1
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LT, Lucas D, Deepe GS, Jankowski MP. Macrophage epigenetic memories of early life injury drive neonatal nociceptive priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528015. [PMID: 36824978 PMCID: PMC9948986 DOI: 10.1101/2023.02.13.528015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
|
3
|
Krause BJ, Vega-Tapia FA, Soto-Carrasco G, Lefever I, Letelier C, Saez CG, Castro-Rodriguez JA. Maternal obesity and high leptin levels prime pro-inflammatory pathways in human cord blood leukocytes. Placenta 2023; 142:75-84. [PMID: 37651852 DOI: 10.1016/j.placenta.2023.08.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Maternal obesity alters the immune function in the offspring. We hypothesize that maternal obesity and pro-inflammatory pathways induce leptin-related genes in neonatal monocytes, whereby high leptin levels enhance their inflammatory response. METHODS Transcriptional profiles of cord blood leukocytes (CBL) in basal and pro-inflammatory conditions were studied to determine differentially expressed genes (DEG). The DNA methylation profile of CB monocytes (CBM) of neonates born to control BMI mothers and women with obesity was assayed to identify differentially methylated probes (DMP). CBM-derived macrophages were cultured with or without leptin (10-100 ng/ml) and then stimulated with lipopolysaccharide (LPS, 100 ng/ml) and interferon-gamma (20 ng/ml) to assess the induction of TNF-α and IL-10 transcripts. RESULTS CBL from pregnancies with obesity (CBL-Ob) showed 12,183 DEG, affecting 49 out of 78 from the leptin pathway. Control CBM exposed to LPS showed 45 leptin-related DEG, an effect prevented by the co-exposure to LPS and IL-10. Conversely, CBM-Ob showed 5279 DMP enriched in insulin- and leptin-related genes, and Lasso regression of leptin-related DMP showed high predictive value for plasma leptin levels (r2 = 0.9897) and maternal BMI categories (AUC = 1). Chronic exposure to leptin increased TNF-α and decreased IL-10 levels in control BMI samples but not in Ob-CBM. Enhanced TNF-α induction after proinflammatory stimulation was observed in leptin-treated control BMI samples. DISCUSSION Obesity in pregnancy is associated with a distinctive expression and DNA methylation profile of leptin-related genes in cord blood monocytes, meanwhile, leptin enhances the expression of pro-inflammatory cytokines upon stimulation with M1-skewing agents.
Collapse
Affiliation(s)
- Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| | - Fabian A Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gustavo Soto-Carrasco
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora Lefever
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Letelier
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia G Saez
- Hematology-Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose A Castro-Rodriguez
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Dourson AJ, Jankowski MP. Developmental impact of peripheral injury on neuroimmune signaling. Brain Behav Immun 2023; 113:156-165. [PMID: 37442302 PMCID: PMC10530254 DOI: 10.1016/j.bbi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
A peripheral injury drives neuroimmune interactions at the level of the injury and throughout the neuraxis. Understanding these systems will be beneficial in the pursuit to target persistent pain that involves both neural and immune components. In this review, we discuss the impact of injury on the development of neuroimmune signaling, along with data that suggest a possible cellular immune memory. We also discuss the parallel effects of injury in the nervous system and immune related areas including bone marrow, lymph node and central nervous system-related cells. Finally, we relate these findings to patient populations and current research that evaluates human tissue.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Johnson D, Carbonetti N. Roles and Effects of Interferon Lambda Signaling in the Context of Bacterial Infections. J Interferon Cytokine Res 2023; 43:363-369. [PMID: 37289801 PMCID: PMC10517327 DOI: 10.1089/jir.2023.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Type III interferon, or interferon lambda (IFNλ), was discovered 20 years ago and has been studied primarily for its role in combatting viral infections. However, it is also induced in response to certain bacterial infections but its roles and effects in this context are relatively poorly understood. In this mini review, we discuss the roles of IFNλ signaling in bacterial infections, highlighting its deleterious or protective effects for different infections. We also discuss a couple of recent studies showing that some bacteria possess defense mechanisms against the effects of IFNλ. We hope that this review will spur further investigation into the roles of IFNλ in the context of bacterial infections and will promote considerations of its therapeutic potential for these infections.
Collapse
Affiliation(s)
- Da'Kuawn Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Solimando AG, Bittrich M, Shahini E, Albanese F, Fritz G, Krebs M. Determinants of COVID-19 Disease Severity-Lessons from Primary and Secondary Immune Disorders including Cancer. Int J Mol Sci 2023; 24:ijms24108746. [PMID: 37240091 DOI: 10.3390/ijms24108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders-including patients suffering from cancer-were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.
Collapse
Affiliation(s)
- Antonio G Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Federica Albanese
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Georg Fritz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy at the Immanuel Klinikum Bernau, Heart Center Brandenburg, 16321 Bernau, Germany
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Polcz VE, Rincon JC, Hawkins RB, Barrios EL, Efron PA, Moldawer LL, Larson SD. TRAINED IMMUNITY: A POTENTIAL APPROACH FOR IMPROVING HOST IMMUNITY IN NEONATAL SEPSIS. Shock 2023; 59:125-134. [PMID: 36383390 PMCID: PMC9957873 DOI: 10.1097/shk.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABSTRACT Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.
