1
|
Baskin JM, Baskin CC. Association of polyploidy with seed mass/germination in angiosperms: a review. PLANTA 2024; 261:21. [PMID: 39731591 DOI: 10.1007/s00425-024-04586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/30/2024] [Indexed: 12/30/2024]
Abstract
MAIN CONCLUSION Polyploidization (diploidy → polyploidy) was more likely to be positively associated with seed mass than with seed germination. Polyploidy is common in flowering plants, and polyploidization can be associated with the various stages of a plant's life cycle. Our primary aim was to determine the association (positive, none or negative) of polyploidy with seed mass/germination via a literature review. We found that the number of cases of positive, none and negative correlates of polyploidization was 28, 36 and 21, respectively, for seed germination and 25, 5 and 3, respectively, for seed mass. In many plant species, ploidy level differs within and between populations, and it may be positively or negatively associated with germination (57.6% of 85 cases in our review). Ideally, then, to accurately assess intra- and interpopulation variation in seed germination, such studies should include ploidy level. This is the first in-depth review of the association of polyploidy with seed germination.
Collapse
Affiliation(s)
- Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
2
|
Chumová Z, Monier Z, Šemberová K, Havlíčková E, Euston-Brown D, Muasya AM, Bergh NG, Trávníček P. Diploid and tetraploid cytotypes of the flagship Cape species Dicerothamnus rhinocerotis (Asteraceae): variation in distribution, ecological niche, morphology and genetics. ANNALS OF BOTANY 2024; 133:851-870. [PMID: 37410810 PMCID: PMC11082512 DOI: 10.1093/aob/mcad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub, Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim was to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches and genetics. METHODS Ploidy level and genome size were determined via flow cytometry and cytotype assignment was confirmed by chromosome counting. Restriction site-associated DNA sequencing (RADseq) analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C values were 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes were highly equivalent and similar, their optima and breadth were shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Zafar Monier
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, 7707, South Africa
| | - Kristýna Šemberová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Eliška Havlíčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, 120 00, Czech Republic
| | | | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, 7707, South Africa
| | - Nicola G Bergh
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Cape Town, 7707, South Africa
- The Compton Herbarium, Kirstenbosch National Botanical Gardens, Cape Town, 7735, South Africa
| | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
3
|
Šemberová K, Svitok M, Marhold K, Suda J, Schmickl RE. Morphological and environmental differentiation as prezygotic reproductive barriers between parapatric and allopatric Campanula rotundifolia agg. cytotypes. ANNALS OF BOTANY 2023; 131:71-86. [PMID: 34559179 PMCID: PMC9904352 DOI: 10.1093/aob/mcab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.
Collapse
Affiliation(s)
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, T. G. Masaryka, Zvolen, Slovakia
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Karol Marhold
- Faculty of Science, Department of Botany, Charles University, Benátská, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia
| | | | - Roswitha E Schmickl
- Faculty of Science, Department of Botany, Charles University, Benátská, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Department of Evolutionary Plant Biology, Zámek, Průhonice, Czech Republic
| |
Collapse
|
4
|
Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M, Trávníček P, Galbraith DW. Application-based guidelines for best practices in plant flow cytometry. Cytometry A 2021; 101:749-781. [PMID: 34585818 DOI: 10.1002/cyto.a.24499] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ilia J Leitch
- Kew Science Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jillian Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Kaifeng, China
| |
Collapse
|
5
|
Kiedrzyński M, Zielińska KM, Jedrzejczyk I, Kiedrzyńska E, Tomczyk PP, Rewicz A, Rewers M, Indreica A, Bednarska I, Stupar V, Roleček J, Šmarda P. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci Rep 2021; 11:18735. [PMID: 34548532 PMCID: PMC8455632 DOI: 10.1038/s41598-021-97767-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
One promising area in understanding the responses of plants to ongoing global climate change is the adaptative effect of polyploidy. This work examines whether there is a coupling between the distribution of cytotypes and their biogeographical niche, and how different niches will affect their potential range. The study uses a range of techniques including flow cytometry, gradient and niche analysis, as well as distribution modelling. In addition, climatic, edaphic and habitat data was used to analyse environmental patterns and potential ranges of cytotypes in the first wide-range study of Festuca amethystina-a mixed-ploidy mountain grass. The populations were found to be ploidy homogeneous and demonstrate a parapatric pattern of cytotype distribution. Potential contact zones have been identified. The tetraploids have a geographically broader distribution than diploids; they also tend to occur at lower altitudes and grow in more diverse climates, geological units and habitats. Moreover, tetraploids have a more extensive potential range, being six-fold larger than diploids. Montane pine forests were found to be a focal environment suitable for both cytotypes, which has a central place in the environmental space of the whole species. Our findings present polyploidy as a visible driver of geographical, ecological and adaptive variation within the species.
