1
|
Thaker K, Patoliya J, Prajapati J, Rabadiya K, Ponnuchamy M, Rawal R, Rama Reddy NR, Joshi R. Decoding the in-silico structure of isopentenyl Diphosphate Delta-Isomerase protein from Cassia angustifolia Vahl. J Biomol Struct Dyn 2024:1-16. [PMID: 39703129 DOI: 10.1080/07391102.2024.2442757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 12/21/2024]
Abstract
Senna (Cassia angustifolia Vahl.) is an important medicinal plant used in traditional and modern systems medicine to manage constipation. While various treatment strategies exist, there is growing interest in utilizing traditional herbal medicines like Indian Senna as a natural alternative. Though Isopentenyl Diphosphate Delta-Isomerase (IDI) has been proven to be one of the key enzymes in the sennoside biosynthesis pathway, characterization of it remains largely unexplored. This study aims to bridge the knowledge gap by investigating IDI, an important enzyme involved in sennoside biosynthesis in plants. The study retrieved the coding DNA sequence (CDS) of IDI from Senna transcriptome and successfully cloned and sequenced the gene. Physicochemical properties and secondary structure analysis unveiled protein characteristics, while homology modelling and molecular docking of DMAPP and IPP ligands assessed binding patterns and interactions with caIDI. Notably, Lys37, Arg72, Lys76, Cys88, Ser89, His90, and Lys113 residues engaged with DMAPP, and Arg72, Lys76, Lys113, Ser89, and His90 residues interacted with IPP. Molecular dynamics simulations affirmed protein-ligand complex stability. IPP established sustained hydrogen bonds with Arg72, Ser89, and Lys113; DMAPP sustained interactions with Lys37, Arg72, Ser89, His90 and Lys113. His41, Glu148, Glu150 engaged with magnesium ion; Val77, Thr78 showed dual interactions with IPP, indicating its substrate binding roles. These findings enhance IDI understanding in Indian Senna which not only plays vital role in isoprenoid biosynthesis but also anthraquinone biosynthesis like sennosides.
Collapse
Affiliation(s)
- Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Khushbu Rabadiya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Manivel Ponnuchamy
- ICAR-Directorate of Medicinal and Aromatic Plants Research (DMAPR), Anand, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | | | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Xia W, Shen Y, Chen F, Liu X, Cao Y, Shi Z. Sennoside A represses the malignant phenotype and tumor immune microenvironment of non-small cell lung cancer cells by inhibiting the TRAF6/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03612-8. [PMID: 39549059 DOI: 10.1007/s00210-024-03612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prominent cause of cancer death worldwide. Sennoside A (SA) is the primary anthraquinone active component from Rheum officinale Baill and exerts antitumor functions in multiple human tumors. This research aimed to elucidate the function and mechanism of SA in NSCLC. SA functions in NSCLC were determined using Cell Counting Kit-8 (CCK-8) assay, Terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis, Transwell assay, Enzyme-Linked Immunosorbent Assay (ELISA), and Western blot. Meanwhile, the SA mechanism in NSCLC was examined with Western blot, immunofluorescence assay, CCK-8 assay, Transwell analysis, and ELISA. Furthermore, SA functions in NSCLC growth in vivo were assessed by the establishment of a tumor xenograft model, hematoxylin-eosin staining, analysis of NSCLC tissue apoptosis, and immunohistochemistry assays. Functionally, less than 200 µM SA had no significant effect on normal human bronchial epithelial cell BEAS-2B cell viability. Furthermore, H460 cell viability was decreased when the SA dose was greater than or equal to 25 µM (IC50 = 53.34 µM). A549 cell viability was reduced when the SA dose was greater than or equal to 12.5 µM (IC50 = 48.21 µM). Also, SA repressed NSCLC cell proliferation and boosted cell apoptosis. SA restrained NSCLC cell invasion and tumor microenvironment. Mechanically, SA weakened NSCLC cell proliferation, invasion, and tumor microenvironment, yet this impact was abolished after transfecting pcDNA3.1-TRAF6, which indicated that SA repressed NSCLC cell proliferation, invasion, and tumor microenvironment through inactivating TRAF6/NF-κB. Moreover, SA reduced subcutaneous tumor volume and promoted NSCLC tissue apoptosis in vivo. SA repressed NSCLC cell proliferation, invasion, and tumor microenvironment through inactivating TRAF6/NF-κB.
Collapse
Affiliation(s)
- Wenchao Xia
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China.
| | - Yimeng Shen
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Feng Chen
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Xin Liu
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Yuqi Cao
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Zhenliang Shi
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| |
Collapse
|
3
|
Su Y, Xu S, Hu X, Wang R, Dong M, Wang Y, Wang S, Zhang Y, Tian Q, Han L. Rapid discovery of natural skin-lightening ingredients based on an integrated screening strategy based on molecular docking and zebrafish model. J Cosmet Dermatol 2024; 23:3724-3734. [PMID: 38923657 DOI: 10.1111/jocd.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Natural herbs have been widely considered a reservoir for skin-lightening ingredients, but discovery of the effective ingredients from herbs remains a large challenge. AIM This research aimed to rapidly identify compounds with skin-lightening activity in Chinese herbs. METHODS The structure information of herbal compounds was collected and selected from the open-source data. High throughput virtual screening (HTVS) and Extra precision (XP) docking modes were used to screen for compounds that could bind to the mushroom tyrosinase involved in melanin synthesis. Furthermore, molecular dynamics (MD) simulations were introduced to assess the binding stability of those compounds with the key target protein. The candidate compounds found by this kind of multidimensional molecular screening were finally tested for their ability to inhibit pigmentation and potential toxicity using an in vivo zebrafish animal model. RESULTS A Natural Compounds Database was established with 5616 natural compounds. Fourteen compounds with favorable binding capability were screened by the XP docking mode with mushroom tyrosinase and five compounds among them were found to have superior dynamic binding performance through MD simulations. Then the Zebrafish animal experiments revealed that two components, sennoside B (SB) and sennoside C (SC), could significantly inhibit melanogenesis rather than the other three compounds. Meanwhile, there were no obvious side effects observed in SB and SC about the morphology, heart rate, or body length of zebrafish. CONCLUSION A strategy for rapid screening of compounds with whitening activity has been established, and two potent skin-lightening compounds, SB and SC, have been identified from a vast library of herbal compounds. This study revealed that SB and SC have potential for topical use in skin lightening for the first time. The findings of this study would provide an important theoretical basis for the application of these two compounds in the cosmetic field in the future.
Collapse
Affiliation(s)
- Yonghui Su
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Shanshan Xu
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Xinqi Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Ruifen Wang
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Mengxuan Dong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Yihan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Yougang Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Qingping Tian
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
4
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Subramani N, Dananjeyan B, Rethinasamy V, Vaikuntavasan P. Aflatoxin B 1 in senna pods from field to storage in Tamil Nadu, India. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024:1-6. [PMID: 39318338 DOI: 10.1080/19393210.2024.2405899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Senna, a medicinal herb, is highly susceptible to aflatoxin contamination, which often limits the export value of the final products due to the regulatory limits of importing countries. Presence of aflatoxin B1 (AFB1) was investigated in 229 senna pod samples at various stages from field to storage over three years. Higher incidence of AFB1 was revealed during the late harvest stage with a mean level of 52.4 µg/kg and a range of LOD-206 µg/kg. Out of 48 late harvest samples, 37 exceeded the AFFB1 limit of 2 µg/kg. In contrast, the majority of preharvest samples showed lower levels of AFB1 (1.0 µg/kg). During drying, increase in the mean AFB1 level to 4 µg/kg was observed and it could further increase to 18.1 μg/kg in storage. These results highlight the status of aflatoxin contamination in senna pods and emphasise the importance of implementing good agricultural practices in senna cultivation to mitigate AFB1 contamination.
