1
|
Weeks O, Gao X, Basu S, Galdieri J, Chen K, Burns CG, Burns CE. Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovasc Res 2024; 120:1607-1621. [PMID: 38900908 PMCID: PMC11535724 DOI: 10.1093/cvr/cvae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
AIMS Fetal alcohol spectrum disorders (FASDs) impact up to 0.8% of the global population. However, cardiovascular health outcomes in adult patients, along with predictive biomarkers for cardiac risk stratification, remain unknown. Our aim was to utilize a longitudinal cohort study in an animal model to evaluate the impact of embryonic alcohol exposure (EAE) on cardiac structure, function, and transcriptional profile across the lifespan. METHODS AND RESULTS Using zebrafish, we characterized the aftereffects of EAE in adults binned by congenital heart defect (CHD) severity. Chamber sizes were quantified on dissected adult hearts to identify structural changes indicative of cardiomyopathy. Using echocardiography, we quantified systolic function based on ejection fraction and longitudinal strain, and diastolic function based on ventricular filling dynamics, ventricular wall movement, and estimated atrial pressures. Finally, we performed RNA-sequencing on EAE ventricles and assessed how differentially expressed genes (DEGs) correlated with cardiac function. Here, we demonstrate that EAE causes cardiomyopathy and diastolic dysfunction through persistent alterations to ventricular wall structure and gene expression. Following abnormal ventricular morphogenesis, >30% of all EAE adults developed increased atrial-to-ventricular size ratios, abnormal ventricular filling dynamics, and reduced myocardial wall relaxation during early diastole despite preserved systolic function. RNA-sequencing of the EAE ventricle revealed novel and heart failure-associated genes (slc25a33, ankrd9, dusp2, dusp4, spry4, eya4, and edn1) whose expression levels were altered across the animal's lifespan or correlated with the degree of diastolic dysfunction detected in adulthood. CONCLUSION Our study identifies EAE as a risk factor for adult-onset cardiomyopathy and diastolic dysfunction, regardless of CHD status, and suggests novel molecular indicators of adult EAE-induced heart disease.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Xinlei Gao
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sandeep Basu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jennifer Galdieri
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kaifu Chen
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
3
|
Brunet J, Cook AC, Walsh CL, Cranley J, Tafforeau P, Engel K, Arthurs O, Berruyer C, Burke O’Leary E, Bellier A, Torii R, Werlein C, Jonigk DD, Ackermann M, Dollman K, Lee PD, Atzen S. Multidimensional Analysis of the Adult Human Heart in Health and Disease Using Hierarchical Phase-Contrast Tomography. Radiology 2024; 312:e232731. [PMID: 39012246 PMCID: PMC11303834 DOI: 10.1148/radiol.232731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 07/17/2024]
Abstract
Background Current clinical imaging modalities such as CT and MRI provide resolution adequate to diagnose cardiovascular diseases but cannot depict detailed structural features in the heart across length scales. Hierarchical phase-contrast tomography (HiP-CT) uses fourth-generation synchrotron sources with improved x-ray brilliance and high energies to provide micron-resolution imaging of intact adult organs with unprecedented detail. Purpose To evaluate the capability of HiP-CT to depict the macro- to microanatomy of structurally normal and abnormal adult human hearts ex vivo. Materials and Methods Between February 2021 and September 2023, two adult human donor hearts were obtained, fixed in formalin, and prepared using a mixture of crushed agar in a 70% ethanol solution. One heart was from a 63-year-old White male without known cardiac disease, and the other was from an 87-year-old White female with a history of multiple known cardiovascular pathologies including ischemic heart disease, hypertension, and atrial fibrillation. Nondestructive ex vivo imaging of these hearts without exogenous contrast agent was performed using HiP-CT at the European Synchrotron Radiation Facility. Results HiP-CT demonstrated the capacity for high-spatial-resolution, multiscale cardiac imaging ex vivo, revealing histologic-level detail of the myocardium, valves, coronary arteries, and cardiac conduction system across length scales. Virtual sectioning of the cardiac conduction system provided information on fatty infiltration, vascular supply, and pathways between the cardiac nodes and adjacent structures. HiP-CT achieved resolutions ranging from gross (isotropic voxels of approximately 20 µm) to microscopic (approximately 6.4-µm voxel size) to cellular (approximately 2.3-µm voxel size) in scale. The potential for quantitative assessment of features in health and disease was demonstrated. Conclusion HiP-CT provided high-spatial-resolution, three-dimensional images of structurally normal and diseased ex vivo adult human hearts. Whole-heart image volumes were obtained with isotropic voxels of approximately 20 µm, and local regions of interest were obtained with resolution down to 2.3-6.4 µm without the need for sectioning, destructive techniques, or exogenous contrast agents. Published under a CC BY 4.0 license Supplemental material is available for this article. See also the editorial by Bluemke and Pourmorteza in this issue.