Collapse
Affiliation(s)
- Marcin Kiedrzyński
- grid.10789.370000 0000 9730 2769Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna M. Zielińska
- grid.10789.370000 0000 9730 2769Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Iwona Jedrzejczyk
- grid.466210.70000 0004 4673 5993Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Edyta Kiedrzyńska
- grid.460361.60000 0004 4673 0316European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland ,grid.10789.370000 0000 9730 2769UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Przemysław P. Tomczyk
- grid.10789.370000 0000 9730 2769Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland ,grid.460361.60000 0004 4673 0316European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland
| | - Agnieszka Rewicz
- grid.10789.370000 0000 9730 2769Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Rewers
- grid.466210.70000 0004 4673 5993Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Adrian Indreica
- grid.5120.60000 0001 2159 8361Department of Silviculture, Transilvania University of Brasov
, Brasov, Romania
| | - Iryna Bednarska
- Department of Nature Ecosystems Protection, Institute of Ecology of the Carpathians NASU, Lviv, Ukraine
| | - Vladimir Stupar
- grid.35306.330000 0000 9971 9023Faculty of Forestry, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Jan Roleček
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic ,grid.418095.10000 0001 1015 3316Department of Paleoecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Šmarda
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Roxo G, Moura M, Talhinhas P, Costa JC, Silva L, Vasconcelos R, de Sequeira MM, Romeiras MM. Diversity and Cytogenomic Characterization of Wild Carrots in the Macaronesian Islands. PLANTS 2021; 10:plants10091954. [PMID: 34579486 PMCID: PMC8473144 DOI: 10.3390/plants10091954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The Macaronesian islands constitute an enormous reservoir of genetic variation of wild carrots (subtribe Daucinae; Apiaceae), including 10 endemic species, but an accurate understanding of the diversification processes within these islands is still lacking. We conducted a review of the morphology, ecology, and conservation status of the Daucinae species and, on the basis of a comprehensive dataset, we estimated the genome size variation for 16 taxa (around 320 samples) occurring in different habitats across the Macaronesian islands in comparison to mainland specimens. Results showed that taxa with larger genomes (e.g., Daucus crinitus: 2.544 pg) were generally found in mainland regions, while the insular endemic taxa from Azores and Cabo Verde have smaller genomes. Melanoselinum decipiens and Monizia edulis, both endemic to Madeira Island, showed intermediate values. Positive correlations were found between mean genome size and some morphological traits (e.g., spiny or winged fruits) and also with habit (herbaceous or woody). Despite the great morphological variation found within the Cabo Verde endemic species, the 2C-values obtained were quite homogeneous between these taxa and the subspecies of Daucus carota, supporting the close relationship among these taxa. Overall, this study improved the global knowledge of DNA content for Macaronesian endemics and shed light into the mechanisms underpinning diversity patterns of wild carrots in the western Mediterranean region.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Mónica Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Raquel Vasconcelos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Miguel Menezes de Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
- Madeira Botanical Group, Faculty of Life Sciences, University of Madeira, 9020-105 Funchal, Portugal
| | - Maria Manuel Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
7
|
Kšiňan S, Ďurišová Ľ, Eliáš P. Genome size estimation of Cotoneaster species (Rosaceae) from the Western Carpathians. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00772-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Chumová Z, Mandáková T, Trávníček P. On the Origin of Tetraploid Vernal Grasses ( Anthoxanthum) in Europe. Genes (Basel) 2021; 12:966. [PMID: 34202779 PMCID: PMC8308110 DOI: 10.3390/genes12070966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polyploidy has played a crucial role in the evolution of many plant taxa, namely in higher latitudinal zones. Surprisingly, after several decades of an intensive research on polyploids, there are still common polyploid species whose evolutionary history is virtually unknown. Here, we addressed the origin of sweet vernal grass (Anthoxanthum odoratum) using flow cytometry, DNA sequencing, and in situ hybridization-based cytogenetic techniques. An allotetraploid and polytopic origin of the species has been verified. The chromosome study reveals an extensive variation between the European populations. In contrast, an autopolyploid origin of the rarer tetraploid vernal grass species, A. alpinum, has been corroborated. Diploid A. alpinum played an essential role in the polyploidization of both European tetraploids studied.
