1
|
Bessot A, Medeiros Savi F, Gunter J, Mendhi J, Amini S, Waugh D, McGovern J, Hutmacher DW, Bock N. Humanized In Vivo Bone Tissue Engineering: In Vitro Preculture Conditions Control the Structural, Cellular, and Matrix Composition of Humanized Bone Organs. Adv Healthc Mater 2025; 14:e2401939. [PMID: 39444080 PMCID: PMC11729988 DOI: 10.1002/adhm.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Bone tissue engineering (BTE) has long sought to elucidate the key factors controlling human/humanized bone formation for regenerative medicine and disease modeling applications, yet with no definitive answers due to the high number and co-dependency of parameters. This study aims to clarify the relative impacts of in vitro biomimetic 'preculture composition' and 'preculture duration' before in vivo implantation as key criteria for the optimization of BTE design. These parameters are directly related to in vitro osteogenic differentiation (OD) and mineralization and are being investigated across different osteoprogenitor-loaded biomaterials, specifically fibrous calcium phosphate-polycaprolactone (CaP-mPCL) scaffolds and gelatin methacryloyl (GelMA) hydrogels. The results show that OD and mineralization levels prior to implantation, enhanced by a mineralization medium supplement to the osteogenic medium (OM), significantly improve ectopic BTE outcomes, regardless of the biomaterial type. Specifically, preculture conditions are pivotal in achieving more faithful mimicry of human bone structure, cellular and extracellular matrix composition and organization, and provide control over bone marrow composition. This work emphasizes the potential of using biomimetic culture compositions, specifically the addition of a mineralization medium as a cost-effective and straightforward approach to enhance BTE outcomes, facilitating rapid development of bone models with superior quality and resemblance to native bone.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| | - Jennifer Gunter
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre (APCRC‐Q)QUTBrisbaneQLD4102Australia
| | - Jayanti Mendhi
- Central Analytical Research FacilityQUTBrisbaneQLD4102Australia
| | - Shahrouz Amini
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - David Waugh
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jacqui McGovern
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET)QUTBrisbaneQLD4000Australia
| | - Dietmar W. Hutmacher
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| | - Nathalie Bock
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
2
|
Wu H, Liao X, Wu T, Xie B, Ding S, Chen Y, Song L, Wei B. Mechanism of MiR-145a-3p/Runx2 pathway in dexamethasone impairment of MC3T3-E1 osteogenic capacity in mice. PLoS One 2024; 19:e0309951. [PMID: 39561180 PMCID: PMC11575826 DOI: 10.1371/journal.pone.0309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE In this experiment, we screened key miRNAs involved in the dexamethasone-induced decrease in osteogenic capacity of mouse precursor osteoblasts MC3T3-E1 over and investigated their specific regulatory mechanisms. METHODS In this experiment, cell counting kit assay was utilized to act on MC3T3-E1 cells at 0, 5μM, 10μM, 15μM concentrations of dexamethasone for 24h, 48h and 72h to observe the changes in cell viability in order to select the appropriate dexamethasone concentration. Apoptosis and reactive oxygen species were detected by flow cytometry. The transcription of osteogenesis-related genes (Runx2, ALP, OCN, OPN, OPG, COL1A1) and protein expression levels (Runx2, ALP, OCN, OPN) were detected by Western Blot and qRT-PCR to validate the changes in cellular osteogenesis. The differentially expressed miRNAs related to MC3T3-E1 osteogenic differentiation after dexamethasone action were screened out. The expression levels of selected target miRNAs were verified in the experimental group and the control group by qRT-PCR. The miRNA inhibitor was transfected to knock down miRNA in dexamethasone-induced MC3T3-E1 injury. Alkaline phosphatase staining and flow cytometry were performed to detect apoptosis and reactive oxygen species changes. transcript and protein expression levels of osteogenesis-related genes in mouse MC3T3-E1 were detected by qRT-PCR and Western blot experiments. By miRNA target gene prediction, luciferase reporter gene experiments, qRT-PCR and Western blot experiments were used to verify whether the selected target miRNAs targeted the target gene. RESULTS First, it was determined that 10μM dexamethasone solution was effective in inducing a decrease in osteogenic function in mouse MC3T3-E1 by CCK8 experiments, which showed a significant decrease in alkaline phosphatase activity, a decrease in calcium nodules as shown by alizarin red staining, an increase in apoptosis and reactive oxygen species as detected by flow cytometry, as well as a decrease in the expression of osteogenesis-related genes and proteins. Five target miRNAs were identified: miR-706, miR-296-3p, miR-7011-5p, miR-145a-3p, and miR-149-3p. miR-145a-3p, which had the most pronounced and stable expression trend and was the most highly expressed miRNA, was chosen as the target of this experiment by qRT-PCR analysis. -145a-3p, as the subject of this experiment. Knockdown of miR-145a-3p in MC3T3-E1 cells after dexamethasone action significantly improved the expression of their impaired osteogenic indicators. It was shown that after knocking down the target miRNA, alkaline phosphatase staining was significantly increased compared with the dexamethasone-stimulated group and approached the level of the blank control group. Meanwhile, the expression of osteogenic function-related proteins and genes also increased in the dexamethasone-stimulated group after knocking down miR-145a-3p, and approached the level of the blank control group. A direct targeting relationship between miR-145a-3p and Runx2 was indeed confirmed by luciferase reporter gene assays, qRT-PCR and Western blot experiments. CONCLUSIONS The results indicated that dexamethasone impaired the osteogenic differentiation ability of MC3T3-E1 cells by inducing the up-regulation of miR-145a-3p expression. MiR-145a-3p inhibited the osteogenic differentiation ability of MC3T3-E1 cells by targeting and suppressing the expression level of Runx2 protein. Inhibition of miR-145a-3p levels significantly improved the osteogenic differentiation ability of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinghua Liao
- Central People's Hospital of Zhanjiang, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Xie
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sicheng Ding
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiren Chen
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Alam S, Sargeant MS, Patel R, Jayaram P. Exploring Metabolic Mechanisms in Calcific Tendinopathy and Shoulder Arthrofibrosis: Insights and Therapeutic Implications. J Clin Med 2024; 13:6641. [PMID: 39597785 PMCID: PMC11595303 DOI: 10.3390/jcm13226641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Rotator cuff calcific tendinopathy and arthrofibrosis of the shoulder (adhesive capsulitis) are debilitating musculoskeletal disorders that significantly impact joint function and impair quality of life. Despite its high prevalence and common clinical presentation, the metabolic mechanisms underlying these conditions characterized by pain, and reduced mobility, remain poorly understood. This review aims to elucidate the role of metabolic processes implicated in the pathogenesis of calcific tendinopathy and shoulder arthrofibrosis. We will be focusing on the mechanistic role of how these processes contribute to disease progression and can direct potential therapeutic targets. Calcific tendinopathy is marked by aberrant calcium deposition within tendons, influenced by disrupted calcium and phosphate homeostasis, and altered cellular responses. Key molecular pathways, including bone morphogenetic proteins (BMPs), Wnt signaling, and transforming growth factor-beta (TGF-β), play crucial roles in the pathophysiology of calcification, calcium imbalance, and muscle fibrosis. In contrast, shoulder arthrofibrosis involves excessive collagen deposition and fibrosis within the shoulder joint capsule, driven by metabolic dysregulation and inflammation. The TGF-β signaling pathway and inflammatory cytokines, such as interleukin-6 (IL-6), are central to the fibrotic response. A comparative analysis reveals both shared and distinct metabolic pathways between these conditions, highlighting the interplay between inflammation, cellular metabolism, extracellular matrix remodeling, calcific deposition, and calcium migration to the glenohumeral joints, resulting in adhesive capsulitis, thereby providing insights into their pathophysiology. This review discusses current therapeutic approaches and their limitations, advocating for the development of targeted therapies that address specific metabolic dysregulations. Future therapeutic strategies focus on developing targeted interventions that address the underlying metabolic dysregulation, aiming to improve patient outcomes and advance clinical management. This review offers a comprehensive overview of the metabolic mechanisms involved in calcific tendinopathy and shoulder arthrofibrosis, providing a foundation for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Prathap Jayaram
- Department of Orthopedics, Musculoskeletal Institute, School of Medicine, Emory University, Atlanta, GA 30329, USA (M.S.S.); (R.P.)
| |
Collapse
|
4
|
Lei Q, Phan TH, Divakarla SK, Kalionis B, Chrzanowski W. Metals in nanomotion: probing the role of extracellular vesicles in intercellular metal transfer. NANOSCALE 2024; 16:19730-19742. [PMID: 39355972 DOI: 10.1039/d4nr02841d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Metals in living organisms and environments are essential for key biological functions such as enzymatic activity, and DNA and RNA synthesis. This means that disruption of metal ion homeostasis and exchange between cells can lead to diseases. EVs are believed to play an essential role in transporting metals between cells, but the mechanism of metal packaging and exchange remains to be elucidated. Here, we established the elemental composition of EVs at the nanoscale and single-vesicle level and showed that the metal content depends on the cell type and culture microenvironment. We also demonstrated that EVs participate in the exchange of metal elements between cells. Specifically, we used two classes of EVs derived from papaya fermented fluid (PaEVs), and decidual mesenchymal stem/stromal cells (DEVs). To show that EVs transfer metal elements to cells, we treated human osteoblast-like cells (MG63) and bone marrow mesenchymal stem cells (BMMSCs) with both classes of EVs. We found that both classes of EVs contained various metal elements, such as Ca, P, Mg, Fe, Na, Zn, and K, originating from their parent cells, but their relative concentrations did not mirror the ones found in the parent cells. Single-particle analysis of P, Ca, and Fe in DEVs and PaEVs revealed varying element masses. Assuming spherical geometry, the mean mass of P was converted to a mean size of 62 nm in DEVs and 24 nm in PaEVs, while the mean sizes of Ca and Fe in DEVs were smaller, converting to 20 nm and 30 nm respectively. When EVs interacted with BMMSCs and MG63, DEVs increased Ca, P, and Fe concentrations in BMMSCs and increased Fe concentration in MG63, while PaEVs increased Ca concentrations in BMMSCs and had no effect on MG63. The EV cargo, including proteins, nucleic acids, and lipids, differs from their origin in composition, and this variation extends to the element composition of EVs in our study. This fundamental understanding of EV-mediated metal exchange between cells could offer a new way of assessing EV functionality by measuring their elemental composition. Additionally, it will contribute novel insights into the mechanisms underlying EV production and their biological activity.
