1
|
Tong X, Barkema HW, Nobrega DB, Xu C, Han B, Zhang C, Yang J, Li X, Gao J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025; 13:167. [PMID: 39858935 PMCID: PMC11767654 DOI: 10.3390/microorganisms13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g., Staphylococcus spp., Streptococcus spp.) and Gram-negative bacilli (e.g., Escherichia coli, Klebsiella pneumoniae). These pathogens induce mastitis through diverse mechanisms, intricately linked to the virulence factors they carry. Despite previous research on the virulence factors of mastitis-causing bacteria in dairy cattle, there remains a significant gap in our comprehensive understanding of these factors. To bridge these gaps, this manuscript reviews and compiles research on the virulence factors of these pathogens, focusing on their roles in mammary tissue infection, immune evasion, adherence to mammary epithelial cells, and invasion and colonization of the mammary gland. These processes are analyzed in depth to provide a comprehensive framework to promote a deeper understanding of dairy pathogenic bacteria and their pathogenic mechanisms and to provide new insights into the control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Chenyibo Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| |
Collapse
|
2
|
Olson MA, Cullimore C, Hutchison WD, Grimsrud A, Nobrega D, De Buck J, Barkema HW, Wilson E, Pickett BE, Erickson DL. Genes associated with fitness and disease severity in the pan-genome of mastitis-associated Escherichia coli. Front Microbiol 2024; 15:1452007. [PMID: 39268542 PMCID: PMC11390585 DOI: 10.3389/fmicb.2024.1452007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Bovine mastitis caused by Escherichia coli compromises animal health and inflicts substantial product losses in dairy farming. It may manifest as subclinical through severe acute disease and can be transient or persistent in nature. Little is known about bacterial factors that impact clinical outcomes or allow some strains to outcompete others in the mammary gland (MG) environment. Mastitis-associated E. coli (MAEC) may have distinctive characteristics which may contribute to the varied nature of the disease. Given their high levels of intraspecies genetic variability, virulence factors of commonly used MAEC model strains may not be relevant to all members of this group. Methods In this study, we sequenced the genomes of 96 MAEC strains isolated from cattle with clinical mastitis (CM). We utilized clinical severity data to perform genome-wide association studies to identify accessory genes associated with strains isolated from mild or severe CM, or with high or low competitive fitness during in vivo competition assays. Genes associated with mastitis pathogens or commensal strains isolated from bovine sources were also identified. Results A type-2 secretion system (T2SS) and a chitinase (ChiA) exported by this system were strongly associated with pathogenic isolates compared with commensal strains. Deletion of chiA from MAEC isolates decreased their adherence to cultured bovine mammary epithelial cells. Discussion The increased fitness associated with strains possessing this gene may be due to better attachment in the MG. Overall, these results provide a much richer understanding of MAEC and suggest bacterial processes that may underlie the clinical diversity associated with mastitis and their adaptation to this unique environment.
Collapse
Affiliation(s)
- Michael A Olson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Caz Cullimore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Weston D Hutchison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Aleksander Grimsrud
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Diego Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - David L Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
3
|
Hoque MN, Faisal GM, Jerin S, Moyna Z, Islam MA, Talukder AK, Alam MS, Das ZC, Isalm T, Hossain MA, Rahman ANMA. Unveiling distinct genetic features in multidrug-resistant Escherichia coli isolated from mammary tissue and gut of mastitis induced mice. Heliyon 2024; 10:e26723. [PMID: 38434354 PMCID: PMC10904246 DOI: 10.1016/j.heliyon.2024.e26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in lactating mammals. We hypothesized that E. coli from the gut and mammary glands may have similar genomic characteristics in the causation of mastitis. To test this hypothesis, we used whole genome sequencing to analyze two multidrug resistant E. coli strains isolated from mammary tissue (G2M6U) and fecal sample (G6M1F) of experimentally induced mastitis mice. Both strains showed resistance to multiple (>7) antibiotics such as oxacillin, aztreonam, nalidixic acid, streptomycin, gentamicin, cefoxitin, ampicillin, tetracycline, azithromycin and nitrofurantoin. The genome of E. coli G2M6U had 59 antimicrobial resistance genes (ARGs) and 159 virulence factor genes (VFGs), while the E. coli G6M1F genome possessed 77 ARGs and 178 VFGs. Both strains were found to be genetically related to many E. coli strains causing mastitis and enteric diseases originating from different hosts and regions. The G6M1F had several unique ARGs (e.g., QnrS1, sul2, tetA, tetR, emrK, blaTEM-1/105, and aph(6)-Id, aph(3″)-Ib) conferring resistance to certain antibiotics, whereas G2M6U had a unique heat-stable enterotoxin gene (astA) and 7192 single nucleotide polymorphisms. Furthermore, there were 43 and 111 unique genes identified in G2M6U and G6M1F genomes, respectively. These results indicate distinct differences in the genomic characteristics of E. coli strain G2M6U and G6M1F that might have important implications in the pathophysiology of mammalian mastitis, and treatment strategies for mastitis in dairy animals.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Shobnom Jerin
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh
| | - Anup Kumar Talukder
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | | | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Tofazzal Isalm
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - M. Anwar Hossain
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Nasar Md Aminoor Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|
4
|
Feng F, Li Y, Wang J, Dong Y, Li Y, Luoreng Z, Wang X. LncRNA CA12-AS1 targets miR-133a to promote LPS-induced inflammatory response in bovine mammary epithelial cells. Int J Biol Macromol 2024; 261:129710. [PMID: 38278392 DOI: 10.1016/j.ijbiomac.2024.129710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Bovine mastitis seriously affects milk production and quality and causes huge economic losses in the dairy industry. Recent studies have shown that long non-coding RNAs (lncRNAs) may regulate bovine mastitis. In this study, the expression of lncRNA CA12-AS1 was significantly upregulated in LPS-induced bovine mammary epithelial cells (bMECs) but negatively correlated with the expression of miR-133a, suggesting that it may be related to the inflammatory response in bMECs. Dual luciferase reporter gene assay revealed that miR-133a is a downstream target gene of lncRNA CA12-AS1. Furthermore, lncRNA CA12-AS1 silencing negatively regulated the expression of miR-133a inhibited the secretion of inflammatory factors (IL-6, IL-8 and IL-1β) and decreased the mRNA expression levels of nuclear factor kappa B (NF-κB) (p65/p50) and apoptosis-related genes (BAX, caspase3 and caspase9). LncRNA CA12-AS1 silencing also promoted the mRNA expression levels of the Tight junction (TJ) signaling pathway-related genes (Claudin-1, Occludin and ZO-1), apoptotic gene BCL2, proliferation-related genes (CDK2, CDK4 and PCNA) and the viability of bMECs. However, overexpression of lncRNA CA12-AS1 reversed the above effects. These results revealed that lncRNA CA12-AS1 is a pro-inflammatory regulator, and its silencing can alleviate bovine mastitis by targeting miR-133a, providing a novel strategy for molecular therapy of cow mastitis.
Collapse
Affiliation(s)
- Fen Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yanxia Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinpeng Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiwen Dong
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Motta RG, Motta LSAM, Bertolini AB, Prado AM, Thyssen PJ, Hernandes RT, Orsi H, Rall VLM, Gouvea FLR, Guerra ST, Guimarães FF, Joaquim SF, Pantoja JC, Langoni H, Ribeiro MG. Identification of Escherichia coli isolated from flies (Insecta: Diptera) that inhabit the environment of dairy farms harboring extraintestinal virulence markers. J Appl Microbiol 2023; 134:lxad301. [PMID: 38086616 DOI: 10.1093/jambio/lxad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
AIMS We investigate extraintestinal pathogenic genes (ExPEC) related to virulence of Escherichia coli in flies from the dairy environment. METHODS AND RESULTS We collected 217 flies from nine dairy farms, which were submitted to microbiological culture. Fifty-one E. coli were identified using mass spectrometry. Eleven dipteran families were identified, with a predominance of Muscidae, and a minor frequency of Tachinidae, Drosophilidae, Sphaeroceridae, Ulidiidae, Syrphidae, Chloropidae, Calliphoridae, Sarcophagidae, and Piophilidae. A panel of 16 virulence-encoding genes related to ExPEC infections were investigated, which revealed predominance of serum resistance (traT, 31/51 = 60.8%; ompT, 29/51 = 56.9%), iron uptake (irp2, 17/51 = 33.3%, iucD 11/51 = 21.6%), and adhesins (papC, 6/51 = 11.8%; papA, 5/51 = 9.8%). CONCLUSIONS Our findings reveal Dipterans from milking environment carrying ExPEC virulence-encoding genes also identified in clinical bovine E. coli-induced infections.