Collapse
Affiliation(s)
- Natarajan Subramani
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
- School of Biology and Environment Science, Earth Institute, University College Dublin, Belfield, Ireland
| | - Balachandar Dananjeyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Velazhahan Rethinasamy
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
6
|
Yang L, Sun J, Zhang T, Chu D, Zhou T, Wang X. Comparative transcriptome analysis and HPLC reveal candidate genes associated with synthesis of bioactive constituents in Rheum palmatum complex. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1239-1252. [PMID: 39184557 PMCID: PMC11341509 DOI: 10.1007/s12298-024-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Content of bioactive constituents is one of the most important characteristics in Rheum palmatum complex. Increasing ingredient content through genetic breeding is an effective strategy to solve the contradiction between large market demand and resource depletion, but currently hampered by limited understanding of metabolite biosynthesis in rhubarb. In this study, deep transcriptome sequencing was performed to compare roots, stems, and leaves of two Rheum species (PL and ZK) that show different levels of anthraquinone contents. Approximately 0.52 billion clean reads were assembled into 58,782 unigenes, of which around 80% (46,550) were found to be functionally annotated in public databases. Expression patterns of differential unigenes between PL and ZK were thoroughly investigated in different tissues. This led to the identification of various differentially expressed genes (DEGs) involved in shikimate, MEP, MVA, and polyketide pathways, as well as those involved in catechin and gallic acid biosynthesis. Some structural enzyme genes were shown to be significantly up-regulated in roots of ZK with high anthraquinone content, implying potential central roles in anthraquinone synthesis. Taken together, our study provides insights for future functional studies to unravel the mechanisms underlying metabolite biosynthesis in rhubarb. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01492-z.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiangyan Sun
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Tianyi Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
7
|
Chouksey S, Ashfaq MA, Kaira P, Farhat S, Pandey M, Kumar CA, Nagaraja Reddy RR. Development of highly discriminatory SCoT- and CBDP-based SCAR fingerprint for authentication of Indian senna ( Senna alexandrina Mill.) formerly Cassia angustifolia Vahl.). FRONTIERS IN PLANT SCIENCE 2024; 15:1424665. [PMID: 39027666 PMCID: PMC11255980 DOI: 10.3389/fpls.2024.1424665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Introduction Indian senna (Senna alexandrina Mill.) (formerly Cassia angustifolia Vahl.) is an important medicinal plant of the family Fabaceae. The leaves and pods of Indian senna yield sennosides and rhein-based laxative. Adulteration of Indian senna is a serious issue as with most of the medicinal plants used in the Indian systems of traditional medicine. The bulk of dried leaves and pods of morphologically related species, such as Cassia fistula, Senna occidentalis, Senna sophera, and Senna tora, is usually mixed with those of the Indian senna, and the admixture is used in laxative-based formulations. The present investigation is a modest attempt at developing species-specific start codon targeted (SCoT) polymorphism- and CAAT-box-derived polymorphism (CBDP)-based sequence-characterized amplified region (SCAR) markers for the identification and authentication of Indian senna and four adulterant species (C. fistula, S. occidentalis, S. sophera, and S. tora species). Methods In this study, genomic DNA extracted from 44 accessions of Indian senna and four adulterant species was subjected to SCoT and CBDP PCR. The polymorphic amplicons were identified, eluted, ligated, and transformed into Escherichia coli DH5 α strain. PCR, restriction analysis, and DNA sequencing confirmed the transformed recombinant plasmid clones. Results Post-sequencing, the sequence of the primary SCoT and CBDP primers was analyzed and extended into the unique signature sequence of the concerned accessions. This resulted in development of one SCoT-44- and two CBDP-25-based SCARs. SCoT-44 SCAR produced a signature amplicon of 287 bp for accession DCA120, and CBDP-25 SCAR yielded signature amplicons of 575 and 345 bp for accessions DCA13 and DCA119, respectively. The developed SCAR markers were validated across 48 samples (44 accessions of Indian senna and 4 adulterant species) and produced distinct amplicons in Indian senna only, while no such amplicon was observed in the other four adulterant species. Discussion The information generated using these markers have been faithfully converted to single-locus, unequivocal, highly reproducible, and informative sequence-based SCAR markers. These markers will enable discrimination of individual plants on the basis of unique sequence-specific amplicons, which could be used as diagnostic markers to settle issues pertaining to the true identity of Indian senna.
Collapse
Affiliation(s)
- Sarika Chouksey
- Biochemistry Discipline, School of Sciences, Indira Gandhi National Open University, New Delhi, India
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashraf Ashfaq
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pushkar Kaira
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sabnam Farhat
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Maneesha Pandey
- Biochemistry Discipline, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Ch. Anil Kumar
- Biotechnology, Indian Council of Agricultural Research (ICAR)- Indian Institute of Oilseeds Research, Hyderabad, India
| | - Rama Reddy Nagaraja Reddy
- Plant Breeding, Indian Council of Agricultural Research-Directorate of Medicinal and Aromatic Plants Research (ICAR-DMAPR), Boriavi Anand, Gujarat, India
| |
Collapse
|
8
|
Thaker K, Patoliya J, Rabadiya K, Patel D, Ponnuchamy M, Rama Reddy NR, Joshi R. An in-silico approach to unravel the structure of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS): a critical enzyme for sennoside biosynthesis in Cassia angustifolia Vahl. J Biomol Struct Dyn 2024; 42:3848-3861. [PMID: 37243697 DOI: 10.1080/07391102.2023.2216300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
The laxative properties of senna are attributed to the presence of sennosides produced in the plant. The low production level of sennosides in the plant is an important impediment to their growing demand and utilization. Understanding biosynthetic pathways helps to engineer them in terms of enhanced production. The biosynthetic pathways of sennoside production in plants are not completely known yet. However, attempts to get information on genes and proteins engaged in it have been made which decode involvement of various pathways including shikimate pathway. 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme involved in sennosides production through the shikimate pathway. Unfortunately, there is no information available on proteomic characterization of DAHPS enzyme of senna (caDAHPS) resulting in lack of knowledge about its role. We for the first time characterized DAHPS enzyme of senna using in-silico analysis. To the best of our knowledge this is the first attempt to identify the coding sequence of caDAHPS by cloning and sequencing. We found Gln179, Arg175, Glu462, Glu302, Lys357 and His420 amino acids in the active site of caDAHPS through molecular docking. followed by molecular dynamic simulation. The amino acid residues, Lys182, Cys136, His460, Leu304, Gly333, Glu334, Pro183, Asp492 and Arg433 at the surface interact with PEP by van der Waals bonds imparting stability to the enzyme-substrate complex. Docking results were further validated by molecular dynamics. The presented in-silico analysis of caDAHPS will generate opportunities to engineer the sennoside biosynthesis in plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Khushbu Rabadiya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Dhaval Patel
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Manivel Ponnuchamy
- ICAR-Directorate of Medicinal and Aromatic Plants Research (DMAPR), Anand, Gujarat, India
| | | | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
9
|
Zibaee E, Akaberi M, Tayarani-Najaran Z, Nesměrák K, Štícha M, Shahraki N, Javadi B, Emami SA. Comparative LC-ESIMS-Based Metabolite Profiling of Senna italica with Senna alexandrina and Evaluating Their Hepatotoxicity. Metabolites 2023; 13:metabo13040559. [PMID: 37110216 PMCID: PMC10147022 DOI: 10.3390/metabo13040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Senna Mill. (Fabaceae) is an important medicinal plant distributed worldwide. Senna alexandrina (S. alexandrina), the officinal species of the genus, is one of the most well-known herbal medicines traditionally used to treat constipation and digestive diseases. Senna italica (S. italica), another species of the genus, is native to an area ranging from Africa to the Indian subcontinent, including Iran. In Iran, this plant has been used traditionally as a laxative. However, very little phytochemical information and pharmacological reports investigating its safety of use are available. In the current study, we compared LC-ESIMS metabolite profiles of the methanol extract of S. italica with that of S. alexandrina and measured the content of sennosides A and B as the biomarkers in this genus. By this, we were able to examine the feasibility of using S. italica as a laxative agent like S. alexandrina. In addition, the hepatotoxicity of both species was evaluated against HepG2 cancer cell lines using HPLC-based activity profiling to localize the hepatotoxic components and evaluate their safety of use. Interestingly, the results showed that the phytochemical profiles of the plants were similar but with some differences, particularly in their relative contents. Glycosylated flavonoids, anthraquinones, dianthrones, benzochromenones, and benzophenones constituted the main components in both species. Nevertheless, some differences, particularly in the relative amount of some compounds, were observed. According to the LC-MS results, the amounts of sennoside A in S. alexandrina and S. italica were 1.85 ± 0.095% and 1.00 ± 0.38%, respectively. Moreover, the amounts of sennoside B in S. alexandrina and S. italica were 0.41 ± 0.12 % and 0.32 ± 0.17%, respectively. Furthermore, although both extracts showed significant hepatotoxicity at concentrations of 50 and 100 µg/mL, they were almost non-toxic at lower concentrations. Taken together, according to the results, the metabolite profiles of S. italica and S. alexandrina showed many compounds in common. However, further phytochemical, pharmacological, and clinical studies are necessary to examine the efficacy and safety of S. italica as a laxative agent.