Collapse
Affiliation(s)
- Joseph Brunet
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Andrew C. Cook
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Claire L. Walsh
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - James Cranley
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Paul Tafforeau
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Klaus Engel
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Owen Arthurs
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Camille Berruyer
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Emer Burke O’Leary
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Alexandre Bellier
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Ryo Torii
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Christopher Werlein
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Danny D. Jonigk
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Maximilian Ackermann
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Kathleen Dollman
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Peter D. Lee
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| | - Sarah Atzen
- From the Department of Mechanical Engineering, University College
London, London, England (J.B., C.L.W., C.B., E.B.O.L., R.T., P.D.L.); European
Synchrotron Radiation Facility, 71 Av des Martyrs, 38000 Grenoble, France (J.B.,
P.T., C.B., K.D.); UCL Institute of Cardiovascular Science, London, England
(A.C.C.); Wellcome Sanger Institute, Hinxton, England (J.C.); Siemenst
Healthineers, Erlangen, Germany (K.E.); Department of Radiology, Great Ormond
Street Hospital for Children NHS Foundation Trust, London, England (O.A.);
Laboratoire d’Anatomie des Alpes Françaises, Université
Grenoble Alpes, Grenoble, France (A.B.); Institute of Pathology, Hannover
Medical School, Hannover, Germany (C.W.); Biomedical Research in Endstage and
Obstructive Lung Disease Hannover, German Center for Lung Research (DZL),
Hannover, Germany (D.D.J.); Institute of Pathology, Faculty of Medicine, RWTH
Aachen University, Aachen, Germany (D.D.J., M.A.); Institute of Pathology and
Molecular Pathology, Helios University Clinic Wuppertal, Universität
Witten/Herdecke, Wuppertal, Germany (M.A.); Institute of Functional and Clinical
Anatomy, University Medical Center of the Johannes Gutenberg–University
Mainz, Mainz, Germany (M.A.); and Research Complex at Harwell, Didcot, England
(P.D.L.)
| |
Collapse
|
4
|
Salgado-Almario J, Molina Y, Vicente M, Martínez-Sielva A, Rodríguez-García R, Vincent P, Domingo B, Llopis J. ERG potassium channels and T-type calcium channels contribute to the pacemaker and atrioventricular conduction in zebrafish larvae. Acta Physiol (Oxf) 2024; 240:e14075. [PMID: 38071417 DOI: 10.1111/apha.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIM Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current IKr in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease. Here, we investigate the contribution of ERG channels and TTCCs to the pacemaker and atrioventricular conduction in zebrafish larvae and determine the mechanisms causing atrioventricular block. METHODS Zebrafish larvae expressing ratiometric fluorescent Ca2+ biosensors in the heart were used to measure Ca2+ levels and rhythm in beating hearts in vivo, concurrently with contraction and hemodynamics. The atrioventricular delay (the time between the start of atrial and ventricular Ca2+ transients) was used to measure impulse conduction velocity and distinguished between slow conduction and prolonged refractoriness as the cause of the conduction block. RESULTS ERG blockers caused bradycardia and atrioventricular block by prolonging the refractory period in the atrioventricular canal and in working ventricular myocytes. In contrast, inhibition of TTCCs caused bradycardia and second-degree block (Mobitz type I) by slowing atrioventricular conduction. TTCC block did not affect ventricular contractility, despite being highly expressed in cardiomyocytes. Concomitant measurement of Ca2+ levels and ventricular size showed mechano-mechanical coupling: increased preload resulted in a stronger heart contraction in vivo. CONCLUSION ERG channels and TTCCs influence the heart rate and atrioventricular conduction in zebrafish larvae. The zebrafish lines expressing Ca2+ biosensors in the heart allow us to investigate physiological feedback mechanisms and complex arrhythmias.
Collapse
Affiliation(s)
- Jussep Salgado-Almario
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Yillcer Molina
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Manuel Vicente
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Antonio Martínez-Sielva
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Raúl Rodríguez-García
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pierre Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Beatriz Domingo
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Llopis
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
5
|
Van Impe M, Caboor L, Deleeuw V, De Rycke K, Vanhooydonck M, De Backer J, Segers P, Sips P. Application of an automated analysis framework for pulsed-wave Doppler cardiac ultrasound measurements to generate reference data in adult zebrafish. Am J Physiol Regul Integr Comp Physiol 2023; 325:R782-R796. [PMID: 37811715 DOI: 10.1152/ajpregu.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
High-frequency cardiac ultrasound is the only well-established method to characterize in vivo cardiovascular function in adult zebrafish noninvasively. Pulsed-wave Doppler imaging allows measurements of blood flow velocities at well-defined anatomical positions, but the measurements and results obtained using this technique need to be analyzed carefully, taking into account the substantial baseline variability within one recording and the possibility for operator bias. To address these issues and to increase throughput by limiting hands-on analysis time, we have developed a fully automated processing pipeline. This framework enables the fast, unbiased analysis of all cardiac cycles in a zebrafish pulsed-wave Doppler recording of both atrioventricular valve flow as well as aortic valve flow without operator-dependent inputs. Applying this automated pipeline to a large number of recordings from wild-type zebrafish shows a strong agreement between the automated results and manual annotations performed by an experienced operator. The reference data obtained from this analysis showed that the early wave peak during ventricular inflow is lower for female compared with male zebrafish. We also found that the peaks of the ventricular inflow and outflow waves as well as the peaks of the regurgitation waves are all correlated positively with body surface area. In general, the presented reference data, as well as the automated Doppler measurement processing tools developed and validated in this study will facilitate future (high-throughput) cardiovascular phenotyping studies in adult zebrafish ultimately leading to a more comprehensive understanding of human (genetic) cardiovascular diseases.