Collapse
Affiliation(s)
- Rodrigo G Motta
- Department of Veterinary Medicine, State University of Maringa, Umuarama, PR, 87507-190, Brazil
| | - Lorrayne S A M Motta
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Amanda B Bertolini
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Aline M Prado
- Department of Animal Biology, Biology Institute, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Patricia J Thyssen
- Department of Animal Biology, Biology Institute, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, SP, 18618-689, Brazil
| | - Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, SP, 18618-689, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, SP, 18618-689, Brazil
| | - Fábio L R Gouvea
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - José C Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP, 18618-681, Brazil
| |
Collapse
|
6
|
Lin Y, Han J, Barkema HW, Wang Y, Gao J, Kastelic JP, Han B, Qin S, Deng Z. Comparative Genomic Analyses of Lactococcus garvieae Isolated from Bovine Mastitis in China. Microbiol Spectr 2023; 11:e0299522. [PMID: 37154706 PMCID: PMC10269658 DOI: 10.1128/spectrum.02995-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Lactococcus garvieae is an emerging zoonotic pathogen, but there are few reports regarding bovine mastitis. The prevalence of L. garvieae represents an increasing disease threat and global public health risk. Thirty-nine L. garvieae isolates were obtained from 2,899 bovine clinical mastitis milk samples in 6 provinces of China from 2017 to 2021. Five clonal complexes were determined from 32 multilocus sequence types (MLSTs) of L. garvieae: sequence type 46 (ST46) was the predominant sequence type, and 13 novel MLSTs were identified. All isolates were resistant to chloramphenicol and clindamycin, but susceptible to penicillin, ampicillin, amoxicillin-clavulanic acid, imipenem, ceftiofur, enrofloxacin, and marbofloxacin. Based on genomic analyses, L. garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase. Most isolates had lsaD and mdtA antimicrobial resistance (AMR) genes. Based on COG (Clusters of Orthologous Genes database) results, the functions of defense, transcription and replication, and recombination and repair were enhanced in unique genes, whereas functions of translation, ribosomal structure, and biogenesis were enhanced in core genes. The KEGG functional categories enriched in unique genes included human disease and membrane transport, whereas COG functional categories enriched in core genes included energy metabolism, nucleotide metabolism, and translation. No gene was significantly associated with host specificity. In addition, analysis of core genome single nucleotide polymorphisms (SNPs) implied potential host adaptation of some isolates in several sequence types. In conclusion, this study characterized L. garvieae isolated from mastitis and detected potential adaptations of L. garvieae to various hosts. IMPORTANCE This study provides important genomic insights into a bovine mastitis pathogen, Lactococcus garvieae. Comprehensive genomic analyses of L. garvieae from dairy farms have not been reported. This study is a detailed and comprehensive report of novel features of isolates of L. garvieae, an important but poorly characterized bacterium, recovered in the past 5 years in 6 Chinese provinces. We documented diverse genetic features, including predominant sequence type ST46 and 13 novel MLSTs. Lactococcus garvieae had 6,310 genes, including 1,015 core, 3,641 accessory, and 1,654 unique genes. All isolates had virulence genes coding for collagenase, fibronectin-binding protein, glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase, and NADH oxidase and resistance to chloramphenicol and clindamycin. Most isolates had lsaD and mdtA antimicrobial resistance genes. However, no gene was significantly associated with host specificity. This is the first report that characterized L. garvieae isolates from bovine mastitis and revealed potential host adaptations of L. garvieae to various hosts.
Collapse
Affiliation(s)
- Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jinge Han
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Shunyi Qin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Gu X, Ma X, Wu Q, Tao Q, Chai Y, Zhou X, Han M, Li J, Huang X, Wu T, Zhang X, Zhong F, Cao Y, Zhang L. Isolation, identification, molecular typing, and drug resistance of Escherichia coli from infected cattle and sheep in Xinjiang, China. Vet Med Sci 2023; 9:1359-1368. [PMID: 36977209 DOI: 10.1002/vms3.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xue Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qin Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qiaoxiaoci Tao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xia Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Huang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Tongzhong Wu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xingxing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yiheng Cao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liyuan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
dos Santos Alves T, Rosa VS, da Silva Leite D, Guerra ST, Joaquim SF, Guimarães FF, de Figueiredo Pantoja JC, Lucheis SB, Rall VLM, Hernandes RT, Langoni H, Ribeiro MG. Genome-Based Characterization of Multidrug-Resistant Escherichia coli Isolated from Clinical Bovine Mastitis. Curr Microbiol 2023; 80:89. [PMID: 36723699 PMCID: PMC9890429 DOI: 10.1007/s00284-023-03191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Mastitis occurrence in dairy cows is a broad topic that involves several sectors, from antimicrobial resistance and virulence of strains to economic implications and cattle management practices. Here, we assessed the molecular characterization (antimicrobial resistance determinants, virulence genes, sequences type, serotypes, and plasmid types) of 178 Escherichia coli strains isolated from milk samples from cows with clinical mastitis using a genome-based k-mers approach. Of these, 53 (29.8%) showed multidrug resistance by disc diffusion. We selected eight multidrug-resistant mastitis-associated E. coli for whole-genome sequencing and molecular characterization based on raw data using k-mers. We assessed antimicrobial resistance genes, virulence factors, serotypes, Multilocus Sequence Typing (MLST), and plasmid types. The most antimicrobial resistance gene found were blaTEM-1B (7/8), tetA (6/8), strA (6/8), strB (6/8), and qnrB19 (5/8). A total of 25 virulence factors were detected encoding adhesins, capsule, enzymes/proteins, increased serum survival, hemolysin, colicins, and iron uptake. These virulence factors were associated with Extraintestinal Pathogenic E. coli. Three pandemic clones were found: ST10, ST101, and ST69. Two E. coli were assigned in the O117 serogroup and one in the O8:H25 serotype. The most common plasmid groups were IncFII (7/8) and IncFIB (6/8). Our findings contribute to the knowledge of virulence mechanisms, epidemiological aspects, and antimicrobial resistance determinants of E. coli strains obtained from clinical mammary infections of cows.
Collapse
Affiliation(s)
- Taila dos Santos Alves
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP 13083 862 Brazil
| | - Vinícius Sanches Rosa
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP 13083 862 Brazil
| | - Domingos da Silva Leite
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP 13083 862 Brazil
| | - Simony Trevizan Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Sâmea Fernandes Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Felipe Freitas Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - José Carlos de Figueiredo Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Simoni Baldini Lucheis
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Vera Lúcia Mores Rall
- Department of Microbiology and Immunology, São Paulo State University-UNESP, Botucatu, SP 18618 689 Brazil
| | | | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Márcio Garcia Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| |
Collapse
|
9
|
Khawaskar D, Anbazhagan S, Balusamy D, Inbaraj S, Verma A, Vinodh Kumar OR, Nagaleekar VK, Sinha DK, Chaudhuri P, Singh BR, Chaturvedi VK, Thomas P. A comparative genomics approach for identifying genetic factors in Escherichia coli isolates associated with bovine diseases. J Appl Microbiol 2022; 133:3490-3501. [PMID: 36648155 DOI: 10.1111/jam.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/20/2023]
Abstract
AIMS Escherichia coli are ubiquitously present bacterial pathogens that cause septicaemia, diarrhoea and other clinical illness in farm animals. Many pathogen factors can be associated with disease conditions. Currently, studies inferring E. coli genetic factors associated with infection in bovines are limited. Hence, the present study envisaged to determine the pathogen genetic factors associated with bovine disease conditions. METHOD AND RESULTS The comparative genomic analysis involved genome sequence data of 135 diseased and 145 healthy bovine origin E. coli strains. Phylogroups A and C, as well as pathotypes ExPEC and EPEC, were found to have a strong connection with bovine disease strains. STEC strains, including EHEC, seem to play a less important role in bovine disease. Sequence types (STs) predominant among strains from diarrhoeal origin were ST 301 (CC 165) and ST 342. Correlation of core genome phylogeny with accessory gene based clustering, phylogroups and pathotypes indicated lineage specific virulence factors mostly associated with disease conditions. CONCLUSIONS Comparative genomic analysis was applied to infer genetic factors significant in bovine disease origin E. coli strains. Isolates from bovine disease origin were enriched for the phylogroups A and C, and for the pathotypes ExPEC and EPEC. However, there was minimal evidence of STEC involvement. The study also indicated predominant genetic lineages and virulence genes (pap, sfa and afa) associated with disease origin strains. SIGNIFICANCE AND IMPACT OF STUDY;: The study revealed significant pathotypes, phylgroups, serotypes and sequence types associated with bovine disease conditions. These identified genetic factors can be applied for disease diagnosis, implementing vaccine and therapeutic measures. In addition, E. coli isolates from the bovine species revealed a complex pattern of disease epidemiology.