Collapse
Affiliation(s)
- Elaheh Zibaee
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Karel Nesměrák
- Department of Analytical Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Martin Štícha
- Mass Spectrometry Laboratory, Section of Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Naghmeh Shahraki
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| |
Collapse
|
10
|
Zhao Y, Sun C, Wang S, Zhang M, Li Y, Xue Q, Guo Q, Lai H. Widely targeted metabolomic, transcriptomic, and metagenomic profiling reveal microbe-plant-metabolic reprogramming patterns mediated by Streptomyces pactum Act12 enhance the fruit quality of Capsicum annuum L. Food Res Int 2023; 166:112587. [PMID: 36914318 DOI: 10.1016/j.foodres.2023.112587] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Plant growth-promoting rhizobacteria, such as Streptomyces pactum Act12, promote crop growth and stress resistance, but their contribution to fruit quality is still poorly understood. Herein we conducted a field experiment to ascertain the effects of S. pactum Act12-mediated metabolic reprogramming and underlying mechanisms in pepper (Capsicum annuum L.) fruit based on widely targeted metabolomic and transcriptomic profiling. We additionally performed metagenomic analysis to elucidate the potential relationship between S. pactum Act12-mediated reshaping of rhizosphere microbial communities and pepper fruit quality. Soil inoculation with S. pactum Act12 considerably increased the accumulation of capsaicinoids, carbohydrates, organic acids, flavonoids, anthraquinones, unsaturated fatty acids, vitamins, and phenolic acids in pepper fruit samples. Consequently, fruit flavor, taste, and color were modified, accompanied by elevated contents of nutrients and bioactive compounds. Increased microbial diversity and recruitment of potentially beneficial taxa were observed in inoculated soil samples, with crosstalk between microbial gene functions and pepper fruit metabolism. The reformed structure and function of rhizosphere microbial communities were closely associated with pepper fruit quality. Our findings indicate that S. pactum Act12-mediated interactions between rhizosphere microbial communities and pepper plants are responsible for intricate fruit metabolic reprogramming patterns, which enhance not only overall fruit quality but also consumer acceptability.
Collapse
Affiliation(s)
- Yisen Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suzhen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Meilin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Sripinyowanich S, Petchsri S, Tongyoo P, Lee TK, Lee S, Cho WK. Comparative Transcriptomic Analysis of Genes in the 20-Hydroxyecdysone Biosynthesis in the Fern Microsorum scolopendria towards Challenges with Foliar Application of Chitosan. Int J Mol Sci 2023; 24:ijms24032397. [PMID: 36768717 PMCID: PMC9916870 DOI: 10.3390/ijms24032397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Microsorum scolopendria is an important medicinal plant that belongs to the Polypodiaceae family. In this study, we analyzed the effects of foliar spraying of chitosan on growth promotion and 20-hydroxyecdysone (20E) production in M. scolopendria. Treatment with chitosan at a concentration of 50 mg/L in both young and mature sterile fronds induced the highest increase in the amount of accumulated 20E. Using RNA sequencing, we identified 3552 differentially expressed genes (DEGs) in response to chitosan treatment. The identified DEGs were associated with 236 metabolic pathways. We identified several DEGs involved in the terpenoid and steroid biosynthetic pathways that might be associated with secondary metabolite 20E biosynthesis. Eight upregulated genes involved in cholesterol and phytosterol biosynthetic pathway, five upregulated genes related to the methylerythritol 4-phosphate (MEP) and mevalonate (MVA) pathways, and several DEGs that are members of cytochrome P450s and ABC transporters were identified. Quantitative real-time RT-PCR confirmed the results of RNA-sequencing. Taken together, we showed that chitosan treatment increased plant dry weight and 20E accumulation in M. scolopendria. RNA-sequencing and DEG analyses revealed key enzymes that might be related to the production of the secondary metabolite 20E in M. scolopendria.
Collapse
Affiliation(s)
- Siriporn Sripinyowanich
- Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sahanat Petchsri
- Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Pumipat Tongyoo
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (S.L.); (W.K.C.)
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (S.L.); (W.K.C.)
| |
Collapse
|
12
|
March of molecular breeding techniques in the genetic enhancement of herbal medicinal plants: present and future prospects. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Hu Y, Zhang H, Sun J, Li W, Li Y. Comparative transcriptome analysis of different tissues of Rheum tanguticum Maxim. ex Balf. (Polygonaceae) reveals putative genes involved in anthraquinone biosynthesis. Genet Mol Biol 2022; 45:e20210407. [PMID: 36150022 PMCID: PMC9505757 DOI: 10.1590/1678-4685-gmb-2021-0407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Rheum tanguticum is a perennial herb and an important medicinal
plant, with anthraquinones as its main bioactive compounds. However, the
specific pathway of anthraquinone biosynthesis in rhubarb is still unclear. The
accumulation of anthraquinones in different tissues (root, leaf, stem and seed)
of R. tanguticum revealed considerable variation, suggesting
possible differences in metabolite biosynthetic pathways and accumulation among
various tissues. To better illustrate the biosynthetic pathway of
anthraquinones, we assembled transcriptome sequences from the root, leaf, stem
and seed tissues yielding 157,564 transcripts and 88,142 unigenes. Putative
functions could be assigned to 56,911 unigenes (64.57%) based on BLAST searches
against annotation databases, including GO, KEGG, Swiss-Prot, NR, and Pfam. In
addition, putative genes involved in the biosynthetic pathway of anthraquinone
were identified. The expression profiles of nine unigenes involved in
anthraquinone biosynthesis were verified in different tissues of R.
tanguticum by qRT-PCR. Various transcription factors, including
bHLH, MYB_related, and C2H2, were identified by searching unigenes against
plantTFDB. This is the first transcriptome analysis of different tissues of
R. tanguticum and can be utilized to describe the genes
involved in the biosynthetic pathway of anthraquiones, understanding the
molecular mechanism of active compounds in R. tanguticum.
Collapse
Affiliation(s)
- Yanping Hu
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Huixuan Zhang
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, China.,Scientific Research and Popularization Base of Qinghai-Tibet Plateau Biology, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Yi Li
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
14
|
Comparative Transcriptome Analyses of Different Rheum officinale Tissues Reveal Differentially Expressed Genes Associated with Anthraquinone, Catechin, and Gallic Acid Biosynthesis. Genes (Basel) 2022; 13:genes13091592. [PMID: 36140760 PMCID: PMC9498579 DOI: 10.3390/genes13091592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Rheum officinale Baill. is an important traditional Chinese medicinal herb, its dried roots and rhizomes being widely utilized to cure diverse diseases. However, previous studies mainly focused on the active compounds and their pharmacological effects, and the molecular mechanism underlying the biosynthesis of these ingredients in R. officinale is still elusive. Here, we performed comparative transcriptome analyses to elucidate the differentially expressed genes (DEGs) in the root, stem, and leaf of R. officinale. A total of 236,031 unigenes with N50 of 769 bp was generated, 136,329 (57.76%) of which were annotated. A total of 5884 DEGs was identified after the comparative analyses of different tissues; 175 and 126 key enzyme genes with tissue-specific expression were found in the anthraquinone, catechin/gallic acid biosynthetic pathway, respectively, and some of these key enzyme genes were verified by qRT-PCR. The phylogeny of the PKS III family in Polygonaceae indicated that probably only PL_741 PKSIII1, PL_11549 PKSIII5, and PL_101745 PKSIII6 encoded PKSIII in the polyketide pathway. These results will shed light on the molecular basis of the tissue-specific accumulation and regulation of secondary metabolites in R. officinale, and lay a foundation for the future genetic diversity, molecular assisted breeding, and germplasm resource improvement of this essential medicinal plant.
Collapse
|
15
|
Zhang R, Miao Y, Chen L, Yi S, Tan N. De Novo Transcriptome Analysis Reveals Putative Genes Involved in Anthraquinone Biosynthesis in Rubia yunnanensis. Genes (Basel) 2022; 13:521. [PMID: 35328075 PMCID: PMC8954821 DOI: 10.3390/genes13030521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Rubia yunnanensis Diels (R. yunnanensis), a Chinese perennial plant, is well-known for its medicinal values such as rheumatism, contusion, and anemia. It is rich in bioactive anthraquinones, but the biosynthetic pathways of anthraquinones in R. yunnanensis remain unknown. To investigate genes involved in anthraquinone biosynthesis in R. yunnanensis, we generated a de novo transcriptome of R. yunnanensis using the Illumina HiSeq 2500 sequencing platform. A total of 636,198 transcripts were obtained, in which 140,078 transcripts were successfully annotated. A differential gene expression analysis identified 15 putative genes involved in anthraquinone biosynthesis. Additionally, the hairy roots of R. yunnanensis were treated with 200 µM Methyl Jasmonate (MeJA). The contents of six bioactive anthraquinones and gene expression levels of 15 putative genes were measured using ultra performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. The results showed that the expressions levels for 11 of the 15 genes and the contents of two of six anthraquinones significantly increased by MeJA treatment. Pearson's correlation analyses indicated that the expressions of 4 of the 15 putative genes were positively correlated with the contents of rubiquinone (Q3) and rubiquinone-3-O-β-d-xylopranosyl-(1→6)-β-d-glucopyranoside (Q20). This study reported the first de novo transcriptome of R. yunnanensis and shed light on the anthraquinone biosynthesis and genetic information for R. yunnanensis.