Collapse
Affiliation(s)
- Valerie E Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
8
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
9
|
Liu X, Chen W, Fang Y, Yang S, Chang L, Chen X, Ye H, Tang X, Zhong S, Zhang W, Dong Z, Han L, He C. ADEIP: an integrated platform of age-dependent expression and immune profiles across human tissues. Brief Bioinform 2021; 22:bbab274. [PMID: 34254996 PMCID: PMC8344678 DOI: 10.1093/bib/bbab274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
Gene expression and immune status in human tissues are changed with aging. There is a need to develop a comprehensive platform to explore the dynamics of age-related gene expression and immune profiles across tissues in genome-wide studies. Here, we collected RNA-Seq datasets from GTEx project, containing 16 704 samples from 30 major tissues in six age groups ranging from 20 to 79 years old. Dynamic gene expression along with aging were depicted and gene set enrichment analysis was performed among those age groups. Genes from 34 known immune function categories and immune cell compositions were investigated and compared among different age groups. Finally, we integrated all the results and developed a platform named ADEIP (http://gb.whu.edu.cn/ADEIP or http://geneyun.net/ADEIP), integrating the age-dependent gene expression and immune profiles across tissues. To demonstrate the usage of ADEIP, we applied two datasets: severe acute respiratory syndrome coronavirus 2 and human mesenchymal stem cells-assoicated genes. We also included the expression and immune dynamics of these genes in the platform. Collectively, ADEIP is a powerful platform for studying age-related immune regulation in organogenesis and other infectious or genetic diseases.
Collapse
Affiliation(s)
- Xuan Liu
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Yu Fang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Yang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Liuping Chang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingyu Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Haidong Ye
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Chunjiang He
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
10
|
Thysen AH, Waage J, Larsen JM, Rasmussen MA, Stokholm J, Chawes B, Fink NR, Pedersen TM, Wolsk H, Thorsteinsdottir S, Litman T, Renz H, Bønnelykke K, Bisgaard H, Brix S. Distinct immune phenotypes in infants developing asthma during childhood. Sci Transl Med 2021; 12:12/529/eaaw0258. [PMID: 32024797 DOI: 10.1126/scitranslmed.aaw0258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Early exposure to environmental triggers may elicit trajectories to chronic inflammatory disease through deregulated immune responses. To address relations between early immune competence and development of childhood asthma, we performed functional immune profiling of 186 parameters in blood of 541 18-month-old infants and examined links between their response phenotype and development of transient or persistent disease at 6 years of age. An abnormal neutrophil-linked antiviral response was associated with increased risk of transient asthma. Children who exhibited persistent asthma at year 6 showed enhanced interleukin-5 (IL-5) and IL-13 production in stimulated T cells at 18 months of age, which was associated with early life bacterial colonization of the airways. These findings highlight the early appearance of distinct immune characteristics in infants developing different asthma endotypes during childhood.
Collapse
Affiliation(s)
- Anna Hammerich Thysen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jeppe Madura Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Food Science, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nadia Rahman Fink
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tine Marie Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Helene Wolsk
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sunna Thorsteinsdottir
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thomas Litman
- Explorative Biology, LEO Pharma, DK-2750 Ballerup, Denmark
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Ó Maoldomhnaigh C, Cox DJ, Phelan JJ, Malone FD, Keane J, Basdeo SA. The Warburg Effect Occurs Rapidly in Stimulated Human Adult but Not Umbilical Cord Blood Derived Macrophages. Front Immunol 2021; 12:657261. [PMID: 33927724 PMCID: PMC8076563 DOI: 10.3389/fimmu.2021.657261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The Warburg effect, defined as increased glycolysis and decreased oxidative phosphorylation, occurs in murine macrophages following LPS stimulation and is required for activation. There are differences between human and murine macrophage metabolic responses to stimulation, with peak metabolite concentrations occurring earlier in humans than mice. Complex changes occur in the human immune system with age, resulting in the very young and the very old being more susceptible to infections. Anti-bacterial immune responses in umbilical cord immune cells are considered deficient but there is a paucity of data on the role that metabolism plays. We hypothesized that metabolic responses in human macrophages occur early during activation. In addition, we hypothesized that umbilical cord derived macrophages have an altered immunometabolic response compared with adult macrophages. We demonstrate that adult and cord blood monocyte derived macrophages (MDM) immediately increase glycolysis in response to stimulation with LPS or Mycobacterium tuberculosis (Mtb), however only adult MDM decrease oxidative phosphorylation. At 24 hours post stimulation, glycolysis remains elevated in both adult and cord blood MDM, oxidative phosphorylation remains unchanged in the cord blood MDM and has normalized in the adult MDM stimulated with Mtb. However, LPS stimulated adult MDM have increased oxidative phosphorylation at 24 hours, illustrating differences in metabolic responses to different stimuli, time-dependent variation in responses and differences in macrophage metabolism in adults compared with umbilical cord blood. We compared the phenotype and function of macrophages derived from adult or cord blood. Cord blood MDM secreted less TNF following Mtb stimulation and more IL-6 following LPS stimulation compared with adult MDM. Our findings demonstrate that whilst cord blood MDM exhibit an immediate increase in glycolytic flux in response to stimulation, similar to adult MDM, cord blood MDM do not concomitantly decrease oxygen consumption. This indicates that adult macrophages shift to Warburg metabolism immediately after stimulation, but cord blood macrophages do not. Understanding the differences in the metabolic profiles of macrophages over a human lifetime will enable the translation of immunometabolism into effective immuno-supportive therapies that could potentially be targeted at vulnerable populations, such as the very old and the very young.