Collapse
Affiliation(s)
- Damini Khawaskar
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Subbaiyan Anbazhagan
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh.,ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad
| | - Dhayanath Balusamy
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Sophia Inbaraj
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Abhishek Verma
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | | | - Viswas Konasagara Nagaleekar
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Dharmendra K Sinha
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Pallab Chaudhuri
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Bhoj R Singh
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - V K Chaturvedi
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly - 243122, Uttar Pradesh
| |
Collapse
|
10
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
11
|
Genetic characterization and comparative genomics of a multi drug resistant (MDR) Escherichia coli SCM-21 isolated from subclinical case of bovine mastitis. Comp Immunol Microbiol Infect Dis 2022; 85:101799. [DOI: 10.1016/j.cimid.2022.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
|
12
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
13
|
An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies. Microbiol Res 2021; 256:126960. [PMID: 35021119 DOI: 10.1016/j.micres.2021.126960] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Escherichia coli is one of the leading causes of bovine mastitis; it can cause sub-clinical, and clinical mastitis characterized by systemic changes, abnormal appearance of milk, and udder inflammation. E. coli pathogenicity in the bovine udder is due to the interaction between its virulence factors and the host factors; it was also linked to the presence of a new pathotype termed mammary pathogenic E. coli (MPEC). However, the presence of this pathotype is commonly debated. Its main virulence factor is the lipopolysaccharide (LPS) that is responsible for causing an endotoxic shock, and inducing a strong immune response by binding to the toll-like receptor 4 (TLR4), and stimulating the expression of chemokines (such as IL-8, and RANTES) and pro-inflammatory cytokines (such as IL-6, and IL-1β). This strong immune response could be used to develop alternative and safe approaches to control E. coli causing bovine mastitis by targeting pro-inflammatory cytokines that can damage the host tissue. The need for alternative treatments against E. coli is due to its ability to resist many conventional antibiotics, which is a huge challenge for curing ill animals. Therefore, the aim of this review was to highlight the pathogenicity of E. coli in the mammary gland, discuss the presence of the new putative pathotype, the mammary pathogenic E. coli (MPEC) pathotype, study the host's immune response, and the alternative treatments that are used against mastitis-associated E. coli.
Collapse
|
14
|
Leclercq SO, Branger M, Smith DGE, Germon P. Lipopolysaccharide core type diversity in the Escherichia coli species in association with phylogeny, virulence gene repertoire and distribution of type VI secretion systems. Microb Genom 2021; 7. [PMID: 34586053 PMCID: PMC8715443 DOI: 10.1099/mgen.0.000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli, is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.
Collapse
Affiliation(s)
| | - Maxime Branger
- UMR ISP, INRAE, Université François Rabelais de Tours, F-37380 Nouzilly, France
| | - David G E Smith
- Institute for Biological Chemistry, Biophysics and Bioengineering (IB3), Riccarton Campus, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Pierre Germon
- UMR ISP, INRAE, Université François Rabelais de Tours, F-37380 Nouzilly, France
| |
Collapse
|
15
|
CHOPRA MEENU, BANDYOPADHYAY SAMIRAN, BHATTACHARYA DEBARAJ, BANERJEE JAYDEEP, SINGH RAVIKANT, SWARNKAR MOHIT, SINGH ANILKUMAR, DE SACHINANDAN. Genome based phylogeny and virulence factor analysis of mastitis causing Escherichia coli isolated from Indian cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021; 90:1577-1583. [DOI: https:/doi.org/10.56093/ijans.v90i12.113165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Mastitis is a highly infectious disease prevalent in dairy cattle and it is majorly caused by Escherichia coli (E. coli). The objective of present study is to investigate the occurrence of virulence genes, antimicrobial susceptibility and comparative analysis of E. coli (IVRI KOL CP4 and CM IVRI KOL-1) isolates from mastitis infected animal. Whole-genome sequencing (WGS) was performed using a PacBio RS II system and de novo assembled using Hierarchical Genome Assembly Process (HGAP3). Bacterial Pan Genome Analysis Pipeline (BPGA) was used for pangenome analysis. A set of 50 E. coli isolates were used for comparative analysis (48 collected from the database and 2 reference sequences). Core genes were further concatenated for phylogenetic analyses. In silico analysis was performed for antibiotic resistance and virulence gene identification. Both of the E. coli isolates carried many resistance genes including, b-lactamase, quinolones, rifampicin, macrolide, aminoglycoside and phenicols resistance. We detected 39 virulence genes in IVRI KOL CP4 and 52 in CM IVRI KOL-1 which include toxins, adhesions, invasins, secretion machineries or iron acquisition system. High prevalence of mastitis strains belongs to phylogroups A, although few isolates were also assigned to phylogenetic groups B1 and B2. In conclusion, the present study reported the presence of genes involved in Adherence, Iron acquisition, secretion system and toxins which shown to be crucial in MPEC pathogenicity. This is the first whole genome analysis of MPEC strains to be carried out in Indian isolate to highlights the spread of resistance and virulence genes in food animals.
Collapse
|
16
|
Bile salts regulate zinc uptake and capsule synthesis in a mastitis-associated extraintestinal pathogenic Escherichia coli strain. Infect Immun 2021; 89:e0035721. [PMID: 34228495 DOI: 10.1128/iai.00357-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are major causes of urinary and bloodstream infections. ExPEC reservoirs are not completely understood. Some mastitis-associated E. coli (MAEC) strains carry genes associated with ExPEC virulence, including metal scavenging, immune avoidance, and host attachment functions. In this study, we investigated the role of the high-affinity zinc uptake (znuABC) system in the MAEC strain M12. Elimination of znuABC moderately decreased fitness during mouse mammary gland infections. The ΔznuABC mutant strain exhibited an unexpected growth delay in the presence of bile salts, which was alleviated by the addition of excess zinc. We isolated ΔznuABC mutant suppressor mutants with improved growth of in bile salts, several of which no longer produced the K96 capsule made by strain M12. Addition of bile salts also reduced capsule production by strain M12 and ExPEC strain CP9, suggesting that capsule synthesis may be detrimental when bile salts are present. To better understand the role of the capsule, we compared the virulence of mastitis strain M12 with its unencapsulated ΔkpsCS mutant in two models of ExPEC disease. The wild type strain successfully colonized mouse bladders and kidneys and was highly virulent in intraperitoneal infections. Conversely, the ΔkpsCS mutant was unable to colonize kidneys and was unable to cause sepsis. These results demonstrate that some MAEC may be capable of causing human ExPEC illness. Virulence of strain M12 in these infections is dependent on its capsule. However, capsule may interfere with zinc homeostasis in the presence of bile salts while in the digestive tract.
Collapse
|
17
|
Jung D, Park S, Ruffini J, Dussault F, Dufour S, Ronholm J. Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb Genom 2021; 7:000597. [PMID: 34227932 PMCID: PMC8477405 DOI: 10.1099/mgen.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli is a major causative agent of environmental bovine mastitis and this disease causes significant economic losses for the dairy industry. There is still debate in the literature as to whether mammary pathogenic E. coli (MPEC) is indeed a unique E. coli pathotype, or whether this infection is merely an opportunistic infection caused by any E. coli isolate being displaced from the bovine gastrointestinal tract to the environment and, then, into the udder. In this study, we conducted a thorough genomic analysis of 113 novel MPEC isolates from clinical mastitis cases and 100 bovine commensal E. coli isolates. A phylogenomic analysis indicated that MPEC and commensal E. coli isolates formed clades based on common sequence types and O antigens, but did not cluster based on mammary pathogenicity. A comparative genomic analysis of MPEC and commensal isolates led to the identification of nine genes that were part of either the core or the soft-core MPEC genome, but were not found in any bovine commensal isolates. These apparent MPEC marker genes were genes involved with nutrient intake and metabolism [adeQ, adenine permease; nifJ, pyruvate-flavodoxin oxidoreductase; and yhjX, putative major facilitator superfamily (MFS)-type transporter], included fitness and virulence factors commonly seen in uropathogenic E. coli (pqqL, zinc metallopeptidase, and fdeC, intimin-like adhesin, respectively), and putative proteins [yfiE, uncharacterized helix-turn-helix-type transcriptional activator; ygjI, putative inner membrane transporter; and ygjJ, putative periplasmic protein]. Further characterization of these highly conserved MPEC genes may be critical to understanding the pathobiology of MPEC.
