1
|
Beikzadeh B, Khani M, Zarinehzadeh Y, Abedini Bakhshmand E, Sadeghizadeh M, Rabbani S, Soltani BM. Preventive and treatment efficiency of dendrosomal nano-curcumin against ISO-induced cardiac fibrosis in mouse model. PLoS One 2024; 19:e0311817. [PMID: 39388499 PMCID: PMC11469592 DOI: 10.1371/journal.pone.0311817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Cardiac fibrosis (c-fibrosis) is a critical factor in cardiovascular diseases, leading to impaired cardiac function and heart failure. This study aims to optimize the isoproterenol (ISO)-induced c-fibrosis model and evaluate the therapeutic efficacy of dendrosomal nano-curcumin (DNC) in both in-vitro and in-vivo conditions. Also, we were looking for the differentially expressed genes following the c-fibrosis induction. At the in-vitro condition, primary cardiac fibroblasts were exclusively cultured on collagen-coated or polystyrene plates and, were treated with ISO for fibrosis induction and post-treated or co-treated with DNC. RT-qPCR and flow cytometry analysis indicated that DNC treatment attenuated the fibrotic effect of ISO treatment in these cells. At the in-vivo condition, our findings demonstrated that ISO treatment effectively induces cardiac (and pulmonary) fibrosis, characterized by pro-fibrotic and pro-inflammatory gene expression and IHC (α-SMA, COL1A1, and TGFβ). Interestingly, fibrosis symptoms were reduced following the pretreatment, co-treatment, or post-treatment of DNC with ISO. Additionally, the intensive RNAseq analysis suggested the COMP gene is differentially expressed following the c-fibrosis and our RT-qPCR analysis suggested it as a novel potential marker. Overall, our results promise the application of DNC as a potential preventive or therapy agent before and after heart challenges that lead to c-fibrosis.
Collapse
Affiliation(s)
- Behnaz Beikzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Khani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yasamin Zarinehzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram M. Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Jain N, Shashi Bhushan BL, Natarajan M, Mehta R, Saini DK, Chatterjee K. Advanced 3D In Vitro Lung Fibrosis Models: Contemporary Status, Clinical Uptake, and Prospective Outlooks. ACS Biomater Sci Eng 2024; 10:1235-1261. [PMID: 38335198 DOI: 10.1021/acsbiomaterials.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Fibrosis has been characterized as a global health problem and ranks as one of the primary causes of organ dysfunction. Currently, there is no cure for pulmonary fibrosis, and limited therapeutic options are available due to an inadequate understanding of the disease pathogenesis. The absence of advanced in vitro models replicating dynamic temporal changes observed in the tissue with the progression of the disease is a significant impediment in the development of novel antifibrotic treatments, which has motivated research on tissue-mimetic three-dimensional (3D) models. In this review, we summarize emerging trends in preparing advanced lung models to recapitulate biochemical and biomechanical processes associated with lung fibrogenesis. We begin by describing the importance of in vivo studies and highlighting the often poor correlation between preclinical research and clinical outcomes and the limitations of conventional cell culture in accurately simulating the 3D tissue microenvironment. Rapid advancement in biomaterials, biofabrication, biomicrofluidics, and related bioengineering techniques are enabling the preparation of in vitro models to reproduce the epithelium structure and operate as reliable drug screening strategies for precise prediction. Improving and understanding these model systems is necessary to find the cross-talks between growing cells and the stage at which myofibroblasts differentiate. These advanced models allow us to utilize the knowledge and identify, characterize, and hand pick medicines beneficial to the human community. The challenges of the current approaches, along with the opportunities for further research with potential for translation in this field, are presented toward developing novel treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - B L Shashi Bhushan
- Department of Pulmonary Medicine, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - M Natarajan
- Department of Pathology, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - Ravi Mehta
- Department of Pulmonology and Critical Care, Apollo Hospitals, Jayanagar, Bangalore 560011 India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| |
Collapse
|
3
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Barron SL, Wyatt O, O'Connor A, Mansfield D, Suzanne Cohen E, Witkos TM, Strickson S, Owens RM. Modelling bronchial epithelial-fibroblast cross-talk in idiopathic pulmonary fibrosis (IPF) using a human-derived in vitro air liquid interface (ALI) culture. Sci Rep 2024; 14:240. [PMID: 38168149 PMCID: PMC10761879 DOI: 10.1038/s41598-023-50618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating form of respiratory disease with a life expectancy of 3-4 years. Inflammation, epithelial injury and myofibroblast proliferation have been implicated in disease initiation and, recently, epithelial-fibroblastic crosstalk has been identified as a central driver. However, the ability to interrogate this crosstalk is limited due to the absence of in vitro models that mimic physiological conditions. To investigate IPF dysregulated cross-talk, primary normal human bronchial epithelial (NHBE) cells and primary normal human lung fibroblasts (NHLF) or diseased human lung fibroblasts (DHLF) from IPF patients, were co-cultured in direct contact at the air-liquid interface (ALI). Intercellular crosstalk was assessed by comparing cellular phenotypes of co-cultures to respective monocultures, through optical, biomolecular and electrical methods. A co-culture-dependent decrease in epithelium thickness, basal cell mRNA (P63, KRT5) and an increase in transepithelial electrical resistance (TEER) was observed. This effect was significantly enhanced in DHLF co-cultures and lead to the induction of epithelial to mesenchymal transition (EMT) and increased mRNA expression of TGFβ-2, ZO-1 and DN12. When stimulated with exogenous TGFβ, NHBE and NHLF monocultures showed a significant upregulation of EMT (COL1A1, FN1, VIM, ASMA) and senescence (P21) markers, respectively. In contrast, direct NHLF/NHBE co-culture indicated a protective role of epithelial-fibroblastic cross-talk against TGFβ-induced EMT, fibroblast-to-myofibroblast transition (FMT) and inflammatory cytokine release (IL-6, IL-8, IL-13, IL-1β, TNF-α). DHLF co-cultures showed no significant phenotypic transition upon stimulation, likely due to the constitutively high expression of TGFβ isoforms prior to any exogenous stimulation. The model developed provides an alternative method to generate IPF-related bronchial epithelial phenotypes in vitro, through the direct co-culture of human lung fibroblasts with NHBEs. These findings highlight the importance of fibroblast TGFβ signaling in EMT but that monocultures give rise to differential responses compared to co-cultures, when exposed to this pro-inflammatory stimulus. This holds implications for any translation conclusions drawn from monoculture studies and is an important step in development of more biomimetic models of IPF. In summary, we believe this in vitro system to study fibroblast-epithelial crosstalk, within the context of IPF, provides a platform which will aid in the identification and validation of novel targets.
Collapse
Affiliation(s)
- Sarah L Barron
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| | - Owen Wyatt
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Andy O'Connor
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - David Mansfield
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Tomasz M Witkos
- Analytical Sciences, Bioassay, Biosafety and Impurities, BioPharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Sam Strickson
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Róisín M Owens
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Brussow J, Feng K, Thiam F, Phogat S, Osei ET. Epithelial-fibroblast interactions in IPF: Lessons from in vitro co-culture studies. Differentiation 2023; 134:11-19. [PMID: 37738701 DOI: 10.1016/j.diff.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial disease that is characterized by increased cellular proliferation and differentiation together with excessive extracellular matrix (ECM) deposition leading to buildup of scar tissue (fibrosis) and remodeling in the lungs. The activated and differentiated (myo)fibroblasts are one of the main sources of tissue remodeling in IPF and a crucial mechanism known to contribute to this feature is an aberrant crosstalk between pulmonary fibroblasts and the abnormal or injured pulmonary epithelium. This epithelial-fibroblast interaction mimics the temporal, spatial and cell-type specific crosstalk between the endoderm and mesoderm in the so-called epithelial-mesenchymal trophic unit (EMTU) during lung development that is proposed to be activated in healthy lung repair and dysregulated in various lung diseases including IPF. To study the dysregulated lung EMTU in IPF, various complex in vitro models have been established. Hence, in this review, we will provide a summary of studies that have used complex (3-dimensional) in vitro co-culture, and organoid models to assess how abnormal epithelial-fibroblast interactions in lung EMTU contribute to crucial features of the IPF including defective cellular differentiation, proliferation and migration as well as increased ECM deposition.