Collapse
Affiliation(s)
- Cilian Ó Maoldomhnaigh
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Donal J Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - James J Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Fergal D Malone
- Obstetrics & Gynecology, Royal College of Surgeons in Ireland, Rotunda Hospital, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sharee A Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Alberca RW, Pereira NZ, Oliveira LMDS, Gozzi-Silva SC, Sato MN. Pregnancy, Viral Infection, and COVID-19. Front Immunol 2020; 11:1672. [PMID: 32733490 PMCID: PMC7358375 DOI: 10.3389/fimmu.2020.01672] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy comprises a unique immunological condition, to allow fetal development and to protect the host from pathogenic infections. Viral infections during pregnancy can disrupt immunological tolerance and may generate deleterious effects on the fetus. Despite these possible links between pregnancy and infection-induced morbidity, it is unclear how pregnancy interferes with maternal response to some viral pathogens. In this context, the novel coronavirus (SARS-CoV-2) can induce the coronavirus diseases-2019 (COVID-19) in pregnant women. The potential risk of vertical transmission is unclear, babies born from COVID-19-positive mothers seems to have no serious clinical symptoms, the possible mechanisms are discussed, which highlights that checking the children's outcome and more research is warranted. In this review, we investigate the reports concerning viral infections and COVID-19 during pregnancy, to establish a correlation and possible implications of COVID-19 during pregnancy and neonatal's health.
Collapse
MESH Headings
- Betacoronavirus
- COVID-19
- Child, Preschool
- Coronavirus Infections/blood
- Coronavirus Infections/immunology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Cytokines/blood
- Female
- Fetal Development/immunology
- Humans
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Mothers
- Pandemics
- Pneumonia, Viral/blood
- Pneumonia, Viral/immunology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/blood
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- SARS-CoV-2
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara Da Silva Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Sałkowska A, Karaś K, Karwaciak I, Walczak-Drzewiecka A, Krawczyk M, Sobalska-Kwapis M, Dastych J, Ratajewski M. Identification of Novel Molecular Markers of Human Th17 Cells. Cells 2020; 9:cells9071611. [PMID: 32635226 PMCID: PMC7407666 DOI: 10.3390/cells9071611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Th17 cells are important players in host defense against pathogens such as Staphylococcus aureus, Candida albicans, and Bacillus anthracis. Th17 cell-mediated inflammation, under certain conditions in which balance in the immune system is disrupted, is the underlying pathogenic mechanism of certain autoimmune disorders, e.g., rheumatoid arthritis, Graves' disease, multiple sclerosis, and psoriasis. In the present study, using transcriptomic profiling, we selected genes and analyzed the expression of these genes to find potential novel markers of Th17 lymphocytes. We found that APOD (apolipoprotein D); C1QL1 (complement component 1, Q subcomponent-like protein 1); and CTSL (cathepsin L) are expressed at significantly higher mRNA and protein levels in Th17 cells than in the Th1, Th2, and Treg subtypes. Interestingly, these genes and the proteins they encode are well associated with the function of Th17 cells, as these cells produce inflammation, which is linked with atherosclerosis and angiogenesis. Furthermore, we found that high expression of these genes in Th17 cells is associated with the acetylation of H2BK12 within their promoters. Thus, our results provide new information regarding this cell type. Based on these results, we also hope to better identify pathological conditions of clinical significance caused by Th17 cells.
Collapse
Affiliation(s)
- Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | | | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- BBMRI.pl Consortium, 54-066 Wroclaw, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
- Correspondence: ; Tel.: +48-42-209-33-89
| |
Collapse
|
15
|
Ardanuy J, Scanlon K, Skerry C, Fuchs SY, Carbonetti NH. Age-Dependent Effects of Type I and Type III IFNs in the Pathogenesis of Bordetella pertussis Infection and Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:2192-2202. [PMID: 32152071 PMCID: PMC7141952 DOI: 10.4049/jimmunol.1900912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
Type I and III IFNs play diverse roles in bacterial infections, being protective for some but deleterious for others. Using RNA-sequencing transcriptomics we investigated lung gene expression responses to Bordetella pertussis infection in adult mice, revealing that type I and III IFN pathways may play an important role in promoting inflammatory responses. In B. pertussis-infected mice, lung type I/III IFN responses correlated with increased proinflammatory cytokine expression and with lung inflammatory pathology. In mutant mice with increased type I IFN receptor (IFNAR) signaling, B. pertussis infection exacerbated lung inflammatory pathology, whereas knockout mice with defects in type I IFN signaling had lower levels of lung inflammation than wild-type mice. Curiously, B. pertussis-infected IFNAR1 knockout mice had wild-type levels of lung inflammatory pathology. However, in response to infection these mice had increased levels of type III IFN expression, neutralization of which reduced lung inflammation. In support of this finding, B. pertussis-infected mice with a knockout mutation in the type III IFN receptor (IFNLR1) and double IFNAR1/IFNLR1 knockout mutant mice had reduced lung inflammatory pathology compared with that in wild-type mice, indicating that type III IFN exacerbates lung inflammation. In marked contrast, infant mice did not upregulate type I or III IFNs in response to B. pertussis infection and were protected from lethal infection by increased type I IFN signaling. These results indicate age-dependent effects of type I/III IFN signaling during B. pertussis infection and suggest that these pathways represent targets for therapeutic intervention in pertussis.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| |
Collapse
|
16
|
Kautz R, Phan L, Arulmoli J, Chatterjee A, Kerr JP, Naeim M, Long J, Allevato A, Leal-Cruz JE, Le L, Derakhshan P, Tombola F, Flanagan LA, Gorodetsky AA. Growth and Spatial Control of Murine Neural Stem Cells on Reflectin Films. ACS Biomater Sci Eng 2020; 6:1311-1320. [PMID: 33455403 PMCID: PMC7833438 DOI: 10.1021/acsbiomaterials.9b00824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Stem cells have attracted significant attention due to their regenerative capabilities and their potential for the treatment of disease. Consequently, significant research effort has focused on the development of protein- and polypeptide-based materials as stem cell substrates and scaffolds. Here, we explore the ability of reflectin, a cephalopod structural protein, to support the growth of murine neural stem/progenitor cells (mNSPCs). We observe that the binding, growth, and differentiation of mNSPCs on reflectin films is comparable to that on more established protein-based materials. Moreover, we find that heparin selectively inhibits the adhesion of mNSPCs on reflectin, affording spatial control of cell growth and leading to a >30-fold change in cell density on patterned substrates. The described findings highlight the potential utility of reflectin as a stem cell culture material.