Collapse
Affiliation(s)
- Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, CZ-242 53 Průhonice, Czech Republic;
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00 Prague, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, CZ-625 00 Brno, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, CZ-242 53 Průhonice, Czech Republic;
| |
Collapse
|
9
|
Martínez-Sagarra G, Castro S, Mota L, Loureiro J, Devesa JA. Genome Size, Chromosome Number and Morphological Data Reveal Unexpected Infraspecific Variability in Festuca (Poaceae). Genes (Basel) 2021; 12:genes12060906. [PMID: 34208200 PMCID: PMC8230830 DOI: 10.3390/genes12060906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023] Open
Abstract
Polyploidy has played an important evolutionary role in the genus Festuca (Poaceae), and several ploidy levels (ranging from 2n = 2x = 14 to 2n = 12x = 84) have been detected to date. This study aimed to estimate the genome size and ploidy level of two subspecies belonging to the F. yvesii polyploid complex by flow cytometry and chromosome counting. The phenotypic variation of the cytotypes was also explored, based on herbarium material. The genome size of F. yvesii subsp. lagascae has been estimated for the first time. Nuclear 2C DNA content of F. yvesii subsp. summilusitana ranged from 21.44 to 31.91 pg, while that of F. yvesii subsp. lagascae was from 13.60 to 22.31 pg. We report the highest ploidy level detected for Festuca (2n = 14x = 98) and previously unknown cytotypes. A positive correlation between holoploid genome size and chromosome number counts shown herein was confirmed. The morphometric approach showed a slight trend towards an increase in the size of some organs consistent with the variation in the ploidy level. Differences in characters were usually significant only among the most extreme cytotypes of each subspecies, but, even in this case, the high overlapping ranges prevent their distinction.
Collapse
Affiliation(s)
- Gloria Martínez-Sagarra
- Department of Botany, Ecology and Plant Physiology, Rabanales Campus, University of Cordoba, 14071 Cordoba, Spain;
- Correspondence:
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.C.); (L.M.); (J.L.)
- Botanical Garden of the University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Lucie Mota
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.C.); (L.M.); (J.L.)
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.C.); (L.M.); (J.L.)
| | - Juan A. Devesa
- Department of Botany, Ecology and Plant Physiology, Rabanales Campus, University of Cordoba, 14071 Cordoba, Spain;
| |
Collapse
|
10
|
Veselá A, Hadincová V, Vandvik V, Münzbergová Z. Maternal effects strengthen interactions of temperature and precipitation, determining seed germination of dominant alpine grass species. AMERICAN JOURNAL OF BOTANY 2021; 108:798-810. [PMID: 33988866 DOI: 10.1002/ajb2.1657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE Despite the existence of many studies on the responses of plant species to climate change, there is a knowledge gap on how specific climatic factors and their interactions regulate seed germination in alpine species. This understanding is complicated by the interplay between responses of seeds to the environment experienced during germination, the environment experienced by the maternal plant during seed development and genetic adaptations of the maternal plant to its environment of origin. METHODS The study species (Anthoxanthum alpinum, A. odoratum) originated from localities with factorial combinations of temperature and precipitation. Seed germination was tested in conditions simulating the extreme ends of the current field conditions and a climate change scenario. We compared the performance of field-collected seeds with that of garden-collected seeds. RESULTS A change to warmer and wetter conditions resulted in the highest germination of A. alpinum, while A. odoratum germinated the most in colder temperature and with home moisture. The maternal environment did have an impact on plant performance of the study species. Field-collected seeds of A. alpinum tolerated warmer conditions better than those from the experimental garden. CONCLUSIONS The results demonstrate how knowledge of responses to climate change can increase our ability to understand and predict the fate of alpine species. Studies that aim to understand the germination requirements of seeds under future climates should use experimental designs allowing the separation of genetic differentiation, plasticity and maternal effects and their interactions, since all these mechanisms play an important role in driving species' germination patterns.