Collapse
Affiliation(s)
- J Brussow
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - K Feng
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - F Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - S Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - E T Osei
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
6
|
Han X, Xu L, Dou T, Du R, Deng L, Wang X. Inhibitory Effects of Epithelial Cells on Fibrosis Mechanics of Microtissue and Their Spatiotemporal Dependence on the Epithelial-Fibroblast Interaction. ACS Biomater Sci Eng 2023; 9:4846-4854. [PMID: 37418666 DOI: 10.1021/acsbiomaterials.2c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Cell-generated contraction force is the primary physical drive for fibrotic densification of biological tissues. Previous studies using two-dimensional culture models have shown that epithelial cells inhibit the myofibroblast-derived contraction force via the regulation of the fibroblast/myofibroblast transition (FMT). However, it remains unclear how epithelial cells interact with fibroblasts and myofibroblasts to determine the mechanical consequences and spatiotemporal regulation of fibrosis development. In this study, we established a three-dimensional microtissue model using an NIH/3T3 fibroblast-laden collagen hydrogel, incorporated with a microstring-based force sensor, to assess fibrosis mechanics. When Madin-Darby canine kidney epithelial cells were cocultured on the microtissue's surface, the densification, stiffness, and contraction force of the microtissue greatly decreased compared to the monocultured microtissue without epithelial cells. The key fibrotic features, such as enhanced protein expression of α-smooth muscle actin, fibronectin, and collagen indicating FMT and matrix deposition, respectively, were also significantly reduced. The antifibrotic effects of epithelial cells on the microtissue were dependent on the intercellular signaling molecule prostaglandin E2 (PGE2) with an effective concentration of 10 μM and their proximity to the fibroblasts, indicating paracrine cellular signaling between the two types of cells during tissue fibrosis. The effect of PGE2 on microtissue contraction was also dependent on the time point when PGE2 was delivered or blocked, suggesting that the presence of epithelial cells at an early stage is critical for preventing or treating advanced fibrosis. Taken together, this study provides insights into the spatiotemporal regulation of mechanical properties of fibrosis by epithelial cells, and the cocultured microtissue model incorporated with a real-time and sensitive force sensor will be a suitable system for evaluating fibrosis and drug screening.
Collapse
Affiliation(s)
- Xiaoning Han
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lele Xu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Ting Dou
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Rong Du
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xiang Wang
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Medical and Health Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
7
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
9
|
Pierre-Louis Odoom J, Freeberg MAT, Camus SV, Toft R, Szomju BB, Sanchez Rosado RM, Jackson PD, Allegood JC, Silvey S, Liu J, Cowart LA, Weiss E, Thatcher TH, Sime PJ. Exhaled breath condensate identifies metabolic dysregulation in patients with radiation-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L863-L869. [PMID: 37039378 PMCID: PMC10243533 DOI: 10.1152/ajplung.00439.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/12/2023] Open
Abstract
Radiation-induced lung injury (RILI) is a consequence of therapeutic thoracic irradiation (TR) for many cancers, and there are no FDA-approved curative strategies. Studies report that 80% of patients who undergo TR will have CT-detectable interstitial lung abnormalities, and strategies to limit the risk of RILI may make radiotherapy less effective at treating cancer. Our lab and others have reported that lung tissue from patients with idiopathic pulmonary fibrosis (IPF) exhibits metabolic defects including increased glycolysis and lactate production. In this pilot study, we hypothesized that patients with radiation-induced lung damage will exhibit distinct changes in lung metabolism that may be associated with the incidence of fibrosis. Using liquid chromatography/tandem mass spectrometry to identify metabolic compounds, we analyzed exhaled breath condensate (EBC) in subjects with CT-confirmed lung lesions after TR for lung cancer, compared with healthy subjects, smokers, and cancer patients who had not yet received TR. The lung metabolomic profile of the irradiated group was significantly different from the three nonirradiated control groups, highlighted by increased levels of lactate. Pathway enrichment analysis revealed that EBC from the case patients exhibited concurrent alterations in lipid, amino acid, and carbohydrate energy metabolism associated with the energy-producing tricarboxylic acid (TCA) cycle. Radiation-induced glycolysis and diversion of lactate to the extracellular space suggests that pyruvate, a precursor metabolite, converts to lactate rather than acetyl-CoA, which contributes to the TCA cycle. This TCA cycle deficiency may be compensated by these alternate energy sources to meet the metabolic demands of chronic wound repair. Using an "omics" approach to probe lung disease in a noninvasive manner could inform future mechanistic investigations and the development of novel therapeutic targets.NEW & NOTEWORTHY We report that exhaled breath condensate (EBC) identifies cellular metabolic dysregulation in patients with radiation-induced lung injury. In this pilot study, untargeted metabolomics revealed a striking metabolic signature in EBC from patients with radiation-induced lung fibrosis compared to patients with lung cancer, at-risk smokers, and healthy volunteers. Patients with radiation-induced fibrosis exhibit specific changes in tricarboxylic acid (TCA) cycle energy metabolism that may be required to support the increased energy demands of fibroproliferation.
Collapse
Affiliation(s)
- Josly Pierre-Louis Odoom
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Margaret A T Freeberg
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Sarah V Camus
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Robin Toft
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Barbara B Szomju
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Rose Marie Sanchez Rosado
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Peter D Jackson
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Scott Silvey
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Thomas H Thatcher
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Patricia J Sime
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
10
|
Beach TA, Finkelstein JN, Chang PY. Epithelial Responses in Radiation-Induced Lung Injury (RILI) Allow Chronic Inflammation and Fibrogenesis. Radiat Res 2023; 199:439-451. [PMID: 37237442 PMCID: PMC10498477 DOI: 10.1667/rade-22-00103.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/20/2023] [Indexed: 05/28/2023]
Abstract
Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- SRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
| | - Jacob N. Finkelstein
- University of Rochester Medical Center, Departments of Pediatrics and Neonatology, and Environmental Medicine, Rochester, New York 14642
| | - Polly Y. Chang
- SRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
| |
Collapse
|
11
|
Caracena T, Blomberg R, Hewawasam RS, Fry ZE, Riches DWH, Magin CM. Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomater Sci 2022; 10:7133-7148. [PMID: 36366982 PMCID: PMC9729409 DOI: 10.1039/d2bm00827k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment in vitro. Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue. Co-cultured cells retained normal levels of viability up to at least three weeks and displayed differentiation patterns observed in vivo during IPF progression. Interrogation of protein and gene expression within this model showed that myofibroblast activation required both extracellular mechanical cues and the presence of alveolar epithelial cells. Differences in gene expression indicated that cellular co-culture induced TGF-β signaling and proliferative gene expression, while microenvironmental stiffness upregulated the expression of genes related to cell-ECM interactions. This biomaterial-based cell culture system serves as a significant step forward in the accurate recapitulation of human lung tissue in vitro and highlights the need to incorporate multiple factors that work together synergistically in vivo into models of lung biology of health and disease.
