1
|
Manthei KA, Tremonti GE, Chang L, Niemelä A, Giorgi L, Koivuniemi A, Tesmer JJG. Rescue of Familial Lecithin:Cholesterol Acyltranferase Deficiency Mutations with an Allosteric Activator. Mol Pharmacol 2024; 106:188-197. [PMID: 39151949 PMCID: PMC11413911 DOI: 10.1124/molpharm.124.000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) deficiencies represent severe disorders characterized by aberrant cholesterol esterification in plasma, leading to life-threatening conditions. This study investigates the efficacy of Compound 2, a piperidinyl pyrazolopyridine allosteric activator that binds the membrane-binding domain of LCAT, in rescuing the activity of LCAT variants associated with disease. The variants K218N, N228K, and G230R, all located in the cap and lid domains of LCAT, demonstrated notable activity restoration in response to Compound 2. Molecular dynamics simulations and structural modeling indicate that these mutations disrupt the lid and membrane binding domain, with Compound 2 potentially dampening these structural alterations. Conversely, variants such as M252K and F382V in the cap and α/β-hydrolase domain, respectively, exhibited limited or no rescue by Compound 2. Future research should prioritize in vivo investigations that would validate the therapeutic potential of Compound 2 and related activators in familial LCAT deficiency patients with mutations in the cap and lid of the enzyme. SIGNIFICANCE STATEMENT: Lecithin:cholesterol acyltranferase (LCAT) catalyzes the first step of reverse cholesterol transport, namely the esterification of cholesterol in high density lipoprotein particles. Somatic mutations in LCAT lead to excess cholesterol in blood plasma and, in severe cases, kidney failure. In this study, we show that recently discovered small molecule activators can rescue function in LCAT-deficient variants when the mutations occur in the lid and cap domains of the enzyme.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Grace E Tremonti
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Louise Chang
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Akseli Niemelä
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Laura Giorgi
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Artturi Koivuniemi
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John Joseph Grubb Tesmer
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
2
|
Ratnayake A, Turri M, Calabresi L, Pavanello C, McLean A, Tanna A, Cegla J, Jones B, Duncan N. Emerging Therapies for Familial Lecithin-Cholesterol Acyltransferase Deficiency: A Role for Plasma Exchange. Kidney Int Rep 2024; 9:2299-2302. [PMID: 39081770 PMCID: PMC11284401 DOI: 10.1016/j.ekir.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Aruni Ratnayake
- Imperial College Renal and Transplant Center, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Marta Turri
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche Biomolecolari, Università degli Studi di Milano, Italy
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche Biomolecolari, Università degli Studi di Milano, Italy
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche Biomolecolari, Università degli Studi di Milano, Italy
| | - Adam McLean
- Imperial College Renal and Transplant Center, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Anisha Tanna
- Imperial College Renal and Transplant Center, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Jaimini Cegla
- Department of Lipids and Cardiovascular Risk Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Ben Jones
- Department of Lipids and Cardiovascular Risk Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London UK
| | - Neill Duncan
- Imperial College Renal and Transplant Center, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
3
|
Garcia E, Shalaurova I, Matyus SP, Freeman LA, Neufeld EB, Sampson ML, Zubirán R, Wolska A, Remaley AT, Otvos JD, Connelly MA. A High-Throughput NMR Method for Lipoprotein-X Quantification. Molecules 2024; 29:564. [PMID: 38338310 PMCID: PMC10856374 DOI: 10.3390/molecules29030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Lipoprotein X (LP-X) is an abnormal cholesterol-rich lipoprotein particle that accumulates in patients with cholestatic liver disease and familial lecithin-cholesterol acyltransferase deficiency (FLD). Because there are no high-throughput diagnostic tests for its detection, a proton nuclear magnetic resonance (NMR) spectroscopy-based method was developed for use on a clinical NMR analyzer commonly used for the quantification of lipoproteins and other cardiovascular biomarkers. The LP-X assay was linear from 89 to 1615 mg/dL (cholesterol units) and had a functional sensitivity of 44 mg/dL. The intra-assay coefficient of variation (CV) varied between 1.8 and 11.8%, depending on the value of LP-X, whereas the inter-assay CV varied between 1.5 and 15.4%. The assay showed no interference with bilirubin levels up to 317 mg/dL and was also unaffected by hemolysis for hemoglobin values up to 216 mg/dL. Samples were stable when stored for up to 6 days at 4 °C but were not stable when frozen. In a large general population cohort (n = 277,000), LP-X was detected in only 50 subjects. The majority of LP-X positive cases had liver disease (64%), and in seven cases, had genetic FLD (14%). In summary, we describe a new NMR-based assay for LP-X, which can be readily implemented for routine clinical laboratory testing.
Collapse
Affiliation(s)
- Erwin Garcia
- Labcorp, Morrisville, NC 27560, USA; (E.G.); (I.S.); (S.P.M.)
| | | | | | - Lita A. Freeman
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.F.); (E.B.N.); (R.Z.); (A.W.); (A.T.R.); (J.D.O.)
| | - Edward B. Neufeld
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.F.); (E.B.N.); (R.Z.); (A.W.); (A.T.R.); (J.D.O.)
| | - Maureen L. Sampson
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rafael Zubirán
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.F.); (E.B.N.); (R.Z.); (A.W.); (A.T.R.); (J.D.O.)
| | - Anna Wolska
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.F.); (E.B.N.); (R.Z.); (A.W.); (A.T.R.); (J.D.O.)
| | - Alan T. Remaley
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.F.); (E.B.N.); (R.Z.); (A.W.); (A.T.R.); (J.D.O.)
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA;
| | - James D. Otvos
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.F.); (E.B.N.); (R.Z.); (A.W.); (A.T.R.); (J.D.O.)
| | | |
Collapse
|
4
|
Sato M, Neufeld EB, Playford MP, Lei Y, Sorokin AV, Aponte AM, Freeman LA, Gordon SM, Dey AK, Jeiran K, Hamasaki M, Sampson ML, Shamburek RD, Tang J, Chen MY, Kotani K, Anderson JL, Dullaart RP, Mehta NN, Tietge UJ, Remaley AT. Cell-free, high-density lipoprotein-specific phospholipid efflux assay predicts incident cardiovascular disease. J Clin Invest 2023; 133:e165370. [PMID: 37471145 PMCID: PMC10503808 DOI: 10.1172/jci165370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).
Collapse
Affiliation(s)
- Masaki Sato
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Edward B. Neufeld
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Yu Lei
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alexander V. Sorokin
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Angel M. Aponte
- Proteomics Core Facility, NHLBI, NIH, Bethesda, Maryland, USA
| | - Lita A. Freeman
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kianoush Jeiran
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Masato Hamasaki
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | | | - Robert D. Shamburek
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Laboratory of Cardiovascular CT, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
| | - Josephine L.C. Anderson
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robin P.F. Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Uwe J.F. Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- The NIH Clinical Center and
| |
Collapse
|
5
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
6
|
Gomaraschi M, Turri M, Strazzella A, Lhomme M, Pavanello C, Le Goff W, Kontush A, Calabresi L, Ossoli A. Abnormal Lipoproteins Trigger Oxidative Stress-Mediated Apoptosis of Renal Cells in LCAT Deficiency. Antioxidants (Basel) 2023; 12:1498. [PMID: 37627492 PMCID: PMC10451761 DOI: 10.3390/antiox12081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and the accumulation of lipoprotein X (LpX). Renal failure is the major cause of morbidity and mortality in FLD patients; the pathogenesis of renal disease is only partly understood, but abnormalities in the lipoprotein profile could play a role in disease onset and progression. Serum and lipoprotein fractions from LCAT deficient carriers and controls were tested for renal toxicity on podocytes and tubular cells, and the underlying mechanisms were investigated at the cellular level. Both LpX and HDL from LCAT-deficient carriers triggered oxidative stress in renal cells, which culminated in cell apoptosis. These effects are partly explained by lipoprotein enrichment in unesterified cholesterol and ceramides, especially in the HDL fraction. Thus, alterations in lipoprotein composition could explain some of the nephrotoxic effects of LCAT deficient lipoproteins on podocytes and tubular cells.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Marta Turri
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Arianna Strazzella
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (ANR-10-IAHU-05), IHU ICAN (ICAN OMICS and ICAN I/O), 75013 Paris, France;
| | - Chiara Pavanello
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Wilfried Le Goff
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, 75013 Paris, France; (W.L.G.); (A.K.)
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, 75013 Paris, France; (W.L.G.); (A.K.)
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| |
Collapse
|
7
|
Pavanello C, Ossoli A. HDL and chronic kidney disease. ATHEROSCLEROSIS PLUS 2023; 52:9-17. [PMID: 37193017 PMCID: PMC10182177 DOI: 10.1016/j.athplu.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Low HDL-cholesterol (HDL-C) concentrations are a typical trait of the dyslipidemia associated with chronic kidney disease (CKD). In this condition, plasma HDLs are characterized by alterations in structure and function, and these particles can lose their atheroprotective functions, e.g., the ability to promote cholesterol efflux from peripheral cells, anti-oxidant and anti-inflammatory proprieties and they can even become dysfunctional, i.e., exactly damaging. The reduction in plasma HDL-C levels appears to be the only lipid alteration clearly linked to the progression of renal disease in CKD patients. The association between the HDL system and CKD development and progression is also supported by the presence of genetic kidney alterations linked to HDL metabolism, including mutations in the APOA1, APOE, APOL and LCAT genes. Among these, renal disease associated with LCAT deficiency is well characterized and lipid abnormalities detected in LCAT deficiency carriers mirror the ones observed in CKD patients, being present also in acquired LCAT deficiency. This review summarizes the major alterations in HDL structure and function in CKD and how genetic alterations in HDL metabolism can be linked to kidney dysfunction. Finally, the possibility of targeting the HDL system as possible strategy to slow CKD progression is reviewed.
