1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 PMCID: PMC11759024 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People’s Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Neuman K, Zhang X, Lejeune BT, Pizzarella D, Vázquez M, Lewis LH, Koppes AN, Koppes RA. Static Magnetic Stimulation and Magnetic Microwires Synergistically Enhance and Guide Neurite Outgrowth. Adv Healthc Mater 2025; 14:e2403956. [PMID: 39568232 PMCID: PMC11773108 DOI: 10.1002/adhm.202403956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Axonal growth is heavily influenced by topography and biophysical stimuli including magnetic and electrical fields. Despite extensive investigation, the degree of influence and the underlying genetic mechanisms remain poorly understood. Here, a novel approach to guide neurite growth is undertaken using an innovative ferromagnetic composite material - glass-coated magnetic microwire - to furnish a synergistic combination of magnetic and topographical cues. Whole rat dorsal root ganglia (DRG) are cultured under five different conditions: control, static magnetic field, magnetic microwire, static magnetic field + glass fiber, and static magnetic field + magnetic microwire. DRG outgrowth responses under each condition, including total neurite outgrowth and directionality, are compared. The combination of both magnetic stimulation and topography significantly increases total neurite outgrowth compared to the controls. The combination of magnetic stimulation and magnetic microwire lead to a strong directional bias of growth along the microwire, double what is observed with the glass fiber. Next generation RNA sequencing of DRG exposed to static magnetic field + magnetic microwire reveals the downregulation of genes relating to the immune response, interleukin signaling, and signal transduction. These results set the stage for contemplating future biophysical stimulation for axonal guidance and improved understanding of material-tissue interactions.
Collapse
Affiliation(s)
- Katelyn Neuman
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Xiaoyu Zhang
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Brian. T. Lejeune
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Manuel Vázquez
- Instituto de Ciencia de Materiales de MadridCSICMadrid28049Spain
| | - Laura H. Lewis
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Abigail N. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of BioengineeringNortheastern UniversityBostonMA02115USA
- Dept. of BiologyNortheastern UniversityBostonMA02115USA
| | - Ryan A. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
3
|
Schwarz D, Le Marois M, Sturm V, Peters AS, Longuespée R, Helm D, Schneider M, Eichmüller B, Hidmark AS, Fischer M, Kender Z, Schwab C, Hausser I, Weis J, Dihlmann S, Böckler D, Bendszus M, Heiland S, Herzig S, Nawroth PP, Szendroedi J, Fleming T. Exploring Structural and Molecular Features of Sciatic Nerve Lesions in Diabetic Neuropathy: Unveiling Pathogenic Pathways and Targets. Diabetes 2025; 74:65-74. [PMID: 39418320 DOI: 10.2337/db24-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Lesioned fascicles (LFs) in the sciatic nerves of individuals with diabetic neuropathy (DN) correlate with clinical symptom severity. This study aimed to characterize the structural and molecular composition of these lesions to better understand DN pathogenesis. Sciatic nerves from amputees with and without type 2 diabetes (T2D) were examined using ex vivo magnetic resonance neurography, in vitro imaging, and proteomic analysis. Lesions were only found in T2D donors and exhibited significant structural abnormalities, including axonal degeneration, demyelination, and impaired blood-nerve barrier (BNB). Although non-LFs from T2D donors showed activation of neuroprotective pathways, LFs lacked this response and instead displayed increased complement activation via the classical pathway. The detection of liver-derived acute-phase proteins suggests that BNB disruption facilitates harmful interorgan communication between the liver and nerves. These findings reveal key molecular mechanisms contributing to DN and highlight potential targets for therapeutic intervention. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maxime Le Marois
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas S Peters
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Vascular Biomaterial Bank Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- German Cancer Research Center (DKFZ) Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Eichmüller
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Asa S Hidmark
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
| | - Constantin Schwab
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Weis
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, University Hospital, Aachen, Germany
| | - Susanne Dihlmann
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dittmar Böckler
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Fleming
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Lu P, Chen Z, Wu M, Feng S, Chen S, Cheng X, Zhao Y, Liu X, Gong L, Bian L, Yi S, Wang H. Type I collagen extracellular matrix facilitates nerve regeneration via the construction of a favourable microenvironment. BURNS & TRAUMA 2024; 12:tkae049. [PMID: 39659559 PMCID: PMC11631217 DOI: 10.1093/burnst/tkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 12/12/2024]
Abstract
Background The extracellular matrix (ECM) provides essential physical support and biochemical cues for diverse biological activities, including tissue remodelling and regeneration, and thus is commonly applied in the construction of artificial peripheral nerve grafts. Nevertheless, the specific functions of essential peripheral nerve ECM components have not been fully determined. Our research aimed to differentially represent the neural activities of main components of ECM on peripheral nerve regeneration. Methods Schwann cells from sciatic nerves and neurons from dorsal root ganglia were isolated and cultured in vitro. The cells were seeded onto noncoated dishes, Matrigel-coated dishes, and dishes coated with the four major ECM components fibronectin, laminin, collagen I, and collagen IV. The effects of these ECM components on Schwann cell proliferation were determined via methylthiazolyldiphenyl-tetrazolium bromide (MTT), Cell Counting Kit-8, and 5-ethynyl-2'-deoxyuridine (EdU) assays, whereas their effects on cell migration were determined via wound healing and live-cell imaging. Neurite growth in neurons cultured on different ECM components was observed. Furthermore, the two types of collagen were incorporated into chitosan artificial nerves and used to repair sciatic nerve defects in rats. Immunofluorescence analysis and a behavioural assessment, including gait, electrophysiology, and target muscle analysis, were conducted. Results ECM components, especially collagen I, stimulated the DNA synthesis and movement of Schwann cells. Direct measurement of the neurite lengths of neurons cultured on ECM components further revealed the beneficial effects of ECM components on neurite outgrowth. Injection of collagen I into chitosan and poly(lactic-co-glycolic acid) artificial nerves demonstrated that collagen I facilitated axon regeneration and functional recovery after nerve defect repair by stimulating the migration of Schwann cells and the formation of new blood vessels. In contrast, collagen IV recruited excess fibroblasts and inflammatory macrophages and thus had disadvantageous effects on nerve regeneration. Conclusions These findings reveal the modulatory effects of specific ECM components on cell populations of peripheral nerves, reveal the contributing roles of collagen I in microenvironment construction and axon regeneration, and highlight the use of collagen I for the healing of injured peripheral nerves.
Collapse
Affiliation(s)
- Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Zhiying Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Mingjun Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Shuyue Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiyang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xingyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Lijing Bian
- Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| |
Collapse
|
5
|
Li S, Zhang F, Wang G, Liu Q, Wang X, Chen Q, Chu D. Tau Isoform-Regulated Schwann Cell Proliferation and Migration Improve Peripheral Nerve Regeneration After Injury. Int J Mol Sci 2024; 25:12352. [PMID: 39596423 PMCID: PMC11594695 DOI: 10.3390/ijms252212352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Tau is a microtubule-associated protein that plays a vital role in the mammalian nervous system. Alternative splicing of the MAPT gene leads to the formation of tau isoforms with varying N-terminal inserts and microtubule-binding repeats. Dysregulation of tau alternative splicing has been linked to diseases in the central nervous system, but the roles of tau isoforms in the peripheral nervous system remain unclear. Here, we investigated the alternative splicing of tau exons 4A and 10 in the sciatic nerve and Schwann cells during development and following injury. We discovered that low-molecular-weight (LMW) tau, resulting from the exclusion of exon 4A, and 3R tau, generated by the exclusion of exon 10, diminishes with aging in rat sciatic nerve and Schwann cells. High-molecular-weight (HMW) tau and 3R tau increase in the adult sciatic nerve post-injury. We constructed viruses that expressed HMW-4R, LMW-4R, HMW-3R, and LMW-3R and introduced them into cultured cells or the distal part of the injured sciatic nerve to assess their effects on Schwann cell migration and proliferation. We also examined the effects of the four isoforms on axon growth and debris clearance after sciatic nerve injury. Our results demonstrated that tau isoforms inhibit Schwann cell proliferation while promoting Schwann cell migration and sciatic nerve regeneration. Specifically, the 3R-tau isoforms were more effective than the 4R-tau isoforms in promoting nerve regeneration. In conclusion, our study reveals the roles of tau isoforms in the peripheral nervous system and provides insights into the development of new therapeutic strategies for peripheral nerve injuries.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Fuqian Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Guifang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Qianyan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Gargareta VI, Berghoff SA, Krauter D, Hümmert S, Marshall-Phelps KLH, Möbius W, Nave KA, Fledrich R, Werner HB, Eichel-Vogel MA. Myelinated peripheral axons are more vulnerable to mechanical trauma in a model of enlarged axonal diameters. Glia 2024; 72:1572-1589. [PMID: 38895764 DOI: 10.1002/glia.24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.