Collapse
Affiliation(s)
- Andrea Veselá
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Věroslava Hadincová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Norway
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Trávníček P, Chumová Z, Záveská E, Hanzlíčková J, Kupková (Jankolová) L, Kučera J, Gbúrová Štubňová E, Rejlová L, Mandáková T, Ponert J. Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea. FRONTIERS IN PLANT SCIENCE 2021; 12:734240. [PMID: 34745168 PMCID: PMC8570840 DOI: 10.3389/fpls.2021.734240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Knowledge of population variation across species' ranges is a prerequisite for correctly assessing the overall variability of any group of organisms and provides an invaluable basis for unraveling evolutionary history, optimizing taxonomy and devising effective conservation strategies. Here, we examine the genus Neotinea, which represents a relatively recently delimited monophyletic genus of orchids, for which a detailed study of its overall variability was lacking. We applied a suite of biosystematic methods, consisting of flow cytometry, multivariate and geometric morphometrics, and analysis of genomic SNP data, to identify phylogenetic lineages within the genus, to delineate phenotypic variation relevant to these lineages, and to identify potential cryptic taxa within lineages. We found clear differentiation into four major lineages corresponding to the groups usually recognized within the genus: Neotinea maculata as a distinct and separate taxon, the Neotinea lactea group comprising two Mediterranean taxa N. lactea and Neotinea conica, the Neotinea ustulata group comprising two phenologically distinct varieties, and the rather complex Neotinea tridentata group comprising two major lineages and various minor lineages of unclear taxonomic value. N. conica constitutes both a monophyletic group within N. lactea and a distinct phenotype within the genus and merits its proposed subspecies-level recognition. By contrast, the spring and summer flowering forms of N. ustulata (var. ustulata and var. aestivalis) were confirmed to be distinct only morphologically, not phylogenetically. The most complex pattern emerged in the N. tridentata group, which splits into two main clades, one containing lineages from the Balkans and eastern Mediterranean and the other consisting of plants from Central Europe and the central Mediterranean. These individual lineages differ in genome size and show moderate degrees of morphological divergence. The tetraploid Neotinea commutata is closely related to the N. tridentata group, but our evidence points to an auto- rather than an allopolyploid origin. Our broad methodological approach proved effective in recognizing cryptic lineages among the orchids, and we propose the joint analysis of flow cytometric data on genome size and endopolyploidy as a useful and beneficial marker for delineating orchid species with partial endoreplication.
