfrogs reduced survival. For Cascades frogs, we found an interactive effect of Bd strain and bullfrog presence on time to metamorphosis, but no main or interactive effects on their survival or mass at metamorphosis. In short, bullfrog tadpoles rarely retained and transmitted Bd infection in our experiment and we found limited evidence that Bd successfully overwinters in the absence of bullfrog tadpoles and infects spring-breeding amphibians.
Collapse
|
26
|
Host thermoregulatory constraints predict growth of an amphibian chytrid pathogen (Batrachochytrium dendrobatidis). J Therm Biol 2020; 87:102472. [DOI: 10.1016/j.jtherbio.2019.102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 01/10/2023]
|
27
|
Rojas B, Pašukonis A. From habitat use to social behavior: natural history of a voiceless poison frog, Dendrobates tinctorius. PeerJ 2019; 7:e7648. [PMID: 31576237 PMCID: PMC6753930 DOI: 10.7717/peerj.7648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
Descriptive studies of natural history have always been a source of knowledge on which experimental work and scientific progress rely. Poison frogs are a well-studied group of small Neotropical frogs with diverse parental behaviors, distinct calls, and bright colors that warn predators about their toxicity; and a showcase of advances in fundamental biology through natural history observations. The dyeing poison frog, Dendrobates tinctorius, is emblematic of the Guianas region, widespread in the pet trade, and increasingly popular in research. This species shows several unusual behaviors, such as the lack of advertisement calls and the aggregation around tree-fall gaps, which remain poorly described and understood. Here, we summarize our observations from a natural population of D. tinctorius in French Guiana collected over various field trips between 2009 and 2017; our aim is to provide groundwork for future fundamental and applied research spanning parental care, animal dispersal, disease spread, habitat use in relation to color patterns, and intra-specific communication, to name a few. We report sex differences in habitat use and the striking invasion of tree-fall gaps; describe their courtship and aggressive behaviors; document egg development and tadpole transport; and discuss how the knowledge generated by this study could set the grounds for further research on the behavior, ecology, and conservation of this species.
Collapse
Affiliation(s)
- Bibiana Rojas
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Andrius Pašukonis
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel MO, Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 2019; 363:1459-1463. [PMID: 30923224 DOI: 10.1126/science.aav0379] [Citation(s) in RCA: 575] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.
Collapse
Affiliation(s)
- Ben C Scheele
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia. .,National Environmental Science Programme, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia.,One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Wouter Beukema
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Aldemar A Acevedo
- Programa de Doctorado en Ciencias Biológicas, Laboratorio de Biología Evolutiva, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Barrio El Buque, Km 1, Vía a Bucaramanga, Pamplona, Colombia
| | - Patricia A Burrowes
- Department of Biology, University of Puerto Rico, P.O. Box 23360, San Juan, Puerto Rico
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales-CSIC, C/ José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Sede Venado de Oro, Paseo Bolívar 16-20, Bogotá, Colombia
| | - Claire N Foster
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia
| | - Patricia Frías-Álvarez
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society London, Regents Park, London NW1 4RY, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Brian Gratwicke
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20008, USA
| | - Juan M Guayasamin
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIOSFERA, Laboratorio de Biología Evolutiva, Campus Cumbayá, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Ingeniería en Biodiversidad y Cambio Climático, Facultad de Medio Ambiente, Universidad Tecnológica Indoamérica, Calle Machala y Sabanilla, Quito, Ecuador.,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mareike Hirschfeld
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, Berlin 10115, Germany
| | - Jonathan E Kolby
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia.,Honduras Amphibian Rescue and Conservation Center, Lancetilla Botanical Garden and Research Center, Tela, Honduras.,The Conservation Agency, Jamestown, RI 02835, USA
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia.,AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North 4442, New Zealand
| | - Enrique La Marca
- School of Geography, Faculty of Forestry Engineering and Environmental Sciences, University of Los Andes, Merida, Venezuela
| | - David B Lindenmayer
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia.,National Environmental Science Programme, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Raúl Maneyro
- Laboratorio de Sistemática e Historia Natural de Vertebrados. Facultad de Ciencias, Universidad de la República. Igua 4225, CP 11400, Montevideo, Uruguay
| | - Cait A McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joseph Mendelson
- Zoo Atlanta, Atlanta, GA 30315, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Gabriela Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, Berlin 10115, Germany
| | - Sean M Rovito
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato CP36824, México
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Ché Weldon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Steven M Whitfield
- Zoo Miami, Conservation and Research Department, Miami, FL 33177, USA.,Florida International University School of Earth, Environment, and Society, 11200 SW 8th St., Miami, FL 33199, USA