Collapse
Affiliation(s)
- Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Doris Krauter
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie Hümmert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Berberine inhibits NLRP3 inflammasome activation and proinflammatory macrophage M1 polarization to accelerate peripheral nerve regeneration. Neurotherapeutics 2024; 21:e00347. [PMID: 38570276 PMCID: PMC11067341 DOI: 10.1016/j.neurot.2024.e00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Berberine (BBR) has demonstrated potent anti-inflammatory effects by modulating macrophage polarization. Nevertheless, the precise mechanisms through which berberine regulates post-injury inflammation within the peripheral nerve system remain elusive. This study seeks to elucidate the role of BBR and its underlying mechanisms in inflammation following peripheral nerve injury (PNI). Adult male C57BL/6J mice subjected to PNI were administered daily doses of berberine (0, 60, 120, 180, 240 mg/kg) via gavage from day 1 through day 28. Evaluation of the sciatic function index (SFI) and paw withdrawal threshold revealed that BBR dose-dependently enhanced both motor and sensory functions. Immunofluorescent staining for anti-myelin basic protein (anti-MBP) and anti-neurofilament-200 (anti-NF-200), along with histological staining comprising hematoxylin-eosin (HE), luxol fast blue (LFB), and Masson staining, demonstrated that BBR dose-dependently promoted structural regeneration. Molecular analyses including qRT-PCR, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence confirmed that inactivation of the NLRP3 inflammasome by MCC950 shifted macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, while also impeding macrophage infiltration. Furthermore, BBR significantly downregulated the expression of the NLRP3 inflammasome and its associated molecules in macrophages, thereby mitigating NLRP3 inflammasome activation-induced macrophage M1 polarization and inflammation. In summary, BBR's neuroprotective effects were concomitant with the suppression of inflammation after PNI, achieved through the inhibition of NLRP3 inflammasome activation-induced macrophage M1 polarization.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
8
|
Gu M, Cheng X, Zhang D, Wu W, Cao Y, He J. Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation. Neural Regen Res 2024; 19:190-195. [PMID: 37488866 PMCID: PMC10479853 DOI: 10.4103/1673-5374.375346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/04/2023] [Accepted: 04/03/2023] [Indexed: 07/26/2023] Open
Abstract
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate. However, it is unclear what factors play a role in this process. In this study, we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury. Platelet factor is an important molecule in cell apoptosis, differentiation, survival, and proliferation. Further, polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury. Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells. We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells, while exogenously applied platelet factor 4 stimulated Schwann cell proliferation and migration and neuronal axon growth. Furthermore, knocking out platelet factor 4 inhibited the proliferation of Schwann cells in injured rat sciatic nerve. These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth. Thus, platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
Collapse
Affiliation(s)
- Miao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- School of Basic Medical Sciences, Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei Province, China
| | - Xiao Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Di Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Weiyan Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Yi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
9
|
Chen Q, Zhang L, Zhang F, Yi S. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration. J Biol Chem 2023; 299:105444. [PMID: 37949219 PMCID: PMC10716580 DOI: 10.1016/j.jbc.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Peripheral glial Schwann cells switch to a repair state after nerve injury, proliferate to supply lost cell population, migrate to form regeneration tracks, and contribute to the generation of a permissive microenvironment for nerve regeneration. Exploring essential regulators of the repair responses of Schwann cells may benefit the clinical treatment for peripheral nerve injury. In the present study, we find that FOSL1, a AP-1 member that encodes transcription factor FOS Like 1, is highly expressed at the injured sites following peripheral nerve crush. Interfering FOSL1 decreases the proliferation rate and migration ability of Schwann cells, leading to impaired nerve regeneration. Mechanism investigations demonstrate that FOSL1 regulates Schwann cell proliferation and migration by directly binding to the promoter of EPH Receptor B2 (EPHB2) and promoting EPHB2 transcription. Collectively, our findings reveal the essential roles of FOSL1 in regulating the activation of Schwann cells and indicate that FOSL1 can be targeted as a novel therapeutic approach to orchestrate the regeneration and functional recovery of injured peripheral nerves.
Collapse
Affiliation(s)
- Qianqian Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Fuchao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Huang W, Yi S, Zhao L. Genetic Features of Young and Aged Animals After Peripheral Nerve Injury: Implications for Diminished Regeneration Capacity. Cell Mol Neurobiol 2023; 43:4363-4375. [PMID: 37922116 PMCID: PMC10661822 DOI: 10.1007/s10571-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2023]
Abstract
The spontaneous regeneration capacity of peripheral nerves is fundamentally reduced with advancing age, leading to severe and long-term functional loss. The cellular and molecular basis underlying incomplete and delayed recovery of aging peripheral nerves is still murky. Here, we collected sciatic nerves of aged rats at 1d, 4d, and 7d after nerve injury, systematically analyzed the transcriptional changes of injured sciatic nerves, and examined the differences of injury responses between aged rats and young rats. RNA sequencing revealed that sciatic nerves of aged and young rats exhibit distinctive expression patterns after nerve injury. Acute and vigorous immune responses, including motivated B cell receptor signaling pathway, occurred in injured sciatic nerves of both aged and young rats. Different from young rats, aged rats have more CD8+ T cells and B cells in normal state and the elevation of M2 macrophages seemed to be more robust in sciatic nerves, especially at later time points after nerve injury. Young rats, on the other hand, showed strong and early up-regulation of cell cycle-related genes. These identified unique transcriptional signatures of aged and young rats help the understanding of aged-associated injury responses in the wound microenvironments and provide essential basis for the treatment of regeneration deficits in aged population.
Collapse
Affiliation(s)
- Weixiao Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
11
|
Ruiz LP, Macpherson PC, Brooks SV. Maintenance of subsynaptic myonuclei number is not driven by neural input. Front Physiol 2023; 14:1266950. [PMID: 37822678 PMCID: PMC10562629 DOI: 10.3389/fphys.2023.1266950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
The development and maintenance of neuromuscular junctions (NMJ) are supported by a specialized population of myonuclei that are referred to as the subsynaptic myonuclei (SSM). The relationship between the number of SSM and the integrity of the NMJ as well as the impact of a loss of innervation on SSM remain unclear. This study aimed to clarify these associations by simultaneously analyzing SSM counts and NMJ innervation status in three distinct mouse models of acute and chronic NMJ disruption. SSM were identified using fluorescent immunohistochemistry for Nesprin1 expression, which is highly enriched in SSM, along with anatomical location beneath the muscle fiber motor endplate. Acute denervation, induced by surgical nerve transection, did not affect SSM number after 7 days. Additionally, no significant changes in SSM number were observed during normal aging or in mice with chronic oxidative stress (Sod1 -/-). Both aging WT mice and Sod1 -/- mice accumulated degenerating and denervated NMJ in skeletal muscle, but there was no correlation between innervation status of a given NMJ and SSM number in aged or Sod1 -/- mice. These findings challenge the notion that a loss of SSM is a primary driver of NMJ degradation and leave open questions of the mechanisms that regulate SSM number as well as the physiological significance of the precise SSM number. Further investigations are required to define other properties of the SSM, such as transcriptional profiles and structural integrity, to better understand their role in NMJ maintenance.
Collapse
Affiliation(s)
- Lloyd P. Ruiz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Peter C. Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Zhang Y, Shen Y, Zhao L, Zhao Q, Zhao L, Yi S. Transcription Factor BCL11A Regulates Schwann Cell Behavior During Peripheral Nerve Regeneration. Mol Neurobiol 2023; 60:5352-5365. [PMID: 37316757 DOI: 10.1007/s12035-023-03432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Nerve injury-induced Schwann cell dedifferentiation helps to construct a favorable microenvironment for axon growth. Transcription factors regulate cell reprogramming and thus may be critical for Schwann cell phenotype switch during peripheral nerve regeneration. Here, we show that transcription factor B-cell lymphoma/leukemia 11A (BCL11A) is up-regulated in Schwann cells of injured peripheral nerves. Bcl11a silencing suppresses Schwann cell viability, decreases Schwann cell proliferation and migration rates, and impairs the debris clearance ability of Schwann cells. Reduced Bcl11a in injured peripheral nerves results in restricted axon elongation and myelin wrapping, leading to recovery failure. Mechanistically, we demonstrate that BCL11A may mediate Schwann cell activity through binding to the promoter of nuclear receptor subfamily 2 group F member 2 (Nr2f2) and regulating Nr2f2 expression. Collectively, we conclude that BCL11A is essential for Schwann cell activation and peripheral nerve regeneration, providing a potential therapeutic target for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qian Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Chen S, Chen Q, Zhang X, Shen Y, Shi X, Dai X, Yi S. Schwann cell-derived amphiregulin enhances nerve regeneration via supporting the proliferation and migration of Schwann cells and the elongation of axons. J Neurochem 2023; 166:678-691. [PMID: 37439370 DOI: 10.1111/jnc.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Peripheral nerves have limited regeneration ability following nerve injury. Applying growth factors with neurotrophic roles is beneficial for accelerating peripheral nerve regeneration. Here we show that after rat sciatic nerve injury, growth factor amphiregulin (AREG) is upregulated in Schwann cells of sciatic nerves. Elevated AREG stimulates the proliferation and migration of Schwann cells by activating ERK1/2 cascade. Schwann cell-secreted AREG further facilitates the outgrowth of neurites and the elongation of injured axons. Administration of AREG to injured sciatic nerves stimulates the proliferation of Schwann cells to replace lost cell population, encourages the migration of Schwann cells to form cell cords, and facilitates the regrowth of axons. Overall, our results identify AREG as an important neurotrophic factor and thus provide a promising therapeutic avenue towards peripheral nerve injury.