Collapse
Affiliation(s)
- Matthias Van Impe
- IBiTech-BioMMedA, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Lisa Caboor
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Violette Deleeuw
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karo De Rycke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Julie De Backer
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Segers
- IBiTech-BioMMedA, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Shaftoe JB, Manchester EA, Gillis TE. Cardiac remodeling caused by cold acclimation is reversible with rewarming in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111466. [PMID: 37302568 DOI: 10.1016/j.cbpa.2023.111466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Cold acclimation of zebrafish causes changes to the structure and composition of the heart. However, little is known of the consequences of these changes on heart function or if these changes are reversible with rewarming back to the initial temperature. In the current study, zebrafish were acclimated from 27℃ to 20°C, then after 17 weeks, a subset of fish were rewarmed to 27°C and held at that temperature for 7 weeks. The length of this trial, 23 weeks, was chosen to mimic seasonal changes in temperature. Cardiac function was measured in each group at 27°C and 20°C using high frequency ultrasound. It was found that cold acclimation caused a decrease in ventricular cross-sectional area, compact myocardial thickness, and total muscle area. There was also a decrease in end-diastolic area with cold acclimation that reversed upon rewarming to control temperatures. Rewarming caused an increase in the thickness of the compact myocardium, total muscle area, and end-diastolic area back to control levels. This is the first experiment to demonstrate that cardiac remodeling, induced by cold acclimation, is reversible upon re-acclimation to control temperature (27°C). Finally, body condition measurements reveal that fish that had been cold-acclimated and then reacclimated to 27°C, were in poorer condition than the fish that remained at 20°C as well as the control fish at week 23. This suggests that the physiological responses to the multiple changes in temperature had a significant energetic cost to the animal. SUMMARY STATEMENT: The decrease in cardiac muscle density, compact myocardium thickness and diastolic area in zebrafish caused by cold acclimation, was reversed with rewarming to control temperatures.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Canada
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Canada.
| |
Collapse
|
7
|
Titov SA, Burlakov AB, Zinin PV, Bogachenkov AN. Measurement of ultrasound velocity in yolk and blastula of fish embryo in vivo. ULTRASONICS 2023; 132:106963. [PMID: 36863133 DOI: 10.1016/j.ultras.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 05/29/2023]
Abstract
An acoustic microscopy method for measuring the velocity of ultrasound in the yolk and blastula of bony fish embryos at early stages of development was proposed. The yolk and blastula were approximated as a sphere and a spherical dome, respectively, consisting of a homogeneous liquid. A theoretical model of ultrasonic wave propagation through a spherical liquid drop located on a solid substrate was developed in the ray approximation. The dependence of the wave propagation time on the speed of sound in the drop, its diameter, and the position of the focus of the ultrasonic transducer has been determined. It was shown that the velocity in the drop can be found by solving the inverse problem by minimizing the discrepancy between the experimental and model spatial distributions of the propagation time, assuming that the velocity in the immersion liquid and the radius of the drop are known. The velocities in the yolk and blastula of the loach (Misgurnus fossilis) embryo at the stage of development of the middle blastula were measured in vivo using a pulsed scanning acoustic microscope operating at a central frequency of 50 MHz. The yolk and blastula radii were determined from ultrasound images of the embryo. Acoustic microscopy measurements conducted with four embryos provide velocities of the acoustic longitudinal wave in the yolk and blastula. They were measured to be 1581 ± 5 m/s and 1525 ± 4 m/s when the temperature of the liquid in the water tank was kept at 22 ± 2 °C.
Collapse
Affiliation(s)
- S A Titov
- Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences(STC UP RAS), 15 Butlerova str, Moscow 117342, Russia.
| | - A B Burlakov
- Lomonosov Moscow state University, 1 Leninskie Gory, Moscow 119991, Russia
| | - P V Zinin
- Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences(STC UP RAS), 15 Butlerova str, Moscow 117342, Russia
| | - A N Bogachenkov
- Institute of Biochemical Physics of the Russian Academy of Sciences, 4 Kosygina str, Moscow 119334, Russia
| |
Collapse
|
8
|
Da’as SI, Hasan W, Salem R, Younes N, Abdelrahman D, Mohamed IA, Aldaalis A, Temanni R, Mathew LS, Lorenz S, Yacoub M, Nomikos M, Nasrallah GK, Fakhro KA. Transcriptome Profile Identifies Actin as an Essential Regulator of Cardiac Myosin Binding Protein C3 Hypertrophic Cardiomyopathy in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23168840. [PMID: 36012114 PMCID: PMC9408294 DOI: 10.3390/ijms23168840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/15/2023] Open
Abstract
Variants in cardiac myosin-binding protein C (cMyBP-C) are the leading cause of inherited hypertrophic cardiomyopathy (HCM), demonstrating the key role that cMyBP-C plays in the heart’s contractile machinery. To investigate the c-MYBPC3 HCM-related cardiac impairment, we generated a zebrafish mypbc3-knockout model. These knockout zebrafish displayed significant morphological heart alterations related to a significant decrease in ventricular and atrial diameters at systolic and diastolic states at the larval stages. Immunofluorescence staining revealed significant hyperplasia in the mutant’s total cardiac and ventricular cardiomyocytes. Although cardiac contractility was similar to the wild-type control, the ejection fraction was significantly increased in the mypbc3 mutants. At later stages of larval development, the mutants demonstrated an early cardiac phenotype of myocardium remodeling, concurrent cardiomyocyte hyperplasia, and increased ejection fraction as critical processes in HCM initiation to counteract the increased ventricular myocardial wall stress. The examination of zebrafish adults showed a thickened ventricular cardiac wall with reduced heart rate, swimming speed, and endurance ability in both the mypbc3 heterozygous and homozygous groups. Furthermore, heart transcriptome profiling showed a significant downregulation of the actin-filament-based process, indicating an impaired actin cytoskeleton organization as the main dysregulating factor associated with the early ventricular cardiac hypertrophy in the zebrafish mypbc3 HCM model.