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Stefano Canessa
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
29
|
Endemic Infection of Batrachochytrium dendrobatidis in Costa Rica: Implications for Amphibian Conservation at Regional and Species Level. DIVERSITY 2019. [DOI: 10.3390/d11080129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Batrachochytrium dendrobatidis (Bd) has been associated with the severe declines and extinctions of amphibians in Costa Rica that primarily occurred during the 1980s and 1990s. However, the current impact of Bd infection on amphibian species in Costa Rica is unknown. We aimed to update the list of amphibian species in Costa Rica and evaluate the prevalence and infection intensity of Bd infection across the country to aid in the development of effective conservation strategies for amphibians. We reviewed taxonomic lists and included new species descriptions and records for a total of 215 amphibian species in Costa Rica. We also sampled for Bd at nine localities from 2015–2018 and combined these data with additional Bd occurrence data from multiple studies conducted in amphibian communities across Costa Rica from 2005–2018. With this combined dataset, we found that Bd was common (overall infection rate of 23%) across regions and elevations, but infection intensity was below theoretical thresholds associated with mortality. Bd was also more prevalent in Caribbean lowlands and in terrestrial amphibians with an aquatic larval stage; meanwhile, infection load was the highest in direct-developing species (forest and stream-dwellers). Our findings can be used to prioritize regions and taxonomic groups for conservation strategies.
Collapse
|
30
|
Cádiz A, Reytor ML, Díaz LM, Chestnut T, Burns JA, Amato G. The Chytrid Fungus, Batrachochytrium dendrobatidis, is Widespread Among Cuban Amphibians. ECOHEALTH 2019; 16:128-140. [PMID: 30377876 DOI: 10.1007/s10393-018-1383-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The fungus Batrachochytrium dendrobatidis (Bd) is a generalist amphibian pathogen responsible for chytridiomycosis. It was documented for the first time in Cuba in 2007, the apparent cause of the decline in one species of toad. In a recent survey, Bd was reported only for the highlands of Central Cuba. In the present study, we reexamined the geographic distribution and level of impact of Bd in Cuba by conducting an island-wide sampling in 10 localities and collecting skin swabs from 18 species and 28 environmental samples. We report detection of Bd in 60% of sampled sites and in 58% of sampled taxa. We show that Bd is associated with riparian, arboreal and terrestrial species, and it was estimated to occur in approximately 30% of the aquatic habitats we sampled. In addition, we confirmed that a dying individual of the species Eleutherodactylus casparii was severely infected with Bd. We also rise concern about the endanger toad Peltophryne longinasus and about three species of endemic riparian frogs that were not detected during our surveys. This study demonstrates that this pathogen is widespread throughout Cuba and provides relevant evidence to advance our understanding of its detection in amphibians and the aquatic environment in Cuba and about the occurrence of Bd in species with different ecologies. We provide valuable baseline information for Bd risk assessment and decision-making processes to mitigate its negative impact on Cuban amphibians.
Collapse
Affiliation(s)
- Antonio Cádiz
- Faculty of Biology, Havana University, La Havana, Cuba.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA.
- , Weehawken, USA.
| | | | - Luis M Díaz
- National Museum of Natural History of Cuba, La Havana, Cuba
| | | | - John A Burns
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| |
Collapse
|
31
|
Rumschlag SL, Boone MD. High juvenile mortality in amphibians during overwintering related to fungal pathogen exposure. DISEASES OF AQUATIC ORGANISMS 2018; 131:13-28. [PMID: 30324911 DOI: 10.3354/dao03277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The result of pathogen exposures may depend upon trade-offs in energetic demands for immune responses against host growth and survival. Environmental conditions may influence these trade-offs by affecting host size, or trade-offs may change across seasons, altering impacts of pathogens. We exposed northern leopard frog Lithobates pipiens tadpoles to different larval environments (low leaf litter, high density of conspecifics, atrazine, caged fish, or controls) that influenced size at metamorphosis. Subsequently, we exposed metamorphs to Batrachochytrium dendrobatidis (Bd), a fungal pathogen, just after metamorphosis and/or prior to overwintering 12 wk later. Bd exposure dramatically reduced survival during overwintering, with the strongest effects when hosts were exposed at both time points. Larval environments resulted in differences in host size. Those exposed to caged fish were 2.5 times larger than the smallest (those exposed to high density of conspecifics), but larval environment did not influence Bd effects on growth and survival. The largest frogs exposed to caged fish had greater survival through overwintering, but in the absence of Bd. We built stage-structured models to evaluate if overwinter mortality from Bd is capable of having effects on host populations. Our models suggest that Bd exposure after metamorphosis or before overwintering can reduce population growth rates. Our study demonstrates that hosts suffer little effects of Bd exposures following metamorphosis and that small body size did not hamper growth and survival. Instead, we provide evidence that winter mortality from Bd exposure is capable of reducing population sizes, providing a plausible mechanism for amphibian declines in temperate regions.