Collapse
Affiliation(s)
- Pavel Trávníček
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- *Correspondence: Pavel Trávníček,
| | - Zuzana Chumová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Zuzana Chumová,
| | - Eliška Záveská
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Johana Hanzlíčková
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | | | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliška Gbúrová Štubňová
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Slovak National Museum, Bratislava, Slovakia
| | - Ludmila Rejlová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Ponert
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Prague Botanical Garden, Prague, Czechia
- Jan Ponert,
| |
Collapse
|
12
|
Chrtek J, Mráz P, Belyayev A, Paštová L, Mrázová V, Caklová P, Josefiová J, Zagorski D, Hartmann M, Jandová M, Pinc J, Fehrer J. Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: morphological versus genomic features. AMERICAN JOURNAL OF BOTANY 2020; 107:66-90. [PMID: 31903548 DOI: 10.1002/ajb2.1413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/13/2019] [Indexed: 05/02/2023]
Abstract
PREMISE The origin of allopolyploids is believed to shape their evolutionary potential, ecology, and geographical ranges. Morphologically distinct apomictic types sharing the same parental species belong to the most challenging groups of polyploids. We evaluated the origins and variation of two triploid taxa (Hieracium pallidiflorum, H. picroides) presumably derived from the same diploid parental pair (H. intybaceum, H. prenanthoides). METHODS We used a suite of approaches ranging from morphological, phylogenetic (three unlinked molecular markers), and cytogenetic analyses (in situ hybridization) to genome size screening and genome skimming. RESULTS Genotyping proved the expected parentage of all analyzed accessions of H. pallidiflorum and H. picroides and revealed that nearly all of them originated independently. Genome sizes and genome dosage largely corresponded to morphology, whereas the maternal origin of the allopolyploids had no discernable effect. Polyploid accessions of both parental species usually contained genetic material from other species. Given the phylogenetic distance of the parents, their chromosomes appeared only weakly differentiated in genomic in situ hybridization (GISH), as well as in overall comparisons of the repetitive fraction of their genomes. Furthermore, the repeatome of a phylogenetically more closely related species (H. umbellatum) differed significantly more. CONCLUSIONS We proved (1) multiple origins of hybridogeneous apomicts from the same diploid parental taxa, and (2) allopolyploid origins of polyploid accessions of the parental species. We also showed that the evolutionary dynamics of very fast evolving markers such as satellite DNA or transposable elements does not necessarily follow patterns of speciation.
Collapse
Affiliation(s)
- Jindřich Chrtek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Patrik Mráz
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Alexander Belyayev
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Ladislava Paštová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Viera Mrázová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Petra Caklová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Jiřina Josefiová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Danijela Zagorski
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Matthias Hartmann
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Michaela Jandová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| | - Jan Pinc
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ, 128 01, Praha 2, Czech Republic
| | - Judith Fehrer
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ, 252 43, Průhonice, Czech Republic
| |
Collapse
|
13
|
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T. Polyploid evolution: The ultimate way to grasp the nettle. PLoS One 2019; 14:e0218389. [PMID: 31260474 PMCID: PMC6602185 DOI: 10.1371/journal.pone.0218389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/01/2019] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.
Collapse
Affiliation(s)
- Ludmila Rejlová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jindřich Chrtek
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Vít
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Urfus
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Marques I, Loureiro J, Draper D, Castro M, Castro S. How much do we know about the frequency of hybridisation and polyploidy in the Mediterranean region? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:21-37. [PMID: 28963818 DOI: 10.1111/plb.12639] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Natural hybridisation and polyploidy are currently recognised as drivers of biodiversity, despite early scepticism about their importance. The Mediterranean region is a biodiversity hotspot where geological and climatic events have created numerous opportunities for speciation through hybridisation and polyploidy. Still, our knowledge on the frequency of these mechanisms in the region is largely limited, despite both phenomena are frequently cited in studies of Mediterranean plants. We reviewed information available from biodiversity and cytogenetic databases to provide the first estimates of hybridisation and polyploidy frequency in the Mediterranean region. We also inspected the most comprehensive modern Mediterranean Flora (Flora iberica) to survey the frequency and taxonomic distribution of hybrids and polyploids in Iberian Peninsula. We found that <6% of Mediterranean plants were hybrids, although a higher frequency was estimated for the Iberian Peninsula (13%). Hybrids were concentrated in few families and in even fewer genera. The overall frequency of polyploidy (36.5%) was comparable with previous estimates in other regions; however our estimates increased when analysing the Iberian Peninsula (48.8%). A surprisingly high incidence of species harbouring two or more ploidy levels was also observed (21.7%). A review of the available literature also showed that the ecological factors driving emergence and establishment of new entities are still poorly studied in the Mediterranean flora, although geographic barriers seem to play a major role in polyploid complexes. Finally, this study reveals several gaps and limitations in our current knowledge about the frequency of hybridisation and polyploidy in the Mediterranean region. The obtained estimates might change in the future with the increasing number of studies; still, rather than setting the complete reality, we hope that this work triggers future studies on hybridisation and polyploidy in the Mediterranean region.