Collapse
Affiliation(s)
- Rylan Kautz
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Long Phan
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Janahan Arulmoli
- Department
of Biomedical Engineering, University of
California, Irvine, 3120
Natural Sciences II, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, California 92697, United States
| | - Atrouli Chatterjee
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Justin P. Kerr
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, 4200 Engineering Gateway Building, Irvine, California 92697, United States
| | - Mahan Naeim
- Department
of Biomedical Engineering, University of
California, Irvine, 3120
Natural Sciences II, Irvine, California 92697, United States
| | - James Long
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Alex Allevato
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Jessica E. Leal-Cruz
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - LeAnn Le
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Parsa Derakhshan
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
| | - Francesco Tombola
- Department
of Physiology and Biophysics, University
of California, Irvine, 825 Health Sciences Road, Irvine, California 92697, United States
| | - Lisa A. Flanagan
- Department
of Biomedical Engineering, University of
California, Irvine, 3120
Natural Sciences II, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, California 92697, United States
- Department
of Neurology, University of California,
Irvine, 200 South Manchester
Avenue, Orange, California 92868, United States
| | - Alon A. Gorodetsky
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697, United States
- Department
of Chemistry, University of California,
Irvine, 1102 Natural
Sciences II, Irvine, California 92697, United States
| |
Collapse
|
17
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
18
|
Kim JJ, Kim KS, Eom J, Lee JB, Seo JY. Viperin Differentially Induces Interferon-Stimulated Genes in Distinct Cell Types. Immune Netw 2019; 19:e33. [PMID: 31720044 PMCID: PMC6829070 DOI: 10.4110/in.2019.19.e33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Viperin is an IFN-stimulated gene (ISG)-encoded protein that was identified in human primary macrophages treated with IFN-γ and in human primary fibroblasts infected with cytomegalovirus (CMV). This protein plays multiple roles in various cell types. It inhibits viral replication, mediates signaling pathways, and regulates cellular metabolism. Recent studies have shown that viperin inhibits IFN expression in macrophages, while it enhances TLR7 and TLR9-mediated IFN production in plasmacytoid dendritic cells, suggesting that viperin can play different roles in activation of the same pathway in different cell types. Viperin also controls induction of ISGs in macrophages. However, the effect of viperin on induction of ISGs in cell types other than macrophages is unknown. Here, we show that viperin differentially induces ISGs in 2 distinct cell types, macrophages and fibroblasts isolated from wild type and viperin knockout mice. Unlike in bone marrow-derived macrophages (BMDMs), viperin downregulates the expression levels of ISGs such as bone marrow stromal cell antigen-2, Isg15, Isg54, myxovirus resistance dynamin like GTPase 2, and guanylate binding protein 2 in murine embryonic fibroblasts (MEFs) treated with type I or II IFN. However, viperin upregulates expression of these ISGs in both BMDMs and MEFs stimulated with polyinosinic-polycytidylic acid or CpG DNA and infected with murine CMV. The efficiency of viral entry is inversely proportional to the expression levels of ISGs in both cell types. The data indicate that viperin differentially regulates induction of ISGs in a cell type-dependent manner, which might provide different innate immune responses in distinct cell types against infections.
Collapse
Affiliation(s)
- Jeong Jin Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ku Sul Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - John Eom
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Bong Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
19
|
Wolf AA, Yáñez A, Barman PK, Goodridge HS. The Ontogeny of Monocyte Subsets. Front Immunol 2019; 10:1642. [PMID: 31379841 PMCID: PMC6650567 DOI: 10.3389/fimmu.2019.01642] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Classical and non-classical monocytes, and the macrophages and monocyte-derived dendritic cells they produce, play key roles in host defense against pathogens, immune regulation, tissue repair and many other processes throughout the body. Recent studies have revealed previously unappreciated heterogeneity among monocytes that may explain this functional diversity, but our understanding of mechanisms controlling the functional programming of distinct monocyte subsets remains incomplete. Resolving monocyte heterogeneity and understanding how their functional identity is determined holds great promise for therapeutic immune modulation. In this review, we examine how monocyte origins and developmental influences shape the phenotypic and functional characteristics of monocyte subsets during homeostasis and in the context of infection, inflammation, and cancer. We consider how extrinsic signals and transcriptional regulators impact monocyte production and functional programming, as well as the influence of epigenetic and metabolic mechanisms. We also examine the evidence that functionally distinct monocyte subsets are produced via different developmental pathways during homeostasis and that inflammatory stimuli differentially target progenitors during an emergency response. We highlight the need for a more comprehensive understanding of the relationship between monocyte ontogeny and heterogeneity, including multiparametric single-cell profiling and functional analyses. Studies defining mechanisms of monocyte subset production and maintenance of unique monocyte identities have the potential to facilitate the design of therapeutic interventions to target specific monocyte subsets in a variety of disease contexts, including infectious and inflammatory diseases, cancer, and aging.