Collapse
Affiliation(s)
- Qingyu Lei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia.
| | - Thanh H Phan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW, Australia
| | | | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia.
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| |
Collapse
|
5
|
Zhou J, Zhou F, Yang L, Liang H, Zhu Q, Guo F, Yin X, Li J. Morinda officinalis saponins promote osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells via the BMP-SMAD signaling pathway. Am J Transl Res 2024; 16:5441-5453. [PMID: 39544743 PMCID: PMC11558395 DOI: 10.62347/knrs3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/19/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Morinda officinalis saponins (MOS), a traditional Chinese medicine extracted from M. officinalis roots, have been used as a health supplement. Existing evidence suggests that extracts from this plant can be used for osteoporosis treatment. However, the molecular mechanisms underlying the anti-osteoporotic effects of M. officinalis remain poorly understood. METHODS AND RESULTS In this study, we investigated the osteogenesis-promoting effects of MOS on human umbilical cord-derived mesenchymal stem cells (HUC-MSCs). Alkaline phosphatase staining, alizarin red staining, and quantitative reverse transcription-PCR demonstrated that MOS promoted the osteogenic differentiation of HUC-MSCs in a concentration-dependent manner. RNA sequencing results showed that the expression of key osteogenic differentiation-related genes, including BMP4, as well as the activity of transforming growth factor-β and calcium signaling pathways increased following MOS treatment. Furthermore, treatment with the bone morphogenetic protein (BMP) antagonist Noggin reversed the MOS-induced pro-osteogenic differentiation effects and the upregulation of osteoblast-specific markers. CONCLUSIONS Overall, the results indicate that MOS can partially promote osteogenic differentiation of HUC-MSCs by regulating the BMP-SMAD signaling pathway. These findings indicate the potential utility of MOS as a therapeutic agent for osteoporosis, particularly in the context of stem cell therapy.
Collapse
Affiliation(s)
- Jian Zhou
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou 341000, Jiangxi, China
| | - Fanru Zhou
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Liu Yang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Haihui Liang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Qinyao Zhu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Fenghua Guo
- Glabiolus Biotech (Xuzhou) Co., Ltd.Xuzhou 221000, Jiangsu, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou 341000, Jiangxi, China
- Glabiolus Biotech (Jiangxi) Co., Ltd.Ganzhou 341005, Jiangxi, China
| |
Collapse
|
6
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
7
|
Bernardini C, Zamparini F, Prati C, Salaroli R, Spinelli A, Zannoni A, Forni M, Gandolfi MG. Osteoinductive and regenerative potential of premixed calcium-silicate bioceramic sealers on vascular wall mesenchymal stem cells. Int Endod J 2024; 57:1264-1278. [PMID: 38943551 DOI: 10.1111/iej.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 07/01/2024]
Abstract
AIM The osteogenic potential of new premixed calcium-silicate-containing bioceramic sealers (Ca-Si sealers) was tested with porcine vascular wall-mesenchymal stem cells (pVW-MSCs). METHODOLOGY Two Ca-Si-containing sealers: Ceraseal (MetaBiomed, Cheong-si, South Korea) and AH Plus Bioceramic (Maruchi, Wonju-si, South Korea), and an epoxy resin sealer (AH Plus; Dentsply, Konstanz, Germany) as a control, were prepared according to the manufacturers' indications. All samples were allowed to set for 100% of their setting time in a sterile humid cabinet at 37°C and 95% relative humidity. pVW-MSC seeding efficiency and osteogenic differentiation were analysed as marker of gene/protein expression for up to 12 days. Mineralization assay and immunofluorescence staining were performed and evaluated over a period of 21 days. Statistical analyses were conducted using one-way analysis of variance (p < .05). Additional samples were prepared and stored under the same conditions and inspected using an environmental scanning electron microscope equipped with an energy dispersive X-ray spectroscopy system. RESULTS Significantly higher cell seeding efficiency (p < .05) was observed for both Ca-Si sealers from day 8. pVW-MSCs showed a significant shift towards the osteogenic lineage only when seeded in contact with Ca-Si sealers. Gene expression of osteopontin was upregulated significantly. Collagen I and osteocalcin were clearly expressed by cells in contact with Ca-Si sealers. Mineralization granules were observed in Alizarin red assays and confocal laser scanning microscopy analysis of both Ca-Si sealers. No gene expression or granule mineralization were observed on the epoxy resin sealer. CONCLUSIONS Premixed Ca-Si sealers displayed a higher potential for osteogenic activity on pVW-MSCs. Epoxy resin sealer was unable to induce any osteogenic activity. The properties of both Ca-Si sealers suggest their potential as osteoinductive platforms for vascular MSCs in periapical bone.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fausto Zamparini
- Endodontic Clinical Section, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Laboratory of Green Biomaterials and Oral Pathology, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinelli
- Endodontic Clinical Section, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Giovanna Gandolfi
- Laboratory of Green Biomaterials and Oral Pathology, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Brochet L, Thomann C, Chocarro-Wrona C, Abawi A, Nolens G, Marquette C, Dufour A. Three-Dimensionally Printed Biphasic Calcium Phosphate Ceramic Substrates as the Sole Inducer of Osteogenic Differentiation in Stromal Vascular Fraction Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35482. [PMID: 39269164 DOI: 10.1002/jbm.b.35482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The stromal vascular fraction (SVF) is a derivate of fat tissue comprising both adipose-derived mesenchymal stem cells and endothelial cells and serves as a promising cell source for engineering vascularized bone tissues. Its combination with osteoconductive biphasic calcium phosphate (BCP) ceramic may represent a point-of-care agent for bone reconstruction. Here we assessed the proliferation and osteogenic differentiation capacities of SVF on 3D printed BCP implants, in comparison with isolated adipose-derived mesenchymal stem cells (AD-MSCs). AD-MSCs and SVF isolated from human donors were seeded on plastic or 3D printed BCP ceramics with sinusoidal or gyroid macrotopography and cultured in the presence or absence of osteogenic factors. Vascular, hematopoietic and MSC surface markers were assessed by flow cytometry whereas osteogenic activity was investigated through alizarin red staining and alkaline phosphatase activity. Osteogenic factors were necessary to trigger osteogenic activity when cells were cultured on plastic, without significant difference observed between the two cell populations. Interestingly, osteogenic activity was observed on BCP implants in the absence of differentiation factors, without significant difference in level activity between the two cell populations and macrotopography. This study offers supportive data for the use of combined BCP scaffolds with SVF in a perspective of a one-step surgical procedure for bone regeneration.
Collapse
Affiliation(s)
- Louis Brochet
- Maxillo-Facial Surgery, Facial Plastic Surgery, Stomatology and Oral Surgery, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Céline Thomann
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Carlos Chocarro-Wrona
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Ariana Abawi
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | | | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Alexandre Dufour
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| |
Collapse
|
9
|
Liu Q, Zhang S, Shi L, Shi J, Sun C, Wang J, Zhou W, Zhou H, Shan F, Wang H, Wang J, Ren N, Feng S, Liu H, Wang S. Osteogenic Induction and Anti-Inflammatory Effects of Calcium-Chlorogenic Acid Nanoparticles Remodel the Osteoimmunology Microenvironment for Accelerating Bone Repair. Adv Healthc Mater 2024:e2401114. [PMID: 38885954 DOI: 10.1002/adhm.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Successful bone regeneration requires close cooperation between bone marrow mesenchymal stem cells (BMSCs) and macrophages, but the low osteogenic differentiation efficiency of stem cells and the excessive inflammatory response of immune cells hinder the development of bone repair. It is necessary to develop a strategy that simultaneously regulates the osteogenic differentiation of BMSCs and the anti-inflammatory polarization of macrophages for accelerating the bone regeneration. Herein, calcium-chlorogenic acid nanoparticles (Ca-CGA NPs) are synthesized by combining the small molecules of chlorogenic acid (CGA) with Ca2+. Ca-CGA NPs internalized by cells can be dissolved to release free CGA and Ca2+ under low pH conditions in lysosomes. In vitro results demonstrate that Ca-CGA NPs can not only enhance the osteogenic differentiation of BMSCs but also promote the phenotype transformation of macrophages from M1 to M2. Furthermore, in vivo experiments confirm that Ca-CGA NPs treatment facilitates the recovery of rat skull defect model through both osteoinduction and immunomodulation. This study develops a new Ca-CGA NPs-based strategy to induce the differentiation of BMSCs into osteoblasts and the polarization of macrophages into M2 phenotype, which is promising for accelerating bone repair.