Collapse
Affiliation(s)
- Thomas Caracena
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - Rukshika S Hewawasam
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - Zoe E Fry
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
| | - David W H Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, USA
| |
Collapse
|
12
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
13
|
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Dis Mon 2022:101484. [DOI: 10.1016/j.disamonth.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
15
|
Khan P, Fytianos K, Blumer S, Roux J, Gazdhar A, Savic S, Knudsen L, Jonigk D, Kuehnel MP, Mykoniati S, Tamm M, Geiser T, Hostettler KE. Basal-Like Cell-Conditioned Medium Exerts Anti-Fibrotic Effects In Vitro and In Vivo. Front Bioeng Biotechnol 2022; 10:844119. [PMID: 35350187 PMCID: PMC8957873 DOI: 10.3389/fbioe.2022.844119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
In idiopathic pulmonary fibrosis (IPF), basal-like cells are atypically present in the alveolar region, where they may affect adjacent stromal cells by paracrine mechanisms. We here aimed to confirm the presence of basal-like cells in peripheral IPF lung tissue in vivo, to culture and characterize the cells in vitro, and to investigate their paracrine effects on IPF fibroblasts in vitro and in bleomycin-injured rats in vivo. Basal-like cells are mainly localized in areas of pathological bronchiolization or honeycomb cysts in peripheral IPF lung tissue. Single-cell RNA sequencing (scRNA-seq) demonstrated an overall homogeneity, the expression of the basal cell markers cytokeratin KRT5 and KRT17, and close transcriptomic similarities to basal cells in the majority of cells cultured in vitro. Basal-like cells secreted significant levels of prostaglandin E2 (PGE2), and their conditioned medium (CM) inhibited alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1) and upregulated matrix metalloproteinase-1 (MMP-1) and hepatocyte growth factor (HGF) by IPF fibroblasts in vitro. The instillation of CM in bleomycin-injured rat lungs resulted in reduced collagen content, improved lung architecture, and reduced α-SMA-positive cells. Our data suggested that basal-like cells may limit aberrant fibroblast activation and differentiation in IPF through paracrine mechanisms.
Collapse
Affiliation(s)
- Petra Khan
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Kleanthis Fytianos
- Department of Pulmonary Medicine, University Hospital Bern, and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sabrina Blumer
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Spasenija Savic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sofia Mykoniati
- Department of Internal Medicine, Jura Cantonal Hospital, Delemont, Switzerland
| | - Michael Tamm
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Katrin E. Hostettler
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Rackow AR, Judge JL, Woeller CF, Sime PJ, Kottmann RM. miR-338-3p blocks TGFβ-induced myofibroblast differentiation through the induction of PTEN. Am J Physiol Lung Cell Mol Physiol 2022; 322:L385-L400. [PMID: 34986654 PMCID: PMC8884407 DOI: 10.1152/ajplung.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease. The pathogenesis of IPF is not completely understood. However, numerous genes are associated with the development and progression of pulmonary fibrosis, indicating there is a significant genetic component to the pathogenesis of IPF. Epigenetic influences on the development of human disease, including pulmonary fibrosis, remain to be fully elucidated. In this paper, we identify miR-338-3p as a microRNA severely downregulated in the lungs of patients with pulmonary fibrosis and in experimental models of pulmonary fibrosis. Treatment of primary human lung fibroblasts with miR-338-3p inhibits myofibroblast differentiation and matrix protein production. Published and proposed targets of miR-338-3p such as TGFβ receptor 1, MEK/ERK 1/2, Cdk4, and Cyclin D are also not responsible for the regulation of pulmonary fibroblast behavior by miR-338-3p. miR-338-3p inhibits myofibroblast differentiation by preventing TGFβ-mediated downregulation of phosphatase and tensin homolog (PTEN), a known antifibrotic mediator.
Collapse
Affiliation(s)
- Ashley R. Rackow
- 1Lung Biology and Disease Program, University of Rochester Medical Center Rochester, Rochester, New York,2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | | | - Collynn F. Woeller
- 2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York,4Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
| | - Patricia J. Sime
- 5Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Robert M. Kottmann
- 1Lung Biology and Disease Program, University of Rochester Medical Center Rochester, Rochester, New York,2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York,6Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
17
|
Doolin MT, Smith IM, Stroka KM. Fibroblast to myofibroblast transition is enhanced by increased cell density. Mol Biol Cell 2021; 32:ar41. [PMID: 34731044 PMCID: PMC8694087 DOI: 10.1091/mbc.e20-08-0536] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of the fibroblast-to-myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-β1 when cells are seeded at a high density compared with a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-β1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.
Collapse
Affiliation(s)
- Mary T Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742.,Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, 20742.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, 21201
| |
Collapse
|
18
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
19
|
Memon A, Kim BY, Kim SE, Pyao Y, Lee YG, Kang SC, Lee WK. Anti-Inflammatory Effect of Phytoncide in an Animal Model of Gastrointestinal Inflammation. Molecules 2021; 26:molecules26071895. [PMID: 33810618 PMCID: PMC8037037 DOI: 10.3390/molecules26071895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.)
| | - Bae Yong Kim
- Research Institute, Phylus Co., LTD., Danyang-gun 27000, Korea;
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Se-eun Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.)
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Korea; (S.-e.K.); (Y.-G.L.); (S.C.K.)
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.)
- Correspondence: ; Tel.: +82-10-4607-3871
| |
Collapse
|
20
|
Bormann T, Maus R, Stolper J, Jonigk D, Welte T, Gauldie J, Kolb M, Maus UA. Role of the COX2-PGE 2 axis in S. pneumoniae-induced exacerbation of experimental fibrosis. Am J Physiol Lung Cell Mol Physiol 2020; 320:L377-L392. [PMID: 33296268 DOI: 10.1152/ajplung.00024.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) associated with high morbidity and mortality. Patients with ILD frequently develop an acute exacerbation of their disease, which may be triggered by viral and/or bacterial infections. Prostaglandin E2 (PGE2) is an eicosanoid released in a cyclooxygenase-2 (COX2)-dependent manner and is considered to contribute to regulation of lung fibrosis. However, its role in infection-induced exacerbation of lung fibrosis is poorly defined. We found significantly increased levels of PGE2 in lung tissue of patients with ILD. Increased levels of PGE2 were also found in lung tissue of mice with AdTGF-β1-induced lung fibrosis and even more so in Streptococcus pneumoniae exacerbated lung fibrosis. Type II alveolar epithelial cells (AT II cells) and alveolar macrophages (AM) contributed to PGE2 release during exacerbating fibrosis. Application of parecoxib to inhibit PGE2 synthesis ameliorated lung fibrosis, whereas intratracheal application of PGE2 worsened lung fibrosis in mice. Both interventions had no effect on S. pneumoniae-exacerbated lung fibrosis. Together, we found that the COX2-PGE2 axis has dual roles in fibrosis that may offset each other: PGE2 helps resolve infection/attenuate inflammation in fibrosis exacerbation but accentuates TGF-β/AT II cell-mediated fibrosis. These data support the efficacy of COX/PGE2 interventions in the setting of non-exacerbating lung fibrosis.