Collapse
Affiliation(s)
- Anja A Wolf
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alberto Yáñez
- Departament de Microbiologia i Ecologia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Pijus K Barman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
20
|
Butler B, De Dios R, Nguyen L, McKenna S, Ghosh S, Wright CJ. Developmentally Regulated Innate Immune NFκB Signaling Mediates IL-1α Expression in the Perinatal Murine Lung. Front Immunol 2019; 10:1555. [PMID: 31354715 PMCID: PMC6637303 DOI: 10.3389/fimmu.2019.01555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common morbidity complicating premature birth. Importantly, preclinical models have demonstrated that IL-1 receptor antagonism prevents the lung injury and subsequent abnormal development that typically results following perinatal exposure to inflammatory stresses. This receptor is activated by two pro-inflammatory cytokines, IL-1α and IL-1β. While many studies have linked IL-1β to BPD development, IL-1α is relatively under-studied. The objective of our study was to determine whether systemic inflammatory stress induces IL-1α expression in the neonatal lung, and if so, whether this expression is mediated by innate immune NFκB signaling. We found that endotoxemia induced IL-1α expression during the saccular stage of neonatal lung development and was not present in the other neonatal organs or the adult lung. This IL-1α expression was dependent upon sustained pulmonary NFκB activation, which was specific to the neonatal lung. Using in vivo and in vitro approaches, we found that pharmacologic and genetic inhibition of NFκB signaling attenuated IL-1α expression. These findings demonstrate that innate immune regulation of IL-1α expression is developmentally regulated and occurs via an NFκB dependent mechanism. Importantly, the specific role of developmentally regulated pulmonary IL-1α expression remains unknown. Future studies must determine the effect of attenuating innate immune IL-1α expression in the developing lung before adopting broad IL-1 receptor antagonism as an approach to prevent neonatal lung injury.
Collapse
Affiliation(s)
- Brittany Butler
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
21
|
Bermick J, Gallagher K, denDekker A, Kunkel S, Lukacs N, Schaller M. Chorioamnionitis exposure remodels the unique histone modification landscape of neonatal monocytes and alters the expression of immune pathway genes. FEBS J 2019; 286:82-109. [PMID: 30565411 PMCID: PMC6326865 DOI: 10.1111/febs.14728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/24/2018] [Accepted: 12/08/2018] [Indexed: 12/13/2022]
Abstract
Chorioamnionitis is an intrauterine infection involving inflammation of the chorion, amnion, and placenta. It leads to a fetal systemic inflammatory response that can alter the transcription of neonatal immune genes. We have previously shown that neonatal monocytes gain the activating histone tail modification H3K4me3 at promoter sites of immunologically important genes as development progresses from preterm neonate to adult. In this study, we applied ChIP-seq and RNA-seq to evaluate the impact of chorioamnionitis on the neonatal monocyte H3K4me3 histone modification landscape over the course of fetal and neonatal immune system development. Chorioamnionitis exposure in neonatal monocytes resulted in a net increase in total monocyte H3K4me3, primarily in introns and intergenic regions. Immune gene expression was decreased in chorioamnionitis-exposed monocytes, with the majority of enriched transcripts falling into pathways that are not linked to the immune system. Over half of all neonatal monocyte H3K4me3 peaks, independent of their location, were associated with active gene transcription. Overall, chorioamnionitis exposure resulted in the global remodeling of the neonatal monocyte H3K4me3 landscape and changes in the expression of known immune genes. These changes resulted in a less robust inflammatory response upon exposure to a secondary challenge, which may explain why chorioamnionitis-exposed neonates have an increased risk of sepsis. DATABASE: ChIP-seq data for U30/O30/Term: GEO GSE81957 ChIP-seq data for U30C/O30C/TermC: GEO GSE111873 RNA-seq data for U/L/CU/CL: GEO GSE111927.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Michigan Medicine, Ann Arbor, Michigan
| | | | - Aaron denDekker
- Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Steve Kunkel
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan
| | - Nicholas Lukacs
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan
| | | |
Collapse
|
22
|
de Jong E, Hancock DG, Wells C, Richmond P, Simmer K, Burgner D, Strunk T, Currie AJ. Exposure to chorioamnionitis alters the monocyte transcriptional response to the neonatal pathogen Staphylococcus epidermidis. Immunol Cell Biol 2018. [PMID: 29533486 DOI: 10.1111/imcb.12037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens.