Collapse
Affiliation(s)
| | - Alice Ossoli
- Corresponding author. Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133, Milano, Italy.
| |
Collapse
|
8
|
Vitali C, Rader DJ, Cuchel M. Novel therapeutic opportunities for familial lecithin:cholesterol acyltransferase deficiency: promises and challenges. Curr Opin Lipidol 2023; 34:35-43. [PMID: 36473023 DOI: 10.1097/mol.0000000000000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Genetic lecithin:cholesterol acyltransferase (LCAT) deficiency is a rare, inherited, recessive disease, which manifests as two different syndromes: Familial LCAT deficiency (FLD) and Fish-eye disease (FED), characterized by low HDL-C and corneal opacity. FLD patients also develop anaemia and renal disease. There is currently no therapy for FLD, but novel therapeutics are at different stages of development. Here, we summarize the most recent advances and the opportunities for and barriers to the further development of such therapies. RECENT FINDINGS Recent publications highlight the heterogeneous phenotype of FLD and the uncertainty over the natural history of disease and the factors contributing to disease progression. Therapies that restore LCAT function (protein and gene replacement therapies and LCAT activators) showed promising effects on markers of LCAT activity. Although they do not restore LCAT function, HDL mimetics may slow renal disease progression. SUMMARY The further development of novel therapeutics requires the identification of efficacy endpoints, which include quantitative biomarkers of disease progression. Because of the heterogeneity of renal disease progression among FLD individuals, future treatments for FLD will have to be tailored based on the specific clinical characteristics of the patient. Extensive studies of the natural history and biomarkers of the disease will be required to achieve this goal.
Collapse
Affiliation(s)
| | - Daniel J Rader
- Department of Medicine
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
9
|
von Eckardstein A, Nordestgaard BG, Remaley AT, Catapano AL. High-density lipoprotein revisited: biological functions and clinical relevance. Eur Heart J 2022; 44:1394-1407. [PMID: 36337032 PMCID: PMC10119031 DOI: 10.1093/eurheartj/ehac605] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better predictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the respective disease.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich , Zurich , Switzerland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
- IRCCS MultiMedica, Sesto S. Giovanni , Milan , Italy
| |
Collapse
|
10
|
Aso M, Yamamoto TT, Kuroda M, Wada J, Kubota Y, Ishikawa K, Maezawa Y, Teramoto N, Tawada A, Asada S, Aoyagi Y, Kirinashizawa M, Onitake A, Matsuura Y, Yasunaga K, Konno SI, Nishino K, Yamamoto M, Miyoshi J, Kobayashi N, Tanio M, Ikeuchi T, Igari H, Mitsukawa N, Hanaoka H, Yokote K, Saito Y. First-in-human autologous implantation of genetically modified adipocytes expressing LCAT for the treatment of familial LCAT deficiency. Heliyon 2022; 8:e11271. [PMID: 36387451 PMCID: PMC9663876 DOI: 10.1016/j.heliyon.2022.e11271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/21/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Familial lecithin: cholesterol acyltransferase (LCAT) deficiency (FLD) is a severe inherited disease without effective treatment. Patients with FLD develop severe low HDL, corneal opacity, hemolytic anemia, and renal injury. Objective We developed genetically modified adipocytes (GMAC) secreting LCAT (LCAT-GMAC) for ex vivo gene therapy. GMACs were prepared from the patient’s adipocytes to express LCAT by retroviral gene transduction to secrete functional enzymes. This study aimed to evaluate the safety and efficacy of LCAT-GMAC implantation in an FLD patient. Methods Proliferative preadipocytes were obtained from a patient using a ceiling culture and retrovirally transduced with LCAT. After obtaining enough cells by expansion culture of the transduced cells, the resulting LCAT-GMACs were implanted into a patient with FLD. To evaluate the safety and efficacy, we analyzed the outcome of the autologous implantation for 24 weeks of observation and subsequent 240 weeks of the follow-up periods. Results This first-in-human autologous implantation of LCAT-GMACs was shown to be safe by evaluating adverse events. The LCAT-GMAC implantation increased serum LCAT activity by approximately 50% of the baseline and sustained over three years. Consistent with increased LCAT activity, intermediate-density lipoprotein (IDL) and free cholesterol levels of the small and very small HDL fractions decreased. We found the hemoglobin/haptoglobin complex in the hemolyzed pre-implantation sera of the patient. After one week of the implantation, the hemoglobin/haptoglobin complex almost disappeared. Immediately after the implantation, the patient's proteinuria decreased temporarily to mild levels and gradually increased to the baseline. At 48 weeks after implantation, the patient's proteinuria deteriorated with the development of mild hypertension. By the treatment with antihypertensives, the patient's blood pressure normalized. With the normalization of blood pressure, the proteinuria rapidly decreased to mild proteinuria levels. Conclusions LCAT-GMAC implantation in a patient with FLD is shown to be safe and appears to be effective, in part, for treating anemia and proteinuria in FLD.
Collapse
Affiliation(s)
| | | | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University Hospital, 2608677 Chiba, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 7008530 Okayama, Japan
| | - Yoshitaka Kubota
- Department of Plastic and Reconstructive Surgery, Chiba University, Faculty of Medicine, 2608670 Chiba, Japan
| | - Ko Ishikawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University, Graduates School of Medicine and Department of Diabetes, Metabolism, and Endocrinology, Chiba University Hospital, 2608670 Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University, Graduates School of Medicine and Department of Diabetes, Metabolism, and Endocrinology, Chiba University Hospital, 2608670 Chiba, Japan
| | - Naoya Teramoto
- Department of Endocrinology, Hematology, and Gerontology, Chiba University, Graduates School of Medicine and Department of Diabetes, Metabolism, and Endocrinology, Chiba University Hospital, 2608670 Chiba, Japan
| | - Ayako Tawada
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Takayuki Ikeuchi
- Chiba University Hospital Clinical Research Center, 2608677 Chiba, Japan
| | - Hidetoshi Igari
- Division of Infection Control, Chiba University Hospital, 2608677 Chiba, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic and Reconstructive Surgery, Chiba University, Faculty of Medicine, 2608670 Chiba, Japan
| | - Hideki Hanaoka
- Chiba University Hospital Clinical Research Center, 2608677 Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University, Graduates School of Medicine and Department of Diabetes, Metabolism, and Endocrinology, Chiba University Hospital, 2608670 Chiba, Japan
- Corresponding author.
| | | |
Collapse
|
11
|
Neufeld EB, Freeman LA, Durbhakula V, Sampson ML, Shamburek RD, Karathanasis SK, Remaley AT. A Simple Fluorescent Cholesterol Labeling Method to Cryoprotect and Detect Plasma Lipoprotein-X. BIOLOGY 2022; 11:biology11081248. [PMID: 36009874 PMCID: PMC9405255 DOI: 10.3390/biology11081248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Lipoprotein-X is an abnormal toxic particle in blood that is highly enriched in cholesterol. Lipoprotein-X forms in patients lacking an enzyme in blood called lecithin-cholesterol-acyl-transferase. With time, lipoprotein-X causes kidney disease in these patients, resulting in death at 40–50 years of age. Lipoprotein-X also forms, at very high levels, in the blood of patients with several different types of liver disease. Such high levels of lipoprotein-X cause additional painful and debilitating problems in these patients that can also be fatal. Currently, difficult and time-consuming tests only available in research laboratories can identify lipoprotein-X in blood. Unfortunately, lipoprotein-X in patient blood samples is unstable outside the body, and so with time becomes undetectable, even more so if it is frozen for evaluation at a later time. We have developed a simple method to label blood-derived lipoprotein-X so that it can be easily detected, and this method also stabilizes lipoprotein-X particles when frozen, enabling its detection after thawing. This methodology can easily be developed into a simple clinical test to identify both types of diseases where lipoprotein-X particles form in the blood and can be used to monitor how well treatments are able to reduce toxic lipoprotein-X in people with these diseases. Abstract Lipoprotein-X (LpX) are abnormal nephrotoxic lipoprotein particles enriched in free cholesterol and phospholipids. LpX with distinctive lipid compositions are formed in patients afflicted with either familial LCAT deficiency (FLD) or biliary cholestasis. LpX is difficult to detect by standard lipid stains due to the absence of a neutral lipid core and because it is unstable upon storage, particularly when frozen. We have recently reported that free cholesterol-specific filipin staining after agarose gel electrophoresis sensitively detects LpX in fresh human plasma. Herein, we describe an even more simplified qualitative method to detect LpX in both fresh and frozen–thawed human FLD or cholestatic plasma. Fluorescent cholesterol complexed to fatty-acid-free BSA was used to label LpX and was added together with trehalose in order to cryopreserve plasma LpX. The fluorescent cholesterol bound to LpX was observed with high sensitivity after separation from other lipoproteins by agarose gel electrophoresis. This methodology can be readily developed into a simple assay for the clinical diagnosis of FLD and biliary liver disease and to monitor the efficacy of treatments intended to reduce plasma LpX in these disease states.