Collapse
Affiliation(s)
- Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | | | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
18
|
Abboud Z, Galuppo L, Tolone M, Vitale M, Puleio R, Osman M, Loria GR, Hamze M. Molecular Characterization of Antimicrobial Resistance and Virulence Genes of Bacterial Pathogens from Bovine and Caprine Mastitis in Northern Lebanon. Microorganisms 2021; 9:1148. [PMID: 34071800 PMCID: PMC8228836 DOI: 10.3390/microorganisms9061148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Mastitis is an infectious disease encountered in dairy animals worldwide that is currently a growing concern in Lebanon. This study aimed at investigating the etiology of the main mastitis-causing pathogens in Northern Lebanon, determining their antimicrobial susceptibility profiles, and identifying their antimicrobial resistance (AMR) genes. A total of 101 quarter milk samples were collected from 77 cows and 11 goats presenting symptoms of mastitis on 45 dairy farms. Bacterial identification was carried out through matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility was tested by disc diffusion and broth microdilution methods. Molecular characterization included polymerase chain reaction (PCR) screening for genes encoding extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC among Enterobacterales isolates, and virulence factors among Staphylococcus isolates. Escherichia coli isolates were subjected to phylogenetic typing by a quadruplex PCR method. The most frequently identified species were Streptococcus uberis (19.2%), Streptococcus agalactiae (15.1%), E. coli (12.3%), and Staphylococcus aureus (10.96%). Gram-positive bacteria were resistant to macrolides and tetracycline, whereas gram-negative bacteria displayed resistance to ampicillin and tetracycline. Two ESBL genes, blaTEM (83.3%) and blaOXA (16.7%), and one AmpC beta-lactamase gene, blaCMY-II (16.7%), were detected among six E. coli isolates, which mainly belonged to phylogenetic group B1. Among Staphylococcus spp., the mecA gene was present in three isolates. Furthermore, four isolates contained at least one toxin gene, and all S. aureus isolates carried the ica operon. These findings revealed the alarming risk of AMR in the Lebanese dairy chain and the importance of monitoring antimicrobial usage.
Collapse
Affiliation(s)
- Zahie Abboud
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
| | - Lucia Galuppo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Marco Tolone
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi 3, 90129 Palermo, Italy; (L.G.); (M.V.); (R.P.)
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli P.O. Box 146404, Lebanon;
| |
Collapse
|
19
|
Draft Genome Sequences of 113 Escherichia coli Strains Isolated from Intramammary Infections in Dairy Cattle. Microbiol Resour Announc 2021; 10:10/7/e01464-20. [PMID: 33602739 PMCID: PMC7892672 DOI: 10.1128/mra.01464-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Escherichia coli is one of the most common etiological agents responsible for clinical bovine mastitis. Here, we report the draft genome sequences and annotations of 113 E. coli strains that were isolated from Holstein cows with intramammary infections in Canada. Escherichia coli is one of the most common etiological agents responsible for clinical bovine mastitis. Here, we report the draft genome sequences and annotations of 113 E. coli strains that were isolated from Holstein cows with intramammary infections in Canada.
Collapse
|
20
|
Diverse β-lactam antibiotic-resistant bacteria and microbial community in milk from mastitic cows. Appl Microbiol Biotechnol 2021; 105:2109-2121. [PMID: 33587158 DOI: 10.1007/s00253-021-11167-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Intramammary bacterial infection, the most common cause of mastitis, is the most costly disease in dairy cattle in the US and reason for antibiotic usage. Ceftiofur, a third-generation cephalosporin, is generally used to treat such disease, but it has a high treatment failure rate. Though the reason is not known clearly, it is hypothesized that multiple factors are associated with the treatment failure. In this study, we analyzed 169 milk samples from cows with mastitis in two independent dairy farms (Farm A and B) in which 19.4% (Farm A) and 14.3% (Farm B) of the antibiotic treated cows were not cured. The prevalence of cephalosporin-resistant bacteria (CRB) in milk was 72.0% and 42.1% in Farm A and B, respectively. Nineteen and nine bacterial genera were identified in Farm A and B respectively, with the most abundant genus being Staphylococcus (27.1%; Farm A) and Bacillus (63.5%; Farm B). However, no strong relationship between the treatment failure rate and the CRB prevalence was observed. Furthermore, the metagenomic analysis showed no significant differences in the α- and β-diversities of microbiota in milk samples from cured and uncured cows, suggesting that antibiotic-resistant bacteria were not the sole reason for the antibiotic treatment failure. KEY POINTS: • The mastitic milk samples had high prevalence of cephalosporin-resistant bacteria (CRB). • The CRB identified belong to diversified species. • Antibiotic treatment failure was not solely caused by the abundance of CRB.
Collapse
|
21
|
Alawneh JI, Vezina B, Ramay HR, Al-Harbi H, James AS, Soust M, Moore RJ, Olchowy TWJ. Survey and Sequence Characterization of Bovine Mastitis-Associated Escherichia coli in Dairy Herds. Front Vet Sci 2020; 7:582297. [PMID: 33365333 PMCID: PMC7750360 DOI: 10.3389/fvets.2020.582297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli is frequently associated with mastitis in cattle. "Pathogenic" and "commensal" isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.
Collapse
Affiliation(s)
- John I. Alawneh
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ben Vezina
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Hena R. Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ameh S. James
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Timothy W. J. Olchowy
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Vander Elst N, Breyne K, Steenbrugge J, Gibson AJ, Smith DGE, Germon P, Werling D, Meyer E. Enterobactin Deficiency in a Coliform Mastitis Isolate Decreases Its Fitness in a Murine Model: A Preliminary Host-Pathogen Interaction Study. Front Vet Sci 2020; 7:576583. [PMID: 33240956 PMCID: PMC7680728 DOI: 10.3389/fvets.2020.576583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential nutrient for bacterial growth. Therefore, bacteria have evolved chelation mechanisms to acquire iron for their survival. Enterobactin, a chelator with high affinity for ferric iron, is secreted by Escherichia coli and contributes to its improved bacterial fitness. In this preliminary study, we evaluated enterobactin deficiency both in vitro and in vivo in the context of E. coli mastitis. Firstly, we showed that expression of lipocalin 2, a protein produced by the host that is able to both bind and deplete enterobactin, is increased upon E. coli infection in the cow's mastitic mammary gland. Secondly, we demonstrated in vitro that enterobactin deficiency does not alter interleukin (IL)-8 expression in bovine mammary epithelial cells and its associated neutrophil recruitment. However, a significantly increased reactive oxygen species production of these neutrophils was observed. Thirdly, we showed there was no significant difference in bacterial in vitro growth between the enterobactin-deficient mutant and its wild-type counterpart. However, when further explored in a murine model for bovine mastitis, the enterobactin-deficient mutant vs. the wild-type strain revealed a significant reduction of the bacterial load and, consequently, a decrease in pro-inflammatory cytokines (IL-1α,-1β,-4,-6, and-8). A reduced neutrophilic influx was also observed immunohistochemically. These findings therefore identify interference of the enterobactin iron-scavenging mechanism as a potential measure to decrease the fitness of E. coli in the mastitic mammary gland.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Breyne
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Amanda Jane Gibson
- Centre of Excellence for Bovine TB, Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - David George Emslie Smith
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Pierre Germon
- INRAE, UMR ISP, Université François Rabelais de Tours, Nouzilly, France
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
23
|
Zhuang C, Huo W, Liu G, Shahid M, Gao J, Barkema HW, Rahman SU, Kastelic JP, Han B. In vitro immune responses of bovine mammary epithelial cells induced by Escherichia coli, with multidrug resistant extended-spectrum β-lactamase, isolated from mastitic milk. Microb Pathog 2020; 149:104494. [PMID: 32926997 DOI: 10.1016/j.micpath.2020.104494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
Bovine mastitis is an inflammatory condition of mammary glands causing huge economic losses for dairy industries. Infection with extended-spectrum β-lactamase (ESBL)-producing sequence types (ST) 410-Escherichia coli (ESBL-ST410 E. coli) is considered a leading cause of bovine mastitis in China. However, pathogenic effects of these strains in an in vitro model, e.g. bovine mammary epithelial cells (bMECs), are unknown. Therefore, our objectives were to explore pathogenesis (adhesion and invasion, inflammation, oxidative stress and apoptosis) of ESBL-E. coli (highly prevalent in bovine mastitis) in bMECs. Non-pathogenic E. coli DH5α and a prototypical E. coli P4 were included as negative and positive controls, respectively. The bMECs were infected with our isolated ST410 strains, plus DH5α and P4, with assessment of the following end points: adhesive and invasive capabilities; lactate dehydrogenase (LDH) activities; inflammatory responses, including concentrations of interleukin-1β (IL-1β), IL-6, IL-10 and tumor necrosis factor-α; oxidative stress including intracellular reactive oxygen species production, malondialdehyde concentrations, activities of glutathione peroxidase and superoxide dismutase; and apoptosis. All ST410 strains had greater adhesive and invasive capabilities and increased LDH release, with varying degrees of inflammatory responses, oxidative stress and apoptosis compared to blank and DH5α groups, similar to P4-infected bMECs. In particular, ST410(4) was more likely than the other 3 isolates to adhere to and invade bMECs and increase LDH activities, cytokine release, oxidative stress and apoptosis. Thus, ST410 isolates had pathogenic manifestations of adhesive and invasive capabilities; furthermore, they induced inflammation, oxidative stress and apoptosis in bMECs. Finally, ST410(4) was the most pathogenic strain.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Wenlin Huo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sadeeq Ur Rahman
- Section of Microbiology, Department of Pathobiology, College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
24
|
Blum SE, Heller DE, Jacoby S, Krifuks O, Merin U, Silanikove N, Lavon Y, Edery N, Leitner G. Physiological response of mammary glands to Escherichia coli infection:A conflict between glucose need for milk production and immune response. Sci Rep 2020; 10:9602. [PMID: 32541828 PMCID: PMC7296043 DOI: 10.1038/s41598-020-66612-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
The mammary immune and physiological responses to distinct mammary-pathogenic E. coli (MPEC) strains were studied. One gland in each of ten cows were challenged intra-mammary and milk composition (lactose, fat, total protein, casein), biochemical (glucose, glucose-6-phosphate (Glu6P), oxalate, malate, lactate, pyruvate and citrate, malate and lactate dehydrogenases, lactate dehydrogenase (LDH), nitrite, lactic peroxidase, catalase, albumin, lactoferrin, immunoglobulin) and clotting parameters were followed for 35 days post-challenge. Challenge lead to clinical acute mastitis, with peak bacterial counts in milk at 16-24 h post-challenge. Biochemical and clotting parameters in milk reported were partially in accord with lipopolysaccharide-induced mastitis, but increased Glu6P and LDH activity and prolonged lactate dehydrogenase and Glu6P/Glu alterations were found. Some alterations measured in milk resolved within days after challenge, while others endured for above one month, regardless of bacterial clearance, and some reflected physiological responses to mastitis such as the balance between aerobic and anaerobic metabolism (citrate to lactate ratios). The results suggest that E. coli mastitis can be divided into two stages: an acute, clinical phase, as an immediate response to bacterial infection in the mammary gland, and a chronic phase, independent of bacteria clearance, in response to tissue damage caused during the acute phase.