Collapse
Affiliation(s)
- Sahar Isa Da’as
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
- Australian Regenerative Medicine Institute, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Correspondence:
| | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Rola Salem
- Health Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nadine Younes
- Department of Biomedical Sciences, College of Health Science, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Doua Abdelrahman
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Iman A. Mohamed
- Australian Regenerative Medicine Institute, Monash University, Melbourne 3168, Australia
| | - Arwa Aldaalis
- Australian Regenerative Medicine Institute, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Ramzi Temanni
- Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Lisa Sara Mathew
- Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Stephan Lorenz
- Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | | | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Science, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid A. Fakhro
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
- Australian Regenerative Medicine Institute, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Weill Cornell Medical College, Doha P.O. Box 24811, Qatar
| |
Collapse
|
9
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
10
|
Mitovic N, Maksimovic S, Puflovic D, Kovacevic S, Lopicic S, Todorovic J, Spasic S, Dincic M, Ostojic JN. Cadmium significantly changes major morphometrical points and cardiovascular functional parameters during early development of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103723. [PMID: 34391906 DOI: 10.1016/j.etap.2021.103723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 05/14/2023]
Abstract
Living organisms are commonly exposed to cadmium and other toxic metals. A vast body of research has shown the significant effects of these toxic metals on developmental processes. In order to study the role of toxic metals on early developmental stages of eukaryotes, we explored the effect of cadmium (Cd2+) contaminant on zebrafish. Thus, zebrafish embryos were exposed to 3 mg/L (16.7 μM) Cd2+ for 96 h and imaged every 24 h from the exposure onwards. Hatching rates of the eggs were determined at 72 h, followed by analyses at 96 h for: survival rate, morphometrical factors, and functional parameters of the cardiovascular system. Interestingly enough, significant hatching delays along with smaller cephalic region and some morphological abnormalities were observed in the treatment group. Moreover, substantial changes were noticed in the length of notochord and embryo, absorption of yolk sac with shorter extension, area of swimming bladder, as well as pericardium sac after Cd2+ treatment. Cadmium also caused significant abnormalities in heart physiology which could be the leading cause of mentioned morphological deformities. Herein, our results shine light on systematic acute embryological effects of cadmium in the early development of zebrafish for the first time.
Collapse
Affiliation(s)
- Nikola Mitovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia.
| | - Stefan Maksimovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Darko Puflovic
- Faculty of Electronic Engineering, University of Nis, Nis, Serbia
| | - Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Srdjan Lopicic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jasna Todorovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Svetolik Spasic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Marko Dincic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
11
|
Muir CA, Neff BD, Damjanovski S. Adaptation of a mouse Doppler echocardiograph system for assessing cardiac function and thermal performance in a juvenile salmonid. CONSERVATION PHYSIOLOGY 2021; 9:coab070. [PMID: 34512992 PMCID: PMC8415535 DOI: 10.1093/conphys/coab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Measures of cardiac performance are pertinent to the study of thermal physiology and exercise in teleosts, particularly as they pertain to migration success. Increased heart rate, stroke volume and cardiac output have previously been linked to improved swimming performance and increased upper thermal tolerance in anadromous salmonids. To assess thermal performance in fishes, it has become commonplace to measure the response of maximum heart rate to warming using electrocardiograms. However, electrocardiograms do not provide insight into the hemodynamic characteristics of heart function that can impact whole-animal performance. Doppler echocardiography is a popular tool used to examine live animal processes, including real-time cardiac function. This method allows for nonsurgical measurements of blood flow velocity through the heart and has been used to detect abnormalities in cardiovascular function, particularly in mammals. Here, we show how a mouse Doppler echocardiograph system can be adapted for use in a juvenile salmonid over a range of temperatures and timeframes. Using this compact, noninvasive system, we measured maximum heart rate, atrioventricular (AV) blood flow velocity, the early flow-atrial flow ratio and stroke distance in juvenile Atlantic salmon (Salmo salar) during acute warming. Using histologically determined measures of AV valve area, we show how stroke distance measurements obtained with this system can be used to calculate ventricular inflow volume and approximate cardiac output. Further, we show how this Doppler system can be used to determine cardiorespiratory thresholds for thermal performance, which are increasingly being used to predict the consequences that warming water temperatures will have on migratory fishes.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| | - Bryan D Neff
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| | - Sashko Damjanovski
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| |
Collapse
|
12
|
Duong T, Rose R, Blazeski A, Fine N, Woods CE, Thole JF, Sotoodehnia N, Soliman EZ, Tung L, McCallion AS, Arking DE. Development and optimization of an in vivo electrocardiogram recording method and analysis program for adult zebrafish. Dis Model Mech 2021; 14:dmm048827. [PMID: 34378773 PMCID: PMC8380046 DOI: 10.1242/dmm.048827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Clinically pertinent electrocardiogram (ECG) data from model systems, such as zebrafish, are crucial for illuminating factors contributing to human cardiac electrophysiological abnormalities and disease. Current zebrafish ECG collection strategies have not adequately addressed the consistent acquisition of high-quality traces or sources of phenotypic variation that could obscure data interpretation. Thus, we developed a novel platform to ensure high-quality recording of in vivo subdermal adult zebrafish ECGs and zebrafish ECG reading GUI (zERG), a program to acquire measurements from traces that commercial software cannot examine owing to erroneous peak calling. We evaluate normal ECG trait variation, revealing highly reproducible intervals and wave amplitude variation largely driven by recording artifacts, and identify sex and body size as potential confounders to PR, QRS and QT intervals. With this framework, we characterize the effect of the class I anti-arrhythmic drug flecainide acetate on adults, provide support for the impact of a Long QT syndrome model, and establish power calculations for this and other studies. These results highlight our pipeline as a robust approach to evaluate zebrafish models of human cardiac electrophysiological phenotypes.