Collapse
Affiliation(s)
- Rongfei Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| | - Yuanyuan Miao
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| | - Lingyun Chen
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| | - Shanyong Yi
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (R.Z.); (Y.M.); (L.C.)
| |
Collapse
|
16
|
Coelho C, Gallo G, Hardy L, Bottazzi ME, Campos C, Wurtele M. Biochemical Screening of Potent Zika Virus Protease Inhibitors. ChemMedChem 2022; 17:e202100695. [PMID: 35104396 DOI: 10.1002/cmdc.202100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Indexed: 11/06/2022]
Abstract
As the Zika virus protease is an essential and well-established target for the development of antiviral agents, we here have biochemically screened for inhibitors using a purified recombinantly expressed form of this enzyme. As a result, we were able to identify 10 new Zika virus protease inhibitors. These compounds are natural products and showed strong inhibition in the biochemical assays. Inhibitory constants values for the compounds ranged from 5 nM to 8 μM. Among the most potent inhibitors are flavonoids like irigenol hexa-acetate (K i = 0.28 μM), katacine (K i = 0.26 μM), theaflavin gallate (K i = 0.40 μM) and hematein (K i = 0.33 μM). Inhibitors from other groups of natural products include sennoside A (K i = 0.19 μM) and gossypol (K i = 0.70 μM). Several of the obtained compounds are known for their beneficial health effects and have acceptable pharmacokinetic characteristics. Thus, they could be of interest as lead compounds for the development of important and essential Zika antiviral drugs.
Collapse
Affiliation(s)
- Camila Coelho
- Federal University of São Paulo, Science and Technology, BRAZIL
| | - Gloria Gallo
- Federal University of Sao Paulo, Science and Technology, Av Talim 330, Sao Paulo, 12231-280, Sao Paulo, BRAZIL
| | - Leon Hardy
- University of South Florida, Physics, UNITED STATES
| | | | - Claudia Campos
- Federal University of Sao Paulo, Science and Technology, Talim 330, São José dos Campos, 12231-280, São José dos Campos, BRAZIL
| | - Martin Wurtele
- UNIFESP: Universidade Federal de Sao Paulo, Science and Technology, Talim 330, 12231-280, São José dos Campos, BRAZIL
| |
Collapse
|
17
|
Transcriptome and HPLC Analysis Reveal the Regulatory Mechanisms of Aurantio-Obtusin in Space Environment-Induced Senna obtusifolia Lines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020898. [PMID: 35055719 PMCID: PMC8776150 DOI: 10.3390/ijerph19020898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023]
Abstract
Senna obtusifolia is a famous medicinal plant that is widely used in Asian countries. Its seed plays an important role in the treatment of many diseases because it contains various anthraquinones and flavonoids. Our previous studies have indicated that three space environment-induced S. obtusifolia lines (SP-lines) i.e., QC10, QC29, and QC46, have higher seed yield and aurantio-obtusin (AO) content. However, the underlying mechanism of higher AO content in SP-lines is still unknown. Herein, transcriptome sequencing and HPLC were employed to analyze the differences between SP-lines and ground control (GC3) and elucidate the regulatory mechanisms of AO accumulation in SP-lines. The results show that 4002 differentially expressed genes (DEGs) were identified in SP-lines versus (vs.) GC3. DEGs in the QC10 vs. GC3, QC29 vs. GC3, and QC46 vs. GC3 comparisons were classified into 28, 36, and 81 GO terms and involved in 63, 74, and 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene expression analysis revealed that DEGs involved in anthraquinone pathways were significantly elevated in QC10 and QC46. Integrating the results of GO annotation, KEGG enrichment, and gene expression analysis, we propose that the elevated genes such as DAHPS, DHQS, and MenB enhance the metabolic flux in the anthraquinone pathway and promote AO content in QC10 and QC46. Taken together, this study elucidated the mechanism of AO content in SP-lines and provides valuable genetic information for S. obtusifolia. In addition, to the best of our knowledge, this study presents the first transcriptome analysis of environment-induced medicinal plants and paves the way to select elite S. obtusifolia varieties in the future.
Collapse
|
18
|
Kang SH, Lee WH, Sim JS, Thaku N, Chang S, Hong JP, Oh TJ. De novo Transcriptome Assembly of Senna occidentalis Sheds Light on the Anthraquinone Biosynthesis Pathway. FRONTIERS IN PLANT SCIENCE 2022; 12:773553. [PMID: 35046973 PMCID: PMC8761625 DOI: 10.3389/fpls.2021.773553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Senna occidentalis is an annual leguminous herb that is rich in anthraquinones, which have various pharmacological activities. However, little is known about the genetics of S. occidentalis, particularly its anthraquinone biosynthesis pathway. To broaden our understanding of the key genes and regulatory mechanisms involved in the anthraquinone biosynthesis pathway, we used short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) to perform a spatial and temporal transcriptomic analysis of S. occidentalis. This generated 121,592 RNA-Seq unigenes and 38,440 Iso-Seq unigenes. Comprehensive functional annotation and classification of these datasets using public databases identified unigene sequences related to major secondary metabolite biosynthesis pathways and critical transcription factor families (bHLH, WRKY, MYB, and bZIP). A tissue-specific differential expression analysis of S. occidentalis and measurement of the amount of anthraquinones revealed that anthraquinone accumulation was related to the gene expression levels in the different tissues. In addition, the amounts and types of anthraquinones produced differ between S. occidentalis and S. tora. In conclusion, these results provide a broader understanding of the anthraquinone metabolic pathway in S. occidentalis.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Niha Thaku
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
- Genome-Based BioIT Convergence Institute, Asan, South Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, South Korea
| |
Collapse
|
19
|
Zhou T, Zhang T, Sun J, Zhu H, Zhang M, Wang X. Tissue-specific transcriptome for Rheum tanguticum reveals candidate genes related to the anthraquinones biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2487-2501. [PMID: 34924706 PMCID: PMC8639895 DOI: 10.1007/s12298-021-01099-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Rheum tanguticum (Maxim. ex Regel) Maxim. ex Balf. is a herbaceous perennial plant indigenous to China, and its root and rhizomes were usually used as an important traditional Chinese medicine. However, the genomic resources are still scarce for R. tanguticum and even for Rheum genus. Transcriptome datasets from different tissues of R. tanguticum were obtained to screen the genes related to anthraquinones biosynthesis, and five free anthraquinones were also determined. Nine cDNA libraries of roots, stems and leaves were generated, and a total of 272 million high-quality reads were assembled into 257,942 unigenes. Based on the functional annotation, A total of 227 candidate enzyme genes involved in the MVA, MEP, shikimate and polyketide pathways were identified, and several differentially expressed genes found functionally associated with anthraquinones biosynthesis showed distinct tissue-specific expression patterns. Especially, we found that the expression levels of PKS III genes might result in the content differences of free anthraquinones in different tissues of R. tanguticum. Besides, 137,400 SSR loci were identified, and 64,081 SSR primer pairs were successfully designed based on these loci. Our results not only provide cues for the genetic mechanism of anthraquinone content differences in different tissues of R. tanguticum, but also lay genomic foundation for the subsequent genetic engineering and breeding for Rheum species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01099-8.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Tianyi Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiangyan Sun
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Honghong Zhu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Miao Zhang
- Lixian Spring Pharmaceutical Co. Ltd., Longnan, 742200 China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
20
|
Transcriptome profiling and differential gene expression analysis provides insights into Lr24-based resistance in wheat against Puccinia triticina. 3 Biotech 2021; 11:455. [PMID: 34631354 DOI: 10.1007/s13205-021-02972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
Leaf rust caused by Puccinia triticina is an important disease of wheat and Lr24 gene confers resistance to all known pathotypes of P. triticina in India. Transcripts associated with the Lr24 mediated resistance were identified through transcriptome sequencing and further expression analysis of differentially regulated genes was performed using qPCR technique. De novo transcriptome assembly showed 66,415 and 68,688 transcripts in resistant and susceptible genotypes, respectively. The study revealed that 5873 genes unique to resistant; 6782 genes unique to susceptible, while 10,841 genes were common to both. Gene Ontology distribution statistics showed 1030 and 1068 CDS in biological processes; 1234 and 1326 CDS in cellular processes; 1321 and 1352 CDS in molecular functions, respectively. A total of 659 genes were found to be differentially expressed, of which 349 were upregulated and 310 were downregulated in resistant genotype. Pathway analysis of transcripts appeared in resistant genotype revealed that 279 transcripts had homology with genes involved in signal transduction, 18 transcripts in membrane transport, one transcript in signaling molecules. Real-time PCR study showed that most of the up-regulated defense related genes expressed in early hours indicating that a cascade of defense starts early in Lr24 mediated resistance, which successfully inhibited pathogen establishment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02972-9.