Collapse
Affiliation(s)
- Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qianqian Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaojiao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Xinyu Shi
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
14
|
Middleton RC, Liao K, Liu W, de Couto G, Garcia N, Antes T, Wang Y, Wu D, Li X, Tourtellotte WG, Marbán E. Newt A1 cell-derived extracellular vesicles promote mammalian nerve growth. Sci Rep 2023; 13:11829. [PMID: 37481602 PMCID: PMC10363125 DOI: 10.1038/s41598-023-38671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Newts have the extraordinary ability to fully regenerate lost or damaged cardiac, neural and retinal tissues, and even amputated limbs. In contrast, mammals lack these broad regenerative capabilities. While the molecular basis of newts' regenerative ability is the subject of active study, the underlying paracrine signaling factors involved remain largely uncharacterized. Extracellular vesicles (EVs) play an important role in cell-to-cell communication via EV cargo-mediated regulation of gene expression patterns within the recipient cells. Here, we report that newt myogenic precursor (A1) cells secrete EVs (A1EVs) that contain messenger RNAs associated with early embryonic development, neuronal differentiation, and cell survival. Exposure of rat primary superior cervical ganglion (SCG) neurons to A1EVs increased neurite outgrowth, facilitated by increases in mitochondrial respiration. Canonical pathway analysis pinpointed activation of NGF/ERK5 signaling in SCG neurons exposed to A1EV, which was validated experimentally. Thus, newt EVs drive neurite growth and complexity in mammalian primary neurons.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Ke Liao
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Geoff de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Nahuel Garcia
- Gecorp, Av Juan Manuel de Rosas 899, San Miguel del Monte, Buenos Aires, Argentina
| | - Travis Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Xinling Li
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Warren G Tourtellotte
- Department of Pathology, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, CA, 90048, USA.
| |
Collapse
|
15
|
Li S, Wu W, Zhang J, Chen Y, Wu Y, Wang X. Regulation of Schwann cell proliferation and migration via miR-195-5p-induced Crebl2 downregulation upon peripheral nerve damage. Front Cell Neurosci 2023; 17:1173086. [PMID: 37469605 PMCID: PMC10352107 DOI: 10.3389/fncel.2023.1173086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Background Schwann cells acquire a repair phenotype upon peripheral nerve injury (PNI), generating an optimal microenvironment that drives nerve repair. Multiple microRNAs (miRNAs) show differential expression in the damaged peripheral nerve, with critical regulatory functions in Schwann cell features. This study examined the time-dependent expression of miR-195-5p following PNI and demonstrated a marked dysregulation of miR-195-5p in the damaged sciatic nerve. Methods CCK-8 and EdU assays were used to evaluate the effect of miR-195-5 on Schwann cell viability and proliferation. Schwann cell migration was tested using Transwell and wound healing assays. The miR-195-5p agomir injection experiment was used to evaluate the function of miR-195-5p in vivo. The potential regulators and effects of miR-195-5p were identified through bioinformatics evaluation. The relationship between miR-195-5p and its target was tested using double fluorescence reporter gene analysis. Results In Schwann cells, high levels of miR-195-5p decreased viability and proliferation, while suppressed levels had the opposite effects. However, elevated miR-195-5p promoted Schwann cell migration determined by the Transwell and wound healing assays. In vivo injection of miR-195-5p agomir into rat sciatic nerves promote axon elongation after peripheral nerve injury by affecting Schwann cell distribution and myelin preservation. Bioinformatic assessment further revealed potential regulators and effectors for miR-195-5p, which were utilized to build a miR-195-5p-centered competing endogenous RNA network. Furthermore, miR-195-5p directly targeted cAMP response element binding protein-like 2 (Crebl2) mRNA via its 3'-untranslated region (3'-UTR) and downregulated Crebl2. Mechanistically, miR-195-5p modulated Schwann cell functions by repressing Crebl2. Conclusion The above findings suggested a vital role for miR-195-5p/Crebl2 in the regulation of Schwann cell phenotype after sciatic nerve damage, which may contribute to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yumeng Wu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Berner J, Weiss T, Sorger H, Rifatbegovic F, Kauer M, Windhager R, Dohnal A, Ambros PF, Ambros IM, Boztug K, Steinberger P, Taschner‐Mandl S. Human repair-related Schwann cells adopt functions of antigen-presenting cells in vitro. Glia 2022; 70:2361-2377. [PMID: 36054432 PMCID: PMC9804420 DOI: 10.1002/glia.24257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
The plastic potential of Schwann cells (SCs) is increasingly recognized to play a role after nerve injury and in diseases of the peripheral nervous system. Reports on the interaction between immune cells and SCs indicate their involvement in inflammatory processes. However, the immunocompetence of human SCs has been primarily deduced from neuropathies, but whether after nerve injury SCs directly regulate an adaptive immune response is unknown. Here, we performed comprehensive analysis of immunomodulatory capacities of human repair-related SCs (hrSCs), which recapitulate SC response to nerve injury in vitro. We used our well-established culture model of primary hrSCs from human peripheral nerves and analyzed the transcriptome, secretome, and cell surface proteins for pathways and markers relevant in innate and adaptive immunity, performed phagocytosis assays, and monitored T-cell subset activation in allogeneic co-cultures. Our findings show that hrSCs are phagocytic, which is in line with high MHCII expression. Furthermore, hrSCs express co-regulatory proteins, such as CD40, CD80, B7H3, CD58, CD86, and HVEM, release a plethora of chemoattractants, matrix remodeling proteins and pro- as well as anti-inflammatory cytokines, and upregulate the T-cell inhibiting PD-L1 molecule upon pro-inflammatory stimulation with IFNγ. In contrast to monocytes, hrSC alone are not sufficient to trigger allogenic CD4+ and CD8+ T-cells, but limit number and activation status of exogenously activated T-cells. This study demonstrates that hrSCs possess features and functions typical for professional antigen-presenting cells in vitro, and suggest a new role of these cells as negative regulators of T-cell immunity during nerve regeneration.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
| | - Tamara Weiss
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of Vienna
| | - Helena Sorger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | | | - Max Kauer
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Alexander Dohnal
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Peter F. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Inge M. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- Center for Molecular Medicine (CeMM)ViennaAustria
| | | | | |
Collapse
|
17
|
Xu L, Chen Z, Li X, Xu H, Zhang Y, Yang W, Chen J, Zhang S, Xu L, Zhou S, Li G, Yu B, Gu X, Yang J. Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Sci Data 2022; 9:666. [PMID: 36323676 PMCID: PMC9630366 DOI: 10.1038/s41597-022-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaodi Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
18
|
Transcriptional Control of Peripheral Nerve Regeneration. Mol Neurobiol 2022; 60:329-341. [PMID: 36261692 DOI: 10.1007/s12035-022-03090-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 10/24/2022]
Abstract
Transcription factors are master regulators of various cellular processes under diverse physiological and pathological conditions. Many transcription factors that are differentially expressed after injury to peripheral nerves play important roles in nerve regeneration. Considering that rapid and timely regrowth of injured axons is a prerequisite for successful target reinnervation, here, we compile transcription factors that mediates axon elongation, including axon growth suppressor Klf4 and axon growth promoters c-Myc, Sox11, STAT3, Atf3, c-Jun, Smad1, C/EBPδ, and p53. Besides neuronal changes, Schwann cell phenotype modulation is also critical for nerve regeneration. The activation of Schwann cells at early time points post injury provides a permissive microenvironment whereas the re-differentiation of Schwann cells at later time points supports myelin sheath formation. Hence, c-Jun and Sox2, two critical drivers for Schwann cell reprogramming, as well as Krox-20 and Sox10, two essential regulators of Schwann cell myelination, are reviewed. These transcription factors may serve as promising targets for promoting the functional recovery of injured peripheral nerves.
Collapse
|
19
|
Qian T, Qiao P, Lu Y, Wang H. Transcription factor SS18L1 regulates the proliferation, migration and differentiation of Schwann cells in peripheral nerve injury. Front Vet Sci 2022; 9:936620. [PMID: 36046506 PMCID: PMC9420995 DOI: 10.3389/fvets.2022.936620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors bind to specific DNA sequences, modulate the transcription of target genes, and regulate various biological processes, including peripheral nerve regeneration. Our previous analysis showed that SS18L1, a gene encoding the transcription factor SS18-like protein 1, was differentially expressed in the distal sciatic nerve stumps after rat sciatic nerve transection injury, but its effect on peripheral nerve injury has not been reported. In the current study, we isolated and cultured primary Schwann cells, and examined the role of SS18L1 for the biological functions of the cells. Depletion of SS18L1 by siRNA in Schwann cells enhanced cell proliferation and inhibited cell migration, as determined by EdU assay and transwell migration assay, respectively. In addition, silencing of SS18L1 inhibited Schwann cell differentiation induced by HRG and cAMP. Bioinformatics analyses revealed an interaction network of SS18L1, including DF2, SMARCD1, SMARCA4, and SMARCE1, which may be implicated in the regulatory functions of SS18L1 on the proliferation, migration and differentiation of Schwann cells. In conclusion, our results revealed a temporal expression profile of SS18L1 in peripheral nerve injury and its potential roles during the process of nerve recovery.