Collapse
Affiliation(s)
- Qi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Shuo Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lusen Shi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Jiapei Shi
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Fengjuan Shan
- Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China
| | - Hongli Wang
- Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China
| | - Jie Wang
- Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, P. R. China
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuping Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
10
|
Bastos AR, da Silva LP, Maia FR, Franco A, Noro J, Silva C, Oliveira JM, Reis RL, Correlo VM. Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues. Int J Biol Macromol 2024; 271:132611. [PMID: 38797304 DOI: 10.1016/j.ijbiomac.2024.132611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal
| | - Lucília P da Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal.
| | - F Raquel Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal
| | - Albina Franco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal
| | - Jennifer Noro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal
| | - Carla Silva
- Center of Biological Engineering, University of Minho, Braga, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Portugal.
| |
Collapse
|
11
|
Macalester W, Boussahel A, Moreno-Tortolero RO, Shannon MR, West N, Hill D, Perriman A. A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface. Int J Oral Sci 2024; 16:37. [PMID: 38734663 PMCID: PMC11088668 DOI: 10.1038/s41368-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 05/13/2024] Open
Abstract
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink. We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs, and that both dentine and β-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface, which is distal to the gel-substrate interface. Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.
Collapse
Affiliation(s)
- William Macalester
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, United Kingdom
| | - Asme Boussahel
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| | - Rafael O Moreno-Tortolero
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, United Kingdom
- Centre for Protolife Research, School of Chemistry, University of Bristol, Cantocks Close, Bristol, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Mark R Shannon
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Nicola West
- Periodontology, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, United Kingdom
| | - Darryl Hill
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Adam Perriman
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom.
| |
Collapse
|
12
|
Halder M, Singh A, Negi D, Singh Y. Investigating the Role of Amino Acids in Short Peptides for Hydroxyapatite Binding and Osteogenic Differentiation of Mesenchymal Stem Cells to Aid Bone Regeneration. Biomacromolecules 2024; 25:2286-2301. [PMID: 38502906 DOI: 10.1021/acs.biomac.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ananya Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
13
|
Lv J, Wang Q, Liu D, Chu CH, Zhou H, Li G, Wu J, Cai K, Tang C. Calcium phytate reverses high glucose-inhibited osteogenesis of BMSCs via the MAPK/JNK pathway. Oral Dis 2024; 30:1379-1391. [PMID: 37103891 DOI: 10.1111/odi.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Diabetes mellitus (DM) induces oxidative tissue impairment and suppresses bone formation. Some studies have shown that phytic acid has antioxidant and anti-diabetic properties. This study aimed to investigate the potential of calcium phytate (Ca-phytate) to reverse inhibited osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) in a high glucose (HG) environment and to determine the underlying mechanism. MATERIALS AND METHODS hBMSCs were exposed to HG and palmitic acid to simulate DM in vitro. Osteogenic differentiation was measured using alkaline phosphatase staining and activity assay, alizarin red S staining, qRT-PCR, Western blot and immunofluorescence staining. A critical-size cranial defect model of type 2 diabetes mellitus (T2DM) rats was established to evaluate bone regeneration. A specific pathway inhibitor was used to explore whether the MAPK/JNK pathway was involved. RESULTS Treatment with 34 μM Ca-phytate had the highest effect on osteogenic differentiation in HG. Ca-phytate improved cranial bone defect healing in T2DM rats. The long-term HG environment inhibited the activation of the MAPK/JNK signalling pathway, which was restored by Ca-phytate. Blocking the JNK pathway reduced the Ca-phytate-mediated osteogenic differentiation of hBMSCs. CONCLUSION Ca-phytate induced bone regeneration in vivo and reversed HG-inhibited osteogenesis of hBMSCs in vitro via the MAPK/JNK signalling pathway.
Collapse
Affiliation(s)
- Jiaxin Lv
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaona Wang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Dongyu Liu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Catherine Huihan Chu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Heyang Zhou
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
14
|
Li P, Jin Q, Zeng K, Niu C, Xie Q, Dong T, Huang Z, Dou X, Feng C. Amino acid-based supramolecular chiral hydrogels promote osteogenesis of human dental pulp stem cells via the MAPK pathway. Mater Today Bio 2024; 25:100971. [PMID: 38347936 PMCID: PMC10859303 DOI: 10.1016/j.mtbio.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Critical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism. In this study, supramolecular chiral hydrogels were constructed using L/d-phenylalanine (L/D-Phe) derivatives. The results of alkaline phosphatase expression analysis, alizarin red S assay, as well as quantitative real-time polymerase chain reaction and western blot analyses suggest that right-handed D-Phe hydrogel fibers significantly promoted osteogenic differentiation of hDPSCs. A rat model of calvarial defects was created to investigate the regulation of chiral nanofibers on the osteogenic differentiation of hDPSCs in vivo. The results of the animal experiment demonstrated that the D-Phe group exhibited greater and faster bone formation on hDPSCs. The results of RNA sequencing, vinculin immunofluorescence staining, a calcium fluorescence probe assay, and western blot analysis indicated that L-Phe significantly promoted adhesion of hDPSCs, while D-Phe nanofibers enhanced osteogenic differentiation of hDPSCs by facilitating calcium entry into cells and activate the MAPK pathway. These results of chirality-dependent osteogenic differentiation offer a novel therapeutic strategy for the treatment of CSDs by optimising the differentiation of hDPSCs into chiral nanofibers.
Collapse
Affiliation(s)
- Peilun Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Kangrui Zeng
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qianyang Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Rezazadeh N, Alizadeh E, Soltani S, Davaran S, Esfandiari N. Synthesis and characterization of a magnetic bacterial cellulose-chitosan nanocomposite and evaluation of its applicability for osteogenesis. BIOIMPACTS : BI 2024; 14:30159. [PMID: 39493895 PMCID: PMC11530965 DOI: 10.34172/bi.2024.30159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction Natural biopolymers are used for various purposes in healthcare, such as tissue engineering, drug delivery, and wound healing. Bacterial cellulose and chitosan were preferred in this study due to their non-cytotoxic, biodegradable, biocompatible, and non-inflammatory properties. The study reports the development of a magnetic bacterial cellulose-chitosan (BC-CS-Fe3O4) nanocomposite that can be used as a biocompatible scaffold for tissue engineering. Iron oxide nanoparticles were included in the composite to provide superparamagnetic properties that are useful in a variety of applications, including osteogenic differentiation, magnetic imaging, drug delivery, and thermal induction for cancer treatment. Methods The magnetic nanocomposite was prepared by immersing Fe3O4 in a mixture of bacterial cellulose-chitosan scaffold and then freeze-drying it. The resulting nanocomposite was characterized using FE-SEM and FTIR techniques. The swelling ratio and mechanical strength of the scaffolds were evaluated experimentally. The biodegradability of the scaffolds was assessed using PBS for 8 weeks at 37°C. The cytotoxicity and osteogenic differentiation of the nanocomposite were studied using human adipose-derived mesenchymal stem cells (ADSCs) and alizarin red staining. One-way ANOVA with Tukey's multiple comparisons test was used for statistical analysis. Results The FTIR spectra demonstrated the formation of bonds between functional groups of nanoparticles. FE-SEM images showed the integrity of the fibrillar network. The magnetic nanocomposite has the highest swelling ratio (2445% ± 23.34) and tensile strength (5.08 MPa). After 8 weeks, the biodegradation ratios of BC, BC-CS, and BC-CS-Fe3O4 scaffolds were 0.75% ± 0.35, 2.5% ± 0.1, and 9.5% ± 0.7, respectively. Magnetic nanocomposites have low toxicity (P < 0.0001) and higher osteogenic potential compared to other scaffolds. Conclusion Based on its high tensile strength, low water absorption, suitable degradability, low cytotoxicity, and high ability to induce an increase in calcium deposits by stem cells, the magnetic BC-CS-Fe3O4 nanocomposite scaffold can be a suitable candidate as a biomaterial for osteogenic differentiation.