Collapse
|
21
|
Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin. Cancers (Basel) 2021; 13:cancers13112733. [PMID: 34073059 PMCID: PMC8198870 DOI: 10.3390/cancers13112733] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.
Collapse
|
22
|
Wang X, Hu H, Wu Z, Fan H, Wang G, Chai T, Wang H. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. BMC Genomics 2021; 22:353. [PMID: 34000984 PMCID: PMC8127498 DOI: 10.1186/s12864-021-07658-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polygonum cuspidatum Sieb. et Zucc. is a well-known medicinal plant whose pharmacological effects derive mainly from its stilbenes, anthraquinones, and flavonoids. These compounds accumulate differentially in the root, stem, and leaf; however, the molecular basis of such tissue-specific accumulation remains poorly understood. Because tissue-specific accumulation of compounds is usually associated with tissue-specific expression of the related biosynthetic enzyme genes and regulators, we aimed to clarify and compare the transcripts expressed in different tissues of P. cuspidatum in this study. RESULTS High-throughput RNA sequencing was performed using three different tissues (the leaf, stem, and root) of P. cuspidatum. In total, 80,981 unigenes were obtained, of which 40,729 were annotated, and 21,235 differentially expressed genes were identified. Fifty-four candidate synthetase genes and 12 transcription factors associated with stilbene, flavonoid, and anthraquinone biosynthetic pathways were identified, and their expression levels in the three different tissues were analyzed. Phylogenetic analysis of polyketide synthase gene families revealed two novel CHS genes in P. cuspidatum. Most phenylpropanoid pathway genes were predominantly expressed in the root and stem, while methylerythritol 4-phosphate and isochorismate pathways for anthraquinone biosynthesis were dominant in the leaf. The expression patterns of synthase genes were almost in accordance with metabolite profiling in different tissues of P. cuspidatum as measured by high-performance liquid chromatography or ultraviolet spectrophotometry. All predicted transcription factors associated with regulation of the phenylpropanoid pathway were expressed at lower levels in the stem than in the leaf and root, but no consistent trend in their expression was observed between the leaf and the root. CONCLUSIONS The molecular knowledge of key genes involved in the biosynthesis of P. cuspidatum stilbenes, flavonoids, and anthraquinones is poor. This study offers some novel insights into the biosynthetic regulation of bioactive compounds in different P. cuspidatum tissues and provides valuable resources for the potential metabolic engineering of this important medicinal plant.
Collapse
Affiliation(s)
- Xiaowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Hongyan Hu
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Zhijun Wu
- School of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haili Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Guowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
| |
Collapse
|
23
|
Suktham K, Daisuk P, Shotipruk A. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia L. (Rubiaceae): Errata and review of technological development and prospects. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Patel AA, Shukla YM, Kumar S, Sakure AA, Parekh MJ, Zala HN. Transcriptome analysis for molecular landscaping of genes controlling diterpene andrographolide biosynthesis in Andrographis paniculata ( Burm . f.) Nees. 3 Biotech 2020; 10:512. [PMID: 33173716 PMCID: PMC7648546 DOI: 10.1007/s13205-020-02511-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022] Open
Abstract
Kalmegh [Andrographis paniculata (Burm. f.) Nees.] is one of the essential medicinal plants due to an important terpenoid, i.e. andrographolide possesses immense therapeutic and pharmacological uses. The experiment was performed to elucidate the expression of candidate genes associated with andrographolide biosynthesis. Based on results obtained in chromatography for andrographolide content analysis of six genotypes, two contrast genotypes, i.e. IC-520361 (maximum andrographolide content-2.33%) and Anand Local (lowest andrographolide content-1.01%) were selected for the transcriptome analysis. A total of 1.04 Gb of raw data were produced using MiSeq Illumina platform, in which IC 520361 generated 645 million base pairs sequence along with 4,524,251 raw reads and Anand Local produced 419 million base pairs sequence along with 3,021,316 raw reads. The combined assembly of high quality reads generated for both the samples had 33,247,454 bp of total assembled bases and 38,292 of transcripts. The GC percent of assembled transcripts was 44.79%, an average read length was 800 bp and N50 value was 1186 bp. Species-specific distribution using BLAST X (Nr), showed the highest Blast hits with Sesamum indicum. Out of 23,346 transcripts, 87% of transcripts annotated in UniProt KB (Universal Protein Resource KnowledgeBase) database and only 0.21% of transcripts were annotated in TAIR (The Arabidopsis Information Resources). Biological processes gene ontology classified based on Blast2GO showed, out of 6853 transcripts, 1370 of transcripts were represented by terpenoid biosynthetic pathway, which involved in secondary metabolite andrographolide biosynthesis. The heat map showed 1016 transcripts were differentially expressed between two kalmegh genotypes, in which nine important differentially expressed transcripts related to MEP (2C methyl-d-erythritol 4-phosphate) and MVA (Mevalonic acid) andrographolide biosynthesis pathways such as, geranyl diphosphate synthase small subunit, Isopentenyl-diphosphate delta-isomerase i-like, 4, 13-hydroxy-3-methylglutaryl-coenzyme a reductase etc. were upregulated in IC 520361 as compared to Anand Local, which were validated through RT-qPCR. The highest expression of gene 13-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGR) was reported, which is responsible for accumulation of andrographolide in leaf. This comparative transcriptome analysis confirmed the expression level of genes were higher in accession IC 520361 as compare to Anand Local related to andrographolide biosynthesis pathways i.e. MEP and MVA. These up-regulated genes could be over-expressed to enhance the andrographolide content using genetic engineering of these metabolic pathways. It will also give an idea to the breeder for development of molecular markers for direct screening of the genotypes.
Collapse
Affiliation(s)
- Ankita A. Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Yogesh M. Shukla
- Department of Biochemistry, B.A. College of Agriculture, Anand Agricultural University, Anand, 388 110 India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Amar A. Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Mithil J. Parekh
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Harshvardhan N. Zala
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
- Department of Biotechnology, S. D. Agricultural University, Sardarkrushinagar, 385 506 India
| |
Collapse
|
25
|
Park YJ, Baek SA, Kim JK, Park SU. Integrated Analysis of Transcriptome and Metabolome in Cirsium japonicum Fisch ex DC. ACS OMEGA 2020; 5:29312-29324. [PMID: 33225162 PMCID: PMC7675961 DOI: 10.1021/acsomega.0c04001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 05/29/2023]
Abstract
Cirsium japonicum Fisch ex DC belongs to the Compositae family and has been used as a folk remedy source in Asian countries because of its health-promoting properties. It is known that C. japonicum contains flavonoids, furans, long-chain alcohols, sterols, and volatile oils. Nevertheless, the molecular mechanism of secondary metabolite biosynthesis remains poorly understood. Therefore, transcriptome analysis and metabolic profiling were performed using different parts of C. japonicum to investigate phenylpropanoid metabolism. Based on the BLASTX search results, we identified 29 orthologs of enzymes responsible for phenylpropanoid biosynthesis. Additionally, 75 metabolites were identified in C. japonicum. Most of the flavonoid biosynthetic genes were significantly expressed ranging from 2.6- to 500-fold higher in the flowers than those in the leaves. Correspondently, the total content of flavonols was 21-fold higher in the flowers than in the roots. However, the total level of flavones showed 58-fold higher amounts in the leaves than in the flowers. Additionally, the total content of flavanols was 19-fold higher in the leaves than in the roots. The results of this study provide transcriptomic and metabolic information to elucidate the tissue-specific phenylpropanoid metabolism of C. japonicum.