Collapse
|
32
|
Talbott K, Wolf TM, Sebastian P, Abraham M, Bueno I, McLaughlin M, Harris T, Thompson R, Pessier AP, Travis D. Factors influencing detection and co-detection of Ranavirus and Batrachochytrium dendrobatidis in Midwestern North American anuran populations. DISEASES OF AQUATIC ORGANISMS 2018; 128:93-103. [PMID: 29733024 DOI: 10.3354/dao03217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphibian populations are in decline worldwide as they face a barrage of challenges, including infectious diseases caused by ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). Here we describe seasonal dynamics of Bd and ranavirus detection in free-ranging post-metamorphic wood frogs Lithobates sylvaticus, boreal chorus frogs Pseudacris maculata/triseriata, and gray treefrogs Hyla versicolor/chrysoscelis, sampled over a 3 season gradient in Minnesota (USA) wetlands. We detected Bd in 36% (n = 259) of individuals sampled in 3 wetlands in 2014, and 33% (n = 255) of individuals sampled in 8 wetlands in 2015. We also detected ranavirus in 60% and 18% of individuals sampled in 2014 and 2015, respectively. Ranavirus and Bd were detected concurrently in 26% and 2% of animals sampled in 2014 and 2015, respectively. We report clinical signs and associated infection status of sampled frogs; of the clinical signs observed, skin discoloration was significantly associated with ranavirus infection. Using generalized estimating equations, we found that species, season, wetland, and a species × season interaction term were significant predictors of Bd detection, whereas test year approached significance as a predictor of ranavirus detection. The odds of detecting both pathogens concurrently was significantly influenced by species, season, a species × season interaction term, year, and environmental ammonia. We propose an amphibian health monitoring scheme that couples population size surveys with seasonal molecular surveys of pathogen presence. This information is crucial to monitoring the health of remaining strongholds of healthy amphibian populations, as they face an uncertain future of further anthropogenic change.
Collapse
|
33
|
Valenzuela-Sánchez A, Schmidt BR, Uribe-Rivera DE, Costas F, Cunningham AA, Soto-Azat C. Cryptic disease-induced mortality may cause host extinction in an apparently stable host-parasite system. Proc Biol Sci 2018; 284:rspb.2017.1176. [PMID: 28954907 DOI: 10.1098/rspb.2017.1176] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/25/2017] [Indexed: 11/12/2022] Open
Abstract
The decline of wildlife populations due to emerging infectious disease often shows a common pattern: the parasite invades a naive host population, producing epidemic disease and a population decline, sometimes with extirpation. Some susceptible host populations can survive the epidemic phase and persist with endemic parasitic infection. Understanding host-parasite dynamics leading to persistence of the system is imperative to adequately inform conservation practice. Here we combine field data, statistical and mathematical modelling to explore the dynamics of the apparently stable Rhinoderma darwinii-Batrachochytrium dendrobatidis (Bd) system. Our results indicate that Bd-induced population extirpation may occur even in the absence of epidemics and where parasite prevalence is relatively low. These empirical findings are consistent with previous theoretical predictions showing that highly pathogenic parasites are able to regulate host populations even at extremely low prevalence, highlighting that disease threats should be investigated as a cause of population declines even in the absence of an overt increase in mortality.