Collapse
|
12
|
Screening of Prognostic Markers for Hepatocellular Carcinoma Patients Based on Multichip Combined Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6881600. [PMID: 35872941 PMCID: PMC9303125 DOI: 10.1155/2022/6881600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Methods GSE (14520, 36376, 57957, 76427) datasets were accessed from GEO database. 55 differential mRNAs (DEGs) were obtained by differential analysis based on the datasets. GO and KEGG analysis results indicated that the DEGs were enriched in xenobiotic metabolic process and other pathways. Expression profiles and clinical data of TCGA-LIHC mRNAs were from TCGA database. We established a prognostic model of HCC through univariate and multivariate Cox risk regression analyses. ROC curve analysis was used to examine the prognostic model performance. GSEA analysis was performed between the high- and low-risk score sample groups. Results A 4-gene HCC prognostic model was constructed, in which the gene expressions correlated to HCC patients' survival. The AUC value presented 0.734 in the ROC analysis for the prognostic model. Conclusion The four-gene model could be introduced as an independent prognostic factors to assess HCC patients' survival status.
Collapse
|
13
|
Fistrek Prlic M, Coric M, Calabresi L, Pavanello C, Mosca L, Cavallari U, Vukovic Brinar I, Karanovic S, Laganovic M, Jelakovic B. Two novel variants in the lecithin:cholesterol acyltransferase gene resulted in classic LCAT deficiency. ATHEROSCLEROSIS PLUS 2022; 49:28-31. [PMID: 36644204 PMCID: PMC9833264 DOI: 10.1016/j.athplu.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Background and aims We report the first two cases of familial lecithin:cholesterol acyltransferase (LCAT) deficiency in Croatia with classical clinical and biochemical features. Patients and methods A 30-year-old man with nephrotic syndrome, corneal opacities, hepatosplenomegaly, anemia, low high-density lipoprotein (HDL)-cholesterol levels and arterial hypertension (blood pressure >200/100 mmHg) was admitted to our department. At admission, he had an elevated creatinine serum level (233 μmol/L), proteinuria of 12 g in 24-h urine (g/24 h), 3-7 erythrocytes in urine sediment and notable anemia (hemoglobin level 90 g/l). His HDL-cholesterol was significantly low (0.42 mmol/L). Besides chronic kidney disease (CKD), other secondary causes of hypertension were ruled out. The patient was previously diagnosed with membranous nephropathy and treated unsuccessfully with immunosuppressive agents (steroids, cyclosporine, cyclophosphamide). Re-evaluation of histopathological findings of kidney biopsy revealed massive deposition of lipid material in the glomerular basal membrane and in the mesangial region. His 4-year younger brother was also evaluated due to corneal opacities and new-onset arterial hypertension. Nephrotic range proteinuria with preserved global renal function was determined. He also had very low HDL-cholesterol levels. Results Kidney biopsies from both patients were consistent with LCAT deficiency. The disease was confirmed by measurement of LCAT enzyme activity, plasma cholesterol esterification rate, and genetic testing. Two novel missense variants in the LCAT gene (c.496G > A and c.1138T > C) were found. Conclusions To our knowledge, the presented cases are the first reported cases of genetic LCAT deficiency in Croatia. Given the clinical presentation, the complete lack of LCAT activity and cholesterol esterification rate, diagnosis of familial LCAT deficiency was made.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia,Corresponding author. Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, UHC Zagreb, Kispaticeva ulica 12, 10000, Zagreb, Croatia.
| | - Marijana Coric
- Department of Pathology, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacology, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Pavanello
- Center E. Grossi Paoletti, Department of Pharmacology, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Lorena Mosca
- Medical Genetics Unit, Department of Services, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Ugo Cavallari
- Medical Genetics Unit, Department of Services, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Sandra Karanovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia,Department of Nephrology, University Hospital Merkur, University of Zagreb, School of Medicine, Zajceva 19, 10000, Zagreb, Croatia
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| |
Collapse
|
14
|
LCAT- targeted therapies: Progress, failures and future. Biomed Pharmacother 2022; 147:112677. [PMID: 35121343 DOI: 10.1016/j.biopha.2022.112677] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Lecithin: cholesterol acyltransferase (LCAT) is the only enzyme in plasma which is able to esterify cholesterol and boost cholesterol esterify with phospholipid-derived acyl chains. In order to better understand the progress of LCAT research, it is always inescapable that it is linked to high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). Because LCAT plays a central role in HDL metabolism and RCT, many animal studies and clinical studies are currently aimed at improving plasma lipid metabolism by increasing LCAT activity in order to find better treatment options for familial LCAT deficiency (FLD), fish eye disease (FED), and cardiovascular disease. Recombinant human LCAT (rhLCAT) injections, cells and gene therapy, and small molecule activators have been carried out with promising results. Recently rhLCAT therapies have entered clinical phase II trials with good prospects. In this review, we discuss the diseases associated with LCAT and therapies that use LCAT as a target hoping to find out whether LCAT can be an effective therapeutic target for coronary heart disease and atherosclerosis. Also, probing the mechanism of action of LCAT may help better understand the heterogeneity of HDL and the action mechanism of dynamic lipoprotein particles.
Collapse
|
15
|
Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ, Cuchel M. A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency. J Lipid Res 2022; 63:100169. [PMID: 35065092 PMCID: PMC8953693 DOI: 10.1016/j.jlr.2022.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 10/31/2022] Open
Abstract
Syndromes associated with LCAT deficiency, a rare autosomal recessive condition, include fish-eye disease (FED) and familial LCAT deficiency (FLD). FLD is more severe and characterized by early and progressive chronic kidney disease (CKD). No treatment is currently available for FLD, but novel therapeutics are under development. Furthermore, although biomarkers of LCAT deficiency have been identified, their suitability to monitor disease progression and therapeutic efficacy is unclear, as little data exist on the rate of progression of renal disease. Here, we systematically review observational studies of FLD, FED, and heterozygous subjects, which summarize available evidence on the natural history and biomarkers of LCAT deficiency, in order to guide the development of novel therapeutics. We identified 146 FLD and 53 FED patients from 219 publications, showing that both syndromes are characterized by early corneal opacity and markedly reduced HDL-C levels. Proteinuria/hematuria were the first signs of renal impairment in FLD, followed by rapid decline of renal function. Furthermore, LCAT activity toward endogenous substrates and the percentage of circulating esterified cholesterol (EC%) were the best discriminators between these two syndromes. In FLD, higher levels of total, non-HDL, and unesterified cholesterol were associated with severe CKD. We reveal a nonlinear association between LCAT activity and EC% levels, in which subnormal levels of LCAT activity were associated with normal EC%. This review provides the first step toward the identification of disease biomarkers to be used in clinical trials and suggests that restoring LCAT activity to subnormal levels may be sufficient to prevent renal disease progression.
Collapse
Affiliation(s)
- Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archna Bajaj
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Nguyen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jill Schnall
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinbo Chen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kostas Stylianou
- Department of Nephrology, Heraklion University Hospital, Crete, Greece
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Colantuono R, Pavanello C, Pietrobattista A, Turri M, Francalanci P, Spada M, Vajro P, Calabresi L, Mandato C. Case report: Unusual and extremely severe lipoprotein X-mediated hypercholesterolemia in extrahepatic pediatric cholestasis. Front Pediatr 2022; 10:969081. [PMID: 35989999 PMCID: PMC9386286 DOI: 10.3389/fped.2022.969081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lipoprotein X (LpX) - mediated extremely severe hyperlipidemia is a possible feature detectable in children with syndromic paucity of intralobular bile ducts (Alagille syndrome) but rarely in other types of intra- and/or extrahepatic infantile cholestasis. CASE PRESENTATION Here we report on a previously well 18-month child admitted for cholestatic jaundice and moderate hepatomegaly. Laboratory tests at entry showed conjugated hyperbilirubinemia, elevated values of serum aminotransferases, gamma-glutamyl transpeptidase (GGT) and bile acids (100 folds upper normal values). Extremely severe and ever-increasing hypercholesterolemia (total cholesterol up to 1,730 mg/dl) prompted an extensive search for causes of high GGT and/or hyperlipidemic cholestasis, including an extensive genetic liver panel (negative) and a liver biopsy showing a picture of obstructive cholangitis, biliary fibrosis, and bile duct proliferation with normal MDR3 protein expression. Results of a lipid study showed elevated values of unesterified cholesterol, phospholipids, and borderline/low apolipoprotein B, and low high-density lipoprotein-cholesterol. Chromatographic analysis of plasma lipoproteins fractions isolated by analytical ultracentrifugation revealed the presence of the anomalous lipoprotein (LpX). Magnetic resonance cholangiopancreatography and percutaneous transhepatic cholangiography showed stenosis of the confluence of the bile ducts with dilation of the intrahepatic biliary tract and failure to visualize the extrahepatic biliary tract. Surgery revealed focal fibroinflammatory stenosis of the left and right bile ducts confluence, treated with resection and bilioenteric anastomosis, followed by the rapid disappearance of LpX, paralleling the normalization of serum lipids, bilirubin, and bile acids, with a progressive reduction of hepatobiliary enzymes. CONCLUSION We have described a unique case of focal non-neoplastic extrahepatic biliary stenosis of uncertain etiology, presenting with unusual extremely high levels of LpX-mediated hypercholesterolemia, a condition which is frequently mistaken for LDL on routine clinical tests.