Collapse
Affiliation(s)
- Nahid Rezazadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
16
|
Das R, Le D, Kan HM, Le TT, Park J, Nguyen TD, Lo KWH. Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds. PLoS One 2024; 19:e0299579. [PMID: 38412168 PMCID: PMC10898771 DOI: 10.1371/journal.pone.0299579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, MD, United States of America
| | - Duong Le
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health System, Hanoi, Vietnam, United States of America
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Institute of Materials Science (IMS), University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Kevin W.-H. Lo
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT, United States of America
- Institute of Materials Science (IMS), University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
17
|
Sharma A, Krishnan M, Ganganahalli G, Saraswathy S, Johnson R, Iyer SR. Microarray illustrates enhanced mechanistic action towards osteogenesis for magnesium aluminate spinel ceramic-based polyphasic composite scaffold with mesenchymal stem cells and bone morphogenetic protein 2. J Biomed Mater Res B Appl Biomater 2023; 111:1858-1868. [PMID: 35289496 DOI: 10.1002/jbm.b.35051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Spinel (magnesium aluminate MgAl2 O4 ) ceramic-based polyphasic composite scaffold has been recently reported for craniofacial bone tissue engineering. Improving the osteogenic effects of such composite scaffolds with bone morphogenetic proteins (BMP2) is an intensely researched area. This study investigated the gene interactions of this scaffold with BMP2 and mesenchymal stem cells (MSCs). Human bone marrow MSCs were cultured in 3 groups: Group 1-Control (BMSCs), Group 2-BMSC with BMP2, and Group 3-BMSC with scaffold and BMP2. After RNA isolation, gene expression analysis was done by microarray. Differentially expressed genes (DEGs) (-1.0 > fold changes>1 and p value <.05) were studied for their function and gene ontologies using Database for Annotation, Visualization and Integrated Discovery (DAVID). They were further studied by protein-protein interaction network analysis using STRING and MCODE Cytoscape plugin database. Group 3 showed up regulation of 3222 genes against 2158 of Group 2. Group 3 had five annotation clusters with enrichment scores from 2.08 to 3.93. Group 2 had only one cluster. Group 3 showed activation of all major osteogenic pathways: TGF, BMP2, WNT, SMAD, and Notch gene signaling with effects of calcium and magnesium released from the scaffold. Downstream effect of all these caused significant activation of RUNX2, the key transcriptional regulator of osteogenesis in Group 3. STRING and MCODE Cytoscape plugin demonstrated the interactions. The enhanced MSC differentiation for osteogenesis with the addition of BMP2 to the polyphasic composite scaffold proposed promising clinical applications for bone tissue engineering.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Dental Research and Implantology, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Manu Krishnan
- Department of Dental Research and Implantology, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Gurudatta Ganganahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Seema Saraswathy
- Department of Biochemistry, Army College of Medical Sciences (ACMS), Delhi, India
| | - Roy Johnson
- Centre for Ceramic Processing, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
| | - Satish R Iyer
- Directorate General of Dental Services (DGDS), Delhi, India
| |
Collapse
|
18
|
Lee SJ, Shin JW, Kwon MA, Lee KB, Kim HJ, Lee JH, Kang HS, Jun JK, Cho SY, Kim IG. Transglutaminase 2 Prevents Premature Senescence and Promotes Osteoblastic Differentiation of Mesenchymal Stem Cells through NRF2 Activation. Stem Cells Int 2023; 2023:8815888. [PMID: 37900967 PMCID: PMC10611545 DOI: 10.1155/2023/8815888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During in vitro MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.
Collapse
Affiliation(s)
- Soo-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee-Ae Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heun-Soo Kang
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Liu N, Huang S, Guo F, Wang D, Zuo Y, Li F, Liu C. Calcium phosphate cement with minocycline hydrochloride-loaded gelatine microspheres for peri-implantitis treatment. J Dent 2023; 136:104624. [PMID: 37459952 DOI: 10.1016/j.jdent.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVES This study aimed to fabricate an antibacterial calcium phosphate cement (CPC) with minocycline hydrochloride (MINO)-loaded gelatine microspheres (GMs) as a local drug delivery system for the treatment of peri‑implantitis. METHODS CPC/GMs(MINO), incorporating MINO-loaded GMs into CPC, was developed and characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD), and drug release profiling. The antibacterial activity against Porphyromonas gingivalis and Fusobacterium nucleatum was evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in the extracts of the developed cements to evaluate osteoinductivity in vitro. Furthermore, a rabbit femoral model was established to evaluate osteogenic ability in vivo. RESULTS SEM and XRD confirmed the porous structure and chemical stability of CPC/GMs(MINO). The release profile showed a sustained release of MINO from CPC/GMs(MINO), reaching an equilibrium state on the 14th day with a cumulative release ratio of approximately 84%. For antibacterial assays, the inhibition zone of CPC/GMs(MINO) was 3.67 ± 0.31 cm for P. gingivalis and 7.47 ± 0.50 cm for F. nucleatum. Most bacteria seeded on CPC/GMs(MINO) died after 24 h of culture. In addition, CPC/GMs(MINO) significantly enhanced alkaline phosphatase activity, osteogenic gene expression, and BMSC mineralisation compared with CPC/GMs and the control group (P < 0.05). The in vivo results showed that CPC/GMs(MINO) possessed a higher quality and quantity of bone formation and maturation than CPC/GMs and CPC. CONCLUSIONS CPC/GMs(MINO) showed excellent antibacterial activity against pathogens associated with peri‑implantitis and demonstrated good osteoinductivity and osteogenic ability. CLINICAL SIGNIFICANCE Peri-implantitis is among the most common and challenging biological complications associated with dental implants. In this study, MINO-loaded GMs were incorporated into CPC, which endowed the composite cement with excellent antibacterial and osteogenic abilities, demonstrating its potential as a bone graft substitute for treating peri‑implantitis.
Collapse
Affiliation(s)
- Ning Liu
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Shuo Huang
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Fang Guo
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Danyang Wang
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yanping Zuo
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Fang Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Changkui Liu
- Research Center for Tooth and Maxillofacial Tissue Regeneration and Restoration, Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
20
|
Heyraud A, Tallia F, Sory D, Ting HK, Tchorzewska A, Liu J, Pilsworth HL, Lee PD, Hanna JV, Rankin SM, Jones JR. 3D printed hybrid scaffolds for bone regeneration using calcium methoxyethoxide as a calcium source. Front Bioeng Biotechnol 2023; 11:1224596. [PMID: 37671192 PMCID: PMC10476218 DOI: 10.3389/fbioe.2023.1224596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction: Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation. Methods: We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our "Bouncy Bioglass", using calcium methoxyethoxide (CME) as the calcium precursor. SiO2-CaOCME/PTHF/PCL-diCOOH hybrid "inks" for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels. Results and Discussion: Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO2-CaOCME/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30CCME-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO2/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30CCME-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30CCME-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture.
Collapse
Affiliation(s)
- Agathe Heyraud
- Department of Materials, Imperial College London, London, United Kingdom
| | - Francesca Tallia
- Department of Materials, Imperial College London, London, United Kingdom
| | - David Sory
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Hung-Kai Ting
- Department of Materials, Imperial College London, London, United Kingdom
| | - Anna Tchorzewska
- Department of Materials, Imperial College London, London, United Kingdom
| | - Jingwen Liu
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | | | - Peter D. Lee
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | - John V. Hanna
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - Sara M. Rankin
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Liu J, He S, Ma B, Li X, Wang Y, Xiong J. TMT-based quantitative proteomic analysis revealed that FBLN2 and NPR3 are involved in the early osteogenic differentiation of mesenchymal stem cells (MSCs). Aging (Albany NY) 2023; 15:7637-7654. [PMID: 37543430 PMCID: PMC10457061 DOI: 10.18632/aging.204931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
The delicate equilibrium between osteoblast and adipocyte differentiation of MSCs is highly regulated. We screened for early-stage osteogenesis- or adipogenesis-based MSCs protein expression profiles using TMT-based quantitative proteomic analysis to identify novel participating molecules. Protein annotation, hierarchical clustering, functional stratification, and protein-protein association assessments were performed. Moreover, two upregulated proteins, namely, FBLN2 and NPR3, were validated to participate in the osteogenic differentiation process of MSCs. After that, we independently downregulated FBLN2 and NPR3 over seven days of osteogenic differentiation, and we performed quantitative proteomics analysis to determine how different proteins were regulated in knockdown vs. control cells. Based on gene ontology (GO) and network analyses, FBLN2 deficiency induced functional alterations associated with biological regulation and stimulus-response, whereas NPR3 deficiency induced functional alterations related to cellular and metabolic processes, and so on. These findings suggested that proteomics remains a useful method for an in-depth study of the MSCs differentiation process. This will assist in comprehensively evaluating its role in osteoporosis and provide additional approaches for identifying as-yet-unidentified effector molecules.
Collapse
Affiliation(s)
- Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Shan He
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Baicheng Ma
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Xingnuan Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianjun Xiong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
22
|
Reyes Fernandez PC, Wright CS, Farach-Carson MC, Thompson WR. Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells. Calcif Tissue Int 2023; 113:126-142. [PMID: 37261463 PMCID: PMC11008533 DOI: 10.1007/s00223-023-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Oliver-Cervelló L, Martin-Gómez H, Gonzalez-Garcia C, Salmeron-Sanchez M, Ginebra MP, Mas-Moruno C. Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1192436. [PMID: 37324414 PMCID: PMC10267393 DOI: 10.3389/fbioe.2023.1192436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Cristina Gonzalez-Garcia
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| |
Collapse
|
24
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
25
|
Kyrylenko S, Sowa M, Kazek-Kęsik A, Stolarczyk A, Pisarek M, Husak Y, Korniienko V, Deineka V, Moskalenko R, Matuła I, Michalska J, Jakóbik-Kolon A, Mishchenko O, Pogorielov M, Simka W. Nitrilotriacetic Acid Improves Plasma Electrolytic Oxidation of Titanium for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19863-19876. [PMID: 37041124 PMCID: PMC10141263 DOI: 10.1021/acsami.3c00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.