Collapse
Affiliation(s)
- Tianmei Qian
- Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Pingping Qiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Hongkui Wang
- Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
20
|
Shen YY, Zhang RR, Liu QY, Li SY, Yi S. Robust temporal changes of cellular senescence and proliferation after sciatic nerve injury. Neural Regen Res 2022; 17:1588-1595. [PMID: 34916445 PMCID: PMC8771116 DOI: 10.4103/1673-5374.330619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence and proliferation are essential for wound healing and tissue remodeling. However, senescence-proliferation cell fate after peripheral nerve injury has not been clearly revealed. Here, post-injury gene expression patterns in rat sciatic nerve stumps (SRP113121) and L4-5 dorsal root ganglia (SRP200823) obtained from the National Center for Biotechnology Information were analyzed to decipher cellular senescence and proliferation-associated genetic changes. We first constructed a rat sciatic nerve crush model. Then, β-galactosidase activities were determined to indicate the existence of cellular senescence in the injured sciatic nerve. Ki67 and EdU immunostaining was performed to indicate cellular proliferation in the injured sciatic nerve. Both cellular senescence and proliferation were less vigorous in the dorsal root ganglia than in sciatic nerve stumps. These results reveal the dynamic changes of injury-induced cellular senescence and proliferation from both genetic and morphological aspects, and thus extend our understanding of the biological processes following peripheral nerve injury. The study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20190226-001) on February 26, 2019.
Collapse
Affiliation(s)
- Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
21
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
22
|
Sun J, Ji Y, Liang Q, Ming M, Chen Y, Zhang Q, Zhou S, Shen M, Ding F. Expression of Protein Acetylation Regulators During Peripheral Nerve Development, Injury, and Regeneration. Front Mol Neurosci 2022; 15:888523. [PMID: 35663264 PMCID: PMC9157241 DOI: 10.3389/fnmol.2022.888523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Protein acetylation, regulated by acetyltransferases and deacetylases, is an important post-translational modification that is involved in numerous physiological and pathological changes in peripheral nerves. There is still no systematical analysis on the expression changes of protein acetylation regulators during sciatic nerve development, injury, and regeneration. Here, we sequenced and analyzed the transcriptome of mouse sciatic nerves during development and after injury. We found that the changes in the expression of most regulators followed the rule that “development is consistent with regeneration and opposite to injury.” Immunoblotting with pan-acetylated antibodies also revealed that development and regeneration are a process of increased acetylation, while injury is a process of decreased acetylation. Moreover, we used bioinformatics methods to analyze the possible downstream molecules of two key regulators, histone deacetylase 1 (Hdac1) and lysine acetyltransferase 2b (Kat2b), and found that they were associated with many genes that regulate the cell cycle. Our findings provide an insight into the association of sciatic nerve development, injury, and regeneration from the perspective of protein acetylation.
Collapse
|
23
|
Metabolism-related MOGS Gene is Dysregulated After Peripheral Nerve Injury and Negatively Regulates Schwann Cell Plasticity. J Mol Neurosci 2022; 72:1402-1412. [PMID: 35575968 PMCID: PMC9170655 DOI: 10.1007/s12031-022-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 10/26/2022]
Abstract
Cellular metabolism is essentially linked to tissue remodeling and organ regeneration. MOGS, a gene that encodes cellular metabolism-related protein mannosyl-oligosaccharide glucosidase, was found to be upregulated in nerve segments after peripheral nerve injury. Bioinformatic analyses identified upstream regulators of MOGS and MOGS-associated genes and indicated the significant involvement of cellular metabolism in peripheral nerve regeneration. Functional assessment showed that siRNA-mediated knockdown of MOGS led to elevated proliferation, migration, and differentiation of Schwann cells, indicating the negative regulation of MOGS on Schwann cell plasticity. Schwann cells transfected with MOGS siRNA also showed lower expression of fatty acid synthase (FASN), demonstrating that dysregulated MOGS in Schwann cells may affect neuronal behavior through the metabolic coupling between Schwann cells and axons. Taken together, this study demonstrated that MOGS may be a key regulating factor of Schwann cells and neuronal phenotype during peripheral nerve regeneration.
Collapse
|
24
|
Brosius Lutz A, Lucas TA, Carson GA, Caneda C, Zhou L, Barres BA, Buckwalter MS, Sloan SA. An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. J Neuroinflammation 2022; 19:105. [PMID: 35501870 PMCID: PMC9063194 DOI: 10.1186/s12974-022-02462-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood. METHODS We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways. RESULTS Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a. CONCLUSIONS We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration.
Collapse
Affiliation(s)
- Amanda Brosius Lutz
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Tawaun A Lucas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Glenn A Carson
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Christine Caneda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Lu Zhou
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
- Department of Human Genetics, Emory University, 30322, Atlanta, Georgia
| |
Collapse
|
25
|
Guo S, Moore RM, Charlesworth MC, Johnson KL, Spinner RJ, Windebank AJ, Wang H. The proteome of distal nerves: implication in delayed repair and poor functional recovery. Neural Regen Res 2022; 17:1998-2006. [PMID: 35142689 PMCID: PMC8848594 DOI: 10.4103/1673-5374.335159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chronic denervation is one of the key factors that affect nerve regeneration. Chronic axotomy deteriorates the distal nerve stump, causes protein changes, and renders the microenvironment less permissive for regeneration. Some of these factors/proteins have been individually studied. To better delineate the comprehensive protein expression profiles and identify proteins that contribute to or are associated with this detrimental effect, we carried out a proteomic analysis of the distal nerve using an established delayed rat sciatic nerve repair model. Four rats that received immediate repair after sciatic nerve transection served as control, whereas four rats in the experimental group (chronic denervation) had their sciatic nerve repaired after a 12-week delay. All the rats were sacrificed after 16 weeks to harvest the distal nerves for extracting proteins. Twenty-five micrograms of protein from each sample were fractionated in SDS-PAGE gels. NanoLC-MS/MS analysis was applied to the gels. Protein expression levels of nerves on the surgery side were compared to those on the contralateral side. Any protein with a P value of less than 0.05 and a fold change of 4 or higher was deemed differentially expressed. All the differentially expressed proteins in both groups were further stratified according to the biological processes. A PubMed search was also conducted to identify the differentially expressed proteins that have been reported to be either beneficial or detrimental to nerve regeneration. Ingenuity Pathway Analysis (IPA) software was used for pathway analysis. The results showed that 709 differentially expressed proteins were identified in the delayed repair group, with a bigger proportion of immune and inflammatory process-related proteins and a smaller proportion of proteins related to axon regeneration and lipid metabolism in comparison to the control group where 478 differentially expressed proteins were identified. The experimental group also had more beneficial proteins that were downregulated and more detrimental proteins that were upregulated. IPA revealed that protective pathways such as LXR/RXR, acute phase response, RAC, ERK/MAPK, CNTF, IL-6, and FGF signaling were inhibited in the delayed repair group, whereas three detrimental pathways, including the complement system, PTEN, and apoptosis signaling, were activated. An available database of the adult rodent sciatic nerve was used to assign protein changes to specific cell types. The poor regeneration seen in the delayed repair group could be associated with the down-regulation of beneficial proteins and up-regulation of detrimental proteins. The proteins and pathways identified in this study may offer clues for future studies to identify therapeutic targets.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Raymond M Moore
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Zhang N, Lin J, Chin JS, Wiraja C, Xu C, McGrouther DA, Chew SY. Delivery of Wnt inhibitor WIF1 via engineered polymeric microspheres promotes nerve regeneration after sciatic nerve crush. J Tissue Eng 2022; 13:20417314221087417. [PMID: 35422984 PMCID: PMC9003641 DOI: 10.1177/20417314221087417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/27/2022] [Indexed: 01/09/2023] Open
Abstract
Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration. Additionally, the therapeutic window for using pathway inhibitors was uncovered so as to achieve the desired regeneration outcomes. Specifically, we explored the role of Wnt signaling inhibition on PNS regeneration by delivering Wnt inhibitors, sFRP2 and WIF1, after sciatic nerve transection and sciatic nerve crush injuries. Our results demonstrate that WIF1 promoted nerve regeneration (p < 0.05) after sciatic nerve crush injury. More importantly, we revealed the therapeutic window for the treatment of Wnt inhibitors, which is 1 week post sciatic nerve crush when the non-canonical receptor tyrosine kinase (Ryk) is significantly upregulated.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Duncan Angus McGrouther
- Department of Hand and Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Shen M, Chen Y, Tang W, Ming M, Tian Y, Ding F, Wu H, Ji Y. Semaphorin 3E promote Schwann cell proliferation and migration. Exp Cell Res 2022; 412:113019. [DOI: 10.1016/j.yexcr.2022.113019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
28
|
Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S. Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration. Mol Neurobiol 2021; 59:1058-1072. [PMID: 34837628 DOI: 10.1007/s12035-021-02589-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
Schwann cells switch to a repair phenotype following peripheral nerve injury and create a favorable microenvironment to drive nerve repair. Many microRNAs (miRNAs) are differentially expressed in the injured peripheral nerves and play essential roles in regulating Schwann cell behaviors. Here, we examine the temporal expression patterns of miR-29a-3p after peripheral nerve injury and demonstrate significant up-regulation of miR-29a-3p in injured sciatic nerves. Elevated miR-29a-3p inhibits Schwann cell proliferation and migration, while suppressed miR-29a-3p executes reverse effects. In vivo injection of miR-29a-3p agomir to rat sciatic nerves hinders the proliferation and migration of Schwann cells, delays the elongation and myelination of axons, and retards the functional recovery of injured nerves. Mechanistically, miR-29a-3p modulates Schwann cell activities via negatively regulating peripheral myelin protein 22 (PMP22), and PMP22 extensively affects Schwann cell metabolism. Our results disclose the vital role of miR-29a-3p/PMP22 in regulating Schwann cell phenotype following sciatic nerve injury and shed light on the mechanistic basis of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhangchun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