Collapse
Affiliation(s)
- Yun Ji Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Seung-A Baek
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
26
|
Kang SH, Lee WH, Lee CM, Sim JS, Won SY, Han SR, Kwon SJ, Kim JS, Kim CK, Oh TJ. De novo transcriptome sequence of Senna tora provides insights into anthraquinone biosynthesis. PLoS One 2020; 15:e0225564. [PMID: 32380515 PMCID: PMC7205477 DOI: 10.1371/journal.pone.0225564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2020] [Indexed: 02/04/2023] Open
Abstract
Senna tora is an annual herb with rich source of anthraquinones that have tremendous pharmacological properties. However, there is little mention of genetic information for this species, especially regarding the biosynthetic pathways of anthraquinones. To understand the key genes and regulatory mechanism of anthraquinone biosynthesis pathways, we performed spatial and temporal transcriptome sequencing of S. tora using short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) technologies, and generated two unigene sets composed of 118,635 and 39,364, respectively. A comprehensive functional annotation and classification with multiple public databases identified array of genes involved in major secondary metabolite biosynthesis pathways and important transcription factor (TF) families (MYB, MYB-related, AP2/ERF, C2C2-YABBY, and bHLH). Differential expression analysis indicated that the expression level of genes involved in anthraquinone biosynthetic pathway regulates differently depending on the degree of tissues and seeds development. Furthermore, we identified that the amount of anthraquinone compounds were greater in late seeds than early ones. In conclusion, these results provide a rich resource for understanding the anthraquinone metabolism in S. tora.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
- * E-mail: (SHK); (CKK); (TJO)
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, Korea
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
- * E-mail: (SHK); (CKK); (TJO)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, Korea
- Genome-based BioIT Convergence Institute, Asan, Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Korea
- * E-mail: (SHK); (CKK); (TJO)
| |
Collapse
|
27
|
Szeliga M, Ciura J, Grzesik M, Tyrka M. Identification of candidate genes involved in steroidal alkaloids biosynthesis in organ-specific transcriptomes of Veratrum nigrum L. Gene 2019; 712:143962. [PMID: 31288057 DOI: 10.1016/j.gene.2019.143962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Veratrum nigrum is protected plant of Melanthiaceae family, able to synthetize unique steroidal alkaloids important for pharmacy. Transcriptomes from leaves, stems and rhizomes of in vitro maintained V. nigrum plants were sequenced and annotated for genes and markers discovery. Sequencing of samples derived from the different organs resulted in a total of 108,511 contigs with a mean length of 596 bp. Transcripts derived from leaf and stalk were annotated at 28%, and 38% in Nr nucleotide database, respectively. The sequencing revealed 949 unigenes related with lipid metabolism, including 73 transcripts involved in steroids and genus-specific steroid alkaloids biosynthesis. Additionally, 3203 candidate SSRs markers we identified in unigenes with average density of one SSR locus every 6.2 kb sequence. Unraveling of biochemical machinery of the pathway responsible for steroidal alkaloids will open possibility to design and optimize biotechnological process. The transcriptomic data provide valuable resources for biochemical, molecular genetics, comparative transcriptomics, functional genomics, ecological and evolutionary studies of V. nigrum.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland.
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michalina Grzesik
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1, 35-601 Rzeszów, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland
| |
Collapse
|
28
|
Pourmazaheri H, Soorni A, Kohnerouz BB, Dehaghi NK, Kalantar E, Omidi M, Naghavi MR. Comparative analysis of the root and leaf transcriptomes in Chelidonium majus L. PLoS One 2019; 14:e0215165. [PMID: 30986259 PMCID: PMC6464174 DOI: 10.1371/journal.pone.0215165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Chelidonium majus is a traditional medicinal plant, which commonly known as a rich resource for the major benzylisoquinoline alkaloids (BIAs), including morphine, sanguinarine, and berberine. To understand the biosynthesis of C. majus BIAs, we performed de novo transcriptome sequencing of its leaf and root tissues using Illumina technology. Following comprehensive evaluation of de novo transcriptome assemblies produced with five programs including Trinity, Bridger, BinPacker, IDBA-tran, and Velvet/Oases using a series of k-mer sizes (from 25 to 91), BinPacker was found to produce the best assembly using a k-mer of 25. This study reports the results of differential gene expression (DGE), functional annotation, gene ontology (GO) analysis, classification of transcription factor (TF)s, and SSR and miRNA discovery. Our DGE analysis identified 6,028 transcripts that were up-regulated in the leaf, and 4,722 transcripts that were up-regulated in the root. Further investigations showed that most of the genes involved in the BIA biosynthetic pathway are significantly expressed in the root compared to the leaf. GO analysis showed that the predominant GO domain is "cellular component", while TF analysis found bHLH to be the most highly represented TF family. Our study further identified 10 SSRs, out of a total of 39,841, that showed linkage to five unigenes encoding enzymes in the BIA pathway, and 10 conserved miRNAs that were previously not detected in this plant. The comprehensive transcriptome information presented herein provides a foundation for further explorations on study of the molecular mechanisms of BIA synthesis in C. majus.
Collapse
Affiliation(s)
- Helen Pourmazaheri
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Bahram Baghban Kohnerouz
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran
| | - Nafiseh Khosravi Dehaghi
- Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Enayatollah Kalantar
- Department of Microbiology and Immunology, Faculty of Medicine, Alborz University of Medical Science, Karaj, Islamic Republic of Iran
| | - Mansoor Omidi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran
| | - Mohammad Reza Naghavi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran
| |
Collapse
|
29
|
Liu X, Wang X, Chen Z, Ye J, Liao Y, Zhang W, Chang J, Xu F. De novo assembly and comparative transcriptome analysis: novel insights into terpenoid biosynthesis in Chamaemelum nobile L. PLANT CELL REPORTS 2019; 38:101-116. [PMID: 30430213 DOI: 10.1007/s00299-018-2352-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
Analysis of terpenoids content, transcriptome from Chamaemelum nobile showed that the content of the terpenoids in the roots was the highest and key genes involved in the terpenoids synthesis pathway were identified. Chamaemelum nobile is a widely used herbaceous medicinal plant rich in volatile oils, mainly composed of terpenoids. It is widely used in food, cosmetics, medicine, and other fields. In this study, we analyzed the transcriptome and the content and chemical composition of the terpenoids in different organs of C. nobile. Gas chromatography-mass spectrometry analysis showed that the total content of the terpenoids among C. nobile organs was highest in the roots, followed by the flowers. Illumina HiSeq 2500 high-throughput sequencing technology was used to sequence the transcripts of roots, stems, leaves, and flowers of C. nobile. We obtained 139,757 unigenes using the Trinity software assembly. A total of 887 unigenes were annotated to secondary metabolism. In total, 55,711 differentially expressed genes were screened among different organs of C. nobile. We identified 16 candidate genes that may be involved in the terpenoid biosynthesis from C. nobile and analyzed their expression patterns using real-time PCR. Results showed that the expression pattern of these genes was tissue-specific and had significant differential expression levels in different organs of C. nobile. Among these genes, 13 were expressed in roots with the highest levels. Furthermore, the transcript levels of these 13 genes were positively correlated with the content of α-pinene, β-phellandrene, 1,8-cineole, camphor, α-terpineol, carvacrol, (E,E)-farnesol and chamazulene, suggesting that these 13 genes may be involved in the regulation of the synthesis of the volatile terpenoids. These results laid the foundation for the subsequent improvement of C. nobile quality through genetic engineering.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaohui Wang
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Zexiong Chen
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jie Chang
- Hubei Collaborative Innovation Center of Targeted Antitumor Drug, Jingchu University of Technology, Jingmen, 448000, Hubei, China
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, 448000, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
30
|
Fay JV, Watkins CJ, Shrestha RK, Litwiñiuk SL, Talavera Stefani LN, Rojas CA, Argüelles CF, Ferreras JA, Caccamo M, Miretti MM. Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles. BMC Genomics 2018; 19:891. [PMID: 30526481 PMCID: PMC6286616 DOI: 10.1186/s12864-018-5240-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
Background The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of entire provinces heavily relies on the production, collection and manufacture of Ilex paraguariensis, the fifth plant species with highest antioxidant activity. Polyphenols are associated to relevant health benefits including strong antioxidant properties. Despite its regional relevance and potential biotechnological applications, little is known about functional genomics and genetics underlying phenotypic variation of relevant traits. By generating tissue specific transcriptomic profiles, we aimed to comprehensively annotate genes in the Ilex paraguariensis phenylpropanoid pathway and to evaluate differential expression profiles. Results In this study we generated a reliable transcriptome assembly based on a collection of 15 RNA-Seq libraries from different tissues of Ilex paraguariensis. A total of 554 million RNA-Seq reads were assembled into 193,897 transcripts, where 24,612 annotated full-length transcripts had complete ORF. We assessed the transcriptome assembly quality, completeness and accuracy using BUSCO and TransRate; consistency was also evaluated by experimentally validating 11 predicted genes by PCR and sequencing. Functional annotation against KEGG Pathway database identified 1395 unigenes involved in biosynthesis of secondary metabolites, 531 annotated transcripts corresponded to the phenylpropanoid pathway. The top 30 differentially expressed genes among tissue revealed genes involved in photosynthesis and stress response. These significant differences were then validated by qRT-PCR. Conclusions Our study is the first to provide data from whole genome gene expression profiles in different Ilex paraguariensis tissues, experimentally validating in-silico predicted genes key to the phenylpropanoid (antioxidant) pathway. Our results provide essential genomic data of potential use in breeding programs for polyphenol content. Further studies are necessary to assess if the observed expression variation in the phenylpropanoid pathway annotated genes is related to variations in leaves’ polyphenol content at the population scale. These results set the current reference for Ilex paraguariensis genomic studies and provide a substantial contribution to research and biotechnological applications of phenylpropanoid secondary metabolites. Electronic supplementary material The online version of this article (10.1186/s12864-018-5240-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica V Fay
- Grupo de Investigación en Genética Aplicada (GIGA), Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biología Subtropical (IBS UNaM-CONICET), Universidad Nacional de Misiones, Jujuy 1745, CP3300, Posadas, Misiones, Argentina
| | - Christopher J Watkins
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Ram K Shrestha
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Sergio L Litwiñiuk
- Grupo de Investigación en Genética Aplicada (GIGA), Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biología Subtropical (IBS UNaM-CONICET), Universidad Nacional de Misiones, Jujuy 1745, CP3300, Posadas, Misiones, Argentina
| | - Liliana N Talavera Stefani
- Grupo de Investigación en Genética Aplicada (GIGA), Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biología Subtropical (IBS UNaM-CONICET), Universidad Nacional de Misiones, Jujuy 1745, CP3300, Posadas, Misiones, Argentina
| | - Cristian A Rojas
- Universidad Federal de la Integración Latinoamericana, Foz de Iguazú, PR, Brazil
| | - Carina F Argüelles
- Grupo de Investigación en Genética Aplicada (GIGA), Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biología Subtropical (IBS UNaM-CONICET), Universidad Nacional de Misiones, Jujuy 1745, CP3300, Posadas, Misiones, Argentina
| | - Julian A Ferreras
- Grupo de Investigación en Genética Aplicada (GIGA), Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biología Subtropical (IBS UNaM-CONICET), Universidad Nacional de Misiones, Jujuy 1745, CP3300, Posadas, Misiones, Argentina
| | - Mario Caccamo
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Marcos M Miretti
- Grupo de Investigación en Genética Aplicada (GIGA), Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biología Subtropical (IBS UNaM-CONICET), Universidad Nacional de Misiones, Jujuy 1745, CP3300, Posadas, Misiones, Argentina.