Collapse
Affiliation(s)
- Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, partner site BREATH, Hannover, Germany.,Clinic for Pneumology, Hannover Medical School, Hannover, Germany
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| |
Collapse
|
21
|
Yamanishi C, Parigoris E, Takayama S. Kinetic Analysis of Label-Free Microscale Collagen Gel Contraction Using Machine Learning-Aided Image Analysis. Front Bioeng Biotechnol 2020; 8:582602. [PMID: 33072731 PMCID: PMC7537788 DOI: 10.3389/fbioe.2020.582602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a deadly lung disease, wherein normal lung tissue is progressively replaced with fibrotic scar tissue. An aspect of this process can be recreated in vitro by embedding fibroblasts into a collagen matrix and providing a fibrotic stimulus. This work expands upon a previously described method to print microscale cell-laden collagen gels and combines it with live cell imaging and automated image analysis to enable high-throughput analysis of the kinetics of cell-mediated contraction of this collagen matrix. The image analysis method utilizes a plugin for FIJI, built around Waikato Environment for Knowledge Analysis (WEKA) Segmentation. After cross-validation of this automated image analysis with manual shape tracing, the assay was applied to primary human lung fibroblasts including cells isolated from idiopathic pulmonary fibrosis patients. In the absence of any exogenous stimuli, the analysis showed significantly faster and more extensive contraction of the diseased cells compared to the healthy ones. Upon stimulation with transforming growth factor beta 1 (TGF-β1), fibroblasts from the healthy donor showed significantly more contraction throughout the observation period while differences in the response of diseased cells was subtle and could only be detected during a smaller window of time. Finally, dose-response curves for the inhibition of collagen gel contraction were determined for 3 small molecules including the only 2 FDA-approved drugs for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Cameron Yamanishi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
22
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
23
|
Tan Q, Ma XY, Liu W, Meridew JA, Jones DL, Haak AJ, Sicard D, Ligresti G, Tschumperlin DJ. Nascent Lung Organoids Reveal Epithelium- and Bone Morphogenetic Protein-mediated Suppression of Fibroblast Activation. Am J Respir Cell Mol Biol 2020; 61:607-619. [PMID: 31050552 DOI: 10.1165/rcmb.2018-0390oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Reciprocal epithelial-mesenchymal interactions are pivotal in lung development, homeostasis, injury, and repair. Organoids have been used to investigate such interactions, but with a major focus on epithelial responses to mesenchyme and less attention to epithelial effects on mesenchyme. In the present study, we used nascent organoids composed of human and mouse lung epithelial and mesenchymal cells to demonstrate that healthy lung epithelium dramatically represses transcriptional, contractile, and matrix synthetic functions of lung fibroblasts. Repression of fibroblast activation requires signaling via the bone morphogenetic protein (BMP) pathway. BMP signaling is diminished after epithelial injury in vitro and in vivo, and exogenous BMP4 restores fibroblast repression in injured organoids. In contrast, inhibition of BMP signaling in healthy organoids is sufficient to derepress fibroblast matrix synthetic function. Our results reveal potent repression of fibroblast activation by healthy lung epithelium and a novel mechanism by which epithelial loss or injury is intrinsically coupled to mesenchymal activation via loss of repressive BMP signaling.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Xiao Yin Ma
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wei Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Dakota L Jones
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Sacchi M, Bansal R, Rouwkema J. Bioengineered 3D Models to Recapitulate Tissue Fibrosis. Trends Biotechnol 2020; 38:623-636. [PMID: 31952833 DOI: 10.1016/j.tibtech.2019.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Fibrosis, characterized by progressive tissue stiffening resulting in organ failure, is a growing health problem affecting millions of people worldwide. Currently, therapeutic options for tissue fibrosis are severely limited and organ transplantation is the only effective treatment for the end-stage fibrotic diseases with inherent limitations. Recent advancements in engineered 3D in vitro human disease mimic models, recapitulating the tissue pathophysiology, have provided unique state-of-the-art platforms for: (i) understanding the biological mechanisms involved in the disease pathogenesis; and (ii) high-throughput and reproducible drug screening. This review focuses on the recent multidisciplinary developments made towards advanced 3D biomimetic fibrotic tissue (liver, kidney, and lung) models that combine highly precision manufacturing techniques with high cellular functionality and biophysical (mechanical) properties.
Collapse
Affiliation(s)
- Marta Sacchi
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
25
|
Lacy SH, Woeller CF, Thatcher TH, Pollock SJ, Small EM, Sime PJ, Phipps RP. Activated Human Lung Fibroblasts Produce Extracellular Vesicles with Antifibrotic Prostaglandins. Am J Respir Cell Mol Biol 2019; 60:269-278. [PMID: 30265126 DOI: 10.1165/rcmb.2017-0248oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The differentiation of interstitial lung fibroblasts into contractile myofibroblasts that proliferate and secrete excessive extracellular matrix is critical for the pathogenesis of pulmonary fibrosis. Certain lipid signaling molecules, such as prostaglandins (PGs), can inhibit myofibroblast differentiation. However, the sources and delivery mechanisms of endogenous PGs are undefined. Activated primary human lung fibroblasts (HLFs) produce PGs such as PGE2. We report that activation of primary HLFs with IL-1β inhibited transforming growth factor β-induced myofibroblast differentiation in both the IL-1β-treated cells themselves (autocrine signal) and adjacent naive HLFs in cocultures (paracrine signal). Additionally, we demonstrate for the first time that at least some of the antifibrotic effect of activated fibroblasts on nearby naive fibroblasts is carried by exosomes and other extracellular vesicles that contain several PGs, including high levels of the antifibrotic PGE2. Thus, activated fibroblasts communicate with surrounding cells to limit myofibroblast differentiation and maintain homeostasis. This work opens the way for future research into extracellular vesicle-mediated intercellular signaling in the lung and may inform the development of novel therapies for fibrotic lung diseases.
Collapse
Affiliation(s)
| | | | - Thomas H Thatcher
- 2 Lung Biology and Disease Program, and.,3 Division of Pulmonary Diseases and Critical Care, and
| | | | - Eric M Small
- 4 Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Patricia J Sime
- 1 Department of Environmental Medicine.,2 Lung Biology and Disease Program, and.,3 Division of Pulmonary Diseases and Critical Care, and
| | - Richard P Phipps
- 1 Department of Environmental Medicine.,2 Lung Biology and Disease Program, and.,3 Division of Pulmonary Diseases and Critical Care, and
| |
Collapse
|
26
|
Bärnthaler T, Theiler A, Zabini D, Trautmann S, Stacher-Priehse E, Lanz I, Klepetko W, Sinn K, Flick H, Scheidl S, Thomas D, Olschewski H, Kwapiszewska G, Schuligoi R, Heinemann A. Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol 2019; 145:818-833.e11. [PMID: 31812575 DOI: 10.1016/j.jaci.2019.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease with high 5-year mortality and few therapeutic options. Prostaglandin (PG) E2 exhibits antifibrotic properties and is reduced in bronchoalveolar lavage from patients with IPF. 15-Prostaglandin dehydrogenase (15-PGDH) is the key enzyme in PGE2 metabolism under the control of TGF-β and microRNA 218. OBJECTIVE We sought to investigate the expression of 15-PGDH in IPF and the therapeutic potential of a specific inhibitor of this enzyme in a mouse model and human tissue. METHODS In vitro studies, including fibrocyte differentiation, regulation of 15-PGDH, RT-PCR, and Western blot, were performed using peripheral blood from healthy donors and patients with IPF and A549 cells. Immunohistochemistry, immunofluorescence, 15-PGDH activity assays, and in situ hybridization as well as ex vivo IPF tissue culture experiments were done using healthy donor and IPF lungs. Therapeutic effects of 15-PGDH inhibition were studied in the bleomycin mouse model of pulmonary fibrosis. RESULTS We demonstrate that 15-PGDH shows areas of increased expression in patients with IPF. Inhibition of this enzyme increases PGE2 levels and reduces collagen production in IPF precision cut lung slices and in the bleomycin model. Inhibitor-treated mice show amelioration of lung function, decreased alveolar epithelial cell apoptosis, and fibroblast proliferation. Pulmonary fibrocyte accumulation is also decreased by inhibitor treatment in mice, similar to PGE2 that inhibits fibrocyte differentiation from blood of healthy donors and patients with IPF. Finally, microRNA 218-5p, which is downregulated in patients with IPF, suppressed 15-PGDH expression in vivo and in vitro. CONCLUSIONS These findings highlight the role of 15-PGDH in IPF and suggest 15-PGDH inhibition as a promising therapeutic approach.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Theiler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Elvira Stacher-Priehse