Collapse
Affiliation(s)
- Shlomo E Blum
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.Box 12, Rehovot, 76100, Israel
| | - Dan E Heller
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.Box 12, Rehovot, 76100, Israel
| | - Shamay Jacoby
- Institute of Animal Science, A.R.O. The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Oleg Krifuks
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Uzi Merin
- Food Quality and Safety, Postharvest and Food Sciences, A.R.O. The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Nissim Silanikove
- Institute of Animal Science, A.R.O. The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Yaniv Lavon
- Israel Cattle Breeders Association, Caesarea, 38900, Israel
| | - Nir Edery
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Gabriel Leitner
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel.
| |
Collapse
|
25
|
Guerra ST, Orsi H, Joaquim SF, Guimarães FF, Lopes BC, Dalanezi FM, Leite DS, Langoni H, Pantoja JCF, Rall VLM, Hernandes RT, Lucheis SB, Ribeiro MG. Short communication: Investigation of extra-intestinal pathogenic Escherichia coli virulence genes, bacterial motility, and multidrug resistance pattern of strains isolated from dairy cows with different severity scores of clinical mastitis. J Dairy Sci 2020; 103:3606-3614. [PMID: 32037173 DOI: 10.3168/jds.2019-17477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 02/01/2023]
Abstract
Escherichia coli is a major pathogen involved in the etiology of environmentally derived bovine mastitis and is characterized by a variety of virulence factors (VF). Mammary infections with E. coli have shown a wide range of clinical signs, causing changes in milk (score 1, or mild), abnormal appearance of milk and udder inflammation (score 2, or moderate), and abnormalities in milk, udder inflammation, and systemic signs of illness (score 3, or severe). Nevertheless, to date, the profile of the genes related to the virulence of the pathogen in mammary infections and the severity scores of cases have not been thoroughly elucidated. Therefore, a panel of 18 virulence-encoding genes associated with extra-enteric pathogenicity of E. coli (ExPEC) were investigated in addition to in vitro swimming and swarming motility profiles and antimicrobial susceptibility/resistance patterns among 114 E. coli strains isolated from cows with clinical mastitis and different severity scores. Of 114 clinical cases, 39.5, 54.4, and 6.1% were mild, moderate, and severe, respectively. The main genes related to VF harbored by isolates were adhesins (fimH 100%; ecpA 64.0%, fimA 31.6%), serum resistance (traT 81.6%; ompT 35.1%), siderophores (irp2 9.6%), and hemolysin (hlyA 7%). Among the isolates studied, 99.1% showed in vitro resistance to bacitracin and cloxacillin, and 98.2% to lincosamin. Of the total isolates, 98.2% were considered multidrug resistant based on the multiple antimicrobial resistance index. No significant difference was observed between mean swimming (13.8 mm) and swarming (13.5 mm) motility, as well as severity scores of clinical mastitis and the ExPEC genes studied. The isolation of strains resistant to various antimicrobials, even though tested only in vitro, highlights the importance of rational use of antimicrobials for mastitis treatment. The high prevalence of the genes related to serum resistance (traT and ompT) and adhesion (ecpA) of the pathogen, in addition to main associations between the genes fimH, ecpA, and traT among cows with severity scores of 1 (15%) and 2 (22.6%), indicates that the genes traT, ecpA, and ompT could be further studied as biomarkers of ExPEC for clinical intramammary infections. In addition, the ExPEC genes ompT (protectin), ibe10 (invasin), and ecpA (adhesin) were investigated for the first time among cows with mastitis, where scores of clinical severity were assessed. Results of this study contribute to the characterization of virulence mechanisms and antimicrobial resistance profile of ExPEC variants that affect dairy cows with different scores of clinical mastitis.
Collapse
Affiliation(s)
- Simony T Guerra
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Henrique Orsi
- Department of Microbiology and Immunology, Sao Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Sâmea F Joaquim
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Felipe F Guimarães
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Bruna C Lopes
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Felipe M Dalanezi
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Helio Langoni
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Microbiology and Immunology, Sao Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Rodrigo T Hernandes
- Department of Microbiology and Immunology, Sao Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, Sao Paulo State University, Botucatu, SP 18618 681, Brazil.
| |
Collapse
|
26
|
Needs SH, Diep TT, Bull SP, Lindley-Decaire A, Ray P, Edwards AD. Exploiting open source 3D printer architecture for laboratory robotics to automate high-throughput time-lapse imaging for analytical microbiology. PLoS One 2019; 14:e0224878. [PMID: 31743346 PMCID: PMC6863568 DOI: 10.1371/journal.pone.0224878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Growth in open-source hardware designs combined with the low-cost of high performance optoelectronic and robotics components has supported a resurgence of in-house custom lab equipment development. We describe a low cost (below $700), open-source, fully customizable high-throughput imaging system for analytical microbiology applications. The system comprises a Raspberry Pi camera mounted on an aluminium extrusion frame with 3D-printed joints controlled by an Arduino microcontroller running open-source Repetier Host Firmware. The camera position is controlled by simple G-code scripts supplied from a Raspberry Pi singleboard computer and allow customized time-lapse imaging of microdevices over a large imaging area. Open-source OctoPrint software allows remote access and control. This simple yet effective design allows high-throughput microbiology testing in multiple formats including formats for bacterial motility, colony growth, microtitre plates and microfluidic devices termed 'lab-on-a-comb' to screen the effects of different culture media components and antibiotics on bacterial growth. The open-source robot design allows customization of the size of the imaging area; the current design has an imaging area of ~420 × 300mm, which allows 29 'lab-on-a-comb' devices to be imaged which is equivalent 3480 individual 1μl samples. The system can also be modified for fluorescence detection using LED and emission filters embedded on the PiCam for more sensitive detection of bacterial growth using fluorescent dyes.
Collapse
Affiliation(s)
- Sarah H. Needs
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Tai The Diep
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Stephanie P. Bull
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | | | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Alexander D. Edwards
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
27
|
Nüesch-Inderbinen M, Käppeli N, Morach M, Eicher C, Corti S, Stephan R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet Rec Open 2019; 6:e000369. [PMID: 31897302 PMCID: PMC6924703 DOI: 10.1136/vetreco-2019-000369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023] Open
Abstract
Background Escherichia coli is an important aetiological agent of bovine mastitis worldwide. Methods In this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method. Results The most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively. Conclusion Among the study's sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.