| |
Collapse
|
31
|
Zhao P, Ming Q, Qiu J, Tian D, Liu J, Shen J, Liu QH, Yang X. Ethanolic Extract of Folium Sennae Mediates the Glucose Uptake of L6 Cells by GLUT4 and Ca 2. Molecules 2018; 23:molecules23112934. [PMID: 30424024 PMCID: PMC6278344 DOI: 10.3390/molecules23112934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
In today’s world, diabetes mellitus (DM) is on the rise, especially type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. T2DM has high morbidity, and therapies with natural products have attracted much attention in the recent past. In this paper, we aimed to study the hypoglycemic effect and the mechanism of an ethanolic extract of Folium Sennae (FSE) on L6 cells. The glucose uptake of L6 cells was investigated using a glucose assay kit. We studied glucose transporter 4 (GLUT4) expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), and protein kinase C (PKC) phosphorylation levels using western blot analysis. GLUT4 trafficking and intracellular Ca2+ levels were monitored by laser confocal microscopy in L6 cells stably expressing IRAP-mOrange. GLUT4 fusion with plasma membrane (PM) was observed by myc-GLUT4-mOrange. FSE stimulated glucose uptake; GLUT4 expression and translocation; PM fusion; intracellular Ca2+ elevation; and the phosphorylation of AMPK, Akt, and PKC in L6 cells. GLUT4 translocation was weakened by the AMPK inhibitor compound C, PI3K inhibitor Wortmannin, PKC inhibitor Gö6983, G protein inhibitor PTX/Gallein, and PLC inhibitor U73122. Similarly, in addition to PTX/Gallein and U73122, the IP3R inhibitor 2-APB and a 0 mM Ca2+-EGTA solution partially inhibited the elevation of intracellular Ca2+ levels. BAPTA-AM had a significant inhibitory effect on FSE-mediated GLUT4 activities. In summary, FSE regulates GLUT4 expression and translocation by activating the AMPK, PI3K/Akt, and G protein–PLC–PKC pathways. FSE causes increasing Ca2+ concentration to complete the fusion of GLUT4 vesicles with PM, allowing glucose uptake. Therefore, FSE may be a potential drug for improving T2DM.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Junying Qiu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan 430074, China.
| |
Collapse
|
32
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities. 3 Biotech 2018; 8:454. [PMID: 30370195 PMCID: PMC6195494 DOI: 10.1007/s13205-018-1473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
With the continuous increase in the population of developing countries and decline of natural resources, there is an urgent need to qualitatively and quantitatively augment crop productivity by using new tools and technologies for improvement of agriculturally important traits. The new scientific and technological omics-based approaches have enabled us to deal with several issues and challenges faced by modern agricultural system and provided us novel opportunities for ensuring food and nutritional security. Recent developments in sequencing techniques have made available huge amount of genomic and transcriptomic data on model and cultivated crop plants including Arabidopsis thaliana, Oryza sativa, Triticum aestivum etc. The sequencing data along with other data generated through several omics platforms have significantly influenced the disciplines of crop sciences. Gene discovery and expression profiling-based technologies are offering enormous opportunities to the scientific community which can now apply marker-assisted selection technology to assess and enhance diversity in their collected germplasm, introgress essential traits from new sources and investigate genes that control key traits of crop plants. Utilization of omics science and technologies for crop productivity, protection and management has recently been receiving a lot of attention; the majority of the efforts have been put into signifying the possible applications of various omics technologies in crop plant sciences. This article highlights the background of challenges and opportunities for augmentation of crop productivity through interventions of omics technologies in India.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Present Address: Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
33
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
34
|
Perroud PF, Haas FB, Hiss M, Ullrich KK, Alboresi A, Amirebrahimi M, Barry K, Bassi R, Bonhomme S, Chen H, Coates JC, Fujita T, Guyon-Debast A, Lang D, Lin J, Lipzen A, Nogué F, Oliver MJ, Ponce de León I, Quatrano RS, Rameau C, Reiss B, Reski R, Ricca M, Saidi Y, Sun N, Szövényi P, Sreedasyam A, Grimwood J, Stacey G, Schmutz J, Rensing SA. The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:168-182. [PMID: 29681058 DOI: 10.1111/tpj.13940] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Alessandro Alboresi
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mojgan Amirebrahimi
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Haodong Chen
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Daniel Lang
- Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Junyan Lin
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Melvin J Oliver
- USDA-ARS-MWA, Plant Genetics Research Unit, University of Missouri, Columbia, MO, 652117, USA
| | - Inés Ponce de León
- Department of Molecular Biology, Clemente Estable Biological Research Institute, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Ralph S Quatrano
- Department of Biology, Washington University in St Louis, One Brookings Drive, St Louis, MO, 63130, USA
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Route de St-Cyr RD10, 78026, Versailles Cedex, France
| | - Bernd Reiss
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Köln, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Mariana Ricca
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Younousse Saidi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ning Sun
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeremy Schmutz
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| |
Collapse
|
35
|
Mishra P, Shukla AK, Sundaresan V. Candidate DNA Barcode Tags Combined With High Resolution Melting (Bar-HRM) Curve Analysis for Authentication of Senna alexandrina Mill. With Validation in Crude Drugs. FRONTIERS IN PLANT SCIENCE 2018; 9:283. [PMID: 29593755 PMCID: PMC5859231 DOI: 10.3389/fpls.2018.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/19/2018] [Indexed: 05/07/2023]
Abstract
Senna alexandrina (Fabaceae) is a globally recognized medicinal plant for its laxative properties as well as the only source of sennosides, and is highly exported bulk herb from India. Its major procurement is exclusively from limited cultivation, which leads to risks of deliberate or unintended adulteration. The market raw materials are in powdered or finished product form, which lead to difficulties in authentication. Here, DNA barcode tags based on chloroplast genes (rbcL and matK) and intergenic spacers (psbA-trnH and ITS) were developed for S. alexandrina along with the allied species. The ability and performance of the ITS1 region to discriminate among the Senna species resulted in the present proposal of the ITS1 tags as successful barcode. Further, these tags were coupled with high-resolution melting (HRM) curve analysis in a real-time PCR genotyping method to derive Bar-HRM (Barcoding-HRM) assays. Suitable HRM primer sets were designed through SNP detection and mutation scanning in genomic signatures of Senna species. The melting profiles of S. alexandrina and S. italica subsp. micrantha were almost identical and the remaining five species were clearly separated so that they can be differentiated by HRM method. The sensitivity of the method was utilized to authenticate market samples [Herbal Sample Assays (HSAs)]. HSA01 (S. alexandrina crude drug sample from Bangalore) and HSA06 (S. alexandrina crude drug sample from Tuticorin, Tamil Nadu, India) were found to be highly contaminated with S. italica subsp. micrantha. Species admixture samples mixed in varying percentage was identified sensitively with detection of contamination as low as 1%. The melting profiles of PCR amplicons are clearly distinct, which enables the authentic differentiation of species by the HRM method. This study reveals that DNA barcoding coupled with HRM is an efficient molecular tool to authenticate Senna herbal products in the market for quality control in the drug supply chain. CIMAP Communication Number: CIMAP/PUB/2017/31.