Collapse
Affiliation(s)
- Andrés Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile .,ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile.,Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Info Fauna KARCH, Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland
| | | | | | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
34
|
Ruggeri J, Carvalho-E-Silva SP, James TY, Toledo LF. Amphibian chytrid infection is influenced by rainfall seasonality and water availability. DISEASES OF AQUATIC ORGANISMS 2018; 127:107-115. [PMID: 29384480 DOI: 10.3354/dao03191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphibians suffer from a number of factors that make them the most threatened group of vertebrates. One threat is the fungal disease chytridiomycosis caused by the emerging pathogen Batrachochytrium dendrobatidis (Bd), which has rapidly spread and caused the loss of massive amphibian biodiversity worldwide. Recently, Bd was associated with a few amphibian population declines and extinctions in some areas of the Brazilian Atlantic Forest. However, the mechanisms underlying such declines are not fully understood. Therefore, it is essential to improve our knowledge of abiotic factors that can possibly influence Bd prevalence and chytridiomycosis disease severity. Herein we tested the hypothesis that water availability (such as in perennial streams, where Bd is frequently present in larvae) and rainfall would increase the prevalence of Bd. To test this, we sampled frogs from 6 transects with different numbers of perennial waterbodies, and we report that the more water available in the area, the higher the probability of Bd infection on anurans. Seasonality also influenced both the Bd prevalence in the area and the intensity of infection in infected frogs. However, Bd prevalence was higher during the rainy months whereas the infection burden was lower. We suggest that Bd is likely spread during the summer, when most anuran species gather near the water for spawning and when rainfall overfills ephemeral wetlands. On the other hand, during the drier months, a higher infection burden may be explained by increased disease susceptibility.
Collapse
Affiliation(s)
- Joice Ruggeri
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
35
|
Daversa DR, Manica A, Bosch J, Jolles JW, Garner TWJ. Routine habitat switching alters the likelihood and persistence of infection with a pathogenic parasite. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- David R. Daversa
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Department of ZoologyUniversity of Cambridge Cambridge UK
- Institute of ZoologyZoological Society of London London UK
| | - Andrea Manica
- Department of ZoologyUniversity of Cambridge Cambridge UK
| | - Jaime Bosch
- Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Centro de InvestigaciónSeguimiento y EvaluaciónParque Nacional de la Sierra de Guadarrama Rascafría Spain
| | - Jolle W. Jolles
- Department of ZoologyUniversity of Cambridge Cambridge UK
- Department of Collective BehaviourMax Planck Institute for Ornithology Konstanz Germany
| | | |
Collapse
|
36
|
Yap TA, Nguyen NT, Serr M, Shepack A, Vredenburg VT. Batrachochytrium salamandrivorans and the Risk of a Second Amphibian Pandemic. ECOHEALTH 2017; 14:851-864. [PMID: 29147975 DOI: 10.1007/s10393-017-1278-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bd was described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsal originated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.
Collapse
Affiliation(s)
- Tiffany A Yap
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| | - Natalie T Nguyen
- U.S. Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Thomas Hall, 1100 Brooks Avenue, Raleigh, NC, 27695, USA
| | - Alexander Shepack
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Sana S, Hardouin EA, Gozlan RE, Ercan D, Tarkan AS, Zhang T, Andreou D. Origin and invasion of the emerging infectious pathogen Sphaerothecum destruens. Emerg Microbes Infect 2017; 6:e76. [PMID: 28831194 PMCID: PMC5583672 DOI: 10.1038/emi.2017.64] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 11/19/2022]
Abstract
Non-native species are often linked to the introduction of novel pathogens with detrimental effects on native biodiversity. Since Sphaerothecum destruens was first discovered as a fish pathogen in the United Kingdom, it has been identified as a potential threat to European fish biodiversity. Despite this parasite’s emergence and associated disease risk, there is still a poor understanding of its origin in Europe. Here, we provide the first evidence to support the hypothesis that S. destruens was accidentally introduced to Europe from China along with its reservoir host Pseudorasbora parva via the aquaculture trade. This is the first study to confirm the presence of S. destruens in China, and it has expanded the confirmed range of S. destruens to additional locations in Europe. The demographic analysis of S. destruens and its host P. parva in their native and invasive range further supported the close association of both species. This research has direct significance and management implications for S. destruens in Europe as a non-native parasite.