Collapse
Affiliation(s)
- ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adriana Blazeski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Noah Fine
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Courtney E. Woods
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph F. Thole
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA 98101, USA
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, NC 27101, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew S. McCallion
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Ceballos-Francisco D, García-Carrillo N, Cuesta A, Esteban MÁ. Ultrasonography study of the skin wound healing process in gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1091-1100. [PMID: 33760262 DOI: 10.1111/jfd.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to carry out an in vivo study of the skin healing process in gilthead seabream (Sparus aurata) after being experimentally wounded. Firstly, the structure of normal skin was studied by real-time ultrasonography (Vevo Lab, VisualSonics) and light microscopy. Besides this, experimental wounds were made on the left flank of each fish with a circular biopsy punch (8 mm diameter) below the lateral line. The healing process was assessed on live fish at 0, 6, 11 and 23 days post-wounding using the real-time ultrasonography in B-mode and Power Doppler mode (Vevo 3100 FUJIFILM, VisualSonics). Through the ultrasonography images, both the skin structure and the evolution of the changes that wounds originated in the surrounding tissues were studied in vivo over time. Concomitantly, the pattern of neovascularization in the wounded area was followed during the healing process and it was demonstrated that, although the neovascularization started very early after the skin damage, it was increased in wounded areas from day 11 post-wounding onwards. The results obtained proved the utility and power of using ultrasounds in fish to evaluate in vivo complex biological processes in real time, which are difficult to study by other methodologies. The present data shed some light on the reparation of external injuries in aquatic vertebrates.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nuria García-Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
14
|
Filice M, Barca A, Amelio D, Leo S, Mazzei A, Del Vecchio G, Verri T, Cerra MC, Imbrogno S. Morpho-functional remodelling of the adult zebrafish (Danio rerio) heart in response to waterborne angiotensin II exposure. Gen Comp Endocrinol 2021; 301:113663. [PMID: 33220301 DOI: 10.1016/j.ygcen.2020.113663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System, is a pluripotent humoral agent whose biological actions include short-term modulations and long-term adaptations. In fish, short-term cardio-tropic effects of AngII are documented, but information on the role of AngII in long-term cardiac remodelling is not fully understood. Here, we describe a direct approach to disclose long-term morpho-functional effects of AngII on the zebrafish heart. Adult fish exposed to waterborne teleost analogue AngII for 8 weeks showed enhanced heart weight and cardio-somatic index, coupled to myocardial structural changes (i.e. augmented compacta thickness and fibrosis), and increased heart rate. These findings were paralleled by an up-regulation of type-1 and type-2 AngII receptors expression, and by changes in the expression of GATA binding protein 4, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 and superoxide dismutase 1 soluble mRNAs, as well as of cytochrome b-245 beta polypeptide protein, indicative of cardiac remodelling. Our results suggest that waterborne AngII can sustain and robustly affect the cardiac morpho-functional remodelling of adult zebrafish.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Daniela Amelio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Serena Leo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Aurora Mazzei
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Gianmarco Del Vecchio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
15
|
Bazmi M, Escobar AL. Excitation-Contraction Coupling in the Goldfish ( Carassius auratus) Intact Heart. Front Physiol 2020; 11:1103. [PMID: 33041845 PMCID: PMC7518121 DOI: 10.3389/fphys.2020.01103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac physiology of fish models is an emerging field given the ease of genome editing and the development of transgenic models. Several studies have described the cardiac properties of zebrafish (Denio rerio). The goldfish (Carassius auratus) belongs to the same family as the zebrafish and has emerged as an alternative model with which to study cardiac function. Here, we propose to acutely study electrophysiological and systolic Ca2+ signaling in intact goldfish hearts. We assessed the Ca2+ dynamics and the electrophysiological cardiac function of goldfish, zebrafish, and mice models, using pulsed local field fluorescence microscopy, intracellular microelectrodes, and flash photolysis in perfused hearts. We observed goldfish ventricular action potentials (APs) and Ca2+ transients to be significantly longer when compared to the zebrafish. The action potential half duration at 50% (APD50) of goldfish was 370.38 ± 8.8 ms long, and in the zebrafish they were observed to be only 83.9 ± 9.4 ms. Additionally, the half duration of the Ca2+ transients was also longer for goldfish (402.1 ± 4.4 ms) compared to the zebrafish (99.1 ± 2.7 ms). Also, blocking of the L-type Ca2+ channels with nifedipine revealed this current has a major role in defining the amplitude and the duration of goldfish Ca2+ transients. Interestingly, nifedipine flash photolysis experiments in the intact heart identified whether or not the decrease in the amplitude of Ca2+ transients was due to shorter APs. Moreover, an increase in temperature and heart rate had a strong shortening effect on the AP and Ca2+ transients of goldfish hearts. Furthermore, ryanodine (Ry) and thapsigargin (Tg) significantly reduced the amplitude of the Ca2+ transients, induced a prolongation in the APs, and altogether exhibited the degree to which the Ca2+ release from the sarcoplasmic reticulum contributed to the Ca2+ transients. We conclude that the electrophysiological properties and Ca2+ signaling in intact goldfish hearts strongly resembles the endocardial layer of larger mammals.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| |