Collapse
Affiliation(s)
- Rossella Colantuono
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Chiara Pavanello
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Andrea Pietrobattista
- Division of Gastroenterology, Hepatology and Nutrition, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Turri
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Paola Francalanci
- Division of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Spada
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Laura Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Claudia Mandato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| |
Collapse
|
17
|
Liao J, Bai J, An X, Liu Y, Wang Y, Liu G, Huang W, Xia Y. Lipoprotein Glomerulopathy-Like Lesions in Atherosclerotic Mice Defected With HDL Receptor SR-B1. Front Cardiovasc Med 2021; 8:734824. [PMID: 34692787 PMCID: PMC8531488 DOI: 10.3389/fcvm.2021.734824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
High-density lipoprotein (HDL) homeostasis is important in maintaining both cardiovascular and renal health. Scavenger receptor class B type 1 (SR-B1), the major HDL receptor in mammals, plays a crucial role in reverse cholesterol transport and HDL metabolism. Evidence from mouse study has well demonstrated that HDL disorders caused by Srb1 inactivation accelerate atherosclerosis and even induce lethal cardiovascular diseases. However, the renal consequences of Srb1 dysfunction are still unknown. Here we explored this issue in both Srb1 knockout (Srb1-/-) mice and atherosclerotic low-density lipoprotein receptor knockout (Ldlr-/-) mice with Srb1 deletion. Our data showed that no apparent renal damage was observed in 5-month-old Srb1-/- mice fed on standard rodent chow diet as well as Srb1-/- mice fed on a high-fat diet (HFD) for 12 weeks. However, 5-month-old Srb1/Ldlr-/- mice fed on rodent chow had increased urinary albumin excretion and developed spontaneous intraglomerular Oil-red O (ORO)-positive lipoprotein deposition that is similar to lesions observed in human lipoprotein glomerulopathy (LPG). HFD feeding accelerated LPG-like lesions in Srb1/Ldlr-/- mice, inducing severe proteinuria and significantly promoting intraglomerular ORO-positive lipoprotein deposition. Interestingly, probucol reversed HFD-induced HDL disorders and almost fully abrogated LPG-like lesions in Srb1/Ldlr-/- mice. In conclusion, the present study demonstrates that SR-B1 dysfunction leads to LPG-like lesions in atherosclerotic mice, which could be rescued by probucol. SR-B1 loss-of-function mutant carriers therefore might be susceptible to developing metabolic nephropathy in addition to cardiovascular diseases, and probucol might be a potential therapeutics.
Collapse
Affiliation(s)
- Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Liu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yunlong Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Leal-Gonzalez R, Ramos-Reyes Á, Moncada-Madrazo M, Apodaca-Ramos I, Morales-Palomino KL, Valdés-Cepeda A, Marrufo-García CA, Rangel-Nava HA. LCAT deficiency and pregnancy: Case report. Obstet Med 2021; 14:193-196. [PMID: 34646351 DOI: 10.1177/1753495x20950574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Lecithin-cholesterol acyltransferase (LCAT) deficiency is a rare autosomal recessive condition affecting lipid metabolism with a prevalence of less than 1:1,000,000. Described here is the case of a 29-year-old pregnant woman with a diagnosis of LCAT deficiency (c.140G>A in exon 4), who had three episodes of hypertriglyceridemia-induced pancreatitis and nephrotic-range proteinuria throughout the pregnancy. Furthermore, fetal ultrasounds carried out during the second and third trimester revealed a steady reduction in fetal growth rate, and fetal growth restriction (FGR) was diagnosed. The woman underwent an elective caesarean section at 33 weeks of gestation and delivered a healthy neonate. This case report adds knowledge of the natural history of LCAT deficiency during pregnancy and will be useful in future patient management.
Collapse
Affiliation(s)
- Raul Leal-Gonzalez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Álvaro Ramos-Reyes
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Mariana Moncada-Madrazo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Irasema Apodaca-Ramos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | | | - Alejandro Valdés-Cepeda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - César A Marrufo-García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Hugo A Rangel-Nava
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
19
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
20
|
Ballout RA, Kong H, Sampson M, Otvos JD, Cox AL, Agbor-Enoh S, Remaley AT. The NIH Lipo-COVID Study: A Pilot NMR Investigation of Lipoprotein Subfractions and Other Metabolites in Patients with Severe COVID-19. Biomedicines 2021; 9:1090. [PMID: 34572275 PMCID: PMC8471250 DOI: 10.3390/biomedicines9091090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
A complex interplay exists between plasma lipoproteins and inflammation, as evidenced from studies on atherosclerosis. Alterations in plasma lipoprotein levels in the context of infectious diseases, particularly respiratory viral infections, such as SARS-CoV-2, have become of great interest in recent years, due to their potential utility as prognostic markers. Patients with severe COVID-19 have been reported to have low levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol, but elevated levels of triglycerides. However, a detailed characterization of the particle counts and sizes of the different plasma lipoproteins in patients with COVID-19 has yet to be reported. In this pilot study, NMR spectroscopy was used to characterize lipoprotein particle numbers and sizes, and various metabolites, in 32 patients with severe COVID-19 admitted to the intensive care unit. Our study revealed markedly reduced HDL particle (HDL-P) numbers at presentation, especially low numbers of small HDL-P (S-HDL-P), and high counts of triglyceride-rich lipoprotein particle (TRL-P), particularly the very small and small TRL subfractions. Moreover, patients with severe COVID-19 were found to have remarkably elevated GlycA levels, and elevated levels of branched-chain amino acids and beta-hydroxybutyrate. Finally, we detected elevated levels of lipoproteins X and Z in most participants, which are distinct markers of hepatic dysfunction, and that was a novel finding.
Collapse
Affiliation(s)
- Rami A. Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Maureen Sampson
- Clinical Center, Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - James D. Otvos
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC 27560, USA;
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Clinical Center, Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| |
Collapse
|
21
|
Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143:2293-2309. [PMID: 34097448 PMCID: PMC8189312 DOI: 10.1161/circulationaha.120.044221] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.
Collapse
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Alan Remaley
- Section Chief of Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch; National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, MD
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Australia, 2052
| |
Collapse
|
22
|
Kuroda M, Bujo H, Yokote K, Murano T, Yamaguchi T, Ogura M, Ikewaki K, Koseki M, Takeuchi Y, Nakatsuka A, Hori M, Matsuki K, Miida T, Yokoyama S, Wada J, Harada-Shiba M. Current Status of Familial LCAT Deficiency in Japan. J Atheroscler Thromb 2021; 28:679-691. [PMID: 33867422 PMCID: PMC8265425 DOI: 10.5551/jat.rv17051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lecithin cholesterol acyltransferase (LCAT) is a lipid-modification enzyme that catalyzes the transfer of the acyl chain from the second position of lecithin to the hydroxyl group of cholesterol (FC) on plasma lipoproteins to form cholesteryl acylester and lysolecithin. Familial LCAT deficiency is an intractable autosomal recessive disorder caused by inherited dysfunction of the LCAT enzyme. The disease appears in two different phenotypes depending on the position of the gene mutation: familial LCAT deficiency (FLD, OMIM 245900) that lacks esterification activity on both HDL and ApoB-containing lipoproteins, and fish-eye disease (FED, OMIM 136120) that lacks activity only on HDL. Impaired metabolism of cholesterol and phospholipids due to LCAT dysfunction results in abnormal concentrations, composition and morphology of plasma lipoproteins and further causes ectopic lipid accumulation and/or abnormal lipid composition in certain tissues/cells, and serious dysfunction and complications in certain organs. Marked reduction of plasma HDL-cholesterol (HDL-C) and corneal opacity are common clinical manifestations of FLD and FED. FLD is also accompanied by anemia, proteinuria and progressive renal failure that eventually requires hemodialysis. Replacement therapy with the LCAT enzyme should prevent progression of serious complications, particularly renal dysfunction and corneal opacity. A clinical research project aiming at gene/cell therapy is currently underway.
Collapse
Affiliation(s)
- Masayuki Kuroda
- Center for Advanced Medicine, Chiba University Hospital, Chiba University
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Takeyoshi Murano
- Clinical Laboratory Program, Faculty of Science, Toho University
| | - Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Katsunori Ikewaki
- Division of Neurology, Anti-Aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine
| | - Yasuo Takeuchi
- Division of Nephrology, Kitasato University School of Medicine
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
23
|
High-Density Lipoproteins and the Kidney. Cells 2021; 10:cells10040764. [PMID: 33807271 PMCID: PMC8065870 DOI: 10.3390/cells10040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.
Collapse
|
24
|
Ossoli A, Strazzella A, Rottoli D, Zanchi C, Locatelli M, Zoja C, Simonelli S, Veglia F, Barbaras R, Tupin C, Dasseux JL, Calabresi L. CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency. Metabolism 2021; 116:154464. [PMID: 33309714 DOI: 10.1016/j.metabol.2020.154464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency. METHODS Lcat-/- and wild-type mice received CER-001 (2.5, 5, 10 mg/kg) intravenously for 2 weeks. The plasma lipid/ lipoprotein profile and HDL subclasses were analyzed. In a second set of experiments, Lcat-/- mice were injected with LpX to induce renal disease and treated with CER-001 and then the plasma lipid profile, lipid accumulation in the kidney, albuminuria and glomerular podocyte markers were evaluated. RESULTS In Lcat-/- mice a decrease in total cholesterol and triglycerides, and an increase in HDL-c was observed after CER-001 treatment. While in wild-type mice CER-001 entered the classical HDL remodeling pathway, in the absence of LCAT it disappeared from the plasma shortly after injection and ended up in the kidney. In a mouse model of renal disease in LCAT deficiency, treatment with CER-001 at 10 mg/kg for one month had beneficial effects not only on the lipid profile, but also on renal disease, by limiting albuminuria and podocyte dysfunction. CONCLUSIONS Treatment with CER-001 ameliorates the dyslipidemia typically associated with LCAT deficiency and more importantly limits renal damage in a mouse model of renal disease in LCAT deficiency. The present results provide a rationale for using CER-001 in FLD patients.