Collapse
Affiliation(s)
- Sergiy Kyrylenko
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
| | - Maciej Sowa
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Agnieszka Stolarczyk
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Marcin Pisarek
- Institute
of Physical Chemistry PAS, M. Kasprzaka Street 44/52, 01-224 Warsaw, Poland
| | - Yevheniia Husak
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Viktoriia Korniienko
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
- Institute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas
Street, Riga LV-1004, Latvia
| | - Volodymyr Deineka
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
| | - Roman Moskalenko
- Ukrainian-Swedish
Research Center SUMEYA, Sumy State University, 31 Pryvokzalna Street, Sumy 40018, Ukraine
| | - Izabela Matuła
- Faculty
of
Science and Technology, Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty Street 1a, 41-500 Chorzów, Poland
| | - Joanna Michalska
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Agata Jakóbik-Kolon
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| | - Oleg Mishchenko
- Nano
Prime LTD, 25 Metalowców
Street, 39-200 Dębica, Poland
- Zaporizhzhia
State Medical University, 26 Maiakovskyi Avenue, 69035 Zaporizhzhia, Ukraine
| | - Maksym Pogorielov
- Biomedical
Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40018, Ukraine
- Institute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas
Street, Riga LV-1004, Latvia
| | - Wojciech Simka
- Faculty
of Chemistry, Silesian University of Technology, 6 B. Krzywoustego Street, 44-100 Gliwice, Poland
| |
Collapse
|
26
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
27
|
De Mori A, Alasa UJ, Mühlhölzl A, Blunn G. Slipper Limpet ( Crepidula fornicata) Shells Support In Vitro Osteogenesis of Human Adipose-Derived Stem Cells. Mar Drugs 2023; 21:md21040248. [PMID: 37103387 PMCID: PMC10142914 DOI: 10.3390/md21040248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to investigate a cost-effective alternative to man-made calcium phosphate ceramics for treating bone defects. The slipper limpet is an invasive species in European coastal waters, and its shells composed of calcium carbonate could potentially be a cost-effective source of bone graft substitutes. This research analyzed the mantle of the slipper limpet (Crepidula fornicata) shells to enhance in vitro bone formation. Discs machined from the mantle of C. fornicata were analyzed using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), X-ray crystallography (XRD), Fourier-transform infrared spectroscopy (FT-IR) and profilometry. Calcium release and bioactivity were also studied. Cell attachment, proliferation, and osteoblastic differentiation (RT-qPCR and alkaline phosphatase activity) were measured in human adipose-derived stem cells grown on the mantle surface. The mantle material was mainly composed of aragonite and showed a sustained Ca2+ release at physiological pH. In addition, apatite formation was observed in simulated body fluid after three weeks, and the materials supported osteoblastic differentiation. Overall, our findings suggest the mantle of C. fornicata shows potential as a material for fabricating bone graft substitutes and structural biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Umoru Junior Alasa
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Alex Mühlhölzl
- Mikota Ltd., Pembroke Dock, Pembrokeshire, Wales SA72 6AE, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
28
|
A novel implant surface modification mode of Fe3O4-containing TiO2 nanorods with sinusoidal electromagnetic field for osteoblastogenesis and angiogenesis. Mater Today Bio 2023; 19:100590. [PMID: 36910272 PMCID: PMC9996442 DOI: 10.1016/j.mtbio.2023.100590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Implants made of Ti and its alloys are widely utilized in orthopaedic surgeries. However, insufficient osseointegration of the implants often causes complications such as aseptic loosening. Our previous research discovered that disordered titanium dioxide nanorods (TNrs) had satisfactory antibacterial properties and biocompatibility, but TNrs harmed angiogenic differentiation, which might retarded the osseointegration process of the implants. Magnetic nanomaterials have a certain potential in promoting osseointegration, electromagnetic fields within a specific frequency and intensity range can facilitate angiogenic and osteogenic differentiation. Therefore, this study used Fe3O4 to endow magnetism to TNrs and explored the regulation effects of Ti, TNrs, and Fe3O4-TNrs under 1 mT 15 Hz sinusoidal electromagnetic field (SEMF) on osteoblastogenesis, osseointegration, angiogenesis, and its mechanism. We discovered that after the addition of SEMF treatment to VR-EPCs cultured on Fe3O4-TNrs, the calcineurin/NFAT signaling pathway was activated, which then reversed the inhibitory effect of Fe3O4-TNrs on angiogenesis. Besides, Fe3O4-TNrs with SEMF enhanced osteogenic differentiation and osseointegration. Therefore, the implant modification mode of Fe3O4-TNrs with the addition of SEMF could more comprehensively promote osseointegration and provided a new idea for the modification of implants.
Collapse
|
29
|
Spagnuolo G, De Luca I, Iaculli F, Barbato E, Valletta A, Calarco A, Valentino A, Riccitiello F. Regeneration of dentin-pulp complex: Effect of calcium-based materials on hDPSCs differentiation and gene expression. Dent Mater 2023; 39:485-491. [PMID: 36935304 DOI: 10.1016/j.dental.2023.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Dentin-pulp complex is object of interest in the regenerative endodontic field as well as the natural function of human dental pulp stem cells (hDPSCs) that may differentiate into specific cells able to repair and/or regenerate both hard and soft dental structures. The aim of the present study was to evaluate the capacity of hDPSCs to differentiate in odontoblastic-like cells by evaluating the expression of specific odontogenic-related genes and to prove the ability of treatment with calcium-based materials such as calcium carbonate (CaCO3), calcium hydroxide (Ca(OH)₂), and mineral trioxide aggregate (MTA). METHODS hDPSCs were obtained and isolated from a third molar of a young patient. Odontogenic-related gene expression was assessed unti1 28 days of culture as well as alkaline phosphatase activity (ALP). hDPSCs were cultured in odontoblastic-induction medium used as control, and in presence of different concentrations of CaCO3, Ca(OH)₂, and MTA. RESULTS The results demonstrated an upregulation in odontoblastic cell-related genes, in particular of the early differentiation marker known as matrix extracellular phosphoglycoprotein (MEPE), as well as increased ALP activity and the presence of calcium deposits, mainly by stimulation with calcium derivatives. In this regard, treatment of pulp tissue with CaCO3, Ca(OH)2 and even better with MTA seemed to be effective for dentinogenesis. SIGNIFICANCE The ease of isolation of hDPSCs from discarded or extracted teeth offers a promising source of autologous cells that may be applied for regenerative purpose in combination with selected bioactive materials. However, further investigations should be conducted to confirm the obtained results.
Collapse
Affiliation(s)
- Gianrico Spagnuolo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy
| | - Flavia Iaculli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy.
| | - Eleonora Barbato
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy.
| | - Francesco Riccitiello
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, Deng X. The bioelectrical properties of bone tissue. Animal Model Exp Med 2023; 6:120-130. [PMID: 36856186 PMCID: PMC10158952 DOI: 10.1002/ame2.12300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/18/2022] [Indexed: 03/02/2023] Open
Abstract
Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China.,School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanze Meng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
31
|
Chaudhary S, Ghosal D, Tripathi P, Kumar S. Cellular metabolism: a link connecting cellular behaviour with the physiochemical properties of biomaterials for bone tissue engineering. Biomater Sci 2023; 11:2277-2291. [PMID: 36748852 DOI: 10.1039/d2bm01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomaterial properties, such as surface roughness, morphology, stiffness, conductivity, and chemistry, significantly influence a cell's ability to sense and adhere to its surface and regulate cell functioning. Understanding how biomaterial properties govern changes in cellular function is one of the fundamental goals of tissue engineering. Still, no generalized rule is established to predict cellular processes (adhesion, spreading, growth and differentiation) on biomaterial surfaces. A few studies have highlighted that cells sense biomaterial properties at multiple length scales and regulate various intracellular biochemical processes like cytoskeleton organization, gene regulation, and receptor expression to influence cell function. However, recent studies have found cellular metabolism as another critical aspect of cellular processes that regulate cell behavior, co-relating metabolism to cellular functions like adhesion, proliferation, and differentiation. Now researchers have started to uncover previously overlooked factors on how biomaterial properties govern changes in cellular functions mediated through metabolism. This review highlights how different physiochemical properties of scaffolds designed from different biomaterials influence cell metabolism. The review also discusses the role of metabolism change in cellular functions and cell behavior in the context of bone tissue engineering. It also emphasizes the importance of cell metabolism as a missing link between the cellular behavior and physicochemical properties of scaffolds and serves as a guiding principle for designing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pravesh Tripathi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India. .,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
32
|
Razghonova Y, Zymovets V, Wadelius P, Rakhimova O, Manoharan L, Brundin M, Kelk P, Romani Vestman N. Transcriptome Analysis Reveals Modulation of Human Stem Cells from the Apical Papilla by Species Associated with Dental Root Canal Infection. Int J Mol Sci 2022; 23:ijms232214420. [PMID: 36430898 PMCID: PMC9695896 DOI: 10.3390/ijms232214420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interaction of oral bacteria with stem cells from the apical papilla (SCAP) can negatively affect the success of regenerative endodontic treatment (RET). Through RNA-seq transcriptomic analysis, we studied the effect of the oral bacteria Fusobacterium nucleatum and Enterococcus faecalis, as well as their supernatants enriched by bacterial metabolites, on the osteo- and dentinogenic potential of SCAPs in vitro. We performed bulk RNA-seq, on the basis of which differential expression analysis (DEG) and gene ontology enrichment analysis (GO) were performed. DEG analysis showed that E. faecalis supernatant had the greatest effect on SCAPs, whereas F. nucleatum supernatant had the least effect (Tanimoto coefficient = 0.05). GO term enrichment analysis indicated that F. nucleatum upregulates the immune and inflammatory response of SCAPs, and E. faecalis suppresses cell proliferation and cell division processes. SCAP transcriptome profiles showed that under the influence of E. faecalis the upregulation of VEGFA, Runx2, and TBX3 genes occurred, which may negatively affect the SCAP's osteo- and odontogenic differentiation. F. nucleatum downregulates the expression of WDR5 and TBX2 and upregulates the expression of TBX3 and NFIL3 in SCAPs, the upregulation of which may be detrimental for SCAPs' differentiation potential. In conclusion, the present study shows that in vitro, F. nucleatum, E. faecalis, and their metabolites are capable of up- or downregulating the expression of genes that are necessary for dentinogenic and osteogenic processes to varying degrees, which eventually may result in unsuccessful RET outcomes. Transposition to the clinical context merits some reservations, which should be approached with caution.