Collapse
|
16
|
Santoso F, Farhan A, Castillo AL, Malhotra N, Saputra F, Kurnia KA, Chen KHC, Huang JC, Chen JR, Hsiao CD. An Overview of Methods for Cardiac Rhythm Detection in Zebrafish. Biomedicines 2020; 8:E329. [PMID: 32899676 PMCID: PMC7554775 DOI: 10.3390/biomedicines8090329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
The heart is the most important muscular organ of the cardiovascular system, which pumps blood and circulates, supplying oxygen and nutrients to peripheral tissues. Zebrafish have been widely explored in cardiotoxicity research. For example, the zebrafish embryo has been used as a human heart model due to its body transparency, surviving several days without circulation, and facilitating mutant identification to recapitulate human diseases. On the other hand, adult zebrafish can exhibit the amazing regenerative heart muscle capacity, while adult mammalian hearts lack this potential. This review paper offers a brief description of the major methodologies used to detect zebrafish cardiac rhythm at both embryonic and adult stages. The dynamic pixel change method was mostly performed for the embryonic stage. Other techniques, such as kymography, laser confocal microscopy, artificial intelligence, and electrocardiography (ECG) have also been applied to study heartbeat in zebrafish embryos. Nevertheless, ECG is widely used for heartbeat detection in adult zebrafish since ECG waveforms' similarity between zebrafish and humans is prominent. High-frequency ultrasound imaging (echocardiography) and modern electronic sensor tag also have been proposed. Despite the fact that each method has its benefits and limitations, it is proved that zebrafish have become a promising animal model for human cardiovascular disease, drug pharmaceutical, and toxicological research. Using those tools, we conclude that zebrafish behaviors as an excellent small animal model to perform real-time monitoring for the developmental heart process with transparent body appearance, to conduct the in vivo cardiovascular performance and gene function assays, as well as to perform high-throughput/high content drug screening.
Collapse
Affiliation(s)
- Fiorency Santoso
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Ali Farhan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Punjab 38000, Pakistan;
| | - Agnes L. Castillo
- Faculty of Pharmacy, The Graduate School and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Der Hsiao
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
17
|
Flinn MA, Otten C, Brandt ZJ, Bostrom JR, Kenarsary A, Wan TC, Auchampach JA, Abdelilah-Seyfried S, O'Meara CC, Link BA. Llgl1 regulates zebrafish cardiac development by mediating Yap stability in cardiomyocytes. Development 2020; 147:147/16/dev193581. [PMID: 32843528 DOI: 10.1242/dev.193581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023]
Abstract
The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.
Collapse
Affiliation(s)
- Michael A Flinn
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cécile Otten
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Zachary J Brandt
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aria Kenarsary
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tina C Wan
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Auchampach
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Salim Abdelilah-Seyfried
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.,Institute for Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Caitlin C O'Meara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? JOURNAL OF FISH BIOLOGY 2020; 97:328-340. [PMID: 32441327 DOI: 10.1111/jfb.14402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.
Collapse
Affiliation(s)
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Yan J, Li H, Bu H, Jiao K, Zhang AX, Le T, Cao H, Li Y, Ding Y, Xu X. Aging-associated sinus arrest and sick sinus syndrome in adult zebrafish. PLoS One 2020; 15:e0232457. [PMID: 32401822 PMCID: PMC7219707 DOI: 10.1371/journal.pone.0232457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Because of its powerful genetics, the adult zebrafish has been increasingly used for studying cardiovascular diseases. Considering its heart rate of ~100 beats per minute at ambient temperature, which is very close to human, we assessed the use of this vertebrate animal for modeling heart rhythm disorders such as sinus arrest (SA) and sick sinus syndrome (SSS). We firstly optimized a protocol to measure electrocardiogram in adult zebrafish. We determined the location of the probes, implemented an open-chest microsurgery procedure, measured the effects of temperature, and determined appropriate anesthesia dose and time. We then proposed an PP interval of more than 1.5 seconds as an arbitrary criterion to define an SA episode in an adult fish at ambient temperature, based on comparison between the current definition of an SA episode in humans and our studies of candidate SA episodes in aged wild-type fish and Tg(SCN5A-D1275N) fish (a fish model for inherited SSS). With this criterion, a subpopulation of about 5% wild-type fish can be considered to have SA episodes, and this percentage significantly increases to about 25% in 3-year-old fish. In response to atropine, this subpopulation has both common SSS phenotypic traits that are shared with the Tg(SCN5A-D1275N) model, such as bradycardia; and unique SSS phenotypic traits, such as increased QRS/P ratio and chronotropic incompetence. In summary, this study defined baseline SA and SSS in adult zebrafish and underscored use of the zebrafish as an alternative model to study aging-associated SSS.