Collapse
Affiliation(s)
- Alice Ossoli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Arianna Strazzella
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Daniela Rottoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | - Laura Calabresi
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
25
|
Laurenzi T, Parravicini C, Palazzolo L, Guerrini U, Gianazza E, Calabresi L, Eberini I. rHDL modeling and the anchoring mechanism of LCAT activation. J Lipid Res 2020; 62:100006. [PMID: 33518511 PMCID: PMC7859856 DOI: 10.1194/jlr.ra120000843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Lecithin:cholesterol-acyl transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodeling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT functionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands the LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
26
|
Pavanello C, Ossoli A, Arca M, D'Erasmo L, Boscutti G, Gesualdo L, Lucchi T, Sampietro T, Veglia F, Calabresi L. Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort. J Lipid Res 2020; 61:1784-1788. [PMID: 32998975 PMCID: PMC7707181 DOI: 10.1194/jlr.p120000976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Familial LCAT deficiency (FLD) is a rare genetic disorder of HDL metabolism, caused by loss-of-function mutations in the LCAT gene and characterized by a variety of symptoms including corneal opacities and kidney failure. Renal disease represents the leading cause of morbidity and mortality in FLD cases. However, the prognosis is not known and the rate of deterioration of kidney function is variable and unpredictable from patient to patient. In this article, we present data from a follow-up of the large Italian cohort of FLD patients, who have been followed for an average of 12 years. We show that renal failure occurs at the median age of 46 years, with a median time to a second recurrence of 10 years. Additionally, we identify high plasma unesterified cholesterol level as a predicting factor for rapid deterioration of kidney function. In conclusion, this study highlights the severe consequences of FLD, underlines the need of correct early diagnosis and referral of patients to specialized centers, and highlights the urgency for effective treatments to prevent or slow renal disease in patients with LCAT deficiency.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuliano Boscutti
- Nephrology, Dialysis and Transplantation Unit, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Tiziano Lucchi
- Metabolic Disease Clinic, Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit and Reference Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
27
|
Pavanello C, Ossoli A, Turri M, Strazzella A, Simonelli S, Laurenzi T, Kono K, Yamada K, Kiyosawa N, Eberini I, Calabresi L. Activation of Naturally Occurring Lecithin:Cholesterol Acyltransferase Mutants by a Novel Activator Compound. J Pharmacol Exp Ther 2020; 375:463-468. [PMID: 32980814 DOI: 10.1124/jpet.120.000159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a unique plasma enzyme able to esterify cholesterol, and it plays an important role in HDL maturation and promotion of reverse cholesterol transport. Familial LCAT deficiency (FLD; OMIM number 245900) is a rare recessive disease that results from loss-of-function mutations in the LCAT gene and has no cure. In this study, we assessed the in vitro efficacy of a novel small-molecule LCAT activator. Cholesterol esterification rate (CER) and LCAT activity were tested in plasma from six controls and five FLD homozygous carriers of various LCAT mutations at different doses of the compound (0.1, 1, and 10 µg/ml). In control plasma, the compound significantly increased both CER (P < 0.001) and LCAT activity (P = 0.007) in a dose-dependent manner. Both CER and LCAT activity increased by 4- to 5-fold, reaching maximum activation at the dose of 1 µg/ml. Interestingly, Daiichi Sankyo compound produced an increase in CER in two of the five tested LCAT mutants (Leu372--Arg and Val309--Met), while LCAT activity increased in three LCAT mutants (Arg147--Trp, Thr274--Ile and Leu372--Arg); mutant Pro254--Ser was not activated at any of the tested doses. The present findings form the basis for personalized therapeutic interventions in FLD carriers and support the potential LCAT activation in secondary LCAT defects. SIGNIFICANCE STATEMENT: We characterized the pharmacology of a novel small-molecule LCAT activator in vitro on a subset of naturally occurring LCAT mutants. Our findings form the basis for personalized therapeutic interventions for familial LCAT deficiency carriers, who can face severe complications and for whom no cure exists.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Tommaso Laurenzi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Keita Kono
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Keisuke Yamada
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Naoki Kiyosawa
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Ivano Eberini
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| |
Collapse
|
28
|
Yamamuro D, Yamazaki H, Osuga JI, Okada K, Wakabayashi T, Takei A, Takei S, Takahashi M, Nagashima S, Holleboom AG, Kuroda M, Bujo H, Ishibashi S. Esterification of 4β-hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT. J Lipid Res 2020; 61:1287-1299. [PMID: 32561542 PMCID: PMC7469885 DOI: 10.1194/jlr.ra119000512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acyltransferase LCAT mediates FA esterification of plasma cholesterol. In vitro studies have shown that LCAT also FA-esterifies several oxysterols, but in vivo evidence is lacking. Here, we measured both free and FA-esterified forms of sterols in 206 healthy volunteers and 8 individuals with genetic LCAT deficiency, including familial LCAT deficiency (FLD) and fish-eye disease (FED). In the healthy volunteers, the mean values of the ester-to-total molar ratios of the following sterols varied: 4β-hydroxycholesterol (4βHC), 0.38; 5,6α-epoxycholesterol (5,6αEC), 0.46; 5,6β-epoxycholesterol (5,6βEC), 0.51; cholesterol, 0.70; cholestane-3β,5α,6β-triol (CT), 0.70; 7-ketocholesterol (7KC), 0.75; 24S-hydroxycholesterol (24SHC), 0.80; 25-hydroxycholesterol (25HC), 0.81; 27-hydroxycholesterol (27HC), 0.86; and 7α-hydroxycholesterol (7αHC), 0.89. In the individuals with LCAT deficiency, the plasma levels of the FA-esterified forms of cholesterol, 5,6αEC, 5,6βEC, CT, 7αHC, 7KC, 24SHC, 25HC, and 27HC, were significantly lower than those in the healthy volunteers. The individuals with FLD had significantly lower FA-esterified forms of 7αHC, 24SHC, and 27HC than those with FED. It is of note that, even in the three FLD individuals with negligible plasma cholesteryl ester, substantial amounts of the FA-esterified forms of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC were present. We conclude that LCAT has a major role in the FA esterification of many plasma oxysterols but contributes little to the FA esterification of 4βHC. Substantial FA esterification of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC is independent of LCAT.
Collapse
Affiliation(s)
- Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Hisataka Yamazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Jun-Ichi Osuga
- Utsunomiya Higashi Hospital, Utsunomiya, 321-0901, Japan
| | - Kenta Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Akihito Takei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Shoko Takei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam 1105AG, The Netherlands
| | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba 260-8670, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura 285-8741, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Genetic LCAT deficiency is a rare metabolic disorder characterized by low-plasma HDL cholesterol levels. Clinical manifestations of the disease include corneal opacification, anemia, and renal disease, which represents the major cause of morbidity and mortality in carriers. RECENT FINDINGS Biochemical and clinical manifestations of the disease are very heterogeneous among carriers. The collection of large series of affected individuals is needed to answer various open questions on this rare disorder of lipid metabolism, such as the cause of renal damage in patients with complete LCAT deficiency and the cardiovascular risk in carriers of different LCAT gene mutations. SUMMARY Familial LCAT deficiency is a rare disease, with serious clinical manifestations, which can occur in the first decades of life, and presently with no cure. The timely diagnosis in carriers, together with the identification of disease biomarkers able to predict the evolution of clinical manifestations, would be of great help in the identification of carriers to address to future available therapies.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
30
|
Baragetti A, Ossoli A, Strazzella A, Simonelli S, Baragetti I, Grigore L, Pellegatta F, Catapano AL, Norata GD, Calabresi L. Low Plasma Lecithin: Cholesterol Acyltransferase (LCAT) Concentration Predicts Chronic Kidney Disease. J Clin Med 2020; 9:jcm9072289. [PMID: 32708515 PMCID: PMC7408930 DOI: 10.3390/jcm9072289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023] Open
Abstract
Low high-density lipoprotein-cholesterol (HDL-c) is the most remarkable lipid trait both in mild-to-moderate chronic kidney disease (CKD) patients as well as in advanced renal disease stages, and we have previously shown that reduced lecithin:cholesterol acyltransferase (LCAT) concentration is a major determinant of the low HDL phenotype. In the present study, we test the hypothesis that reduced LCAT concentration in CKD contributes to the progression of renal damage. The study includes two cohorts of subjects selected from the PLIC study: a cohort of 164 patients with CKD (NefroPLIC cohort) and a cohort of 164 subjects selected from the PLIC participants with a basal estimated glomerular filtration rate (eGFR) > 60 mL/min/1.73 m2 (PLIC cohort). When the NefroPLIC patients were categorized according to the LCAT concentration, patients in the 1st tertile showed the highest event rate at follow-up with an event hazard ratio significantly higher compared to the 3rd LCAT tertile. Moreover, in the PLIC cohort, subjects in the 1st LCAT tertile showed a significantly faster impairment of kidney function compared to subjects in the 3rd LCAT tertile. Serum from subjects in the 1st LCAT tertile promoted a higher reactive oxygen species (ROS) production in renal cells compared to serum from subjects in the third LCAT tertile, and this effect was contrasted by pre-incubation with recombinant human LCAT (rhLCAT). The present study shows that reduced plasma LCAT concentration predicts CKD progression over time in patients with renal dysfunction, and, even more striking, it predicts the impairment of kidney function in the general population.