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ilse Lanz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Sinn
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Holger Flick
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Stefan Scheidl
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Rufina Schuligoi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
27
|
Jendzjowsky NG, Kelly MM. The Role of Airway Myofibroblasts in Asthma. Chest 2019; 156:1254-1267. [PMID: 31472157 DOI: 10.1016/j.chest.2019.08.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/14/2019] [Accepted: 08/11/2019] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling is a characteristic feature of asthma and is thought to play an important role in the pathogenesis of airway hyperresponsiveness. Myofibroblasts are key structural cells involved in injury and repair, and there is evidence that dysregulation of their normal function contributes to airway remodeling. Despite the importance of myofibroblasts, a lack of specific cellular markers and inconsistent nomenclature have limited recognition of their key role in airway remodeling. Myofibroblasts are increased several-fold in the airways in asthma, in proportion to the severity of the disease. Myofibroblasts are postulated to be derived from both tissue-resident and bone marrow-derived cells, depending on the stage of injury and the tissue. A small number of studies have demonstrated attenuation of myofibroblast numbers and also reversal of established myofibroblast populations in asthma and other inflammatory processes. In this article, we review what is currently known about the biology of myofibroblasts in the airways in asthma and identify potential targets to reduce or reverse the remodeling process. However, further translational research is required to better understand the mechanistic role of the myofibroblast in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Airway Inflammation Research Group, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Zhang T, Day JH, Su X, Guadarrama AG, Sandbo NK, Esnault S, Denlinger LC, Berthier E, Theberge AB. Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Front Bioeng Biotechnol 2019; 7:196. [PMID: 31475142 PMCID: PMC6702460 DOI: 10.3389/fbioe.2019.00196] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 11/14/2022] Open
Abstract
Mechanical forces have long been recognized as fundamental drivers in biological processes, such as embryogenesis, tissue formation and disease regulation. The collagen gel contraction (CGC) assay has served as a classic tool in the field of mechanobiology to study cell-induced contraction of extracellular matrix (ECM), which plays an important role in inflammation and wound healing. In a conventional CGC assay, cell-laden collagen is loaded into a cell culture vessel (typically a well plate) and forms a disk-shaped gel adhering to the bottom of the vessel. The decrement in diameter or surface area of the gel is used as a parameter to quantify the degree of cell contractility. In this study, we developed a microscale CGC assay with an engineered well plate insert that uses surface tension forces to load and manipulate small volumes (14 μL) of cell-laden collagen. The system is easily operated with two pipetting steps and the microscale device moves dynamically as a result of cellular forces. We used a straightforward one-dimensional measurement as the gel contraction readout. We adapted a conventional lung fibroblast CGC assay to demonstrate the functionality of the device, observing significantly more gel contraction when human lung fibroblasts were cultured in serum-containing media vs. serum-free media (p ≤ 0.05). We further cocultured eosinophils and fibroblasts in the system, two important cellular components that lead to fibrosis in asthma, and observed that soluble factors from eosinophils significantly increase fibroblast-mediated gel contraction (p ≤ 0.01). Our microscale CGC device provides a new method for studying downstream ECM effects of intercellular cross talk using 7- to 35-fold less cell-laden gel than traditional CGC assays.
Collapse
Affiliation(s)
- Tianzi Zhang
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - John H Day
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Xiaojing Su
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Arthur G Guadarrama
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nathan K Sandbo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, United States.,Department of Urology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
29
|
Abstract
Biofabrication techniques have enabled the formation of complex models of many biological tissues. We present a framework to contextualize biofabrication techniques within a disease modeling application. Fibrosis is a progressive disease interfering with tissue structure and function, which stems from an aberrant wound healing response. Epithelial injury and clot formation lead to fibroblast invasion and activation, followed by contraction and remodeling of the extracellular matrix. These stages have healthy wound healing variants in addition to the pathogenic analogs that are seen in fibrosis. This review evaluates biofabrication of a variety of phenotypic cell-based fibrosis assays. By recapitulating different contributors to fibrosis, these assays are able to evaluate biochemical pathways and therapeutic candidates for specific stages of fibrosis pathogenesis. Biofabrication of these culture models may enable phenotypic screening for improved understanding of fibrosis biology as well as improved screening of anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Cameron Yamanishi
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| | - Stephen Robinson
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, United States of America
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, United States of America
| |
Collapse
|
30
|
Correll KA, Edeen KE, Zemans RL, Redente EF, Serban KA, Curran-Everett D, Edelman BL, Mikels-Vigdal A, Mason RJ. Transitional human alveolar type II epithelial cells suppress extracellular matrix and growth factor gene expression in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2019; 317:L283-L294. [PMID: 31166130 DOI: 10.1152/ajplung.00337.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts. They also reduced fibroblast expression of hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7, KGF), and FGF10. When type II cells were cultured at an air-liquid interface to maintain high levels of surfactant protein expression, this inhibitory activity was lost. When type II cells were cultured on collagen-coated tissue culture wells to reduce surfactant protein expression further and increase the expression of some type I cell markers, the epithelial cells suppressed transforming growth factor-β (TGF-β)-stimulated ACTA2 and connective tissue growth factor (CTGF) expression in lung fibroblasts. Our results suggest that transitional alveolar type II cells and likely type I cells but not fully differentiated type II cells inhibit matrix and growth factor expression in fibroblasts. These cells express markers of both type II cells and type I cells. This is probably a normal homeostatic mechanism to inhibit the fibrotic response in the resolution phase of wound healing. Defining how transitional type II cells convert activated fibroblasts into a quiescent state and inhibit the effects of TGF-β may provide another approach to limiting the development of fibrosis after alveolar injury.
Collapse
Affiliation(s)
| | | | - Rachel L Zemans
- National Jewish Health, Denver, Colorado.,Division of Pulmonary and Critical Care Medicine/Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
31
|
Sundarakrishnan A, Zukas H, Coburn J, Bertini BT, Liu Z, Georgakoudi I, Baugh L, Dasgupta Q, Black LD, Kaplan DL. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater Sci Eng 2019; 5:2417-2429. [PMID: 33405750 DOI: 10.1021/acsbiomaterials.8b01262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown etiology with no current curative treatment. Modeling pulmonary fibrotic (PF) tissue has the potential to improve our understanding of IPF disease progression and treatment. Rodent animal models do not replicate human fibroblastic foci (Hum-FF) pathology, and current iterations of in vitro model systems (e.g., collagen hydrogels, polyacrylamide hydrogels, and fibrosis-on-chip systems) are unable to replicate the three-dimensional (3D) complexity and biochemical composition of human PF tissue. Herein, we fabricated a 3D bioengineered pulmonary fibrotic (Eng-PF) tissue utilizing cell laden silk collagen type I dityrosine cross-linked hydrogels and Flexcell bioreactors. We show that silk collagen type I hydrogels have superior stability and mechanical tunability compared to other hydrogel systems. Using customized Flexcell bioreactors, we reproduced Hum-FF-like pathology with airway epithelial and microvascular endothelial cells. Eng-PF tissues can model myofibroblast differentiation and permit evaluation of antifibrotic drug treatments. Further, Eng-PF tissues could be used to model different facets of IPF disease, including epithelial injury with the addition of bleomycin and cellular recruitment by perfusion of cells through the hydrogel microchannel.