Collapse
Affiliation(s)
- I Marques
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
| | - J Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - D Draper
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Universidade de Lisboa, Lisbon, Portugal
- UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, Vancouver, Canada
| | - M Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Botanic Garden of the University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Schnablová R, Herben T, Klimešová J. Shoot apical meristem and plant body organization: a cross-species comparative study. ANNALS OF BOTANY 2017; 120:833-843. [PMID: 29136411 PMCID: PMC5737494 DOI: 10.1093/aob/mcx116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS The shoot apical meristem (SAM) is the key organizing element in the plant body and is responsible for the core of plant body organization and shape. Surprisingly, there are almost no comparative data that would show links between parameters of the SAM and whole-plant traits as drivers of the plant's response to the environment. METHODS Interspecific differences in SAM anatomy were examined in 104 perennial herbaceous angiosperms. KEY RESULTS There were differences in SAM parameters among individual species, their phylogenetic patterns, and how their variation is linked to variation in plant above-ground organs and hence species' environmental niches. SAM parameters were correlated with the size-related traits of leaf area, seed mass and stem diameter. Of the two key SAM parameters (cell size and number), variation in all organ traits was linked more strongly to cell number, with cell size being important only for seed mass. Some of these correlations were due to shared phylogenetic history (e.g. SAM diameter versus stem diameter), whereas others were due to parallel evolution (e.g. SAM cell size and seed mass). CONCLUSION These findings show that SAM parameters provide a functional link among sizes and numbers of plant organs, constituting species' environmental responses.
Collapse
Affiliation(s)
- Renáta Schnablová
- Institute of Botany, Czech Academy of Sciences, CZ-252
43 Průhonice, Czech Republic
| | - Tomáš Herben
- Institute of Botany, Czech Academy of Sciences, CZ-252
43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University,
Benátská 2, CZ-128 01 Praha 2, Czech Republic
and
| | - Jitka Klimešová
- Institute of Botany, Czech Academy of Sciences, CZ-379
82 Třeboň, Czech Republic
| |
Collapse
|
16
|
Chumová Z, Záveská E, Mandáková T, Krak K, Trávnícek P. The Mediterranean: the cradle of Anthoxanthum (Poaceae) diploid diversity. ANNALS OF BOTANY 2017; 120:285-302. [PMID: 28444200 PMCID: PMC5737530 DOI: 10.1093/aob/mcx021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
Background and Aims Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. Methods A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. Key Results Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. Conclusions Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features.
Collapse
Affiliation(s)
- Zuzana Chumová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Eliška Záveská
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
- Institute of Botany, University of Innsbruck, AT-6020 Innsbruck, Austria
| | - Terezie Mandáková
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Karol Krak
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21 Praha 6 - Suchdol, Czech Republic
| | - Pavel Trávnícek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Pruhonice, Czech Republic
| |
Collapse
|
17
|
Tusiime FM, Gizaw A, Wondimu T, Masao CA, Abdi AA, Muwanika V, Trávníček P, Nemomissa S, Popp M, Eilu G, Brochmann C, Pimentel M. Sweet vernal grasses (Anthoxanthum) colonized African mountains along two fronts in the Late Pliocene, followed by secondary contact, polyploidization and local extinction in the Pleistocene. Mol Ecol 2017; 26:3513-3532. [PMID: 28390111 DOI: 10.1111/mec.14136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/28/2022]
Abstract
High tropical mountains harbour remarkable and fragmented biodiversity thought to a large degree to have been shaped by multiple dispersals of cold-adapted lineages from remote areas. Few dated phylogenetic/phylogeographic analyses are however available. Here, we address the hypotheses that the sub-Saharan African sweet vernal grasses have a dual colonization history and that lineages of independent origins have established secondary contact. We carried out rangewide sampling across the eastern African high mountains, inferred dated phylogenies from nuclear ribosomal and plastid DNA using Bayesian methods, and performed flow cytometry and AFLP (amplified fragment length polymorphism) analyses. We inferred a single Late Pliocene western Eurasian origin of the eastern African taxa, whose high-ploid populations in one mountain group formed a distinct phylogeographic group and carried plastids that diverged from those of the currently allopatric southern African lineage in the Mid- to Late Pleistocene. We show that Anthoxanthum has an intriguing history in sub-Saharan Africa, including Late Pliocene colonization from southeast and north, followed by secondary contact, hybridization, allopolyploidization and local extinction during one of the last glacial cycles. Our results add to a growing body of evidence showing that isolated tropical high mountain habitats have a dynamic recent history involving niche conservatism and recruitment from remote sources, repeated dispersals, diversification, hybridization and local extinction.