29
|
Shen Y, Zhu J, Liu Q, Ding S, Dun X, He J. Up-Regulation of CD146 in Schwann Cells Following Peripheral Nerve Injury Modulates Schwann Cell Function in Regeneration. Front Cell Neurosci 2021; 15:743532. [PMID: 34720881 PMCID: PMC8552958 DOI: 10.3389/fncel.2021.743532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
CD146 is cell adhesion molecule and is implicated in a variety of physiological and pathological processes. However, the involvement of CD146 in peripheral nerve regeneration has not been studied yet. Here, we examine the spatial and temporal expression pattern of CD146 in injured mouse sciatic nerve via high-throughput data analysis, RT-PCR and immunostaining. By microarray data analysis and RT-PCR validation, we show that CD146 mRNA is significantly up-regulated in the nerve bridge and in the distal nerve stump following mouse sciatic nerve transection injury. By single cell sequencing data analysis and immunostaining, we demonstrate that CD146 is up-regulated in Schwann cells and cells associated with blood vessels following mouse peripheral nerve injury. Bioinformatic analysis revealed that CD146 not only has a key role in promoting of blood vessel regeneration but also regulates cell migration. The biological function of CD146 in Schwann cells was further investigated by knockdown of CD146 in rat primary Schwann cells. Functional assessments showed that knockdown of CD146 decreases viability and proliferation of Schwann cells but increases Schwann cell migration. Collectively, our findings imply that CD146 could be a key cell adhesion molecule that is up-regulated in injured peripheral nerves to regulate peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianyan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shiyan Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinpeng Dun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
30
|
Chen S, Zhu J, Zhang Y, Cai X, Yi S, Wang X. miR-328a-3p stimulates endothelial cell migration and tubulogenesis. Exp Ther Med 2021; 22:1104. [PMID: 34504558 PMCID: PMC8383776 DOI: 10.3892/etm.2021.10538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells have important biological roles after peripheral nerve injury by forming blood vessels within the nerve gap and guiding Schwann cell migration. MicroRNAs (miRNAs/miRs) affect cellular behavior and regulate a wide variety of physiological and pathological activities, including peripheral nerve regeneration. Emerging studies have identified the essential roles of miRNAs in the phenotype modulation of Schwann cells, while the effects of miRNAs on endothelial cells have remained to be thoroughly investigated. miR-328a-3p was differentially expressed in peripheral nerve stumps after nerve injury. In the present study, the effects of miR-328a-3p on biological functions of endothelial cells were determined by transfecting cultured human umbilical vein endothelial cells (HUVECs) with miR-328a-3p mimics or inhibitor. Transfection with miR-328a-3p mimics led to slightly decreased HUVEC proliferation and robustly increased HUVEC migration and tubulogenesis, while transfection with miR-328a-3p inhibitor led to opposite results. Using bioinformatics analysis, potential regulators and effectors of miR-328a-3p were further discovered and a miR-328a-3p-centered competing endogenous RNA network was constructed. Collectively, the present study demonstrated that dysregulated miR-328a-3p after peripheral nerve injury may affect the migration and angiogenesis of endothelial cells and contribute to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
31
|
Welleford AS, Quintero JE, Seblani NE, Blalock E, Gunewardena S, Shapiro SM, Riordan SM, Huettl P, Guduru Z, Stanford JA, van Horne CG, Gerhardt GA. RNA Sequencing of Human Peripheral Nerve in Response to Injury: Distinctive Analysis of the Nerve Repair Pathways. Cell Transplant 2021; 29:963689720926157. [PMID: 32425114 PMCID: PMC7563818 DOI: 10.1177/0963689720926157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of regenerative therapies for central nervous system diseases can likely benefit from an understanding of the peripheral nervous system repair process, particularly in identifying potential gene pathways involved in human nerve repair. This study employed RNA sequencing (RNA-seq) technology to analyze the whole transcriptome profile of the human peripheral nerve in response to an injury. The distal sural nerve was exposed, completely transected, and a 1 to 2 cm section of nerve fascicles was collected for RNA-seq from six participants with Parkinson’s disease, ranging in age between 53 and 70 yr. Two weeks after the initial injury, another section of the nerve fascicles of the distal and pre-degenerated stump of the nerve was dissected and processed for RNA-seq studies. An initial analysis between the pre-lesion status and the postinjury gene expression revealed 3,641 genes that were significantly differentially expressed. In addition, the results support a clear transdifferentiation process that occurred by the end of the 2-wk postinjury. Gene ontology (GO) and hierarchical clustering were used to identify the major signaling pathways affected by the injury. In contrast to previous nonclinical studies, important changes were observed in molecular pathways related to antiapoptotic signaling, neurotrophic factor processes, cell motility, and immune cell chemotactic signaling. The results of our current study provide new insights regarding the essential interactions of different molecular pathways that drive neuronal repair and axonal regeneration in humans.
Collapse
Affiliation(s)
- Andrew S Welleford
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,* These are co-first authors and have contributed equally to this article
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA.,* These are co-first authors and have contributed equally to this article
| | - Nader El Seblani
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.,* These are co-first authors and have contributed equally to this article
| | - Eric Blalock
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA
| | - Sumedha Gunewardena
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, KS, USA
| | - Steven M Shapiro
- Division of Neurology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, KS, USA
| | - Sean M Riordan
- Division of Neurology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Peter Huettl
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA
| | - Zain Guduru
- Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | - John A Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, KS, USA
| | - Craig G van Horne
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA.,Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| |
Collapse
|
32
|
Yao C, Wang Q, Wang Y, Wu J, Cao X, Lu Y, Chen Y, Feng W, Gu X, Dun XP, Yu B. Loc680254 regulates Schwann cell proliferation through Psrc1 and Ska1 as a microRNA sponge following sciatic nerve injury. Glia 2021; 69:2391-2403. [PMID: 34115425 DOI: 10.1002/glia.24045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury triggers sequential phenotype alterations in Schwann cells, which are critical for axonal regeneration. Long noncoding RNAs (lncRNAs) are long transcripts without obvious coding potential. It has been reported that lncRNAs participate in diverse biological processes and diseases. However, the role of lncRNA in Schwann cells and peripheral nerve regeneration is unclear. Here, we identified an lncRNA, loc680254, which is upregulated in rat sciatic nerve after peripheral nerve injury. The loc680254 knockdown inhibits Schwann cell proliferation, enhances apoptosis, and hinders cell cycle, while loc680254 overexpression has the opposite effect. Mechanically, we found that loc680254 might act as a microRNA sponge to regulate the expression of mitosis-related gene, spindle and kinetochore associated complex subunit 1 (Ska1) and proline/serine-rich coiled-coil 1 (Psrc1). Silencing of Psrc1 or Ska1 attenuates the effect of loc680254 overexpression on Schwann cell proliferation. Finally, we repaired the rat sciatic nerve gap with chitosan scaffolds loaded with loc680254-overexpressing Schwann cells and evaluated axon regeneration and functional recovery. Our results indicated that loc680254 is a new potential modulator for Schwann cell proliferation, which could be targeted to develop novel therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qihui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiancheng Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanping Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Xin-Peng Dun
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
33
|
Chen Q, Liu Q, Zhang Y, Li S, Yi S. Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death Dis 2021; 12:417. [PMID: 33888681 PMCID: PMC8062678 DOI: 10.1038/s41419-021-03706-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that stimulates neuronal development and survival. Our previous study has demonstrated that LIF mRNA is dysregulated in the peripheral nerve segments after nerve injury. Here, we show that LIF protein is abundantly expressed in Schwann cells after rat sciatic nerve injury. Functionally, suppressed or elevated LIF increases or decreases the proliferation rate and migration ability of Schwann cells, respectively. Morphological observations demonstrate that in vivo application of siRNA against LIF after peripheral nerve injury promotes Schwann cell migration and proliferation, axon elongation, and myelin formation. Electrophysiological and behavior assessments disclose that knockdown of LIF benefits the function recovery of injured peripheral nerves. Differentially expressed LIF affects the metabolism of Schwann cells and negatively regulates ERFE (Erythroferrone). Collectively, our observations reveal the essential roles for LIF in regulating the proliferation and migration of Schwann cells and the regeneration of injured peripheral nerves, discover ERFE as a downstream effector of LIF, and extend our understanding of the molecular mechanisms underlying peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qianqian Chen
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.,State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Qianyan Liu
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yunsong Zhang
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Shiying Li
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Sheng Yi
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
34
|
The Mechanisms of Peripheral Nerve Preconditioning Injury on Promoting Axonal Regeneration. Neural Plast 2021; 2021:6648004. [PMID: 33505458 PMCID: PMC7806370 DOI: 10.1155/2021/6648004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Two major factors contribute to the failure of axonal regrowth in the central nervous system (CNS), namely, the neuronal intrinsic regenerative capacity and the extrinsic local inhibitory microenvironments. However, a preconditioning peripheral nerve lesion could substantially enhance the regeneration of central axons following a subsequent spinal cord injury. In the present review, we summarize the molecular mechanisms of the preconditioning injury effect on promoting axonal regeneration. The injury signal transduction resulting from preconditioning peripheral nerve injury regulates the RAG expression to enhance axonal regeneration. Importantly, preconditioning peripheral nerve injury triggers interactions between neurons and nonneuronal cells to amplify and maintain their effects. Additionally, the preconditioning injury impacts mitochondria, protein, and lipid synthesis. All these coordinated changes endow axonal regeneration.