Collapse
Affiliation(s)
- Emma de Jong
- Medical & Molecular Sciences, School of Veterinary & Life Sciences, Murdoch University, Perth, Australia
| | - David G Hancock
- School of Medicine, Flinders University, Adelaide, Australia
| | - Christine Wells
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, MDHS, University of Melbourne, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Peter Richmond
- Centre for Neonatal Research& Education and Division of Paediatrics, University of Western Australia, Perth, Australia
| | - Karen Simmer
- Centre for Neonatal Research& Education and Division of Paediatrics, University of Western Australia, Perth, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Tobias Strunk
- Centre for Neonatal Research& Education and Division of Paediatrics, University of Western Australia, Perth, Australia.,Neonatal Directorate, King Edward Memorial and Princess Margaret Hospitals, Perth, Australia
| | - Andrew J Currie
- Medical & Molecular Sciences, School of Veterinary & Life Sciences, Murdoch University, Perth, Australia.,Centre for Neonatal Research& Education and Division of Paediatrics, University of Western Australia, Perth, Australia
| |
Collapse
|
23
|
Identification of generic and pathogen-specific cord blood monocyte transcriptomes reveals a largely conserved response in preterm and term newborn infants. J Mol Med (Berl) 2017; 96:147-157. [PMID: 29134255 DOI: 10.1007/s00109-017-1609-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Escherichia coli and Staphylococcus epidermidis are predominant causes of neonatal sepsis, particularly affecting preterm infants. Susceptibility to infection has been attributed to "immature" innate monocyte defences, but no studies have assessed global transcriptional responses of neonatal monocytes to these pathogens. Here, we aimed to identify and characterise the neonatal monocyte transcriptional responses to E. coli and S. epidermidis and the role of common modifiers such as gestational age (GA) and exposure to chorioamnionitis (a common complication of preterm birth) to better understand early life innate immune responses. RNA-sequencing was performed on purified cord blood monocytes from very preterm (< 32 weeks GA) and term infants (37-40 weeks GA) following standardised challenge with live S. epidermidis or E. coli. The major transcriptional changes induced by either pathogen were highly conserved between infant groups and stimuli, highlighting a common extant neonatal monocyte response to infection, largely mediated by TLR/NF-κB/TREM-1 signalling. In addition, we observed an activated interferon-centred immune response specific to stimulation with E. coli in both preterm and term infants. These data provide novel insights into the functionality of neonatal monocytes at birth and highlight potential pathways that could be targeted to reduce the harmful effects of bacterial-induced inflammation in sepsis. E. coli and S. epidermidis elicit common transcriptional changes in cord monocytes. The common transcriptional response is mediated by TLR/NF-κB/TREM-1 signalling. IFN genes are differentially regulated by E. coli and S. epidermidis in monocytes. These responses are largely unaffected by GA or exposure to chorioamnionitis. KEY MESSAGES E. coli and S. epidermidis elicit common transcriptional changes in cord monocytes. The common transcriptional response is mediated by TLR/NF-κB/TREM-1 signalling. IFN-genes are differentially regulated by E. coli and S. epidermidis in monocytes. These responses are largely unaffected by GA or exposure to chorioamnionitis.
Collapse
|
24
|
Wyler E, Menegatti J, Franke V, Kocks C, Boltengagen A, Hennig T, Theil K, Rutkowski A, Ferrai C, Baer L, Kermas L, Friedel C, Rajewsky N, Akalin A, Dölken L, Grässer F, Landthaler M. Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. Genome Biol 2017; 18:209. [PMID: 29089033 PMCID: PMC5663069 DOI: 10.1186/s13059-017-1329-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
Background Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. Results Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. Conclusions We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1329-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, 66421, Homburg/Saar, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Thomas Hennig
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Kathrin Theil
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Andrzej Rutkowski
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, UK.,Present address: AstraZeneca, Darwin Building, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK
| | - Carmelo Ferrai
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Laura Baer
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, 66421, Homburg/Saar, Germany
| | - Lisa Kermas
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Caroline Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333, München, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Lars Dölken
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Versbacherstr. 7, 97078, Würzburg, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, 66421, Homburg/Saar, Germany.
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
25
|
Mirsafian H, Ripen AM, Leong WM, Manaharan T, Mohamad SB, Merican AF. Transcriptome landscape of human primary monocytes at different sequencing depth. Genomics 2017; 109:463-470. [DOI: 10.1016/j.ygeno.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
|
26
|
Abstract
In mammals, caloric restriction consistently results in extended lifespan. Epigenetic information encoded by DNA methylation is tightly regulated, but shows a striking drift associated with age that includes both gains and losses of DNA methylation at various sites. Here, we report that epigenetic drift is conserved across species and the rate of drift correlates with lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old rhesus monkeys exposed to 30% caloric restriction since 7–14 years of age showed attenuation of age-related methylation drift compared to ad libitum-fed controls such that their blood methylation age appeared 7 years younger than their chronologic age. Even more pronounced effects were seen in 2.7–3.2-year-old mice exposed to 40% caloric restriction starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were detectable across different tissues and correlated with gene expression. We propose that epigenetic drift is a determinant of lifespan in mammals. Caloric restriction has been shown to increase lifespan in mammals. Here, the authors provide evidence that age-related methylation drift correlates with lifespan and that caloric restriction in mice and rhesus monkeys results in attenuation of age-related methylation drift.
Collapse
|
27
|
Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity 2017; 46:350-363. [PMID: 28329702 DOI: 10.1016/j.immuni.2017.03.009] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
Infections in the first year of life are common and often severe. The newborn host demonstrates both quantitative and qualitative differences to the adult in nearly all aspects of immunity, which at least partially explain the increased susceptibility to infection. Here we discuss how differences in susceptibility to infection result not out of a state of immaturity, but rather reflect adaptation to the particular demands placed on the immune system in early life. We review the mechanisms underlying host defense in the very young, and discuss how specific developmental demands increase the risk of particular infectious diseases. In this context, we discuss how this plasticity, i.e. the capacity to adapt to demands encountered in early life, also provides the potential to leverage protection of the young against infection and disease through a number of interventions.
Collapse
|
28
|
Abstract
The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.
Collapse
|
29
|
Valent D, Arroyo L, Peña R, Yu K, Carreras R, Mainau E, Velarde A, Bassols A. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship. PLoS One 2017; 12:e0176928. [PMID: 28475627 PMCID: PMC5419571 DOI: 10.1371/journal.pone.0176928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Eva Mainau
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
30
|
S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol 2017; 18:622-632. [PMID: 28459433 DOI: 10.1038/ni.3745] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.