Collapse
Affiliation(s)
- Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
| | - Ivano Baragetti
- Department of Nephrology and Dialysis, Ospedale Bassini, ASST Nord Milano-Cinisello Balsamo, 20092 Milano, Italy;
| | - Liliana Grigore
- S.I.S.A. Centro per lo Studio della Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, 20092 Milano, Italy; (L.G.); (F.P.)
- IRCCS Ospedale Multimedica, Sesto San Giovanni, 20099 Milano, Italy
| | - Fabio Pellegatta
- S.I.S.A. Centro per lo Studio della Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, 20092 Milano, Italy; (L.G.); (F.P.)
- IRCCS Ospedale Multimedica, Sesto San Giovanni, 20099 Milano, Italy
| | - Alberico L. Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy;
- IRCCS Ospedale Multimedica, Sesto San Giovanni, 20099 Milano, Italy
- Correspondence: (A.L.C.); (G.D.N.); (L.C.); Tel.: +39-0250318302 (A.L.C.); +39-0250318313 (G.D.N.); +39-0250319906 (L.C.); Fax: +39-0250318386 (A.L.C.); +39-0250318386 (G.D.N.); +39-0250319900 (L.C.)
| | - Giuseppe Danilo Norata
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy;
- S.I.S.A. Centro per lo Studio della Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, 20092 Milano, Italy; (L.G.); (F.P.)
- Correspondence: (A.L.C.); (G.D.N.); (L.C.); Tel.: +39-0250318302 (A.L.C.); +39-0250318313 (G.D.N.); +39-0250319906 (L.C.); Fax: +39-0250318386 (A.L.C.); +39-0250318386 (G.D.N.); +39-0250319900 (L.C.)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
- Correspondence: (A.L.C.); (G.D.N.); (L.C.); Tel.: +39-0250318302 (A.L.C.); +39-0250318313 (G.D.N.); +39-0250319906 (L.C.); Fax: +39-0250318386 (A.L.C.); +39-0250318386 (G.D.N.); +39-0250319900 (L.C.)
| |
Collapse
|
31
|
Norum KR, Remaley AT, Miettinen HE, Strøm EH, Balbo BEP, Sampaio CATL, Wiig I, Kuivenhoven JA, Calabresi L, Tesmer JJ, Zhou M, Ng DS, Skeie B, Karathanasis SK, Manthei KA, Retterstøl K. Lecithin:cholesterol acyltransferase: symposium on 50 years of biomedical research from its discovery to latest findings. J Lipid Res 2020; 61:1142-1149. [PMID: 32482717 PMCID: PMC7397740 DOI: 10.1194/jlr.s120000720] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
LCAT converts free cholesterol to cholesteryl esters in the process of reverse cholesterol transport. Familial LCAT deficiency (FLD) is a genetic disease that was first described by Kaare R. Norum and Egil Gjone in 1967. This report is a summary from a 2017 symposium where Dr. Norum recounted the history of FLD and leading experts on LCAT shared their results. The Tesmer laboratory shared structural findings on LCAT and the close homolog, lysosomal phospholipase A2. Results from studies of FLD patients in Finland, Brazil, Norway, and Italy were presented, as well as the status of a patient registry. Drs. Kuivenhoven and Calabresi presented data from carriers of genetic mutations suggesting that FLD does not necessarily accelerate atherosclerosis. Dr. Ng shared that LCAT-null mice were protected from diet-induced obesity, insulin resistance, and nonalcoholic fatty liver disease. Dr. Zhou presented multiple innovations for increasing LCAT activity for therapeutic purposes, whereas Dr. Remaley showed results from treatment of an FLD patient with recombinant human LCAT (rhLCAT). Dr. Karathanasis showed that rhLCAT infusion in mice stimulates cholesterol efflux and suggested that it could also enhance cholesterol efflux from macrophages. While the role of LCAT in atherosclerosis remains elusive, the consensus is that a continued study of both the enzyme and disease will lead toward better treatments for patients with heart disease and FLD.
Collapse
Affiliation(s)
- Kaare R Norum
- Department of Nutrition, University of Oslo, Oslo, Norway
| | | | - Helena E Miettinen
- Department of Medicine, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Erik H Strøm
- Departments of Pathology Oslo University Hospital, Oslo, Norway
| | - Bruno E P Balbo
- Division of Nephrology and Molecular Medicine Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Carlos A T L Sampaio
- Division of Nephrology and Molecular Medicine Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Ingrid Wiig
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - John J Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Mingyue Zhou
- Cardiometabolic Disorder Research, AMGEN, San Francisco, CA
| | - Dominic S Ng
- Department of Medicine, University of Toronto and Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Bjørn Skeie
- Anesthesiology, Oslo University Hospital, Oslo, Norway
| | | | - Kelly A Manthei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Kjetil Retterstøl
- Department of Nutrition, University of Oslo, Oslo, Norway .,Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Lipid Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To review recent lecithin:cholesterol acyltransferas (LCAT)-based therapeutic approaches for atherosclerosis, acute coronary syndrome, and LCAT deficiency disorders. RECENT FINDINGS A wide variety of approaches to using LCAT as a novel therapeutic target have been proposed. Enzyme replacement therapy with recombinant human LCAT is the most clinically advanced therapy for atherosclerosis and familial LCAT deficiency (FLD), with Phase I and Phase 2A clinical trials recently completed. Liver-directed LCAT gene therapy and engineered cell therapies are also another promising approach. Peptide and small molecule activators have shown efficacy in early-stage preclinical studies. Finally, lifestyle modifications, such as fat-restricted diets, cessation of cigarette smoking, and a diet rich in antioxidants may potentially suppress lipoprotein abnormalities in FLD patients and help preserve LCAT activity and renal function but have not been adequately tested. SUMMARY Preclinical and early-stage clinical trials demonstrate the promise of novel LCAT therapies as HDL-raising agents that may be used to treat not only FLD but potentially also atherosclerosis and other disorders with low or dysfunctional HDL.
Collapse
Affiliation(s)
- Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
- NeoProgen, Baltimore, Maryland, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
| |
Collapse
|
33
|
Amar MJA, Freeman LA, Nishida T, Sampson ML, Pryor M, Vaisman BL, Neufeld EB, Karathanasis SK, Remaley AT. LCAT protects against Lipoprotein-X formation in a murine model of drug-induced intrahepatic cholestasis. Pharmacol Res Perspect 2020; 8:e00554. [PMID: 31893124 PMCID: PMC6935572 DOI: 10.1002/prp2.554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease characterized by low HDL-C levels, low plasma cholesterol esterification, and the formation of Lipoprotein-X (Lp-X), an abnormal cholesterol-rich lipoprotein particle. LCAT deficiency causes corneal opacities, normochromic normocytic anemia, and progressive renal disease due to Lp-X deposition in the glomeruli. Recombinant LCAT is being investigated as a potential therapy for this disorder. Several hepatic disorders, namely primary biliary cirrhosis, primary sclerosing cholangitis, cholestatic liver disease, and chronic alcoholism also develop Lp-X, which may contribute to the complications of these disorders. We aimed to test the hypothesis that an increase in plasma LCAT could prevent the formation of Lp-X in other diseases besides FLD. We generated a murine model of intrahepatic cholestasis in LCAT-deficient (KO), wild type (WT), and LCAT-transgenic (Tg) mice by gavaging mice with alpha-naphthylisothiocyanate (ANIT), a drug well known to induce intrahepatic cholestasis. Three days after the treatment, all mice developed hyperbilirubinemia and elevated liver function markers (ALT, AST, Alkaline Phosphatase). The presence of high levels of LCAT in the LCAT-Tg mice, however, prevented the formation of Lp-X and other plasma lipid abnormalities in WT and LCAT-KO mice. In addition, we demonstrated that multiple injections of recombinant human LCAT can prevent significant accumulation of Lp-X after ANIT treatment in WT mice. In summary, LCAT can protect against the formation of Lp-X in a murine model of cholestasis and thus recombinant LCAT could be a potential therapy to prevent the formation of Lp-X in other diseases besides FLD.
Collapse
Affiliation(s)
- Marcelo J. A. Amar
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Lita A. Freeman
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Takafumi Nishida
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Maureen L. Sampson
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Milton Pryor
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Boris L. Vaisman
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Edward B. Neufeld
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Sotirios K. Karathanasis
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
- Cardiovascular and Metabolic Disease SectionMedImmuneGaithersburgMDUSA
- NeoProgenBaltimoreMDUSA
| | - Alan T. Remaley
- Lipoprotein Metabolism SectionTranslational Vascular Medicine BranchNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
34
|
Structural analysis of lecithin:cholesterol acyltransferase bound to high density lipoprotein particles. Commun Biol 2020; 3:28. [PMID: 31942029 PMCID: PMC6962161 DOI: 10.1038/s42003-019-0749-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.
Collapse
|
35
|
Hegele RA, Borén J, Ginsberg HN, Arca M, Averna M, Binder CJ, Calabresi L, Chapman MJ, Cuchel M, von Eckardstein A, Frikke-Schmidt R, Gaudet D, Hovingh GK, Kronenberg F, Lütjohann D, Parhofer KG, Raal FJ, Ray KK, Remaley AT, Stock JK, Stroes ES, Tokgözoğlu L, Catapano AL. Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol 2020; 8:50-67. [PMID: 31582260 DOI: 10.1016/s2213-8587(19)30264-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022]
Abstract
Genome sequencing and gene-based therapies appear poised to advance the management of rare lipoprotein disorders and associated dyslipidaemias. However, in practice, underdiagnosis and undertreatment of these disorders are common, in large part due to interindividual variability in the genetic causes and phenotypic presentation of these conditions. To address these challenges, the European Atherosclerosis Society formed a task force to provide practical clinical guidance focusing on patients with extreme concentrations (either low or high) of plasma low-density lipoprotein cholesterol, triglycerides, or high-density lipoprotein cholesterol. The task force also recognises the scarcity of quality information regarding the prevalence and outcomes of these conditions. Collaborative registries are needed to improve health policy for the care of patients with rare dyslipidaemias.