Collapse
Affiliation(s)
| | - Nadine Käppeli
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina Morach
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Corinne Eicher
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sabrina Corti
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Zhou M, Ding X, Ma F, Xu Y, Zhang J, Zhu G, Lu Y. Long polar fimbriae contribute to pathogenic Escherichia coli infection to host cells. Appl Microbiol Biotechnol 2019; 103:7317-7324. [PMID: 31359104 DOI: 10.1007/s00253-019-10014-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023]
Abstract
Long polar fimbria (LPF) is one of the few fimbrial adhesins of enterohemorrhagic Escherichia coli (E. coli) O157:H7 associated with colonization on host intestine, and both two types of LPF (including LPF1 and LPF2) play essential roles during the bacterial infection process. Though the fimbriae had been well studied in intestinal pathogenic E. coli strains, new evidences from our research revealed that it might be the key virulence for bovine mastitis pathogenic E. coli (MPEC) as well. This article summarizes the current knowledge on the LPF in E. coli, focusing on its genetic characteristics, prevalence, expression regulation, and adherence mechanism in different pathotypes of E. coli strains.
Collapse
Affiliation(s)
- Mingxu Zhou
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 50 Zhongling Street, Nanjing, 210014, China
| | - Fang Ma
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Yue Xu
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 50 Zhongling Street, Nanjing, 210014, China.
| | - Yu Lu
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
29
|
Yu L, Shang F, Chen X, Ni J, Yu L, Zhang M, Sun D, Xue T. The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 2018; 6:e5711. [PMID: 30356998 PMCID: PMC6195112 DOI: 10.7717/peerj.5711] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
Background Escherichia coli is an important opportunistic pathogen that could cause inflammation of the udder in dairy cows resulting in reduced milk production and changes in milk composition and quality, and even death of dairy cows. Therefore, mastitis is the main health issue which leads to major economic losses on dairy farms. Antibiotics are routinely used for the treatment of bovine mastitis. The ability to form biofilm increases the antibiotic resistance of E. coli. Nanoparticles (NPs), a nanosized, safe, and highly cost-effective antibacterial agent, are potential biomedical tools. Given their antibacterial activities, silver nanoparticles (Ag NPs) have a broad range of applications. Methods In this study, we performed antibacterial activity assays, biofilm formation assays, scanning electron microscopy (SEM) experiments, and real-time reverse transcription PCR (RT-PCR) experiments to investigate the antibacterial and anti-biofilm effect of quercetin, Ag NPs, and Silver-nanoparticle-decorated quercetin nanoparticles (QA NPs) in E. coli strain ECDCM1. Results In this study, QA NPs, a composite material combining Ag NPs and the plant-derived drug component quercetin, exhibited stronger antibacterial and anti-biofilm properties in a multi-drug resistant E. coli strain isolated from a dairy cow with mastitis, compared to Ag NPs and Qe. Discussion This study provides evidence that QA NPs possess high antibacterial and anti-biofilm activities. They proved to be more effective than Ag NPs and Qe against the biofilm formation of a multi-drug resistant E. coli isolated from cows with mastitis. This suggests that QA NPs might be used as a potential antimicrobial agent in the treatment of bovine mastitis caused by E. coli.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Ming Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
30
|
Seroussi E, Blum SE, Krifucks O, Lavon Y, Leitner G. Application of pancreatic phospholipase A2 for treatment of bovine mastitis. PLoS One 2018; 13:e0203132. [PMID: 30148880 PMCID: PMC6110515 DOI: 10.1371/journal.pone.0203132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022] Open
Abstract
Recent findings have indicated that secreted phospholipases A2 (sPLA2s) have anti-inflammatory functions, including relief of symptoms in a mouse model of mastitis. This prompted us to investigate the therapeutic application of sPLA2, PLA2G1B, for bovine mastitis. Initial testing of PLA2G1B's effect on bovine mammary epithelial cell (bMEC) line PS revealed no changes in cell viability or cytokine-secretion pattern. However, when cells were first treated with lipopolysaccharide endotoxin (LPS) or live bacteria (Escherichia coli or Staphylococcus aureus), incubation with PLA2G1B significantly improved cell viability, suggesting involvement of sPLA2s in protecting membranes from lipid-peroxidation damage, rather than a bactericidal action. When PLA2G1B was applied simultaneously with LPS, a significant short-term reduction in interleukin-8 secretion was observed compared with bMECs treated only with LPS, supporting previous reports that PLA2G1B affects interleukin-8 signaling in similar cells. Following the favorable outcome of the in vitro experiments, we tested PLA2G1B in vivo by mammary infusion into infected glands. In one of a small sample (n = 4) of lactating cows chronically infected with Streptococcus dysgalactiae, a single PLA2G1B treatment completely cleared inflammation and bacteria, demonstrating its potential to cure subclinical mastitis. PLA2G1B treatment did not affect coagulase-negative staphylococci infection. These types of mastitis may involve formation of a resistant biofilm, and its elimination may relate to sPLA2s' characteristic ability to aggregate with cellular debris, facilitating their internalization by macrophages. In a bovine model of clinical mastitis based on introduction of E. coli via the streak canal, a single mammary infusion of PLA2G1B led to faster recovery to pre-infection milk-yield levels and decrease of somatic cell counts. In this case, all of sPLA2s' modes of resolving inflammation may apply, including competitive binding of the sPLA2s’ receptor, the inactivation of which confers resistance to endotoxic shock. Hence, this study strongly supports further research into PLA2G1B as a cure for bovine mastitis.
Collapse
Affiliation(s)
- Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization (ARO), Rishon LeTsiyon, Israel
- * E-mail:
| | - Shlomo E. Blum
- National Mastitis Reference Center, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Oleg Krifucks
- National Mastitis Reference Center, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Yaniv Lavon
- Israel Cattle Breeders Association, Caesarea, Israel
| | - Gabriel Leitner
- National Mastitis Reference Center, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
31
|
Tomazi T, Coura FM, Gonçalves JL, Heinemann MB, Santos MV. Antimicrobial susceptibility patterns of Escherichia coli phylogenetic groups isolated from bovine clinical mastitis. J Dairy Sci 2018; 101:9406-9418. [PMID: 30031577 DOI: 10.3168/jds.2018-14485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
Determination of antimicrobial susceptibility (AMS) of Escherichia coli causing clinical mastitis (CM) according to the phylogenetic groups and its association with descriptors at the cow and herd level may help improve specific strategies for treatment and control of this pathogen in dairy herds. The aims of the present study were to (a) determine the frequency of phylogenetic groups of E. coli isolated from CM in dairy cows, and its association with cow-level descriptors (parity, lactation stage, CM severity, and affected quarter position), housing system, and season; and (b) determine and compare AMS among E. coli phylogenetic groups. A quadruplex PCR method was used to classify E. coli isolates into 1 of the 7 phylogenetic groups. Minimal inhibitory concentrations were determined for 10 antimicrobials, and survival analysis was performed to evaluate the AMS differences among E. coli phylogroups. Most E. coli isolates belonged to phylogroups A (52%) and B1 (38%). None of the cow- and herd-level descriptors were associated with the E. coli phylogenetic groups. Overall, E. coli isolates were mostly susceptible to ceftiofur (96.8%), sulfadimethoxine (75.5%), and cephalothin (74.5%). Based on the survival analysis, differences in AMS between phylogenetic groups of E. coli was observed only for cephalothin, in which strains of phylogroup A were inhibited at lower minimum inhibitory concentration than strains of phylogroup B1. Results of this study indicated low susceptibility of E. coli isolates identified from CM to most antimicrobials. In addition, differences in AMS can occur among E. coli phylogenetic groups, although they may be uncommon as they were limited to only one antimicrobial (i.e., cephalothin).
Collapse
Affiliation(s)
- T Tomazi
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - F M Coura
- Departament of Agricultural Science, Federal Institute of Minas Gerais, Campus Bambuí, Fazenda Varginha, Rodovia Bambuí/Medeiros, Km 05, Caixa Postal 05, Bambuí, MG, 38.900-000, Brazil
| | - J L Gonçalves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - M B Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - M V Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
32
|
Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli. mBio 2018; 9:mBio.00423-18. [PMID: 29615502 PMCID: PMC5885034 DOI: 10.1128/mbio.00423-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec. Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system.