Collapse
Affiliation(s)
- Aswin Sundarakrishnan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Heather Zukas
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01605, United States
| | - Brian T Bertini
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren Baugh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Queeny Dasgupta
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
32
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
33
|
Sieber P, Schäfer A, Lieberherr R, Le Goff F, Stritt M, Welford RWD, Gatfield J, Peter O, Nayler O, Lüthi U. Novel high-throughput myofibroblast assays identify agonists with therapeutic potential in pulmonary fibrosis that act via EP2 and EP4 receptors. PLoS One 2018; 13:e0207872. [PMID: 30485339 PMCID: PMC6261607 DOI: 10.1371/journal.pone.0207872] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Pathological features of pulmonary fibrosis include accumulation of myofibroblasts and increased extracellular matrix (ECM) deposition in lung tissue. Contractile α–smooth muscle actin (α–SMA)–expressing myofibroblasts that produce and secrete ECM are key effector cells of the disease and therefore represent a viable target for potential novel anti–fibrotic treatments. We used primary normal human lung fibroblasts (NHLF) in two novel high–throughput screening assays to discover molecules that inhibit or revert fibroblast–to–myofibroblast differentiation. A phenotypic high–content assay (HCA) quantified the degree of myofibroblast differentiation, whereas an impedance–based assay, multiplexed with MS / MS quantification of α–SMA and collagen 1 alpha 1 (COL1) protein, provided a measure of contractility and ECM formation. The synthetic prostaglandin E1 (PGE1) alprostadil, which very effectively and potently attenuated and even reversed TGF–β1–induced myofibroblast differentiation, was identified by screening a library of approved drugs. In TGF–β1–induced myofibroblasts the effect of alprostadil was attributed to activation of prostanoid receptor 2 and 4 (EP2 and EP4, respectively). However, selective activation of the EP2 or the EP4 receptor was already sufficient to prevent or reverse TGF–β1–induced NHLF myofibroblast transition. Our high–throughput assays identified chemical structures with potent anti–fibrotic properties acting through potentially novel mechanisms.
Collapse
Affiliation(s)
- Patrick Sieber
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
- * E-mail:
| | - Anny Schäfer
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | - Manuel Stritt
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - John Gatfield
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Oliver Peter
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Oliver Nayler
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Urs Lüthi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
34
|
Nebulisation of synthetic lamellar lipids mitigates radiation-induced lung injury in a large animal model. Sci Rep 2018; 8:13316. [PMID: 30190567 PMCID: PMC6127301 DOI: 10.1038/s41598-018-31559-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Methods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3–4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.
Collapse
|
35
|
Habiel DM, Espindola MS, Jones IC, Coelho AL, Stripp B, Hogaboam CM. CCR10+ epithelial cells from idiopathic pulmonary fibrosis lungs drive remodeling. JCI Insight 2018; 3:122211. [PMID: 30135312 DOI: 10.1172/jci.insight.122211] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease of unknown etiology and limited therapeutic options. In this report, we characterize what we believe is a novel CCR10+ epithelial cell population in IPF lungs. There was a significant increase in the percentage of CCR10+ epithelial cells in IPF relative to normal lung explants and their numbers significantly correlated to lung remodeling in humanized NSG mice. Cultured CCR10-enriched IPF epithelial cells promoted IPF lung fibroblast invasion and collagen 1 secretion. Single-cell RNA sequencing analysis showed distinct CCR10+ epithelial cell populations enriched for inflammatory and profibrotic transcripts. Consistently, cultured IPF but not normal epithelial cells induced lung remodeling in humanized NSG mice, where the number of CCR10+ IPF, but not normal, epithelial cells correlated with hydroxyproline concentration in the remodeled NSG lungs. A subset of IPF CCR10hi epithelial cells coexpress EphA3 and ephrin A signaling induces the expression of CCR10 by these cells. Finally, EphA3+CCR10hi epithelial cells induce more consistent lung remodeling in NSG mice relative to EphA3-CCR10lo epithelial cells. Our results suggest that targeting epithelial cells, highly expressing CCR10, may be beneficial in IPF.
Collapse
|
36
|
Sisson TH, Christensen PJ, Muraki Y, Dils AJ, Chibucos L, Subbotina N, Tohyama K, Horowitz JC, Matsuo T, Bailie M, Nikam S, Hazama M. Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury. Physiol Rep 2018; 6:e13753. [PMID: 29952109 PMCID: PMC6021279 DOI: 10.14814/phy2.13753] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Fibrosis of the lung constitutes a major clinical challenge and novel therapies are required to alleviate the associated morbidity and mortality. Investigating the antifibrotic efficacy of drugs that are already in clinical practice offers an efficient strategy to identify new therapies. The phosphodiesterase 4 (PDE4) inhibitors, approved for the treatment of chronic obstructive pulmonary disease, harbor therapeutic potential for pulmonary fibrosis by augmenting the activity of endogenous antifibrotic mediators that signal through cyclic AMP. In this study, we tested the efficacy of several PDE4 inhibitors including a novel compound (Compound 1) in a murine model of lung fibrosis that results from a targeted type II alveolar epithelial cell injury. We also compared the antifibrotic activity of PDE4 inhibition to the two therapies that are FDA-approved for idiopathic pulmonary fibrosis (pirfenidone and nintedanib). We found that both preventative (day 0-21) and therapeutic (day 11-21) dosing regimens of the PDE4 inhibitors significantly ameliorated the weight loss and lung collagen accumulation that are the sequelae of targeted epithelial cell damage. In a therapeutic protocol, the reduction in lung fibrosis with PDE4 inhibitor administration was equivalent to pirfenidone and nintedanib. Treatment with this class of drugs also resulted in a decrease in plasma surfactant protein D concentration, a reduction in the plasma levels of several chemokines implicated in lung fibrosis, and an in vitro inhibition of fibroblast profibrotic gene expression. These results motivate further investigation of PDE4 inhibition as a treatment for patients with fibrotic lung disease.
Collapse
Affiliation(s)
- Thomas H. Sisson
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | - Paul J. Christensen
- Division of Pulmonary & Critical Care MedicineDepartment of Internal MedicineWilliam Beaumont Medical CenterTroyMichigan
| | - Yo Muraki
- Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Anthony J. Dils
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | - Lauren Chibucos
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | - Natalya Subbotina
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | | | - Jeffrey C. Horowitz
- Pulmonary and Critical Care DivisionDepartment of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMichigan
| | | | - Marc Bailie
- In Vivo FacilityDepartment of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan
| | - Sham Nikam
- Takeda Pharmaceutical Company LimitedFujisawaJapan
| | | |
Collapse
|
37
|
Sundarakrishnan A, Chen Y, Black LD, Aldridge BB, Kaplan DL. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev 2018; 129:78-94. [PMID: 29269274 DOI: 10.1016/j.addr.2017.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/15/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States; Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Bree B Aldridge
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States; Department of Molecular Biology & Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States.
| |
Collapse
|
38
|
Wolters PJ, Blackwell TS, Eickelberg O, Loyd JE, Kaminski N, Jenkins G, Maher TM, Molina-Molina M, Noble PW, Raghu G, Richeldi L, Schwarz MI, Selman M, Wuyts WA, Schwartz DA. Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? THE LANCET. RESPIRATORY MEDICINE 2018; 6:154-160. [PMID: 29413083 PMCID: PMC5903445 DOI: 10.1016/s2213-2600(18)30007-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and typically fatal lung disease characterised by subpleural fibrosis, subepithelial fibroblast foci, and microscopic honeycombing. Although understanding of the pathogenic mechanisms continues to evolve, evidence indicates that distal airway and alveolar epithelial cells are central drivers of the disease. In this Viewpoint, we review the history of naming and classifications used to define the disease now referred to as IPF, in the context of understanding the clinical presentation, causes, and pathogenesis of the disease. We aim to generate discussion on whether, given the substantial progress made in understanding the clinical, genetic, cellular, and molecular mechanisms involved in the development of IPF, a change of name should be considered. To initiate this discussion, we offer new suggestions to update the name of this disease and new approaches to classify all forms of pulmonary fibrosis.