Collapse
Affiliation(s)
- Yelyzaveta Razghonova
- Department of Microbiology, Virology and Biotechnology, Mechnikov National University, 65000 Odesa, Ukraine
| | - Valeriia Zymovets
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Correspondence:
| | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, 90189 Umeå, Sweden
| | - Olena Rakhimova
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), Lund University, 22362 Lund, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, 90187 Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
33
|
Verisqa F, Cha JR, Nguyen L, Kim HW, Knowles JC. Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering. Biomolecules 2022; 12:1692. [PMID: 36421706 PMCID: PMC9687763 DOI: 10.3390/biom12111692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/28/2023] Open
Abstract
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods allow the fabrication of biomimetic scaffolds with high resolution and mechanical properties that exceed the result of commonly used extrusion-based printing. Digital light processing (DLP) is known for its faster and more accurate printing than other 3D printing approaches. However, the development of biocompatible resins for light-based 3D printing is not as rapid as that of bio-inks for extrusion-based printing. In this study, we developed CSMA-2, a photopolymer based on Isosorbide, a renewable sugar derivative monomer. The CSMA-2 showed suitable rheological properties for DLP printing. Gyroid scaffolds with high resolution were successfully printed. The 3D-printed scaffolds also had a compressive modulus within the range of a human cancellous bone modulus. Human adipose-derived stem cells remained viable for up to 21 days of incubation on the scaffolds. A calcium deposition from the cells was also found on the scaffolds. The stem cells expressed osteogenic markers such as RUNX2, OCN, and OPN. These results indicated that the scaffolds supported the osteogenic differentiation of the progenitor cells. In summary, CSMA-2 is a promising material for 3D printing techniques with high resolution that allow the fabrication of complex biomimetic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fiona Verisqa
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
| | - Jae-Ryung Cha
- Department of Chemistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Linh Nguyen
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
34
|
Inclusion of calcium phosphate does not further improve in vitro and in vivo osteogenesis in a novel, highly biocompatible, mechanically stable and 3D printable polymer. Sci Rep 2022; 12:16977. [PMID: 36216955 PMCID: PMC9550830 DOI: 10.1038/s41598-022-21013-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At a time of unpredictable challenges for health, one trend is certain: there is an exceedingly high demand for functional implants, particularly bone grafts. This has encouraged the emergence of bone tissue engineering substitutes as an alternative method to conventional bone grafts. However, the current approaches in the field face several limitations that have prevented the ultimate translation into clinical settings. As a result, many attempts have been made to fabricate synthetic bone implants that can offer suitable biological and mechanical properties.Light curable methacrylate-based polymers have ideal properties for bone repair. These materials are also suitable for 3D printing which can be applicable for restoration of both function and aesthetics. The main objective of this research was to investigate the role of calcium phosphate (CaP) incorporation in a mechanically stable, biologically functional and 3D printable polymer for the reconstruction of complex craniofacial defects. The experimental work initially involved the synthesis of (((((((((((3R,3aR,6S,6aR)- hexahydrofuro[3,2-b]furan-3,6-diyl)bis(oxy))bis(ethane-2,1- 48 diyl))bis(oxy))bis(carbonyl))bis(azanediyl))bis(3,3,5-trimethylcyclohexane-5,1- 49 diyl))bis(azanediyl))bis(carbonyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) referred to as CSMA and fabrication of composite discs via a Digital Light Printing (DLP) method. The flow behaviour of the polymer as a function of CaP addition, surface remineralisation potential, in vitro cell culture, using MC3T3 and Adipose-Derived Mesenchymal Stem Cells (ADSCs) and ex ovo angiogenic response was assessed. Finally, in vivo studies were carried out to investigate neo-bone formation at 4- and 8-weeks post-implantation. Quantitative micro-CT and histological evaluation did not show a higher rate of bone formation in CaP filled CSMA composites compared to CSMA itself. Therefore, such polymeric systems hold promising features by allowing more flexibility in designing a 3D printed scaffold targeted at the reconstruction of maxillofacial defects.
Collapse
|
35
|
Oliver‐Cervelló L, Martin‐Gómez H, Mandakhbayar N, Jo Y, Cavalcanti‐Adam EA, Kim H, Ginebra M, Lee J, Mas‐Moruno C. Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings. Adv Healthc Mater 2022; 11:e2201339. [PMID: 35941083 PMCID: PMC11468143 DOI: 10.1002/adhm.202201339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Helena Martin‐Gómez
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Young‐Woo Jo
- Neobiotech Co.Ltd R&D CenterSeoul08381Republic of Korea
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsGrowth Factor Mechanobiology groupMax Planck Institute for Medical Research Jahnstraße 2969120HeidelbergGermany
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Maria‐Pau Ginebra
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
- Institute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jung‐Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Carlos Mas‐Moruno
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| |
Collapse
|
36
|
Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res 2022; 17:424. [PMID: 36153551 PMCID: PMC9509599 DOI: 10.1186/s13018-022-03305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Shilajit has been widely used remedy for treating a numerous of illness such as bone defects in Iran traditional folk medicine since hundreds of years ago. The aim of the present study was to explore the effect of Shilajit on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (ASCs) in two- (2D) and three-dimensional (3D) cultures. MATERIALS AND METHODS ASCs were seeded in 3D 1% alginate (Alg) hydrogel with or without Shilajit (500 µg/mL) and compared with 2D cultures. Then, characterization was done using electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), alkaline phosphatase (ALP) activity, alizarin red staining and Raman confocal microscopy. RESULTS Adding Shilajit had no impact on the Alg scaffold degradability. In the 3D hydrogel and in the presence of osteogenic medium (OM), Shilajit acted as enhancer to increase ALP activity and also showed osteoinductive property in the absence of OM compared to the 2D matched groups at all time points (days 7 and 21 both P = 0.0006, for 14 days P = 0.0006 and P = 0.002, respectively). In addition, calcium deposition was significantly increased in the cultures exposed to Shilajit compared to 2D matched groups on days 14 (P < 0.0001) and 21 (P = 0.0003 and P = 0.003, respectively). In both 3D and 2D conditions, Shilajit induced osteogenic differentiation, but Shilajit/Alg combination starts osteogenic differentiation in a short period of time. CONCLUSION As Shilajit accelerates the differentiation of ASCs into the osteoblasts, without changing the physical properties of the Alg hydrogel, this combination may pave the way for more promising remedies considering bone defects.
Collapse
Affiliation(s)
- Parisa Kangari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydr Polym 2022; 292:119638. [DOI: 10.1016/j.carbpol.2022.119638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
|
38
|
Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym 2022; 296:119964. [DOI: 10.1016/j.carbpol.2022.119964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
|
40
|
3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Int J Biol Macromol 2022; 217:979-997. [PMID: 35908677 DOI: 10.1016/j.ijbiomac.2022.07.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
In the recent years, bone tissue engineering is regarded as the promising solution for treatment of bone defects which arises due to trauma, infection and surgical intervention. In view of this, several polymer or ceramic based constructs are envisaged for bone tissue engineering potential. However, scaffolds based on pure polymeric materials suffer from slow bioactivity characteristics. On the other hand, scaffolds based on ceramic materials do not offer sufficient strength for load bearing applications. In order to overcome these drawbacks, the current work aims to develop mixed matrix scaffolds based on poly (L-lactic acid)/mesoporous bioactive glass composite with the formulation of 30:70 weight ratio, which mimics the natural bone composition. In the current work, PLA/MBG (30:70) composite based bioink suitable for 3D bioprinting is indigenously developed and its rheological characteristics are evaluated. The 3D architecture for PLA/MBG composite scaffold is designed using Solidworks CAD 2015 and the scaffolds are fabricated using pneumatic based 3D bioprinting technology, which has not been documented earlier for this formulation in view of bone tissue engineering to the best of our knowledge. Followed by this, optimization of printing parameters in order to develop 3D PLA/MBG composite constructs with hierarchical pore architecture suitable for bone tissue engineering is performed. The SEM analysis confirmed that the pore size of the 3D printed PLA/MBG composite scaffolds falls in the range of 500-700 μm, which corresponds to the macroporous nature of the scaffolds useful for bone cell growth. The mechanical analysis confirmed the superior compressive modulus and yield strength for PLA/MBG composite scaffold in comparison to neat PLA. The in-vitro bioactivity assessment showed rapid apatite crystallization by attaining Ca/P ratio of 1.66 equivalent to natural bone mineral within 3rd day of SBF treatment for PLA/MBG composite scaffold, thus indicating the excellent bioactivity behaviour. The 3D bioprinted PLA/MBG composite scaffold showed promising response in terms of cell attachment and proliferation, mineralization as well as gene expression characteristics while assessed through of in-vitro biological assessment using MG-63 osteosarcoma cells. In this regard, the 3D bioprinted PLA/MBG scaffold could be applied as potential implant for bone tissue engineering application.