Collapse
Affiliation(s)
- Priyanka Mishra
- Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bangalore, India
| | - Ashutosh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Velusamy Sundaresan
- Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bangalore, India
- *Correspondence: Velusamy Sundaresan, ;
| |
Collapse
|
36
|
Specific microRNA library of IFN-τ on bovine endometrial epithelial cells. Oncotarget 2017; 8:61487-61498. [PMID: 28977879 PMCID: PMC5617439 DOI: 10.18632/oncotarget.18470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/14/2017] [Indexed: 12/02/2022] Open
Abstract
IFN-τ is specifically secreted by the conceptus in ruminants during early pregnancy, and it plays a vital role in the immunological function of pregnancy. However, its mechanism involving microRNA (miRNA) is still not well understood. Deep sequencing was used to explore the specific miRNA library of IFN-τ on bovine endometrial epithelial cells (bEECs). The results showed that 574 known bovine miRNAs and 109 novel miRNAs were identified. We found 74 differentially expressed miRNAs, including 30 commonly expressed miRNAs in the experiment. Then, qPCR verification of six selected miRNAs showed that they corresponded with the sequencing data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of predicted target genes of differentially expressed miRNAs, including influenza A, herpes simplex infection, antigen processing and presentation, viral myocarditis, TNF signaling pathway, graft-versus-host disease, and allograft rejection. These results may provide important contributions to the immune response during early pregnancy in ruminants, but further studies are need to verify the proposed cellular/immunological effects and role of specific miRNA as biomarkers in vivo.
Collapse
|
37
|
Guo D, Xue Y, Li D, He B, Jia X, Dong X, Guo M. Overexpression of CtCHS1 Increases Accumulation of Quinochalcone in Safflower. FRONTIERS IN PLANT SCIENCE 2017; 8:1409. [PMID: 28861095 PMCID: PMC5559696 DOI: 10.3389/fpls.2017.01409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 05/10/2023]
Abstract
Carthami flos, the dried petal of safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, in which quinochalcone glucosides such as hydrosafflower yellow A (HSYA), carthamin are uniquely present and have been identified as active compounds. In the present study, through sequencing of a safflower floret cDNA library and subsequent microarray analysis, we found 23 unigenes (5 PALs, 1 C4Hs, 5 4CLs, 6 CHSs, 2 CHIs, 2 DFRs, 2 FLSs) involved in flavonoid pathway, of which 4 were up-regulated differentially during quinochalcone glucosides accumulation with the floret developing stage. The up-regulated genes were verified by PCR methods. Considering chalcone synthase are entry enzyme in flavonoid biosynthesis, CHS1 was focused on target gene to verify its function furtherly. Bioinformation analysis showed that CHS1 shared 86.94% conserved residues with CHS from other plants. Subcellular localization showed that CtCHS1 was localized in cytoplasm in onion epidermal cells. The transgenic safflower plant with overexpression CtCHS1 by Agrobacterium-mediated pollen-tube pathway method was firstly generated. The results present that expression of PAL2, PAL3, CHS1, CHS4, CHS6 increased and expression of CHI1 and CHI2 decreased in the transgenic plant floret. Meanwhile, the accumulation of quinochalcone glucosides increased by ∼20-30% and accumulation of quercetin-3-β-D-glucoside and quercetin decreased by 48 and 63% in the transgenic plant floret. These results suggested that CtCHS1 played an important role in quinochalcone glucosides biosynthesis rather than flavonol biosynthesis. These results also demonstrated that the pollen-tube pathway method was an efficient method for gene transformation in safflower. Our study will provide a deep understanding of potential synthetic genes involved in quinochalcone biosynthetic pathway.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Yingru Xue
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Dongqiao Li
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Xin Dong
- Testing and Analysis Center, College of Pharmacy, Second Military Medical UniversityShanghai, China
- *Correspondence: Xin Dong, Meili Guo,
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
- *Correspondence: Xin Dong, Meili Guo,
| |
Collapse
|
38
|
Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 2016; 17:1-25. [PMID: 27709374 DOI: 10.1007/s10142-016-0523-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with "green plant database (txid 33090)," Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these "catalytic activity" (GO: 0003824) (25.10 %) and "binding activity" (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical scavengers, chlorophyll metabolism, leaf cuticular wax, polyamines, and protective proteins were identified through BLASTX search. The lucine-rich repeat kinase family was the most abundantly found group of protein kinases. Orphan, bHLH, and bZIP family TFs were the most abundantly found in senna. Six genes encoding MYC2 transcription factor, 9-cis-epoxycarotenoid dioxygenase (NCED), l -ascorbate peroxidase (APX), aminocyclopropane carboxylate oxidase (ACO), abscisic acid 8'-hydroxylase (ABA), and WRKY transcription factor were confirmed through reverse transcriptase-PCR (RT-PCR) and Sanger sequencing for the first time in senna. The potential drought stress-related transcripts identified in this study provide a good start for further investigation into the drought adaptation in senna. Additionally, our transcriptome sequences are the valuable resource for accelerated genomics-assisted genetic improvement programs and facilitate manipulation of biochemical pathways for developing drought-tolerant genotypes of crop plants.
Collapse
|
39
|
Guo DD, Liu F, Tu YH, He BX, Gao Y, Guo ML. Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis. PLoS One 2016; 11:e0158159. [PMID: 27391785 PMCID: PMC4938162 DOI: 10.1371/journal.pone.0158159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant in China. Flavonoids are the dominant active medical compounds. UDP-glycosyltransferase plays an essential role in the biosynthesis and storage of flavonoids in safflower. In this study, 45 UGT unigenes were screened from our transcriptomic database of safflower. Among them, 27 UGT unigenes were predicted to own a complete open reading frame with various pI and Mw. The phylogenetic tree showed that CtUGT3 and CtUGT16 were classified under the UGT71 subfamily involved in metabolite process, whereas CtUGT25 has high identities with PoUGT both catalyzing the glycosylation of flavonoids and belonging to the UGT90 subfamily. cDNA microarray exhibited that the three UGT genes displayed temporal difference in two chemotype safflower lines. To functionally characterize UGT in safflower, CtUGT3, CtUGT16 and CtUGT25 were cloned and analyzed. Subcellular localization suggested that the three UGTs might be located in the cell cytoplasm and chloroplast. The expression pattern showed that the three UGTs were all suppressed in two lines responsive to methyl jasmonate induction. The co-expression relation of expression pattern and metabolite accumulation demonstrated that CtUGT3 and CtUGT25 were positively related to kaempferol-3-O-β-D-glucoside and CtUGT16 was positively related to quercetin-3-O-β-D-glucoside in yellow line, whereas CtUGT3 and CtUGT25 were positively related to quercetin-3-O-β-D-glucoside in white line. This study indicates that the three CtUGTs play a significant and multiple role in flavonoids biosynthesis with presenting different functional characterization in two safflower lines.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Fei Liu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Yan-Hua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Bei-Xuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
- * E-mail: (MLG); (YG)
| | - Mei-Li Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, 200433, Shanghai, China
- * E-mail: (MLG); (YG)
| |
Collapse
|
40
|
Sharma S, Shrivastava N. Renaissance in phytomedicines: promising implications of NGS technologies. PLANTA 2016; 244:19-38. [PMID: 27002972 DOI: 10.1007/s00425-016-2492-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Medicinal plant research is growing significantly in faith to discover new and more biologically compatible phytomedicines. Deposition of huge genome/trancriptome sequence data assisted by NGS technologies has revealed the new possibilities for producing upgraded bioactive molecules in medicinal plants. Growing interest of investors and consumers in the herbal drugs raises the need for extensive research to open the facts and details of every inch of life canvas of medicinal plants to produce improved quality of phytomedicines. As in agriculture crops, knowledge emergence from medicinal plant's genome/transcriptome, can be used to assure their amended quality and these improved varieties are then transported to the fields for cultivation. Genome studies generate huge sequence data which can be exploited further for obtaining information regarding genes/gene clusters involved in biosynthesis as well as regulation. This can be achieved rapidly at a very large scale with NGS platforms. Identification of new RNA molecules has become possible, which can lead to the discovery of novel compounds. Sequence information can be combined with advanced phytochemical and bioinformatics tools to discover functional herbal drugs. Qualitative and quantitative analysis of small RNA species put a light on the regulatory aspect of biosynthetic pathways for phytomedicines. Inter or intra genomic as well as transcriptomic interactive processes for biosynthetic pathways can be elucidated in depth. Quality management of herbal material will also become rapid and high throughput. Enrichment of sequence information will be used to engineer the plants to get more efficient phytopharmaceuticals. The present review comprises of role of NGS technologies to boost genomic studies of pharmaceutically important plants and further, applications of sequence information aiming to produce enriched phytomedicines. Emerging knowledge from the medicinal plants genome/transcriptome can give birth to deep understanding of the processes responsible for biosynthesis of medicinally important compounds.
Collapse
Affiliation(s)
- Sonal Sharma
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India
- Nirma University, Ahmedabad, Gujarat, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India.
| |
Collapse
|