Collapse
|
31
|
Wang ZS, Liu YL, Mi N, Duan DY. Intracellular DNA sensing pathway of cGAS-cGAMP is decreased in human newborns and young children. Mol Immunol 2017; 87:76-85. [PMID: 28412547 DOI: 10.1016/j.molimm.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/30/2023]
Abstract
Newborns are highly susceptible to DNA virus infections, which may result from the characteristics of neonatal innate immune systems. Here we analyzed for the first time the development of innate immune sensing and signaling of intracellular DNA virus infection in human newborns and young children. Both mRNA and protein expression of cGAS, an intracellular DNA sensor, were shown to be significantly reduced in neonatal peripheral blood mononuclear cells (PBMCs). In addition, cGAS expression in neonatal PBMCs could be induced upon herpes simplex virus type 1 (HSV-1) or interferon-α (IFNα) stimulation. Furthermore, production of the second messenger cGAMP and activation of the transcriptional factor IRF3 was severely decreased in neonatal cord blood mononuclear cells (CBMCs) or PBMCs compared with adults. In contrast, the downstream signaling STING-TBK1-IRF3 appeared to be functional in neonatal PBMCs, as demonstrated by the fact that IRF3 phosphorylation and IFNβ production in these cells could be activated by cGAMP. Intriguingly, decreased expression of cGAS in neonatal cells can be rescued by DNA demethylation, with concomitant enhancement in IFNβ induction by HSV-1. Thus, cGAS restoration or STING stimulation by small molecules during infancy might improve the age-dependent susceptibility to DNA virus infection.
Collapse
Affiliation(s)
- Zhan-Sheng Wang
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China.
| | - Yu-Lu Liu
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China
| | - Nan Mi
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China
| | - Dao-Yun Duan
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China
| |
Collapse
|
32
|
dela Peña-Ponce MG, Rodriguez-Nieves J, Bernhardt J, Tuck R, Choudhary N, Mengual M, Mollan KR, Hudgens MG, Peter-Wohl S, De Paris K. Increasing JAK/STAT Signaling Function of Infant CD4 + T Cells during the First Year of Life. Front Pediatr 2017; 5:15. [PMID: 28271056 PMCID: PMC5318443 DOI: 10.3389/fped.2017.00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Most infant deaths occur in the first year of life. Yet, our knowledge of immune development during this period is scarce and derived from cord blood (CB) only. To more effectively combat pediatric diseases, a deeper understanding of the kinetics and the factors that regulate the maturation of immune functions in early life is needed. Increased disease susceptibility of infants is generally attributed to T helper 2-biased immune responses. The differentiation of CD4+ T cells along a specific T helper cell lineage is dependent on the pathogen type, and on costimulatory and cytokine signals provided by antigen-presenting cells. Cytokines also regulate many other aspects of the host immune response. Therefore, toward the goal of increasing our knowledge of early immune development, we defined the temporal development of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling function of CD4+ T cells using cross-sectional blood samples from healthy infants ages 0 (birth) to 14 months. We specifically focused on cytokines important in T cell differentiation (IFN-γ, IL-12, and IL-4) or in T cell survival and expansion (IL-2 and IL-7) in infant CD4+ T cells. Independent of the cytokine tested, JAK/STAT signaling in infant compared to adult CD4+ T cells was impaired at birth, but increased during the first year, with the most pronounced changes occurring in the first 6 months. The relative change in JAK/STAT signaling of infant CD4+ T cells with age was distinct for each cytokine tested. Thus, while about 60% of CB CD4+ T cells could efficiently activate STAT6 in response to IL-4, less than 5% of CB CD4+ T cells were able to activate the JAK/STAT pathway in response to IFN-γ, IL-12 or IL-2. By 4-6 months of age, the activation of the cytokine-specific STAT molecules was comparable to adults in response to IL-4 and IFN-γ, while IL-2- and IL-12-induced STAT activation remained below adult levels even at 1 year. These results suggest that common developmental and cytokine-specific factors regulate the maturation of the JAK/STAT signaling function in CD4+ T cells during the first year of life.