Collapse
Affiliation(s)
- Salma Sana
- Bournemouth University, Faculty of Science and Technology, Fern Barrow, Talbot Campus, Poole, Dorset BH12 5BB, UK
| | - Emilie A Hardouin
- Bournemouth University, Faculty of Science and Technology, Fern Barrow, Talbot Campus, Poole, Dorset BH12 5BB, UK
| | - Rodolphe E Gozlan
- UMR BOREA IRD-MNHN-Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 47 Rue Cuvier, Paris, Cedex 5 75231, France
| | - Didem Ercan
- Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla 48000, Turkey
| | - Ali Serhan Tarkan
- Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla 48000, Turkey
| | - Tiantian Zhang
- Bournemouth University, Faculty of Science and Technology, Fern Barrow, Talbot Campus, Poole, Dorset BH12 5BB, UK
| | - Demetra Andreou
- Bournemouth University, Faculty of Science and Technology, Fern Barrow, Talbot Campus, Poole, Dorset BH12 5BB, UK
| |
Collapse
|
38
|
The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases. Microbiol Spectr 2017; 4. [PMID: 27337484 DOI: 10.1128/microbiolspec.ei10-0004-2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spread of amphibian chytrid fungus, Batrachochytrium dendrobatidis, is associated with the emerging infectious wildlife disease chytridiomycosis. This fungus poses an overwhelming threat to global amphibian biodiversity and is contributing toward population declines and extinctions worldwide. Extremely low host-species specificity potentially threatens thousands of the 7,000+ amphibian species with infection, and hosts in additional classes of organisms have now also been identified, including crayfish and nematode worms.Soon after the discovery of B. dendrobatidis in 1999, it became apparent that this pathogen was already pandemic; dozens of countries and hundreds of amphibian species had already been exposed. The timeline of B. dendrobatidis's global emergence still remains a mystery, as does its point of origin. The reason why B. dendrobatidis seems to have only recently increased in virulence to catalyze this global disease event remains unknown, and despite 15 years of investigation, this wildlife pandemic continues primarily uncontrolled. Some disease treatments are effective on animals held in captivity, but there is currently no proven method to eradicate B. dendrobatidis from an affected habitat, nor have we been able to protect new regions from exposure despite knowledge of an approaching "wave" of B. dendrobatidis and ensuing disease.International spread of B. dendrobatidis is largely facilitated by the commercial trade in live amphibians. Chytridiomycosis was recently listed as a globally notifiable disease by the World Organization for Animal Health, but few countries, if any, have formally adopted recommended measures to control its spread. Wildlife diseases continue to emerge as a consequence of globalization, and greater effort is urgently needed to protect global health.
Collapse
|
39
|
Lampo M, Señaris C, García CZ. Population dynamics of the critically endangered toad Atelopus cruciger and the fungal disease chytridiomycosis. PLoS One 2017; 12:e0179007. [PMID: 28570689 PMCID: PMC5453621 DOI: 10.1371/journal.pone.0179007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Harlequin toads (Atelopus) are among the most severely impacted amphibians by the emergence of chytridiomycosis, a fungal disease caused by the pathogen Batrachochytrium dendrobatidis (Bd). Many species disappeared while others suffered drastic contractions of their geographic distribution to lower altitudes. A diminished virulence of Bd in warm habitats was proposed to explain the survival of lowland populations of harlequin toads (i.e. thermal refuge hypothesis). To understand the mechanisms that allow some populations to reach an endemic equilibrium with this pathogen, we estimated demographic and epidemiological parameters at one remnant population of Atelopus cruciger in Venezuela using mark-recapture data from 2007–2013. We demonstrated that Bd is highly virulent for A. cruciger, increasing the odds of dying of infected adults four times in relation to uninfected ones and reducing the life expectancy of reproductive toads to a few weeks. Despite an estimated annual loss of 18% of the reproductive population due to Bd-induced mortality, this population has persisted in an endemic equilibrium for the last decade through the large recruitment of healthy adults every year. Given the high vulnerability of harlequin toads to Bd in lowland populations, thermal refuges need to be redefined as habitats of reduced transmission rather than attenuated virulence.