Collapse
Affiliation(s)
- Jianhua Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kunli Jiao
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Alex X. Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tai Le
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California
- Department of Biomedical Engineering, UC Irvine, Irvine, California
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
20
|
Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Sci Rep 2020; 10:2046. [PMID: 32029752 PMCID: PMC7005164 DOI: 10.1038/s41598-020-58563-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate quantification of heartbeats in fish models is an important readout to study cardiovascular biology, disease states and pharmacology. However, dependence on anaesthesia, laborious sample orientation or requirement for fluorescent reporters have hampered the use of high-throughput heartbeat analysis. To overcome these limitations, we established an efficient screening assay employing automated label-free heart rate determination of randomly oriented, non-anesthetized medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos in microtiter plates. Automatically acquired bright-field data feeds into an easy-to-use HeartBeat software with graphical user interface for automated quantification of heart rate and rhythm. Sensitivity of the assay was demonstrated by profiling heart rates during entire embryonic development. Our analysis revealed rapid adaption of heart rates to temperature changes, which has implications for standardization of experimental layout. The assay allows scoring of multiple embryos per well enabling a throughput of >500 embryos per 96-well plate. In a proof of principle screen for compound testing, we captured concentration-dependent effects of nifedipine and terfenadine over time. Our novel assay permits large-scale applications ranging from phenotypic screening, interrogation of gene functions to cardiovascular drug development.
Collapse
|
21
|
Chang CC, Chen PY, Huang H, Huang CC. In Vivo Visualization of Vasculature in Adult Zebrafish by Using High-Frequency Ultrafast Ultrasound Imaging. IEEE Trans Biomed Eng 2018; 66:1742-1751. [PMID: 30387718 DOI: 10.1109/tbme.2018.2878887] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Zebrafish has been recently considered an ideal vertebrate for studying developmental biology, genetics, particularly for modeling tumorigenesis, angiogenesis, and regeneration in vivo. However, when a zebrafish matures completely, its body loses transparency, thus making conventional optical imaging techniques difficult for imaging internal anatomy and vasculature. Acoustic wave penetration outperforms optical methods, high-frequency (>30 MHz) ultrasound (HFUS) was consequently an alternative imaging modality for adult zebrafish imaging, particularly for echocardiography However, visualizing peripheral vessels in a zebrafish by using conventional HFUS is still difficult. METHODS In the present study, high-frequency micro-Doppler imaging (HFμDI) based on ultrafast ultrasound imaging was proposed for zebrafish dorsal vascular mapping in vivo. HFμDI uses a 40-MHz ultrasound transducer, which is an ultrafast ultrasound imaging technology with the highest frequency available currently. Blood flow signals were extracted using an eigen-based clutter filter with different settings. Experiments were performed on an 8-month-old wild-type AB-line adult zebrafish. RESULTS Blood vessels, including intersegmental vessels, parachordal vessel, dorsal longitudinal anastomotic vessel, and dorsal aorta, from the dorsal side of the zebrafish were clearly observed in two-dimensional (2-D) and 3-D HFμDI. CONCLUSION The maximum image depth of HFμDI and the minimal diameter of vessel can be detected were 4 mm and 36 μm, respectively; they were determined without any use of microbubbles. The maximum flow velocity range was approximately 3-4 mm/s on the dorsal vessels of the adult zebrafish. SIGNIFICANCE Compared with conventional ultrasound Doppler imaging, HFμDI exhibited superior small vessel imaging.
Collapse
|
22
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
23
|
Zhang H, Dvornikov AV, Huttner IG, Ma X, Santiago CF, Fatkin D, Xu X. A Langendorff-like system to quantify cardiac pump function in adult zebrafish. Dis Model Mech 2018; 11:dmm.034819. [PMID: 30012855 PMCID: PMC6177000 DOI: 10.1242/dmm.034819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Cardiovascular Surgery Department, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Clinical and Translational Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55092, USA
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
24
|
Stevens CM, Rayani K, Genge CE, Singh G, Liang B, Roller JM, Li C, Li AY, Tieleman DP, van Petegem F, Tibbits GF. Characterization of Zebrafish Cardiac and Slow Skeletal Troponin C Paralogs by MD Simulation and ITC. Biophys J 2017; 111:38-49. [PMID: 27410732 DOI: 10.1016/j.bpj.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity that we have measured by ITC.