Collapse
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marcello Arca
- Department of Internal Medicine and Allied Sciences, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), Sorbonne University and Pitié-Salpétrière University Hospital, Paris, France
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, Montreal, QC, Canada; ECOGENE, Clinical and Translational Research Center, Chicoutimi, QC, Canada; Lipid Clinic, Chicoutimi Hospital, Chicoutimi, QC, Canada
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Klaus G Parhofer
- Medizinische Klinik IV-Grosshadern, University of Munich, Munich, Germany
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - Erik S Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
36
|
LCAT, ApoD, and ApoA1 Expression and Review of Cholesterol Deposition in the Cornea. Biomolecules 2019; 9:biom9120785. [PMID: 31779197 PMCID: PMC6995527 DOI: 10.3390/biom9120785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is an enzyme secreted by the liver and circulates with high-density lipoprotein (HDL) in the blood. The enzyme esterifies plasma cholesterol and increases the capacity of HDL to carry and potentially remove cholesterol from tissues. Cholesterol accumulates within the extracellular connective tissue matrix of the cornea stroma in individuals with genetic deficiency of LCAT. LCAT can be activated by apolipoproteins (Apo) including ApoD and ApoA1. ApoA1 also mediates cellular synthesis of HDL. This study examined the expression of LCAT by epithelial cells, keratocytes, and endothelial cells, the cell types that comprise from anterior to posterior the three layers of the cornea. LCAT and ApoD were immunolocalized to all three cell types within the cornea, while ApoA1 was immunolocalized to keratocytes and endothelium but not epithelium. In situ hybridization was used to detect LCAT, ApoD, and ApoA1 mRNA to learn what cell types within the cornea synthesize these proteins. No corneal cells showed mRNA for ApoA1. Keratocytes and endothelium both showed ApoD mRNA, but epithelium did not. Epithelium and endothelium both showed LCAT mRNA, but despite the presence of LCAT protein in keratocytes, keratocytes did not show LCAT mRNA. RNA sequencing analysis of serum-cultured dedifferentiated keratocytes (commonly referred to as corneal stromal fibroblasts) revealed the presence of both LCAT and ApoD (but not ApoA1) mRNA, which was accompanied by their respective proteins detected by immunolabeling of the cultured keratocytes and Western blot analysis of keratocyte lysates. The results indicate that keratocytes in vivo show both ApoA1 and LCAT proteins, but do not synthesize these proteins. Rather, keratocytes in vivo must take up ApoA1 and LCAT from the corneal interstitial tissue fluid.
Collapse
|
37
|
Abstract
Both low and very high levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of atherosclerotic cardiovascular disease (ASCVD) and shorten life expectancy. Low and high levels of HDL‑C are often caused by underlying diseases, lifestyle or medication, which should primarily be excluded. Much less frequently, monogenic diseases due to mutations in the APOA1, ABCA1 and LCAT genes are the cause of very low or unmeasurable HDL‑C levels or in the CETP, LIPC and SCARB1 genes for very high HDL‑C values. Genetic and detailed biochemical diagnostics should be considered, especially in cases of absolute HDL deficiency, early onset ASCVD or the presence of clinical symptoms or laboratory values characteristic for deficiencies of apolipoprotein A‑I (ApoA-I), lecithin cholesterol acyltransferase (LCAT) or Tangier disease. These included corneal opacities, xanthomas, large tonsils, hepatomegaly, peripheral neuropathy, proteinuria, anemia or thrombocytopenia. Sequencing of the APOA1 gene should also be considered in familial amyloidosis. There is no specific treatment for monogenic HDL diseases. Cholesterol and blood pressure lowering are indicated for the prevention of cardiovascular and renal complications.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institut für Klinische Chemie, Universitätsspital Zürich und Universität Zürich, Rämistrasse 100, 8091, Zürich, Schweiz.
| |
Collapse
|
38
|
Lipid Profile Rather Than the LCAT Mutation Explains Renal Disease in Familial LCAT Deficiency. J Clin Med 2019; 8:jcm8111860. [PMID: 31684177 PMCID: PMC6912718 DOI: 10.3390/jcm8111860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Renal complications are the major cause of morbidity and mortality in patients with familial lecithin–cholesterol acyltransferase (LCAT) deficiency (FLD). We report three FLD patients, two of them siblings—only one of whom developed renal disease—and the third case being a young man with early renal disease. The aim of this study was to analyze the clinical characteristics and possible mechanisms associated with renal disease in these patients. Plasma lipid levels, LCAT activity, lipoprotein particle profile by NMR and FPLC, free and esterified cholesterol, presence of lipoprotein X (LpX) and DNA sequencing in the three FLD patients have been determined. The three cases presented clinical characteristics of FLD, although only one of the siblings developed renal disease, at 45 years of age, while the other patient developed the disease in his youth. Genetic analysis revealed new missense homozygous mutations, p.(Ile202Thr) in both siblings and p.(Arg171Glu) in the other patient. Lipoprotein particle analysis showed that the two patients with renal disease presented higher numbers of small very low-density lipoprotein (VLDL) and a higher concentration of triglycerides in VLDL. This study reports three new cases of LCAT deficiency, not previously described. Renal disease is not only dependent on LCAT deficiency, and could be due to the presence of VLDL particles, which are rich in triglycerides, free cholesterol and LpX.
Collapse
|
39
|
Detection of Lipoprotein X (LpX): A challenge in patients with severe hypercholesterolaemia. J Med Biochem 2019; 39:283-289. [PMID: 33269016 DOI: 10.2478/jomb-2019-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/28/2019] [Indexed: 01/30/2023] Open
Abstract
Background Lipoprotein X (LpX) is an abnormal lipoprotein fraction, which can be detected in patients with severe hypercholesterolaemia and cholestatic liver disease. LpX is composed largely of phospholipid and free cholesterol, with small amounts of triglyceride, cholesteryl ester and protein. There are no widely available methods for direct measurement of LpX in routine laboratory practice. We present the heterogeneity of clinical and laboratory manifestations of the presence of LpX, a phenomenon which hinders LpX detection. Methods The study was conducted on a 26-year-old female after liver transplantation (LTx) with severely elevated total cholesterol (TC) of 38 mmol/L and increased cholestatic liver enzymes. TC, free cholesterol (FC), cholesteryl esters (CE), triglycerides, phospholipids, HDL-C, LDL-C, and apolipoproteins AI and B were measured. TC/apoB and FC:CE ratios were calculated. Lipoprotein electrophoresis was performed using a commercially available kit and laboratory-prepared agarose gel. Results Commercially available electrophoresis failed to demonstrate the presence of LpX. Laboratory-prepared gel clearly revealed the presence of lipoproteins with γ mobility, characteristic of LpX. The TC/apoB ratio was elevated and the CE level was reduced, confirming the presence of LpX. Regular lipoprotein apheresis was applied as the method of choice in LpX disease and a bridge to reLTx due to chronic liver insufficiency. Conclusions The detection of LpX is crucial as it may influence the method of treatment. As routinely available biochemical laboratory tests do not always indicate the presence of LpX, in severe hypercholesterolaemia with cholestasis, any discrepancy between electrophoresis and biochemical tests should raise suspicions of LpX disease.
Collapse
|
40
|
Neufeld EB, Sato M, Gordon SM, Durbhakula V, Francone N, Aponte A, Yilmaz G, Sviridov D, Sampson M, Tang J, Pryor M, Remaley AT. ApoA-I-Mediated Lipoprotein Remodeling Monitored with a Fluorescent Phospholipid. BIOLOGY 2019; 8:E53. [PMID: 31336888 PMCID: PMC6784057 DOI: 10.3390/biology8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
We describe simple, sensitive and robust methods to monitor lipoprotein remodeling and cholesterol and apolipoprotein exchange, using fluorescent Lissamine Rhodamine B head-group tagged phosphatidylethanolamine (*PE) as a lipoprotein reference marker. Fluorescent Bodipy cholesterol (*Chol) and *PE directly incorporated into whole plasma lipoproteins in proportion to lipoprotein cholesterol and phospholipid mass, respectively. *Chol, but not *PE, passively exchanged between isolated plasma lipoproteins. Fluorescent apoA-I (*apoA-I) specifically bound to high-density lipoprotein (HDL) and remodeled *PE- and *Chol-labeled synthetic lipoprotein-X multilamellar vesicles (MLV) into a pre-β HDL-like particle containing *PE, *Chol, and *apoA-I. Fluorescent MLV-derived *PE specifically incorporated into plasma HDL, whereas MLV-derived *Chol incorporation into plasma lipoproteins was similar to direct *Chol incorporation, consistent with apoA-I-mediated remodeling of fluorescent MLV to HDL with concomitant exchange of *Chol between lipoproteins. Based on these findings, we developed a model system to study lipid transfer by depositing fluorescent *PE and *Chol-labeled on calcium silicate hydrate crystals, forming dense lipid-coated donor particles that are readily separated from acceptor lipoprotein particles by low-speed centrifugation. Transfer of *PE from donor particles to mouse plasma lipoproteins was shown to be HDL-specific and apoA-I-dependent. Transfer of donor particle *PE and *Chol to HDL in whole human plasma was highly correlated. Taken together, these studies suggest that cell-free *PE efflux monitors apoA-I functionality.