Collapse
|
33
|
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Fazeli Farsani S, Ebrahimie E. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One 2018; 13:e0191227. [PMID: 29470489 PMCID: PMC5823400 DOI: 10.1371/journal.pone.0191227] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as bio-signature and confirmed that some of the top-ranked genes -ZC3H12A, CXCL2, GRO, CFB- as biomarkers for E. coli mastitis (with the accuracy 83% in average). This research properly indicated that by combination of two novel data mining tools, meta-analysis and machine learning, increased power to detect most informative genes that can help to improve the diagnosis and treatment strategies for E. coli associated with mastitis in cattle.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Yu L, Li W, Zhang M, Cui Y, Chen X, Ni J, Yu L, Shang F, Xue T. Imidazole decreases the ampicillin resistance of an Escherichia coli strain isolated from a cow with mastitis by inhibiting the function of autoinducer 2. J Dairy Sci 2018; 101:3356-3362. [PMID: 29397176 DOI: 10.3168/jds.2017-13761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022]
Abstract
Extended-spectrum β-lactamase-positive Escherichia coli is an important causative agent of mastitis in dairy cows that results in reduced milk production and quality, and is responsible for severe economic losses in the dairy industry worldwide. The quorum sensing signaling molecule autoinducer 2 (AI-2) is produced by many species of gram-negative and gram-positive bacteria, and might be a universal language for intraspecies and interspecies communication. Our previous work confirmed that exogenous AI-2 increases the antibiotic resistance of extended-spectrum β-lactamase-positive E. coli to the β-lactam group of antibiotics by upregulating the expression of the TEM-type β-lactamase. In addition, this regulation relies on the function of the intracellular AI-2 receptor LsrR. In the present work, we reported that exogenous imidazole, a furan carbocyclic analog of AI-2, decreases the antibiotic resistance of a clinical E. coli strain to β-lactam antibiotics by inhibiting the function of AI-2.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunmei Cui
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
35
|
Genome-Wide Identification of Fitness Factors in Mastitis-Associated Escherichia coli. Appl Environ Microbiol 2018; 84:AEM.02190-17. [PMID: 29101196 DOI: 10.1128/aem.02190-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Virulence factors of mammary pathogenic Escherichia coli (MPEC) have not been identified, and it is not known how bacterial gene content influences the severity of mastitis. Here, we report a genome-wide identification of genes that contribute to fitness of MPEC under conditions relevant to the natural history of the disease. A highly virulent clinical isolate (M12) was identified that killed Galleria mellonella at low infectious doses and that replicated to high numbers in mouse mammary glands and spread to spleens. Genome sequencing was combined with transposon insertion site sequencing to identify MPEC genes that contribute to growth in unpasteurized whole milk, as well as during G. mellonella and mouse mastitis infections. These analyses show that strain M12 possesses a unique genomic island encoding a group III polysaccharide capsule that greatly enhances virulence in G. mellonella Several genes appear critical for MPEC survival in both G. mellonella and in mice, including those for nutrient-scavenging systems and resistance to cellular stress. Insertions in the ferric dicitrate receptor gene fecA caused significant fitness defects under all conditions (in milk, G. mellonella, and mice). This gene was highly expressed during growth in milk. Targeted deletion of fecA from strain M12 caused attenuation in G. mellonella larvae and reduced growth in unpasteurized cow's milk and lactating mouse mammary glands. Our results confirm that iron scavenging by the ferric dicitrate receptor, which is strongly associated with MPEC strains, is required for MPEC growth and may influence disease severity in mastitis infections.IMPORTANCE Mastitis caused by E. coli inflicts substantial burdens on the health and productivity of dairy animals. Strains causing mastitis may express genes that distinguish them from other E. coli strains and promote infection of mammary glands, but these have not been identified. Using a highly virulent strain, we employed genome-wide mutagenesis and sequencing to discover genes that contribute to mastitis. This extensive data set represents a screen for mastitis-associated E. coli fitness factors and provides the following contributions to the field: (i) global comparison of genes required for different aspects of mastitis infection, (ii) discovery of a unique capsule that contributes to virulence, and (iii) conclusive evidence for the crucial role of iron-scavenging systems in mastitis, particularly the ferric dicitrate transport system. Similar approaches applied to other mastitis-associated strains will uncover conserved targets for prevention or treatment and provide a better understanding of their relationship to other E. coli pathogens.
Collapse
|
36
|
Klaas IC, Zadoks RN. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 2017; 65 Suppl 1:166-185. [PMID: 29083115 DOI: 10.1111/tbed.12704] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Environmental mastitis is the most common and costly form of mastitis in modern dairy herds where contagious transmission of intramammary pathogens is controlled through implementation of standard mastitis prevention programmes. Environmental mastitis can be caused by a wide range of bacterial species, and binary classification of species as contagious or environmental is misleading, particularly for Staphylococcus aureus, Streptococcus uberis and other streptococcal species, including Streptococcus agalactiae. Bovine faeces, the indoor environment and used pasture are major sources of mastitis pathogens, including Escherichia coli and S. uberis. A faeco-oral transmission cycle may perpetuate and amplify the presence of such pathogens, including Klebsiella pneumoniae and S. agalactiae. Because of societal pressure to reduce reliance on antimicrobials as tools for mastitis control, management of environmental mastitis will increasingly need to be based on prevention. This requires a reduction in environmental exposure through bedding, pasture and pre-milking management and enhancement of the host response to bacterial challenge. Efficacious vaccines are available to reduce the impact of coliform mastitis, but vaccine development for gram-positive mastitis has not progressed beyond the "promising" stage for decades. Improved diagnostic tools to identify causative agents and transmission patterns may contribute to targeted use of antimicrobials and intervention measures. The most important tool for improved uptake of known mastitis prevention measures is communication. Development of better technical or biological tools for management of environmental mastitis must be accompanied by development of appropriate incentives and communication strategies for farmers and veterinarians, who may be confronted with government-mandated antimicrobial use targets if voluntary reduction is not implemented.
Collapse
Affiliation(s)
- I C Klaas
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - R N Zadoks
- Moredun Research Institute, Penicuik, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Characteristics and genetic diversity of multi-drug resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis. Oncotarget 2017; 8:90144-90163. [PMID: 29163817 PMCID: PMC5685738 DOI: 10.18632/oncotarget.21496] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
A characterization of the drug resistance profiles, identification of PCR-based replicon typing, and multilocus sequence typing (MLST) and analysis of 46 ESBL-producing Escherichia coli from cows with mastitis are described. All multidrug-resistant isolates of various phylogenetic groups (A = 31, B1= 3, B2 = 2, D = 10) were ESBL-producers of genotypes CTX-M-15 (29), CTX-M-55 (4), CTX-M-14 (4), CTX-M-3 (1), CTX-M-1 (1), TEM (22) and SHV (8) that were found on conjugative plasmids of diverse incompatibility groups (primarily IncF). Transconjugation experiments indicated successful (100%) trans-conjugation, which was verified phenotypically and genotypically. A total of 28 sequence types (ST) were identified, with 10% of isolates being ST410, and 9 other ST that were assigned arbitrary numbers, reflecting the degree of diversity. Multilocus sequence analysis revealed two lineages, a dominant and a small lineage. Split-decomposition showed intraspecies recombination clearly contributed in genetic recombination generating genotypic diversity among the isolates, and a lack of interspecies recombination. This coherent analysis on genetic structure of multidrug-resistant pathogenic E. coli population isolated from mastitic-milk weaponized with resistance elements from a large, rapidly developing country will be a helpful contribution for epidemiology and surveillance of drug resistance patterns, and understanding their global diversity.
Collapse
|
38
|
Comparison of the immune responses associated with experimental bovine mastitis caused by different strains of Escherichia coli. J DAIRY RES 2017; 84:190-197. [PMID: 28524018 DOI: 10.1017/s0022029917000206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the mammary immune response to different mammary pathogenic Escherichia coli (MPEC) strains in cows, hypothesising that the dynamics of response would differ. E. coli is a major aetiologic agent of acute clinical bovine mastitis of various degrees of severity with specific strains being associated with persistent infections. We compared challenge with three distinct pathogenic MPEC strains (VL2874, VL2732 and P4), isolated from different forms of mastitis (per-acute, persistent and acute, respectively). A secondary objective was to verify the lack of mammary pathogenicity of an environmental isolate (K71) that is used for comparison against MPEC in genomic and phenotypic studies. Twelve cows were challenged by intra-mammary infusion with one of the strains. Cellular and chemokine responses and bacterial culture follow-up were performed for 35 d. All cows challenged by any of the MPEC strains developed clinical mastitis. Differences were found in the intensity and duration of response, in somatic cell count, secreted cytokines (TNF-α, IL-6 and IL-17) and levels of milk leucocyte membrane Toll-like receptor 4 (TLR4). A sharp decrease of TLR4 on leucocytes was observed concomitantly to peak bacterial counts in milk. Intra-mammary infusion of strain K71 did not elicit inflammation and bacteria were not recovered from milk. Results suggest some differences in the mammary immune response to distinct MPEC strains that could be correlated to their previously observed pathogenic traits. This is also the first report of an E. coli strain that is non-pathogenic to the bovine mammary gland.