Collapse
|
35
|
Wang Y, Wang S, He JH. Transcriptomic analysis reveals essential microRNAs after peripheral nerve injury. Neural Regen Res 2021; 16:1865-1870. [PMID: 33510094 PMCID: PMC8328748 DOI: 10.4103/1673-5374.306092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Studies have shown that microRNAs (miRNAs) mediate posttranscriptional regulation of target genes and participate in various physiological and pathological processes, including peripheral nerve injury. However, it is hard to select key miRNAs with essential biological functions among a large number of differentially expressed miRNAs. Previously, we collected injured sciatic nerve stumps at multiple time points after nerve crush injury, examined gene changes at different stages (acute, sub-acute, and post-acute), and obtained mRNA expression profiles. Here, we jointly analyzed mRNAs and miRNAs, and investigated upstream miRNAs of differentially expressed mRNAs using Ingenuity Pathway Analysis bioinformatic software. A total of 31, 42, 30, and 23 upstream miRNAs were identified at 1, 4, 7, and 14 days after rat sciatic nerve injury, respectively. Temporal expression patterns and biological involvement of commonly involved upstream miRNAs (miR-21, let-7, miR-223, miR-10b, miR-132, miR-15b, miR-127, miR-29a, miR-29b, and miR-9) were then determined at multiple time points. Expression levels of miR-21, miR-132, miR-29a, and miR-29b were robustly increased after sciatic nerve injury. Biological processes involving these miRNAs include multicellular organismal response to stress, positive regulation of the epidermal growth factor receptor signaling pathway, negative regulation of epithelial cell differentiation, and regulation of myocardial tissue growth. Moreover, we constructed mechanistic networks of let-7, miR-21, and miR-223, the most significantly involved upstream miRNAs. Our findings reveal that multiple upstream miRNAs (i.e., let-7, miR-21, and miR-223) were associated with gene expression changes in rat sciatic nerve stumps after nerve injury, and these miRNAs play an important role in peripheral nerve regeneration. This study was approved by the Experimental Animal Ethics Committee of Jiangsu Province of China (approval No. 20190303-18) on March 3, 2019.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shu Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiang-Hong He
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
36
|
Cheng XQ, Xu WJ, Ding X, Han GH, Wei S, Liu P, Meng HY, Shang AJ, Wang Y, Wang AY. Bioinformatic analysis of cytokine expression in the proximal and distal nerve stumps after peripheral nerve injury. Neural Regen Res 2021; 16:878-884. [PMID: 33229723 PMCID: PMC8178785 DOI: 10.4103/1673-5374.295348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In our previous study, we investigated the dynamic expression of cytokines in the distal nerve stumps after peripheral nerve injury using microarray analysis, which can characterize the dynamic expression of proteins. In the present study, we used a rat model of right sciatic nerve transection to examine changes in the expression of cytokines at 1, 7, 14 and 28 days after injury using protein microarray analysis. Interleukins were increased in the distal nerve stumps at 1-14 days post nerve transection. However, growth factors and growth factor-related proteins were mainly upregulated in the proximal nerve stumps. The P-values of the inflammatory response, apoptotic response and cell-cell adhesion in the distal stumps were higher than those in the proximal nerve stumps, but the opposite was observed for angiogenesis. The number of cytokines related to axons in the distal stumps was greater than that in the proximal stumps, while the percentage of cytokines related to axons in the distal stumps was lower than that in the proximal nerve stumps. Visualization of the results revealed the specific expression patterns and differences in cytokines in and between the proximal and distal nerve stumps. Our findings offer potential therapeutic targets and should help advance the development of clinical treatments for peripheral nerve injury. Approval for animal use in this study was obtained from the Animal Ethics Committee of the Chinese PLA General Hospital on September 7, 2016 (approval No. 2016-x9-07).
Collapse
Affiliation(s)
- Xiao-Qing Cheng
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Wen-Jing Xu
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ding
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Gong-Hai Han
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Shuai Wei
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Hao-Ye Meng
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Ai-Jia Shang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu Wang
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ai-Yuan Wang
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Zhang RR, Chen SL, Cheng ZC, Shen YY, Yi S, Xu H. Characteristics of cytokines in the sciatic nerve stumps and DRGs after rat sciatic nerve crush injury. Mil Med Res 2020; 7:57. [PMID: 33225981 PMCID: PMC7682062 DOI: 10.1186/s40779-020-00286-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cytokines are essential cellular modulators of various physiological and pathological activities, including peripheral nerve repair and regeneration. However, the molecular changes of these cellular mediators after peripheral nerve injury are still unclear. This study aimed to identify cytokines critical for the regenerative process of injured peripheral nerves. METHODS The sequencing data of the injured nerve stumps and the dorsal root ganglia (DRGs) of Sprague-Dawley (SD) rats subjected to sciatic nerve (SN) crush injury were analyzed to determine the expression patterns of genes coding for cytokines. PCR was used to validate the accuracy of the sequencing data. RESULTS A total of 46, 52, and 54 upstream cytokines were differentially expressed in the SNs at 1 day, 4 days, and 7 days after nerve injury. A total of 25, 28, and 34 upstream cytokines were differentially expressed in the DRGs at these time points. The expression patterns of some essential upstream cytokines are displayed in a heatmap and were validated by PCR. Bioinformatic analysis of these differentially expressed upstream cytokines after nerve injury demonstrated that inflammatory and immune responses were significantly involved. CONCLUSIONS In summary, these findings provide an overview of the dynamic changes in cytokines in the SNs and DRGs at different time points after nerve crush injury in rats, elucidate the biological processes of differentially expressed cytokines, especially the important roles in inflammatory and immune responses after peripheral nerve injury, and thus might contribute to the identification of potential treatments for peripheral nerve repair and regeneration.
Collapse
Affiliation(s)
- Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Sai-Ling Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zhang-Chun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.,College of Medicine, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
38
|
Zhang F, Miao Y, Liu Q, Li S, He J. Changes of pro-inflammatory and anti-inflammatory macrophages after peripheral nerve injury. RSC Adv 2020; 10:38767-38773. [PMID: 35518415 PMCID: PMC9057386 DOI: 10.1039/d0ra06607a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are notable immune cells that are recruited to the injury sites after peripheral nerve injury. Following peripheral nerve injury, increasing numbers of macrophages engulf debris and promote nerve regeneration. However, changes of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, two types of macrophages with dissimilar biological functions, have not been discovered. In the current study, the expression profiles of M1 and M2 macrophage marker genes in the sciatic nerve stumps and dorsal root ganglions (DRGs) after rat sciatic nerve injury were determined using RNA sequencing. Robust up-regulation of macrophage marker genes was observed in the injured sciatic nerve stumps as compared with in the DRGs. Measurement of the dynamic expression levels of M1 macrophage specific marker genes CD38 and Gpr18 as well as M2 macrophage specific marker genes Egr2 and Myc suggested that M1 macrophages were highly involved at all tested time points after peripheral nerve injury while M2 macrophage might be more involved in the later phase after nerve injury. Dynamic changes of M1 macrophage-inducing miRNAs showed that miR-18a, miR-19b, miR-21, miR-29a, and miR-29b were elevated in the injured nerve stump. These up-regulated miRNAs might mediate macrophage polarization by targeting multiple genes, such as Pten. Collectively, our study explored the unique temporal patterns of pro-inflammatory and anti-inflammatory macrophages after peripheral nerve injury for genetic aspects and provided a deeper understanding of the cellular and molecular basis of microenvironment reconstruction after peripheral nerve injury. The temporal patterns of pro-inflammatory and anti-inflammatory macrophages after peripheral nerve injury.![]()
Collapse
Affiliation(s)
- Fuchao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong Jiangsu 226001 China
| | - Yang Miao
- Department of Pharmacy, Yancheng City No. 1 Peoples' Hospital Yancheng China
| | - Qianyan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong Jiangsu 226001 China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong Jiangsu 226001 China
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong Jiangsu 226001 China
| |
Collapse
|
39
|
Schwann Cell Role in Selectivity of Nerve Regeneration. Cells 2020; 9:cells9092131. [PMID: 32962230 PMCID: PMC7563640 DOI: 10.3390/cells9092131] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries result in the loss of the motor, sensory and autonomic functions of the denervated segments of the body. Neurons can regenerate after peripheral axotomy, but inaccuracy in reinnervation causes a permanent loss of function that impairs complete recovery. Thus, understanding how regenerating axons respond to their environment and direct their growth is essential to improve the functional outcome of patients with nerve lesions. Schwann cells (SCs) play a crucial role in the regeneration process, but little is known about their contribution to specific reinnervation. Here, we review the mechanisms by which SCs can differentially influence the regeneration of motor and sensory axons. Mature SCs express modality-specific phenotypes that have been associated with the promotion of selective regeneration. These include molecular markers, such as L2/HNK-1 carbohydrate, which is differentially expressed in motor and sensory SCs, or the neurotrophic profile after denervation, which differs remarkably between SC modalities. Other important factors include several molecules implicated in axon-SC interaction. This cell–cell communication through adhesion (e.g., polysialic acid) and inhibitory molecules (e.g., MAG) contributes to guiding growing axons to their targets. As many of these factors can be modulated, further research will allow the design of new strategies to improve functional recovery after peripheral nerve injuries.