Collapse
Affiliation(s)
- Myra Grace dela Peña-Ponce
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer Rodriguez-Nieves
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Janice Bernhardt
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan Tuck
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Neelima Choudhary
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Mengual
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katie R. Mollan
- Lineberger Cancer Center, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Gillings School of Global Public Health, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Sigal Peter-Wohl
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, Keating M, Botvinick EL, Pathak MM, Zarembinski TI, Yanni DS, Razorenova OV, Hughes CCW, Flanagan LA. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 2016; 43:122-138. [PMID: 27475528 PMCID: PMC5386322 DOI: 10.1016/j.actbio.2016.07.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/29/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Human neural stem/progenitor cells (hNSPCs) are good candidates for treating central nervous system (CNS) trauma since they secrete beneficial trophic factors and differentiate into mature CNS cells; however, many cells die after transplantation. This cell death can be ameliorated by inclusion of a biomaterial scaffold, making identification of optimal scaffolds for hNSPCs a critical research focus. We investigated the properties of fibrin-based scaffolds and their effects on hNSPCs and found that fibrin generated from salmon fibrinogen and thrombin stimulates greater hNSPC proliferation than mammalian fibrin. Fibrin scaffolds degrade over the course of a few days in vivo, so we sought to develop a novel scaffold that would retain the beneficial properties of fibrin but degrade more slowly to provide longer support for hNSPCs. We found combination scaffolds of salmon fibrin with interpenetrating networks (IPNs) of hyaluronic acid (HA) with and without laminin polymerize more effectively than fibrin alone and generate compliant hydrogels matching the physical properties of brain tissue. Furthermore, combination scaffolds support hNSPC proliferation and differentiation while significantly attenuating the cell-mediated degradation seen with fibrin alone. HNSPCs express two fibrinogen-binding integrins, αVβ1 and α5β1, and several laminin binding integrins (α7β1, α6β1, α3β1) that can mediate interaction with the scaffold. Lastly, to test the ability of scaffolds to support vascularization, we analyzed human cord blood-derived endothelial cells alone and in co-culture with hNSPCs and found enhanced vessel formation and complexity in co-cultures within combination scaffolds. Overall, combination scaffolds of fibrin, HA, and laminin are excellent biomaterials for hNSPCs. STATEMENT OF SIGNIFICANCE Interest has increased recently in the development of biomaterials as neural stem cell transplantation scaffolds to treat central nervous system (CNS) injury since scaffolds improve survival and integration of transplanted cells. We report here on a novel combination scaffold composed of fibrin, hyaluronic acid, and laminin to support human neural stem/progenitor cell (hNSPC) function. This combined biomaterial scaffold has appropriate physical properties for hNSPCs and the CNS, supports hNSPC proliferation and differentiation, and attenuates rapid cell-mediated scaffold degradation. The hNSPCs and scaffold components synergistically encourage new vessel formation from human endothelial cells. This work marks the first report of a combination scaffold supporting human neural and vascular cells to encourage vasculogenesis, and sets a benchmark for biomaterials to treat CNS injury.
Collapse
Affiliation(s)
- Janahan Arulmoli
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Heather J Wright
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Duc T T Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Urmi Sheth
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard A Que
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Giovanni A Botten
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Keating
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Medha M Pathak
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Daniel S Yanni
- Disc Comfort, Inc., 351 Hospital Road, Suite 202, Newport Beach, CA 92663, USA
| | - Olga V Razorenova
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
Chatterjee S, Majumder PP, Pandey P. Detecting cognizable trends of gene expression in a time series RNA-sequencing experiment: a bootstrap approach. J Genet 2016; 95:587-93. [PMID: 27659329 DOI: 10.1007/s12041-016-0681-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Study of temporal trajectory of gene expression is important. RNA sequencing is popular in genome-scale studies of transcription. Because of high expenses involved, many time-course RNA sequencing studies are challenged by inadequacy of sample sizes. This poses difficulties in conducting formal statistical tests of significance of null hypotheses. We propose a bootstrap algorithm to identify 'cognizable' 'time-trends' of gene expression. Properties of the proposed algorithm are derived using a simulation study. The proposed algorithm captured known 'time-trends' in the simulated data with a high probability of success, even when sample sizes were small (n < 10). The proposed statistical method is efficient and robust to capture 'cognizable' 'time-trends' in RNA sequencing data.
Collapse
Affiliation(s)
- Shatakshee Chatterjee
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium (T. B. Hospital), P.O.: N.S.S., Kalyani 741 251,
| | | | | |
Collapse
|
35
|
Blango MG, Bass BL. Identification of the long, edited dsRNAome of LPS-stimulated immune cells. Genome Res 2016; 26:852-62. [PMID: 27197207 PMCID: PMC4889969 DOI: 10.1101/gr.203992.116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Endogenous double-stranded RNA (dsRNA) must be intricately regulated in mammals to prevent aberrant activation of host inflammatory pathways by cytosolic dsRNA binding proteins. Here, we define the long, endogenous dsRNA repertoire in mammalian macrophages and monocytes during the inflammatory response to bacterial lipopolysaccharide. Hyperediting by adenosine deaminases that act on RNA (ADAR) enzymes was quantified over time using RNA-seq data from activated mouse macrophages to identify 342 Editing Enriched Regions (EERs), indicative of highly structured dsRNA. Analysis of publicly available data sets for samples of human peripheral blood monocytes resulted in discovery of 3438 EERs in the human transcriptome. Human EERs had predicted secondary structures that were significantly more stable than those of mouse EERs and were located primarily in introns, whereas nearly all mouse EERs were in 3' UTRs. Seventy-four mouse EER-associated genes contained an EER in the orthologous human gene, although nucleotide sequence and position were only rarely conserved. Among these conserved EER-associated genes were several TNF alpha-signaling genes, including Sppl2a and Tnfrsf1b, important for processing and recognition of TNF alpha, respectively. Using publicly available data and experimental validation, we found that a significant proportion of EERs accumulated in the nucleus, a strategy that may prevent aberrant activation of proinflammatory cascades in the cytoplasm. The observation of many ADAR-edited dsRNAs in mammalian immune cells, a subset of which are in orthologous genes of mouse and human, suggests a conserved role for these structured regions.
Collapse
Affiliation(s)
- Matthew G Blango
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
36
|
Kumar SKM, Bhat BV. Distinct mechanisms of the newborn innate immunity. Immunol Lett 2016; 173:42-54. [PMID: 26994839 DOI: 10.1016/j.imlet.2016.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Abstract
The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns.
Collapse
Affiliation(s)
- S Kingsley Manoj Kumar
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| | - B Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| |
Collapse
|
37
|
Zhao AM, Xu HJ, Kang XM, Zhao AM, Lu LM. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk. J Reprod Immunol 2016; 113:35-41. [DOI: 10.1016/j.jri.2015.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
|