Collapse
|
39
|
Roussel P, Porcherie A, Répérant-Ferter M, Cunha P, Gitton C, Rainard P, Germon P. Escherichia coli mastitis strains: In vitro phenotypes and severity of infection in vivo. PLoS One 2017; 12:e0178285. [PMID: 28727781 PMCID: PMC5519002 DOI: 10.1371/journal.pone.0178285] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023] Open
Abstract
Mastitis remains a major infection of dairy cows and an important issue for dairy farmers and the dairy industry, in particular infections due to Escherichia coli strains. So far, properties specific to E. coli causing mastitis remain ill defined. In an attempt to better understand the properties required for E. coli to trigger mastitis, we used a range of in vitro assays to phenotypically characterize four E. coli strains, including the prototypical E. coli mastitis strain P4, possessing different relative abilities to cause mastitis in a mouse model. Our results indicate that a certain level of serum resistance might be required for colonization of the mammary gland. Resistance to neutrophil killing is also likely to contribute to a slower clearance of bacteria and higher chances to colonize the udder. In addition, we show that the four different strains do induce a pro-inflammatory response by mammary epithelial cells but with different intensities. Interestingly, the prototypical mastitis strain P4 actually induces the less intense response while it is responsible for the most severe infections in vivo. Altogether, our results suggest that different strategies can be used by E. coli strains to colonize the mammary gland and cause mastitis.
Collapse
Affiliation(s)
- Perrine Roussel
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Adeline Porcherie
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | | | - Patricia Cunha
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Christophe Gitton
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pascal Rainard
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pierre Germon
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
- * E-mail:
| |
Collapse
|
40
|
Leimbach A, Poehlein A, Vollmers J, Görlich D, Daniel R, Dobrindt U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics 2017; 18:359. [PMID: 28482799 PMCID: PMC5422975 DOI: 10.1186/s12864-017-3739-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. Results We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. Conclusions This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3739-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Leimbach
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
41
|
Ibrahim M, Subramanian A, Anishetty S. Comparative pan genome analysis of oral Prevotella species implicated in periodontitis. Funct Integr Genomics 2017; 17:513-536. [PMID: 28236274 DOI: 10.1007/s10142-017-0550-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
Prevotella is part of the oral bacterial community implicated in periodontitis. Pan genome analyses of eight oral Prevotella species, P. dentalis, P. enoeca, P. fusca, P. melaninogenica, P. denticola, P. intermedia 17, P. intermedia 17-2 and P. sp. oral taxon 299 are presented in this study. Analysis of the Prevotella pan genome revealed features such as secretion systems, resistance to oxidative stress and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems that enable the bacteria to adapt to the oral environment. We identified the presence of type VI secretion system (T6SS) in P. fusca and P. intermedia strains. For some VgrG and Hcp proteins which were not part of the core T6SS loci, we used gene neighborhood analysis and identified putative effector proteins and putative polyimmunity loci in P. fusca and polymorphic toxin systems in P. intermedia strains. Earlier studies have identified the presence of Por secretion system (PorSS) in P. gingivalis, P. melaninogenica and P. intermedia. We noted the presence of their homologs in six other oral Prevotella studied here. We suggest that in Prevotella, PorSS is used to secrete cysteine proteases such as interpain and C-terminal domain containing proteins with a "Por_secre_tail" domain. We identified subtype I-B CRISPR-Cas system in P. enoeca. Putative CRISPR-Cas system subtypes for 37 oral Prevotella and 30 non-oral Prevotella species were also predicted. Further, we performed a BLASTp search of the Prevotella proteins which are also conserved in the red-complex pathogens, against the human proteome to identify potential broad-spectrum drug targets. In summary, the use of a pan genome approach enabled identification of secretion systems and defense mechanisms in Prevotella that confer adaptation to the oral cavity.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Centre for Biotechnology, Anna University, Chennai, 600025, India
| | | | | |
Collapse
|
42
|
Johnzon CF, Artursson K, Söderlund R, Guss B, Rönnberg E, Pejler G. Mastitis Pathogens with High Virulence in a Mouse Model Produce a Distinct Cytokine Profile In Vivo. Front Immunol 2016; 7:368. [PMID: 27713743 PMCID: PMC5031784 DOI: 10.3389/fimmu.2016.00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Mastitis is a serious medical condition of dairy cattle. Here, we evaluated whether the degree of virulence of mastitis pathogens in a mouse model can be linked to the inflammatory response that they provoke. Clinical isolates of Staphylococcus aureus (S. aureus) (strain 556 and 392) and Escherichia coli (E. coli) (676 and 127), and laboratory control strains [8325-4 (S. aureus) and MG1655 (E. coli)], were injected i.p. into mice, followed by the assessment of clinical scores and inflammatory parameters. As judged by clinical scoring, E. coli 127 exhibited the largest degree of virulence among the strains. All bacterial strains induced neutrophil recruitment. However, whereas E. coli 127 induced high peritoneal levels of CXCL1, G-CSF, and CCL2, strikingly lower levels of these were induced by the less virulent bacterial strains. High concentrations of these compounds were also seen in blood samples taken from animals infected with E. coli 127, suggesting systemic inflammation. Moreover, the levels of CXCL1 and G-CSF, both in the peritoneal fluid and in plasma, correlated with clinical score. Together, these findings suggest that highly virulent clinical mastitis isolates produce a distinct cytokine profile that shows a close correlation with the severity of the bacterial infection.
Collapse
Affiliation(s)
- Carl-Fredrik Johnzon
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | | | | | - Bengt Guss
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Elin Rönnberg
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University , Uppsala , Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Whole-Genome Draft Sequences of Six Commensal Fecal and Six Mastitis-Associated Escherichia coli Strains of Bovine Origin. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00753-16. [PMID: 27469942 PMCID: PMC4966475 DOI: 10.1128/genomea.00753-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bovine gastrointestinal tract is a natural reservoir for commensal and pathogenic Escherichia coli strains with the ability to cause mastitis. Here, we report the whole-genome sequences of six E. coli isolates from acute mastitis cases and six E. coli isolates from the feces of udder-healthy cows.
Collapse
|
44
|
Goldstone RJ, Harris S, Smith DGE. Genomic content typifying a prevalent clade of bovine mastitis-associated Escherichia coli. Sci Rep 2016; 6:30115. [PMID: 27436046 PMCID: PMC4951805 DOI: 10.1038/srep30115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
E. coli represents a heterogeneous population with capabilities to cause disease in several anatomical sites. Among sites that can be colonised is the bovine mammary gland (udder) and a distinct class of mammary pathogenic E. coli (MPEC) has been proposed. MPEC are the principle causative agents of bovine mastitis in well-managed dairy farms, costing producers in the European Union an estimated €2 billion per year. Despite the economic impact, and the threat this disease presents to small and medium sized dairy farmers, the factors which mediate the ability for E. coli to thrive in bovine mammary tissue remain poorly elucidated. Strains belonging to E. coli phylogroup A are most frequently isolated from mastitis. In this paper, we apply a population level genomic analysis to this group of E. coli to uncover genomic signatures of mammary infectivity. Through a robust statistical analysis, we show that not all strains of E. coli are equally likely to cause mastitis, and those that do possess specific gene content that may promote their adaptation and survival in the bovine udder. Through a pan-genomic analysis, we identify just three genetic loci which are ubiquitous in MPEC, but appear dispensable for E. coli from other niches.
Collapse
Affiliation(s)
- Robert J Goldstone
- Heriot-Watt University, School of Life Sciences, Edinburgh Campus, EH14 4AS, Scotland
| | - Susan Harris
- Heriot-Watt University, School of Life Sciences, Edinburgh Campus, EH14 4AS, Scotland
| | - David G E Smith
- Heriot-Watt University, School of Life Sciences, Edinburgh Campus, EH14 4AS, Scotland
| |
Collapse
|
45
|
Castro BG, Souza MM, Regua-Mangia AH, Bittencourt AJ. Genetic relationship between Escherichia coli strains isolated from dairy mastitis and from the stable fly Stomoxys calcitrans. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000600004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: The stable fly Stomoxys calcitrans (Linnaeus, 1758) has been described as a potential spreader of infectious agents to cattle herds. Among the agents transmitted by this fly, Escherichia coli has attracted attention due to its potential to cause gastrointestinal disorders as well as environmental mastitis in dairy cows. Therefore, the aim of this study was to isolate and to assess the genetic diversity and the clonal relatedness among E. coli isolates from the milk of dairy mastitis and from stable flies anatomical sites by the Random Amplification of Polymorphic DNA (RAPD-PCR) technique. The molecular typing revealed a high degree of genetic polymorphism suggesting that these microorganisms have a non-clonal origin. Identical electrophoretic profiles were observed between E. coli isolates from different flies, different mammary quarters of the same cow and from cows on a single farm. These results reveal the circulation of the same bacterial lineages and suggest the role of the stable fly in bacterial dispersion. Considering the high pathogenic potential of this bacterial species, our findings alert to a more effective health surveillance.
Collapse
|