Collapse
|
41
|
Daneshmandi L, Holt BD, Arnold AM, Laurencin CT, Sydlik SA. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci Rep 2022; 12:6960. [PMID: 35484292 PMCID: PMC9050648 DOI: 10.1038/s41598-022-10603-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Bone regenerative engineering could replace autografts; however, no synthetic material fulfills all design criteria. Nanocarbons incorporated into three-dimensional printed (3DP) matrices can improve properties, but incorporation is constrained to low wt%. Further, unmodified nanocarbons have limited osteogenic potential. Functionalization to calcium phosphate graphene (CaPG) imparts osteoinductivity and osteoconductivity, but loading into matrices remained limited. This work presents ultra-high content (90%), 3DP-CaPG matrices. 3DP-CaPG matrices are highly porous (95%), moderately stiff (3 MPa), and mechanically robust. In vitro, they are cytocompatible and induce osteogenic differentiation of human mesenchymal stem cells (hMSCs), indicated by alkaline phosphatase, mineralization, and COL1α1 expression. In vivo, bone regeneration was studied using a transgenic fluorescent-reporter mouse non-union calvarial defect model. 3DP-CaPG stimulates cellular ingrowth, retains donor cells, and induces osteogenic differentiation. Histology shows TRAP staining around struts, suggesting potential osteoclast activity. Apparent resorption of 3DP-CaPG was observed and presented no toxicity. 3DP-CaPG represents an advancement towards a synthetic bone regeneration matrix.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Brian D Holt
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
42
|
Contessi Negrini N, Ricci C, Bongiorni F, Trombi L, D’Alessandro D, Danti S, Farè S. An Osteosarcoma Model by 3D Printed Polyurethane Scaffold and In Vitro Generated Bone Extracellular Matrix. Cancers (Basel) 2022; 14:cancers14082003. [PMID: 35454909 PMCID: PMC9025808 DOI: 10.3390/cancers14082003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Development of new therapeutics to treat osteosarcoma is fundamental to decreasing its current health impact. 3D in vitro models are gaining tremendous momentum as, compared to traditional 2D in vitro models and in vivo models, can speed up new treatment discovery and provide clarification of the pathology development, by ultimately offering a reproducible and biomimetic tool. However, engineering a 3D osteosarcoma in vitro model is challenging, since the reliability of the models strictly depends on their ability to correctly mimic the physical, mechanical, and biological properties of the pathological tissue to be replicated. Here, we designed 3D printed polyurethane scaffolds enriched by in vitro pre-generated bone extracellular matrix, synthesized by osteo-differentiated human mesenchymal stromal cells, to replicate in vitro an osteosarcoma model, which can be potentially used to study tumor progression and to assess new treatments. Abstract Osteosarcoma is a primary bone tumor characterized by a dismal prognosis, especially in the case of recurrent disease or metastases. Therefore, tools to understand in-depth osteosarcoma progression and ultimately develop new therapeutics are urgently required. 3D in vitro models can provide an optimal option, as they are highly reproducible, yet sufficiently complex, thus reliable alternatives to 2D in vitro and in vivo models. Here, we describe 3D in vitro osteosarcoma models prepared by printing polyurethane (PU) by fused deposition modeling, further enriched with human mesenchymal stromal cell (hMSC)-secreted biomolecules. We printed scaffolds with different morphologies by changing their design (i.e., the distance between printed filaments and printed patterns) to obtain different pore geometry, size, and distribution. The printed PU scaffolds were stable during in vitro cultures, showed adequate porosity (55–67%) and tunable mechanical properties (Young’s modulus ranging in 0.5–4.0 MPa), and resulted in cytocompatible. We developed the in vitro model by seeding SAOS-2 cells on the optimal PU scaffold (i.e., 0.7 mm inter-filament distance, 60° pattern), by testing different pre-conditioning factors: none, undifferentiated hMSC-secreted, and osteo-differentiated hMSC-secreted extracellular matrix (ECM), which were obtained by cell lysis before SAOS-2 seeding. Scaffolds pre-cultured with osteo-differentiated hMSCs, subsequently lysed, and seeded with SAOS-2 cells showed optimal colonization, thus disclosing a suitable biomimetic microenvironment for osteosarcoma cells, which can be useful both in tumor biology study and, possibly, treatment.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20131 Milan, Italy; (F.B.); (S.F.)
- Correspondence: (N.C.N.); (S.D.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Federica Bongiorni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20131 Milan, Italy; (F.B.); (S.F.)
| | - Luisa Trombi
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56126 Pisa, Italy; (L.T.); (D.D.)
| | - Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56126 Pisa, Italy; (L.T.); (D.D.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Correspondence: (N.C.N.); (S.D.)
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20131 Milan, Italy; (F.B.); (S.F.)
| |
Collapse
|
43
|
Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23084236. [PMID: 35457055 PMCID: PMC9028204 DOI: 10.3390/ijms23084236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.
Collapse
|
44
|
Ahmed ASI, Sheng MHC, Lau KHW, Wilson SM, Wongworawat MD, Tang X, Ghahramanpouri M, Nehme A, Xu Y, Abdipour A, Zhang XB, Wasnik S, Baylink DJ. Calcium released by osteoclastic resorption stimulates autocrine/paracrine activities in local osteogenic cells to promote coupled bone formation. Am J Physiol Cell Physiol 2022; 322:C977-C990. [PMID: 35385325 PMCID: PMC9109806 DOI: 10.1152/ajpcell.00413.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. We hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation. Osteoclastic resorption increases interstitial fluid calcium locally from the normal 1.8 mM up to 5 mM. MC3T3-E1 osteoprogenitors, cultured in a 3.6 mM calcium medium, demonstrated that calcium signaling stimulated osteogenic cell proliferation, differentiation, and migration. Calcium channel knockdown studies implicated calcium channels, Cav1.2, store-operated calcium entry (SOCE), and calcium-sensing receptor (CaSR) in regulating bone cell anabolic activities. MC3T3-E1 cultured in a 3.6 mM calcium medium expressed increased gene expression of Wnt signaling and growth factors platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and bone morphogenic protein-2 (BMP 2). Our coupling model of bone formation, the Receptor activator of nuclear factor-kappa-Β ligand (RANKL) treated mouse calvaria, confirmed the role of calcium signaling in coupled bone formation by exhibiting increased gene expression for osterix and osteocalcin. Critically, dual immunocytochemistry showed that RANKL treatment increased osterix positive cells and increased fluorescence intensity of Cav1.2 and CaSR protein expression per osterix positive cell. The data established that calcium released by osteoclasts contributed to the regulation of coupled bone formation. CRISPR/Cas-9 knockout of Cav1.2 in osteoprogenitors cultured in basal calcium medium caused a >80% decrease in the expression of downstream osteogenic genes, emphasizing the large magnitude of the effect of calcium signaling. Thus, calcium signaling is a major regulator of coupled bone formation.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matilda H C Sheng
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, United States
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, United States
| | - Sean M Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - M Daniel Wongworawat
- Department of Orthopaedic Surgery, Loma Linda University, Loma Linda, California, United States
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Mahdis Ghahramanpouri
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - Antoine Nehme
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - Yi Xu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,Division of Hematology and Oncology, Department of Medicine, Loma Linda University and Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Amir Abdipour
- Division of Nephrology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Xiao-Bing Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, United States
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
45
|
Zimmermann CE, Mackens-Kiani L, Acil Y, Terheyden H. Characterization of porcine mesenchymal stromal cells and their proliferative and osteogenic potential in long-term culture. J Stem Cells Regen Med 2022; 17:49-55. [PMID: 35250201 DOI: 10.46582/jsrm.1702008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Background: Porcine mesenchymal stromal cells (pMSCs) are considered a valuable research model for bone tissue engineering, which requires adequate amounts of viable cells with sufficient potential for osteogenic differentiation. For isolation and expansion of these cells through long-term culture, appropriate culture conditions are needed. Objective: To study the effect of extended in vitro cultivation on pMSC proliferation and differentiation potential using different osteogenic and adipogenic induction media. Methods: pMSCs were isolated from the bone marrow of adult Göttingen minipigs, cultured, expanded to passage 20 (~160 days) and characterized by their expression of cell surface markers (wCD44, CD45, CD90, SWC9, fibronectin), alkaline phosphatase (ALP), and osteocalcin and their potential for osteogenic and adipogenic differentiation using different induction media. Results: pMSCs retained their capacity for proliferation and osteogenic differentiation, and the number of CD90-positive cells increased significantly over more than 60 population doublings. CD90 expression in uninduced cells correlated strongly with ALP expression following osteogenic induction. Medium enriched with calcium yielded a stronger osteogenic response. Conclusion: The selection of CD90-positive MSCs and adequate levels of calcium seem to enhance the osteogenic phenotype for bone tissue engineering.