Collapse
Affiliation(s)
- Paul J Wolters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
| | | | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - James E Loyd
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Toby M Maher
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria Molina-Molina
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Disease, University of Washington, Seattle, WA, USA
| | - Luca Richeldi
- Division of Pulmonary Medicine, A Gemelli University Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Marvin I Schwarz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Wim A Wuyts
- Department of Pulmonary Medicine, Unit for Interstitial Lung diseases. University Hospitals Leuven, Leuven, Belgium
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
39
|
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128:74-84. [PMID: 29293092 DOI: 10.1172/jci93561] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue injury disrupts the mechanical homeostasis that underlies normal tissue architecture and function. The failure to resolve injury and restore homeostasis gives rise to progressive fibrosis that is accompanied by persistent alterations in the mechanical environment as a consequence of pathological matrix deposition and stiffening. This Review focuses on our rapidly growing understanding of the molecular mechanisms linking the altered mechanical environment in injury, repair, and fibrosis to cellular activation. In particular, our focus is on the mechanisms by which cells transduce mechanical signals, leading to transcriptional and epigenetic responses that underlie both transient and persistent alterations in cell state that contribute to fibrosis. Translation of these mechanobiological insights may enable new approaches to promote tissue repair and arrest or reverse fibrotic tissue remodeling.
Collapse
Affiliation(s)
| | | | - Moira B Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Lacy SH, Epa AP, Pollock SJ, Woeller CF, Thatcher TH, Phipps RP, Sime PJ. Activated human T lymphocytes inhibit TGFβ-induced fibroblast to myofibroblast differentiation via prostaglandins D 2 and E 2. Am J Physiol Lung Cell Mol Physiol 2017; 314:L569-L582. [PMID: 29351444 DOI: 10.1152/ajplung.00565.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In pulmonary fibrosis (PF), fibroblasts and myofibroblasts proliferate and deposit excessive extracellular matrix in the interstitium, impairing normal lung function. Because most forms of PF have a poor prognosis and limited treatment options, PF represents an urgent unmet need for novel, effective therapeutics. Although the role of immune cells in lung fibrosis is unclear, recent studies suggest that T lymphocyte (T cell) activation may be impaired in PF patients. Furthermore, we have previously shown that activated T cells can produce prostaglandins with anti-scarring potential. Here, we test the hypothesis that activated T cells directly inhibit myofibroblast differentiation using a coculture system. Coculture with activated primary blood-derived T cells, from both healthy human donors and PF patients, inhibited transforming growth factor β-induced myofibroblast differentiation in primary human lung fibroblasts isolated from either normal or PF lung tissue. Coculture supernatants contained anti-fibrotic prostaglandins D2 and E2, and the inhibitory effect of coculture on myofibroblast differentiation was largely reversed when prostaglandin production was abrogated either by resting the T cells before coculture or via specific pharmacological inhibitors. Moreover, coculture conditions induced COX-2 in HLFs but not in T cells, suggesting that T cells deliver an activating signal to HLFs, which in turn produce anti-fibrotic prostaglandins. We show for the first time that coculture with activated primary human T lymphocytes strongly inhibits myofibroblast differentiation, revealing a novel cell-to-cell communication network with therapeutic implications for fibrotic lung diseases.
Collapse
Affiliation(s)
- Shannon H Lacy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Amali P Epa
- Department of Pathology, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Stephen J Pollock
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Department of Pathology, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Department of Pathology, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York.,Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Rochester School of Medicine and Dentistry , Rochester, New York
| |
Collapse
|
41
|
Bahri S, Mies F, Ben Ali R, Mlika M, Jameleddine S, Mc Entee K, Shlyonsky V. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts. PLoS One 2017; 12:e0184368. [PMID: 28877257 PMCID: PMC5587316 DOI: 10.1371/journal.pone.0184368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA) and rosmarinic acid (RA) was reported to cure bleomycin-(BLM)-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF) viability with IC50 value of 17.13±1.06 μM, while RA had no cytotoxic effect. In the presence of 50 μM of RA, dose-response for CA shifted to IC50 value of 11.70±1.46 μM, indicating synergic action. TGFβ-transformed HLF, rat lung fibroblasts and L929 cells presented similar sensitivity to CA and CA+RA (20μM+100μM, respectively) treatment. Rat alveolar epithelial cells died only under CA+RA treatment, while A549 cells were not affected. Annexin V staining and DNA quantification suggested that HLF are arrested in G0/G1 cell cycle phase and undergo apoptosis. CA caused sustained activation of phospho-Akt and phospho-p38 expression and inhibition of p21 protein.Addition of RA potentiated these effects, while RA added alone had no action.Only triple combination of inhibitors (MAPK-p38, pan-caspase, PI3K/Akt/autophagy) partially attenuated apoptosis; this suggests that cytotoxicity of CA+RA treatment has a complex mechanism involving several parallel signaling pathways. The in vivo antifibrotic effect of CA and RA was compared with that of Vitamine-E in BLM-induced fibrosis model in rats. We found comparable reduction in fibrosis score by CA, RA and CA+RA, attenuation of collagen deposition and normalization of oxidative stress markers. In conclusion, antifibrotic effect of CA+RA is due to synergistic pro-apoptotic action on lung fibroblasts and myofibroblasts.
Collapse
Affiliation(s)
- Sana Bahri
- Department of physiology, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Department of Physiology and Pharmacology, Université libre de Bruxelles, Brussels, Belgium
- Department of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Frédérique Mies
- Department of Physiology and Pharmacology, Université libre de Bruxelles, Brussels, Belgium
| | - Ridha Ben Ali
- Department of Experimental Medicine, University of Tunis El Manar, La Rabta, Tunis, Tunisia
| | - Mona Mlika
- Department of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Saloua Jameleddine
- Department of physiology, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Department of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Kathleen Mc Entee
- Department of Physiology and Pharmacology, Université libre de Bruxelles, Brussels, Belgium
| | - Vadim Shlyonsky
- Department of Physiology and Pharmacology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
42
|
Valatas V, Filidou E, Drygiannakis I, Kolios G. Stromal and immune cells in gut fibrosis: the myofibroblast and the scarface. Ann Gastroenterol 2017; 30:393-404. [PMID: 28655975 PMCID: PMC5479991 DOI: 10.20524/aog.2017.0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory scarring is the end-result of excessive extracellular matrix (ECM) accumulation and tissue architectural destruction. It represents a failure to effectively remodel ECM and achieve proper reinstitution and healing during chronic relapsing inflammatory processes. Scarring may affect the functionality of any organ, and in the case of inflammatory bowel disease (IBD)-associated fibrosis leads to stricture formation and often surgery to remove the affected bowel. The activated myofibroblast is the final effector cell that overproduces ECM under the influence of various mediators generated by an intense interplay of classic and non-classic immune cells. This review focuses on how proinflammatory mediators from various sources produced in different stages of intestinal inflammation can form profibrotic pathways that eventually lead to tissue scarring through sustained activation of myofibroblasts.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| |
Collapse
|
43
|
Increased levels of prostaglandin E-major urinary metabolite (PGE-MUM) in chronic fibrosing interstitial pneumonia. Respir Med 2016; 122:43-50. [PMID: 27993290 DOI: 10.1016/j.rmed.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dysregulation of the prostaglandin E2 (PGE2) signaling pathway has been implicated in interstitial pneumonia (IP) pathogenesis. Due to the unstable nature of PGE2, available detection methods may not precisely reflect PGE2 levels. We explored the clinical usefulness of measuring stable prostaglandin E-major urinary metabolite (PGE-MUM) with respect to pathogenesis and extent of chronic fibrosing IP (CFIP), including idiopathic pulmonary fibrosis (IPF), as PGE-MUM is reflective of systemic PGE2 production. METHODS PGE-MUM was measured by radioimmunoassay in controls (n = 124) and patients with lung diseases (bronchial asthma (BA): n = 78, chronic obstructive pulmonary disease (COPD): n = 33, CFIP: n = 44). Extent of lung fibrosis was assessed by fibrosing score (FS) of computed tomography (CT) (FS1-4). Immunohistochemical evaluation of COX-2 was performed to find PGE2 producing cells in IPF. Human bronchial epithelial cells (HBEC) and lung fibroblasts (LFB) were used in in vitro experiments. RESULTS Compared to control, PGE-MUM levels were significantly elevated in CFIP. PGE-MUM levels were positively correlated with FS, and inversely correlated with %DLCO in IP (FS 1-3). COX-2 was highly expressed in metaplastic epithelial cells in IPF, but lower expression of EP2 receptor was demonstrated in LFB derived from IPF. TGF-β induced COX-2 expression in HBEC. CONCLUSIONS PGE-MUM, elevated in CFIP, is a promising biomarker reflecting disease activity. Metaplastic epithelial cells can be a source of elevated PGE-MUM in IPF.