Collapse
|
40
|
Cheng Z, Shen Y, Qian T, Yi S, He J. Protein phosphorylation profiling of peripheral nerve regeneration after autologous nerve grafting. Mol Cell Biochem 2020; 472:35-44. [PMID: 32529497 DOI: 10.1007/s11010-020-03781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
Abstract
Autologous nerve grafting is the golden standard therapeutic approach of peripheral nerve injury. However, the clinical effect of autologous nerve grafting is still unsatisfying. To achieve better clinical functional recovery, it is of an impending need to expand our understanding of the dynamic cellular and molecular changes after nerve transection and autologous nerve transplantation. To address this aim, in the current study, rats were subjected to sciatic nerve transection and autologous nerve grafting. Rat sciatic nerve segments were collected at 4, 7, and 14 days after surgery and subjected to antibody array analysis to determine phosphoprotein profiling patterns. Compared with rats that underwent sham surgery, a total of 48, 19, and 75 differentially expressed phosphoproteins with fold changes > 2 or < -2 were identified at 4, 7, and 14 days after autologous nerve grafting, respectively. Several phosphoproteins, including STAM2 (Phospho-Tyr192) and Tau (Phospho-Ser422), were found to be differentially expressed at multiple time points, suggesting the importance of the phosphorylation of these proteins. Western blot validation of the expression patterns of STAM2 (Phospho-Tyr192) indicated the accuracy of antibody array assay. Bioinformatic analysis of these differentially expressed proteins suggested that cellular behavior and organ morphology were significantly involved biological functions while cell behavior and immune response-related signaling pathways were significantly involved canonical signaling pathways. These outcomes contributed to the illumination of the molecular mechanisms underlying autologous nerve grafting from the phosphoprotein profiling perspective.
Collapse
Affiliation(s)
- Zhangchun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
- College of Medicine, Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
41
|
Shen YY, Gu XK, Zhang RR, Qian TM, Li SY, Yi S. Biological characteristics of dynamic expression of nerve regeneration related growth factors in dorsal root ganglia after peripheral nerve injury. Neural Regen Res 2020; 15:1502-1509. [PMID: 31997815 PMCID: PMC7059586 DOI: 10.4103/1673-5374.274343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/21/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
The regenerative capacity of peripheral nerves is limited after nerve injury. A number of growth factors modulate many cellular behaviors, such as proliferation and migration, and may contribute to nerve repair and regeneration. Our previous study observed the dynamic changes of genes in L4-6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing. Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3, 9 hours, 1, 4, or 7 days after nerve crush, compared with the 0 hour control. Thirty-six rat models of sciatic nerve crush injury were prepared as described previously. Then, they were divided into six groups to measure the expression changes of representative genes at 0, 3, 9 hours, 1, 4 or 7 days post crush. Our current study measured the expression levels of representative upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin genes, and explored critical signaling pathways and biological process through bioinformatic analysis. Our data revealed that many of these dysregulated upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin, participated in tissue remodeling and axon growth-related biological processes Therefore, the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury. Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves. All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals, China (approval No. 20170302-017) on March 2, 2017.
Collapse
Affiliation(s)
- Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Kun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Tian-Mei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
42
|
Lu PJ, Wang G, Cai XD, Zhang P, Wang HK. Sequencing analysis of matrix metalloproteinase 7-induced genetic changes in Schwann cells. Neural Regen Res 2020; 15:2116-2122. [PMID: 32394970 PMCID: PMC7716050 DOI: 10.4103/1673-5374.282263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous research revealed the positive activity of matrix metalloproteinase 7 (MMP7) on migration and myelin regeneration of Schwann cells (SCs). However, understanding of the molecular changes and biological activities induced by increased amounts of MMP7 in SCs remains limited. To better understand the underlying molecular events, primary SCs were isolated from the sciatic nerve stump of newborn rats and cultured with 10 nM human MMP7 for 24 hours. The results of genetic testing were analyzed at a relatively relaxed threshold value (fold change ≥ 1.5 and P-value < 0.05). Upon MMP7 exposure, 149 genes were found to be upregulated in SCs, whereas 133 genes were downregulated. Gene Ontology analysis suggested that many differentially expressed molecules were related to cellular processes, single-organism processes, and metabolic processes. Kyoto Enrichment of Genes and Genomes pathway analysis further indicated the critical involvement of cell signaling and metabolism in MMP7-induced molecular regulation of SCs. Results of Ingenuity Pathway Analysis (IPA) also revealed that MMP7 regulates biological processes, molecular functions, cellular components, diseases and functions, biosynthesis, material metabolism, cell movement, and axon guidance. The outcomes of further analysis will deepen our comprehension of MMP7-induced biological changes in SCs. This study was approved by the Laboratory Animal Ethics Committee of Nantong University, China (approval No. 20190225-004) on February 27, 2019.
Collapse
Affiliation(s)
- Pan-Jian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Dong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Kui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
43
|
Meyer Zu Reckendorf S, Brand C, Pedro MT, Hegler J, Schilling CS, Lerner R, Bindila L, Antoniadis G, Knöll B. Lipid metabolism adaptations are reduced in human compared to murine Schwann cells following injury. Nat Commun 2020; 11:2123. [PMID: 32358558 PMCID: PMC7195462 DOI: 10.1038/s41467-020-15915-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
Mammals differ in their regeneration potential after traumatic injury, which might be caused by species-specific regeneration programs. Here, we compared murine and human Schwann cell (SC) response to injury and developed an ex vivo injury model employing surgery-derived human sural nerves. Transcriptomic and lipid metabolism analysis of murine SCs following injury of sural nerves revealed down-regulation of lipogenic genes and regulator of lipid metabolism, including Pparg (peroxisome proliferator-activated receptor gamma) and S1P (sphingosine-1-phosphate). Human SCs failed to induce similar adaptations following ex vivo nerve injury. Pharmacological PPARg and S1P stimulation in mice resulted in up-regulation of lipid gene expression, suggesting a role in SCs switching towards a myelinating state. Altogether, our results suggest that murine SC switching towards a repair state is accompanied by transcriptome and lipidome adaptations, which are reduced in humans.
Collapse
Affiliation(s)
| | - Christine Brand
- Department of Neurosurgery, Hospital Bogenhausen, 81925, Munich, Germany
| | - Maria T Pedro
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312, Günzburg, Germany
| | - Jutta Hegler
- Institute of Physiological Chemistry, Ulm University, 89081, Ulm, Germany
| | | | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Gregor Antoniadis
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312, Günzburg, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
44
|
Chen C, Cui S, Li W, Jin H, Fan J, Sun Y, Cui Z. Ingenuity pathway analysis of human facet joint tissues: Insight into facet joint osteoarthritis. Exp Ther Med 2020; 19:2997-3008. [PMID: 32256786 PMCID: PMC7086291 DOI: 10.3892/etm.2020.8555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Facet joint osteoarthritis (FJOA) is a common degenerative joint disorder with high prevalence in the elderly. FJOA causes lower back pain and lower extremity pain, and thus severely impacts the quality of life of affected patients. Emerging studies have focused on the histomorphological and histomorphometric changes in FJOA. However, the dynamic genetic changes in FJOA have remained to be clearly determined. In the present study, previously obtained RNA deep sequencing data were subjected to an ingenuity pathway analysis (IPA) and canonical signaling pathways of differentially expressed genes (DEGs) in FJOA were studied. The top 25 enriched canonical signaling pathways were identified and canonical signaling pathways with high absolute values of z-scores, specifically leukocyte extravasation signaling, Tec kinase signaling and osteoarthritis pathway, were investigated in detail. DEGs were further categorized by disease, biological function and toxicity (tox) function. The genetic networks between DEGs as well as hub genes in these functional networks were also investigated. It was demonstrated that C-X-C motif chemokine ligand 8, elastase, neutrophil expressed, growth factor independent 1 transcriptional repressor, Spi-1 proto-oncogene, CCAAT enhancer binding protein epsilon, GATA binding protein 1, TAL bHLH transcription factor 1, erythroid differentiation factor, minichromosome maintenance complex component 4, BTG anti-proliferation factor 2, BRCA1 DNA repair-associated, cyclin D1, chromatin assembly factor 1 subunit A, triggering receptor expressed on myeloid cells 1 and tumor protein p63 were hub genes in the top 5 IPA networks (with a score >30). The present study provides insight into the pathological processes of FJOA from a genetic perspective and may thus benefit the clinical treatment of FJOA.