Collapse
Affiliation(s)
- Corinna E Zimmermann
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany.,University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - Yahya Acil
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Hendrik Terheyden
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| |
Collapse
|
46
|
Chen C, Yan S, Geng Z, Wang Z. Fracture repair by IOX2: Regulation of the hypoxia inducible factor-1α signaling pathway and BMSCs. Eur J Pharmacol 2022; 921:174864. [PMID: 35219731 DOI: 10.1016/j.ejphar.2022.174864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The treatment of fracture delayed union and nonunion has become a challenging problem. Hypoxia inducible factor-1α (HIF-1α) is reported to be a key factor in fracture healing, and is degraded by hydroxylation of prolyl hydroxylase (PHDs) under normal oxygen. Small molecules could inhibit the activity of PHDs, stabilize HIF-1α protein, regulate the expression of downstream target genes of HIF-1α, and make the body adapt to hypoxia. The migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is the most promising candidate for the treatment of fracture nonunion. Here we reported that IOX2, an HIF-1α PHD inhibitor, markedly improved the proliferation and migration of BMSCs by upregulating intracellular Ca2+ and concomitant decreasing reactive oxygen species (ROS) in vitro, and facilitated the repair of bone fracture by increasing the number of BMSCs and cartilage formation in vivo. No significant influence of IOX2 on the proliferation and migration of BMSCs after silencing of the HIF-1α. Together, our findings indicated that IOX2 promoted the proliferation and migration of BMSCs via the HIF-1α pathway and further accelerated fracture healing. These results provide a deeper understanding of the mechanism by which HIF promotes fracture healing.
Collapse
Affiliation(s)
- Chunxia Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Department of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
47
|
Levingstone TJ, Moran C, Almeida HV, Kelly DJ, O'Brien FJ. Layer-specific stem cell differentiation in tri-layered tissue engineering biomaterials: Towards development of a single-stage cell-based approach for osteochondral defect repair. Mater Today Bio 2021; 12:100173. [PMID: 34901823 PMCID: PMC8640516 DOI: 10.1016/j.mtbio.2021.100173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Successful repair of osteochondral defects is challenging, due in part to their complex gradient nature. Tissue engineering approaches have shown promise with the development of layered scaffolds that aim to promote cartilage and bone regeneration within the defect. The clinical potential of implanting these scaffolds cell-free has been demonstrated, whereby cells from the host bone marrow MSCs infiltrate the scaffolds and promote cartilage and bone regeneration within the required regions of the defect. However, seeding the cartilage layer of the scaffold with a chondrogenic cell population prior to implantation may enhance cartilage tissue regeneration, thus enabling the treatment of larger defects. Here the development of a cell seeding approach capable of enhancing articular cartilage repair without the requirement for in vitro expansion of the cell population is explored. The intrinsic ability of a tri-layered scaffold previously developed in our group to direct stem cell differentiation in each layer of the scaffold was first demonstrated. Following this, the optimal chondrogenic cell seeding approach capable of enhancing the regenerative capacity of the tri-layered scaffold was demonstrated with the highest levels of chondrogenesis achieved with a co-culture of rapidly isolated infrapatellar fat pad MSCs (FPMSCs) and chondrocytes (CCs). The addition of FPMSCs to a relatively small number of CCs led to a 7.8-fold increase in the sGAG production over chondrocytes in mono-culture. This cell seeding approach has the potential to be delivered within a single-stage approach, without the requirement for costly in vitro expansion of harvested cells, to achieve rapid repair of osteochondral defects. Tri-layered scaffold capable of directing layer specific stem cell differentiation. Potential of cell seeding regimes to enhance chondrogenic repair explored. Optimal cell seeding regime was an infrapatellar fat pad MSC:chondrocyte coculture. Adding infrapatellar fat pad MSCs to chondrocytes led to >7-fold increase in sGAG. This cell-seeded scaffold has potential for rapid repair of osteochondral defects.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, 9, Ireland
- Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, 9, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Conor Moran
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Henrique V. Almeida
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
| | - Daniel J. Kelly
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, 9, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, 2, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
- Corresponding author. Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin, 2, Ireland.
| |
Collapse
|
48
|
Singh YP, Dasgupta S, Bhaskar R, Agrawal AK. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater 2021; 16. [PMID: 34624878 DOI: 10.1088/1748-605x/ac2e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022]
Abstract
This study was aimed at fabricating monetite nanoparticles impregnated gelatin-based composite scaffold to improve the chemical, mechanical and osteogenic properties. Scaffolds were fabricated using a freeze-drying technique of the slurry containing a varying proportion of gelatin and monetite. The lyophilized scaffolds were cross-linked with 0.25 wt% glutaraldehyde solution to obtain a three-dimensional (3D) interconnected porous microstructure with improved mechanical strength and stability in a physiological environment. The fabricated scaffolds possessed >80% porosity having 3D interconnected pore size distribution varying between 65 and 270 μm as evident from field emission scanning electron microscopy analysis. The average pore size of the prepared scaffold decreased with monetite addition as reflected in values of 210 μm for pure gelatin GM0scaffold and 118 μm registered by GM20scaffold. On increase in monetite content up to 20 wt% of total polymer concentration, compressive strength of the prepared scaffolds was increased from 0.92 MPa in pure gelatin-based GM0to 2.43 MPa in GM20. Up to 20 wt% of monetite reinforced composite scaffolds exhibited higher bioactivity as compared to that observed in pure gelatin-based GM0scaffold. Simulated body fluid (SBF) study and alizarin red assays confirmed higher bio-mineralization ability of GM20as compared to that exhibited by GM0. Human preosteoblast cells (MG-63) revealed higher degree of filopodia and lamellipodia extensions and excellent spreading behavior to anchor with GM20matrix as compared to that onto GM0and GM10. MTT assay and alkaline phosphatase staining study indicated that MG-63 cells found a more conducive environment to proliferate and subsequently differentiate into osteoblast lineage when exposed to GM20scaffolds rather than to GM0and GM10. This study revealed that up to 20 wt% monetite addition in gelatin could improve the performance of prepared scaffolds and serve as an efficient candidate to repair and regenerate bone tissues at musculoskeletal defect sites.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | | |
Collapse
|
49
|
López-González I, Zamora-Ledezma C, Sanchez-Lorencio MI, Tristante Barrenechea E, Gabaldón-Hernández JA, Meseguer-Olmo L. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite. Int J Mol Sci 2021; 22:11216. [PMID: 34681873 PMCID: PMC8537621 DOI: 10.3390/ijms222011216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
In this work, we evaluated the influence of a novel hybrid 3D-printed porous composite scaffold based on poly(ε-caprolactone) (PCL) and β-tricalcium phosphate (β-TCP) microparticles in the process of adhesion, proliferation, and osteoblastic differentiation of multipotent adult human bone marrow mesenchymal stem cells (ah-BM-MSCs) cultured under basal and osteogenic conditions. The in vitro biological response of ah-BM-MSCs seeded on the scaffolds was evaluated in terms of cytotoxicity, adhesion, and proliferation (AlamarBlue Assay®) after 1, 3, 7, and 14 days of culture. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red Solution, ARS), expression of surface markers (CD73, CD90, and CD105), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR) after 7 and 14 days of culture. The scaffolds tested were found to be bioactive and biocompatible, as demonstrated by their effects on cytotoxicity (viability) and extracellular matrix production. The mineralization and ALP assays revealed that osteogenic differentiation increased in the presence of PCL/β-TCP scaffolds. The latter was also confirmed by the gene expression levels of the proteins involved in the ossification process. Our results suggest that similar bio-inspired hybrid composite materials would be excellent candidates for osteoinductive and osteogenic medical-grade scaffolds to support cell proliferation and differentiation for tissue engineering, which warrants future in vivo research.
Collapse
Affiliation(s)
- Ivan López-González
- Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - María Isabel Sanchez-Lorencio
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, El Palmar, 30120 Murcia, Spain;
| | | | - José Antonio Gabaldón-Hernández
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| |
Collapse
|
50
|
Serna JA, Rueda-Gensini L, Céspedes-Valenzuela DN, Cifuentes J, Cruz JC, Muñoz-Camargo C. Recent Advances on Stimuli-Responsive Hydrogels Based on Tissue-Derived ECMs and Their Components: Towards Improving Functionality for Tissue Engineering and Controlled Drug Delivery. Polymers (Basel) 2021; 13:3263. [PMID: 34641079 PMCID: PMC8512780 DOI: 10.3390/polym13193263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their highly hydrophilic nature and compositional versatility, hydrogels have assumed a protagonic role in the development of physiologically relevant tissues for several biomedical applications, such as in vivo tissue replacement or regeneration and in vitro disease modeling. By forming interconnected polymeric networks, hydrogels can be loaded with therapeutic agents, small molecules, or cells to deliver them locally to specific tissues or act as scaffolds for hosting cellular development. Hydrogels derived from decellularized extracellular matrices (dECMs), in particular, have gained significant attention in the fields of tissue engineering and regenerative medicine due to their inherently high biomimetic capabilities and endowment of a wide variety of bioactive cues capable of directing cellular behavior. However, these hydrogels often exhibit poor mechanical stability, and their biological properties alone are not enough to direct the development of tissue constructs with functional phenotypes. This review highlights the different ways in which external stimuli (e.g., light, thermal, mechanical, electric, magnetic, and acoustic) have been employed to improve the performance of dECM-based hydrogels for tissue engineering and regenerative medicine applications. Specifically, we outline how these stimuli have been implemented to improve their mechanical stability, tune their microarchitectural characteristics, facilitate tissue morphogenesis and enable precise control of drug release profiles. The strategic coupling of the bioactive features of dECM-based hydrogels with these stimulation schemes grants considerable advances in the development of functional hydrogels for a wide variety of applications within these fields.
Collapse
Affiliation(s)
| | | | | | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (J.A.S.); (L.R.-G.); (D.N.C.-V.); (J.C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (J.A.S.); (L.R.-G.); (D.N.C.-V.); (J.C.)
| |
Collapse
|