Collapse
Affiliation(s)
- Margarita Lampo
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Kilómetro 11 Carretera Panamericana, Caracas, Venezuela
- * E-mail:
| | - Celsa Señaris
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Kilómetro 11 Carretera Panamericana, Caracas, Venezuela
| | - Carmen Zulay García
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Kilómetro 11 Carretera Panamericana, Caracas, Venezuela
| |
Collapse
|
40
|
Detection of the Amphibian Chytrid FungusBatrachochytrium dendrobatidisin Museum Specimens of Andean Aquatic Birds: Implications for Pathogen Dispersal. J Wildl Dis 2017; 53:349-355. [DOI: 10.7589/2016-04-074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Burrowes PA, De la Riva I. Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian Andes: implications in recent amphibian declines. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1390-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Sabino-Pinto J, Bletz M, Iturriaga M, Vences M, Rodríguez A. Low infection prevalence of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Chytridiomycetes: Rhizophydiales) in Cuba. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is responsible for population declines and extinctions of amphibians worldwide. The distribution and prevalence of Bd in Cuba has remained unknown to date, with only a single report on its presence. We collected 182 samples from wild anuran populations across 21 species and 16 localities and tested for the presence of Bd using qPCRs. Only six Bd positive samples from four species were detected in three very close localities in Central Cuba. Bd prevalence was of 10-20% in the positive localities, and the island-wide prevalence was only 3.2%. These results indicate that Bd occurrence in Cuba might be concentrated in or even restricted to the central Guamuhaya Massif and call for increased conservation and monitoring efforts in these mountains along with additional sampling in areas and species not covered in this study.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Molly C. Bletz
- Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Manuel Iturriaga
- División de Colecciones Zoológicas, Instituto de Ecología y Sistemática, Cta. Varona 11835 e/ Oriente y Lindero, Reparto Parajón, Boyeros, 11900 La Habana, Cuba
| | - Miguel Vences
- Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Ariel Rodríguez
- Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
- Zoological Institute, University of Veterinary Medicine (TiHo) Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
43
|
Yap TA, Gillespie L, Ellison S, Flechas SV, Koo MS, Martinez AE, Vredenburg VT. Invasion of the Fungal Pathogen Batrachochytrium dendrobatidis on California Islands. ECOHEALTH 2016; 13:145-150. [PMID: 26493624 DOI: 10.1007/s10393-015-1071-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen, has infected >500 species and caused extinctions or declines in >200 species worldwide. Despite over a decade of research, little is known about its invasion biology. To better understand this, we conducted a museum specimen survey (1910-1997) of Bd in amphibians on 11 California islands and found a pattern consistent with the emergence of Bd epizootics on the mainland, suggesting that geographic isolation did not prevent Bd invasion. We propose that suitable habitat, host diversity, and human visitation overcome isolation from the mainland and play a role in Bd invasion.
Collapse
Affiliation(s)
- Tiffany A Yap
- Institute of the Environment and Sustainability, University of California, La Kretz Hall, Suite 300, 619 Charles E Young Drive, Los Angeles, CA, 90095, USA
- Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building #3160, Berkeley, CA, 94720, USA
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Ave., San Francisco, CA, 94132, USA
| | - Lauren Gillespie
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Ave., San Francisco, CA, 94132, USA
| | - Silas Ellison
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Ave., San Francisco, CA, 94132, USA
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, AA 4976, Colombia
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building #3160, Berkeley, CA, 94720, USA
| | - Ari E Martinez
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Ave., San Francisco, CA, 94132, USA
| | - Vance T Vredenburg
- Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building #3160, Berkeley, CA, 94720, USA.
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Ave., San Francisco, CA, 94132, USA.
| |
Collapse
|
44
|
Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME JOURNAL 2016; 10:1682-95. [PMID: 26744810 DOI: 10.1038/ismej.2015.234] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
Abstract
Symbiotic bacteria on amphibian skin can inhibit growth of the fungus Batrachochytrium dendrobatidis (Bd) that has caused dramatic population declines and extinctions of amphibians in the Neotropics. It remains unclear how the amphibians' skin microbiota is influenced by environmental bacterial reservoirs, host-associated factors such as susceptibility to pathogens, and pathogen presence in tropical amphibians. We sampled skin bacteria from five co-occurring frog species that differ in Bd susceptibility at one Bd-naive site, and sampled one of the non-susceptible species from Bd-endemic and Bd-naive sites in Panama. We hypothesized that skin bacterial communities (1) would be distinct from the surrounding environment regardless of the host habitat, (2) would differ between Bd susceptible and non-susceptible species and (3) would differ on hosts in Bd-naive and Bd-endemic sites. We found that skin bacterial communities were enriched in bacterial taxa that had low relative abundances in the environment. Non-susceptible species had very similar skin bacterial communities that were enriched in particular taxa such as the genera Pseudomonas and Acinetobacter. Bacterial communities of Craugastor fitzingeri in Bd-endemic sites were less diverse than in the naive site, and differences in community structure across sites were explained by changes in relative abundance of specific bacterial taxa. Our results indicate that skin microbial structure was associated with host susceptibility to Bd and might be associated to the history of Bd presence at different sites.
Collapse
Affiliation(s)
- Eria A Rebollar
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|