Collapse
Affiliation(s)
- Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shengyu Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weidong Li
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huricha Jin
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianbo Fan
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
45
|
Davies AJ, Rinaldi S, Costigan M, Oh SB. Cytotoxic Immunity in Peripheral Nerve Injury and Pain. Front Neurosci 2020; 14:142. [PMID: 32153361 PMCID: PMC7047751 DOI: 10.3389/fnins.2020.00142] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cytotoxicity and consequent cell death pathways are a critical component of the immune response to infection, disease or injury. While numerous examples of inflammation causing neuronal sensitization and pain have been described, there is a growing appreciation of the role of cytotoxic immunity in response to painful nerve injury. In this review we highlight the functions of cytotoxic immune effector cells, focusing in particular on natural killer (NK) cells, and describe the consequent action of these cells in the injured nerve as well as other chronic pain conditions and peripheral neuropathies. We describe how targeted delivery of cytotoxic factors via the immune synapse operates alongside Wallerian degeneration to allow local axon degeneration in the absence of cell death and is well-placed to support the restoration of homeostasis within the nerve. We also summarize the evidence for the expression of endogenous ligands and receptors on injured nerve targets and infiltrating immune cells that facilitate direct neuro-immune interactions, as well as modulation of the surrounding immune milieu. A number of chronic pain and peripheral neuropathies appear comorbid with a loss of function of cellular cytotoxicity suggesting such mechanisms may actually help to resolve neuropathic pain. Thus while the immune response to peripheral nerve injury is a major driver of maladaptive pain, it is simultaneously capable of directing resolution of injury in part through the pathways of cellular cytotoxicity. Our growing knowledge in tuning immune function away from inflammation toward recovery from nerve injury therefore holds promise for interventions aimed at preventing the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Michael Costigan
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurobiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
Gong L, Wang D, Zhang L, Xie X, Sun H, Gu J. Genetic changes in rat proximal nerve stumps after sciatic nerve transection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:763. [PMID: 32042779 DOI: 10.21037/atm.2019.11.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Peripheral nerves can self-regenerate after traumatic injury, although their self-regeneration ability is limited after severe nerve injury. After peripheral nerve injury, the distal nerve stumps undergo Wallerian degeneration while the proximal nerve stumps undergo a regeneration process. Methods Here, to decipher genetic changes and involved biological processes in the proximal nerve stumps after peripheral nerve injury, microarray data (GSE30165) were analyzed. Differentially expressed genes in the proximal nerve stumps at 0.5 h, 1 h, 3 h, 6 h, 9 h, 1 d, 4 d, 7 d, and 14 d after rat sciatic nerve transection were subjected to Ingenuity pathway analysis (IPA) bioinformatic analysis. Results Cytokine signaling, cellular immune response, nuclear receptor signaling, disease-specific pathways, and organismal growth and development were significantly activated in the proximal nerve stumps after nerve transection. Organ development, inflammation and immune response, diseases and organ abnormalities, and cellular behavior-related biological functions were highly involved. Conclusions The expression levels of differentially expressed genes in biological function "Organismal Injury and Abnormalities" were displayed and validated. Our current study helps to obtain a better understanding of the biological processes of peripheral nerve regeneration, especially the regeneration process in the proximal nerve stumps, and thus may help to discover new therapeutic methods that can promote nerve regeneration.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoying Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jun Gu
- Department of Orthopedics, Xishan People's Hospital, Wuxi 214000, China
| |
Collapse
|
47
|
Cheng XQ, Liang XZ, Wei S, Ding X, Han GH, Liu P, Sun X, Quan Q, Tang H, Zhao Q, Shang AJ, Peng J. Protein microarray analysis of cytokine expression changes in distal stumps after sciatic nerve transection. Neural Regen Res 2020; 15:503-511. [PMID: 31571662 PMCID: PMC6921340 DOI: 10.4103/1673-5374.266062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A large number of chemokines, cytokines, other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration. This microenvironment is one of the major factors for regenerative success. Therefore, it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury. However, the identities of specific cytokines at various time points after sciatic nerve injury have not been determined. The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze, by protein microarray, the expression of different cytokines in the distal nerve after injury. Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines, e.g., ciliary neurotrophic factor, were downregulated. The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines. Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways, Janus kinase/signal transducers and activators of transcription, phosphoinositide 3-kinase/protein kinase B, and notch signaling pathway. The cytokines involved in inflammation, immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes, cell-cell adhesion, and cell proliferation were up-regulated at 28 days after injury. Western blot analysis showed that the expression and changes of hepatocyte growth factor, glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis. The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration, as well as a basis for potential treatments of peripheral nerve injury. The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital, China (approval number: 2016-x9-07) in September 2016.
Collapse
Affiliation(s)
- Xiao-Qing Cheng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xue-Zhen Liang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing; The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Shuai Wei
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ding
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Gong-Hai Han
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xun Sun
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Quan
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - He Tang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qing Zhao
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ai-Jia Shang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
48
|
Dysregulated Transcription Factor TFAP2A After Peripheral Nerve Injury Modulated Schwann Cell Phenotype. Neurochem Res 2019; 44:2776-2785. [PMID: 31650361 DOI: 10.1007/s11064-019-02898-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 01/16/2023]
Abstract
Transcription factors regulate the transcriptions and expressions of numerous target genes and direct a variety of physiological and pathological activities. To obtain a better understanding of the involvement of transcription factors during peripheral nerve repair and regeneration, significantly differentially expressed genes coding for transcription factors in rat sciatic nerves after sciatic nerve crush injury were identified. A total of 9 transcription factor genes, including GBX2, HIF3A, IRF8, LRRC63, SNAI3, SPIB, TBX21, TFAP2A, and ZBTB16 were identified to be commonly differentially expressed at 1, 4, 7, and 14 days after nerve injury. TFAP2A, a gene encoding transcription factor activating enhancer binding protein 2 alpha, was found to be critical in the regulatory network. PCR validation and immunohistochemistry staining of injured rat sciatic nerves showed that TFAP2A expression was significantly up-regulated in the Schwann cells after nerve injury for at least 2 weeks. Schwann cells transfected with TFAP2A-siRNA exhibited elevated proliferation rate and migration ability, suggesting that TFAP2A suppressed Schwann cell proliferation and migration. Collectively, our study provided a global overview of the dynamic changes of transcription factors after sciatic nerve injury, discovered key transcription factors for the regeneration process, and deepened the understanding of the molecular mechanisms underlying peripheral nerve repair and regeneration.
Collapse
|
49
|
Lee SH, Lee N, Kim S, Lee J, Choi W, Yu SS, Kim JH, Kim S. Intramuscular delivery of HGF-expressing recombinant AAV improves muscle integrity and alleviates neurological symptoms in the nerve crush and SOD1-G93A transgenic mouse models. Biochem Biophys Res Commun 2019; 517:452-457. [DOI: 10.1016/j.bbrc.2019.07.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022]
|
50
|
MIF/CD74 axis participates in inflammatory activation of Schwann cells following sciatic nerve injury. J Mol Histol 2019; 50:355-367. [PMID: 31197516 DOI: 10.1007/s10735-019-09832-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Based on deep RNA sequencing of distal segments of lesioned sciatic nerves, a huge number of differentially expression genes (DEGs) were thus obtained and functionally analyzed. The inflammatory response was denoted as one of most significant biological processes following sciatic nerve injury. In the present study, ingenuity pathway analysis (IPA) demonstrated that macrophage migration inhibitory factor (MIF) was identified as a core regulator of inflammatory response through interaction with CD74 membrane receptor. By establishment of rat sciatic nerve transection model, we displayed that MIF was upregulated following sciatic nerve axotomy, in colocalization with Schwann cells (SCs). MIF promoted migration, proliferation, together with inflammatory responses of SCs in vitro. Immunoprecipitation showed that MIF interacted with CD74 receptor, through which to activate intracellular ERK and JNK signaling pathways. Interference of CD74 receptor using specific siRNA showed that the transcription of proinflammatory cytokines including TNF-α, IL-1β, as well as cytokine receptor TLR4 in SCs was significantly attenuated, supporting an participation of MIF/CD74 signal axis in SCs inflammatory response. The data provide a novel role of MIF in eliciting inflammatory response of peripheral nerve injury, which might be beneficial for precise therapy of peripheral nerve inflammation.
Collapse
|