Collapse
Affiliation(s)
- Charles M Stevens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gurpreet Singh
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Bo Liang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Janine M Roller
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cindy Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alison Yueh Li
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Peter Tieleman
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
25
|
Yalcin HC, Amindari A, Butcher JT, Althani A, Yacoub M. Heart function and hemodynamic analysis for zebrafish embryos. Dev Dyn 2017; 246:868-880. [PMID: 28249360 DOI: 10.1002/dvdy.24497] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/28/2022] Open
Abstract
The Zebrafish has emerged to become a powerful vertebrate animal model for cardiovascular research in recent years. Its advantages include easy genetic manipulation, transparency, small size, low cost, and the ability to survive without active circulation at early stages of development. Sequencing the whole genome and identifying ortholog genes with human genome made it possible to induce clinically relevant cardiovascular defects via genetic approaches. Heart function and disturbed hemodynamics need to be assessed in a reliable manner for these disease models in order to reveal the mechanobiology of induced defects. This effort requires precise determination of blood flow patterns as well as hemodynamic stress (i.e., wall shear stress and pressure) levels within the developing heart. While traditional approach involves time-lapse brightfield microscopy to track cell and tissue movements, in more recent studies fast light-sheet fluorescent microscopes are utilized for that purpose. Integration of more complicated techniques like particle image velocimetry and computational fluid dynamics modeling for hemodynamic analysis holds a great promise to the advancement of the Zebrafish studies. Here, we discuss the latest developments in heart function and hemodynamic analysis for Zebrafish embryos and conclude with our future perspective on dynamic analysis of the Zebrafish cardiovascular system. Developmental Dynamics 246:868-880, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Armin Amindari
- Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Magdi Yacoub
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
26
|
Wang LW, Huttner IG, Santiago CF, Kesteven SH, Yu ZY, Feneley MP, Fatkin D. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models. Dis Model Mech 2016; 10:63-76. [PMID: 28067629 PMCID: PMC5278526 DOI: 10.1242/dmm.026989] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022] Open
Abstract
The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l−1 having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that high frequency echocardiography allows reliable in vivo cardiac assessment in adult zebrafish and make recommendations for optimizing data acquisition and analysis. This enabling technology reveals new insights into zebrafish cardiac physiology and provides an imaging platform for zebrafish-based translational research. Summary: Standardization of zebrafish echocardiography provides insights into cardiac physiology in normal and diseased states, with application for functional studies in zebrafish models of heart disease.
Collapse
Affiliation(s)
- Louis W Wang
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia.,Department of Cardiology, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Inken G Huttner
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Celine F Santiago
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia.,Department of Cardiology, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia .,Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2052, Australia.,Department of Cardiology, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
27
|
Keen AN, Klaiman JM, Shiels HA, Gillis TE. Temperature-induced cardiac remodelling in fish. ACTA ACUST UNITED AC 2016; 220:147-160. [PMID: 27852752 PMCID: PMC5278617 DOI: 10.1242/jeb.128496] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle – specifically diastolic filling, isovolumic pressure generation and ejection – so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable. Summary: Thermal acclimation of some temperate fishes causes extensive remodelling of the heart. The resultant changes to the active and passive properties of the heart represent a highly integrated phenotypic response.
Collapse
Affiliation(s)
- Adam N Keen
- Division of Cardiovascular Science, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Jordan M Klaiman
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | - Holly A Shiels
- Division of Cardiovascular Science, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
28
|
Wang LW, Huttner IG, Santiago CF, Fatkin D. Bradycardia in Zebrafish Heart Failure: A True Physiological Response or Anesthetic-Induced Red Herring? Zebrafish 2016; 13:475-476. [PMID: 27676282 DOI: 10.1089/zeb.2016.1367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Louis W Wang
- 1 Molecular Cardiology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia .,2 Faculty of Medicine, University of New South Wales , Kensington, New South Wales, Australia .,3 Department of Cardiology, St Vincent's Hospital , Darlinghurst, New South Wales, Australia
| | - Inken G Huttner
- 1 Molecular Cardiology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia .,2 Faculty of Medicine, University of New South Wales , Kensington, New South Wales, Australia
| | - Celine F Santiago
- 1 Molecular Cardiology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia
| | - Diane Fatkin
- 1 Molecular Cardiology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia .,2 Faculty of Medicine, University of New South Wales , Kensington, New South Wales, Australia .,3 Department of Cardiology, St Vincent's Hospital , Darlinghurst, New South Wales, Australia
| |
Collapse
|
29
|
Ernens I, Lumley AI, Devaux Y, Wagner DR. Use of Coronary Ultrasound Imaging to Evaluate Ventricular Function in Adult Zebrafish. Zebrafish 2016; 13:477-480. [PMID: 27326768 DOI: 10.1089/zeb.2016.1274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
So far, imaging of the adult zebrafish heart and assessment of heart failure in adult zebrafish have been very limited. Here, we describe a new method for in vivo imaging of the hypertrabeculated heart of the adult zebrafish using miniaturized cardiac ultrasound catheters obtained from the cardiac catheterization laboratory. This method allows the observation of the ventricle of zebrafish and the assessment of ventricular diameters during diastole and systole, as well as heart rate and fractional shortening. Significant changes in these parameters were detected through the use of an adult zebrafish heart failure model induced by chronic anemia. This imaging technique opens the door to detailed in vivo analysis of the adult heart failure phenotype in zebrafish.
Collapse
Affiliation(s)
- Isabelle Ernens
- 1 Cardiovascular Research Unit, Luxembourg Institute of Health , Strassen, Luxembourg
| | - Andrew I Lumley
- 1 Cardiovascular Research Unit, Luxembourg Institute of Health , Strassen, Luxembourg
| | - Yvan Devaux
- 1 Cardiovascular Research Unit, Luxembourg Institute of Health , Strassen, Luxembourg
| | - Daniel R Wagner
- 1 Cardiovascular Research Unit, Luxembourg Institute of Health , Strassen, Luxembourg .,2 Division of Cardiology, Centre Hospitalier de Luxembourg , Luxembourg, Luxembourg
| |
Collapse
|
30
|
Correction: Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography. PLoS One 2016; 11:e0149741. [PMID: 26871931 PMCID: PMC4752491 DOI: 10.1371/journal.pone.0149741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|