Collapse
Affiliation(s)
- Felly Mugizi Tusiime
- School of Forestry, Geographical and Environmental Sciences, Department of Forestry, Biodiversity and Tourism, Makerere University, Kampala, Uganda.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, Oslo, Norway.,Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tigist Wondimu
- Natural History Museum, University of Oslo, Oslo, Norway.,Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Catherine Aloyce Masao
- Natural History Museum, University of Oslo, Oslo, Norway.,Department of Forest Biology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ahmed Abdikadir Abdi
- Natural History Museum, University of Oslo, Oslo, Norway.,National Museums of Kenya, Nairobi, Kenya
| | - Vincent Muwanika
- School of Forestry, Geographical and Environmental Sciences, Department of Forestry, Biodiversity and Tourism, Makerere University, Kampala, Uganda
| | - Pavel Trávníček
- Department of Flow Cytometry, Institute of Botany, Průhonice, Czech Republic
| | - Sileshi Nemomissa
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Magnus Popp
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Gerald Eilu
- School of Forestry, Geographical and Environmental Sciences, Department of Forestry, Biodiversity and Tourism, Makerere University, Kampala, Uganda
| | | | - Manuel Pimentel
- Natural History Museum, University of Oslo, Oslo, Norway.,CICA, Centro de Investigacións Científicas Avanzadas, Universidade da Coruña, Galicia, Spain
| |
Collapse
|
18
|
Lema-Suárez I, Sahuquillo E, Marí-Mena N, Pimentel M. Polymorphic microsatellite markers in Anthoxanthum (Poaceae) and cross-amplification in the Eurasian complex of the genus. APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1600070. [PMID: 27785386 PMCID: PMC5077285 DOI: 10.3732/apps.1600070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Nonplastid microsatellite primers were developed for the first time in the Euro-Siberian complex of Anthoxanthum (Poaceae), a genus of temperate grasses in which reticulate evolution is common. METHODS AND RESULTS A microsatellite-enriched genomic DNA library allowed the detection of 500 fragments containing a microsatellite motif. Fifteen primer pairs were selected for an extended primer test. A preliminary analysis was conducted on the Eurasian diploid lineages of Anthoxanthum, with special emphasis on three populations of the Mediterranean A. aristatum-A. ovatum complex. Thirteen out of 15 markers tested were polymorphic in the complex, with successful cross-amplification in A. odoratum (93% polymorphic loci), A. amarum (73% polymorphic), A. alpinum (73% polymorphic), and A. maderense (60% polymorphic). CONCLUSIONS These microsatellite markers will enable the analysis of evolution and phylogeography in diploid and polyploid lineages of this important genus.
Collapse
Affiliation(s)
- Irene Lema-Suárez
- Grupo de Investigación en Bioloxía Evolutiva (GIBE), Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia, Spain
| | - Elvira Sahuquillo
- Grupo de Investigación en Bioloxía Evolutiva (GIBE), Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia, Spain
| | - Neus Marí-Mena
- AllGenetics & Biology SL, Edificio de Servizos Centrais de Investigación, Campus de Elviña s.n., A Coruña, Galicia, Spain
| | - Manuel Pimentel
- Grupo de Investigación en Bioloxía Evolutiva (GIBE), Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia, Spain
| |
Collapse
|