Collapse
|
44
|
Ebener S, Barnowski S, Wotzkow C, Marti TM, Lopez-Rodriguez E, Crestani B, Blank F, Schmid RA, Geiser T, Funke M. Toll-like receptor 4 activation attenuates profibrotic response in control lung fibroblasts but not in fibroblasts from patients with IPF. Am J Physiol Lung Cell Mol Physiol 2016; 312:L42-L55. [PMID: 27815256 DOI: 10.1152/ajplung.00119.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a median survival of 3 yr. IPF deteriorates upon viral or bacterial lung infection although pulmonary infection (pneumonia) in healthy lungs rarely induces fibrosis. Bacterial lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), initiating proinflammatory pathways. As TLR4 has already been linked to hepatic fibrosis and scleroderma, we now investigated the role of TLR4 in IPF fibroblasts. Lung tissue sections from patients with IPF were analyzed for TLR4 expression. Isolated normal human lung fibroblasts (NL-FB) and IPF fibroblasts (IPF-FB) were exposed to LPS and transforming growth factor-β (TGF-β) before expression analysis of receptors, profibrotic mediators, and cytokines. TLR4 is expressed in fibroblast foci of IPF lungs as well as in primary NL-FB and IPF-FB. As a model for a gram-negative pneumonia in the nonfibrotic lung, NL-FB and IPF-FB were coexposed to LPS and TGF-β. Whereas NL-FB produced significantly less connective tissue growth factor upon costimulation compared with TGF-β stimulation alone, IPF-FB showed significantly increased profibrotic markers compared with control fibroblasts after costimulation. Although levels of antifibrotic prostaglandin E2 were elevated after costimulation, they were not responsible for this effect. However, significant downregulation of TGF-β receptor type 1 in control fibroblasts seems to contribute to the reduced profibrotic response in our in vitro model. Normal and IPF fibroblasts thus differ in their profibrotic response upon LPS-induced TLR4 stimulation.
Collapse
Affiliation(s)
- Simone Ebener
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sandra Barnowski
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carlos Wotzkow
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; and
| | | | - Fabian Blank
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke
- Department of Clinical Research, University of Bern, Bern, Switzerland; .,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Lacy SH, Woeller CF, Thatcher TH, Maddipati KR, Honn KV, Sime PJ, Phipps RP. Human lung fibroblasts produce proresolving peroxisome proliferator-activated receptor-γ ligands in a cyclooxygenase-2-dependent manner. Am J Physiol Lung Cell Mol Physiol 2016; 311:L855-L867. [PMID: 27612965 DOI: 10.1152/ajplung.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
Human lung fibroblasts (HLFs) act as innate immune sentinel cells that amplify the inflammatory response to injurious stimuli. Here, we use targeted lipidomics to explore the hypothesis that HLFs also play an active role in the resolution of inflammation. We detected cyclooxygenase-2 (COX-2)-dependent production of both proinflammatory and proresolving prostaglandins (PGs) in conditioned culture medium from HLFs treated with a proinflammatory stimulus, IL-1β. Among the proresolving PGs in the HLF lipidome were several known ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor whose activation in the lung yields potent anti-inflammatory, antifibrotic, and proresolving effects. Next, we used a cell-based luciferase reporter to confirm the ability of HLF supernatants to activate PPARγ, demonstrating, for the first time, that primary HLFs activated with proinflammatory IL-1β or cigarette smoke extract produce functional PPARγ ligands; this phenomenon is temporally regulated, COX-2- and lipocalin-type PGD synthase-dependent, and enhanced by arachidonic acid supplementation. Finally, we used luciferase reporter assays to show that several of the PGs in the lipidome of activated HLFs independently activate PPARγ and/or inhibit NFκB. These results indicate that HLFs, as immune sentinels, regulate both proinflammatory and proresolving responses to injurious stimuli. This novel endogenous resolution pathway represents a new therapeutic target for globally important inflammatory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shannon H Lacy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Krishna Rao Maddipati
- Lipidomics Core Facility, Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan; and
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; .,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
46
|
Warsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis. Front Pharmacol 2016; 7:183. [PMID: 27445819 PMCID: PMC4917547 DOI: 10.3389/fphar.2016.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy may prove necessary to halt and reverse disease dynamics.
Collapse
Affiliation(s)
- Hayley C. Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Amanda K. Wheaton
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Kevin K. Kim
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | | | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
47
|
Nair GB, Matela A, Kurbanov D, Raghu G. Newer developments in idiopathic pulmonary fibrosis in the era of anti-fibrotic medications. Expert Rev Respir Med 2016; 10:699-711. [PMID: 27094006 DOI: 10.1080/17476348.2016.1177461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with a fatal prognosis. Over the last decade, the concepts in pathobiology of pulmonary fibrosis have shifted from a model of chronic inflammation to dysregulated fibroproliferative repair in genetically predisposed patients. Although new breakthrough treatments are now available that slow the progression of the disease, several newer anti-inflammatory and anti-fibrotic drugs are under investigation. Patients with IPF often have coexistent conditions; prompt detection and interventions of which may improve the overall outcome of patients with IPF. Here, we summarize the present understanding of pathogenesis of IPF and treatment options for IPF in the current landscape of new anti-fibrotic treatment options.
Collapse
Affiliation(s)
- Girish B Nair
- a Division of Pulmonary & Critical Care Medicine , Winthrop-University Hospital , Mineola , NY , USA.,b Department of Medicine , SUNY Stony Brook School of Medicine , NY , USA
| | - Ajsza Matela
- a Division of Pulmonary & Critical Care Medicine , Winthrop-University Hospital , Mineola , NY , USA
| | - Daniel Kurbanov
- a Division of Pulmonary & Critical Care Medicine , Winthrop-University Hospital , Mineola , NY , USA
| | - Ganesh Raghu
- c Department of Medicine & Lab Medicine (Adjunct), Division of Pulmonary & Critical Care Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|