Collapse
Affiliation(s)
- Edward B Neufeld
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Masaki Sato
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott M Gordon
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinay Durbhakula
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Francone
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gizem Yilmaz
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Fountoulakis N, Lioudaki E, Lygerou D, Dermitzaki EK, Papakitsou I, Kounali V, Holleboom AG, Stratigis S, Belogianni C, Syngelaki P, Stratakis S, Evangeliou A, Gakiopoulou H, Kuivenhoven JA, Wevers R, Dafnis E, Stylianou K. The P274S Mutation of Lecithin-Cholesterol Acyltransferase (LCAT) and Its Clinical Manifestations in a Large Kindred. Am J Kidney Dis 2019; 74:510-522. [PMID: 31103331 DOI: 10.1053/j.ajkd.2019.03.422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/02/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE & OBJECTIVE Lecithin-cholesterol acyltransferase (LCAT) catalyzes the maturation of high-density lipoprotein. Homozygosity for loss-of-function mutations causes familial LCAT deficiency (FLD), characterized by corneal opacities, anemia, and renal involvement. This study sought to characterize kidney biopsy findings and clinical outcomes in a family with FLD. STUDY DESIGN Prospective observational study. SETTING & PARTICIPANTS 2 (related) index patients with clinically apparent FLD were initially identified. 110 of 122 family members who consented to genetic analysis were also studied. PREDICTORS Demographic and laboratory parameters (including lipid profiles and LCAT activity) and full sequence analysis of the LCAT gene. Kidney histologic examination was performed with samples from 6 participants. OUTCOMES Cardiovascular and renal events during a median follow-up of 12 years. Estimation of annual rate of decline in glomerular filtration rate. ANALYTICAL APPROACH Analysis of variance, linear regression analysis, and Fine-Gray competing-risk survival analysis. RESULTS 9 homozygous, 57 heterozygous, and 44 unaffected family members were identified. In all affected individuals, full sequence analysis of the LCAT gene revealed a mutation (c.820C>T) predicted to cause a proline to serine substitution at amino acid 274 (P274S). Homozygosity caused a complete loss of LCAT activity. Kidney biopsy findings demonstrated lipid deposition causing glomerular basement membrane thickening, mesangial expansion, and "foam-cell" infiltration of kidney tissue. Tubular atrophy, glomerular sclerosis, and complement fixation were associated with worse kidney outcomes. Estimated glomerular filtration rate deteriorated among homozygous family members at an average annual rate of 3.56 mL/min/1.73 m2. The incidence of cardiovascular and renal complications was higher among homozygous family members compared with heterozygous and unaffected members. Mild thrombocytopenia was a common finding among homozygous participants. LIMITATIONS The presence of cardiovascular disease was mainly based on medical history. CONCLUSIONS The P274S LCAT mutation was found to cause FLD with renal involvement. Tubular atrophy, glomerular sclerosis, and complement fixation were associated with a worse renal prognosis.
Collapse
Affiliation(s)
| | - Eirini Lioudaki
- Nephrology Department, Heraklion University Hospital, Crete, Greece
| | - Dimitra Lygerou
- Nephrology Department, Heraklion University Hospital, Crete, Greece
| | | | | | - Vasiliki Kounali
- Nephrology Department, Heraklion University Hospital, Crete, Greece
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Spyros Stratigis
- Nephrology Department, Heraklion University Hospital, Crete, Greece
| | | | | | | | - Athanasios Evangeliou
- Papageorgiou General Hospital, Department of Pediatrics IV, Aristotle University of Thessaloniki, Thessalonika
| | - Hariklia Gakiopoulou
- Pathology Department, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ron Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eugene Dafnis
- Nephrology Department, Heraklion University Hospital, Crete, Greece
| | - Kostas Stylianou
- Nephrology Department, Heraklion University Hospital, Crete, Greece.
| |
Collapse
|
42
|
Freeman LA, Shamburek RD, Sampson ML, Neufeld EB, Sato M, Karathanasis SK, Remaley AT. Plasma lipoprotein-X quantification on filipin-stained gels: monitoring recombinant LCAT treatment ex vivo. J Lipid Res 2019; 60:1050-1057. [PMID: 30808683 PMCID: PMC6495165 DOI: 10.1194/jlr.d090233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Familial LCAT deficiency (FLD) patients accumulate lipoprotein-X (LP-X), an abnormal nephrotoxic lipoprotein enriched in free cholesterol (FC). The low neutral lipid content of LP-X limits the ability to detect it after separation by lipoprotein electrophoresis and staining with Sudan Black or other neutral lipid stains. A sensitive and accurate method for quantitating LP-X would be useful to examine the relationship between plasma LP-X and renal disease progression in FLD patients and could also serve as a biomarker for monitoring recombinant human LCAT (rhLCAT) therapy. Plasma lipoproteins were separated by agarose gel electrophoresis and cathodal migrating bands corresponding to LP-X were quantified after staining with filipin, which fluoresces with FC, but not with neutral lipids. rhLCAT was incubated with FLD plasma and lipoproteins and LP-X changes were analyzed by agarose gel electrophoresis. Filipin detects synthetic LP-X quantitatively (linearity 20-200 mg/dl FC; coefficient of variation <20%) and sensitively (lower limit of quantitation <1 mg/ml FC), enabling LP-X detection in FLD, cholestatic, and even fish-eye disease patients. rhLCAT incubation with FLD plasma ex vivo reduced LP-X dose dependently, generated HDL, and decreased lipoprotein FC content. Filipin staining after agarose gel electrophoresis sensitively detects LP-X in human plasma and accurately quantifies LP-X reduction after rhLCAT incubation ex vivo.
Collapse
Affiliation(s)
- Lita A Freeman
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD.
| | - Robert D Shamburek
- Cardiovascular Branch National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD
| | | | - Edward B Neufeld
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD
| | - Masaki Sato
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD
| | | | - Alan T Remaley
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD; the NIH Clinical Center National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Youn JS, Ham YM, Yoon WJ, Choi HC, Lee JE, Cho B, Kim JY. Cynanchum wilfordii Etanolic Extract Controls Blood Cholesterol: A Double-blind, Randomized, Placebo-Controlled, Parallel Trial. Nutrients 2019; 11:E836. [PMID: 31013851 PMCID: PMC6521060 DOI: 10.3390/nu11040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022] Open
Abstract
We evaluated the effects of Cynanchum wilfordii (CW) ethanolic extract on blood cholesterol levels in adults with high low-density lipoprotein cholesterol (LDL-C) levels. In a double-blind, randomized, placebo-controlled, parallel trial, 84 subjects were recruited. Participants were randomly divided into two groups with a low-dose (300 mg/d) or high-dose (600 mg/d) of CW. Levels of very low-density lipoprotein (p = 0.022) and triglycerides (p = 0.022) were significantly lower in the low-dose CW group than in the placebo group after 8 weeks. In a subgroup of participants with LDL-C≥ 150 mg/dL (n = 33), there was a significant decrease in total cholesterol (low-dose, p = 0.012; high-dose, p = 0.021), apolipoprotein B (low-dose, p = 0.022; high-dose, p = 0.016), and cholesteryl ester transfer protein (low-dose, p = 0.037; high-dose, p = 0.016) after 8 weeks of CW. The correlation between changes in total cholesterol and baseline LDL-C levels was significant in the groups that received both doses of CW (low-dose, p = 0.010; high-dose, p = 0.015). These results show that the CW ethanolic extract can regulate blood cholesterol in subjects with LDL-C≥ 150 mg/dL.
Collapse
Affiliation(s)
- Ji Sun Youn
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| | - Young Min Ham
- Biodiversity Research Institute, Jeju Technopark, Seogwipo, Jeju 63608, Korea.
| | - Weon-Jong Yoon
- Biodiversity Research Institute, Jeju Technopark, Seogwipo, Jeju 63608, Korea.
| | - Ho-Chun Choi
- Healthcare system Gangnam Center, Seoul National University Hospital, Seoul 06236, Korea.
| | - Ji Eun Lee
- Department of Family Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea.
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Lipoprotein-X (Lp-X) is an abnormal lipoprotein containing abundant free cholesterol and phospholipids, as well as some apolipoprotein E (apoE). Serum Lp-X increases in patients with cholestasis and lecithin-cholesterol acyltransferase deficiency, as well as in those receiving intravenous lipid emulsion. Lp-X is often associated with skin xanthomas in cholestatic patients. However, earlier studies showed that Lp-X is not taken up by murine macrophages, but exerts antiatherogenic actions. In this review, we discuss the heterogeneity of Lp-X and its potential atherogenicity. RECENT FINDINGS Mass spectrometry revealed that Lp-X of cholestatic patients is similar in lipid composition to low-density lipoprotein (LDL) and high-density lipoprotein, but not to bile acids, suggesting that Lp-X is synthesized in the liver. Palmar xanthomas appear in patients with cholestasis, but regress over months after improvement of hypercholesterolemia. Lp-X isolated from cholestatic patients is rich in apoE, and causes more lipid accumulation than oxidized LDL and acetyl LDL in human monocyte-derived macrophages. SUMMARY Lp-X is heterogeneous in apoE content. Lp-X is taken up in cholestatic patients by apoE-recognizing lipoprotein receptors. Further research is warranted to fully understand the atherogenicity of Lp-X and the clinical significance of elevated Lp-X concentrations, particularly in cholestatic patients.
Collapse
Affiliation(s)
- Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
45
|
Fellin R, Manzato E. Lipoprotein-X fifty years after its original discovery. Nutr Metab Cardiovasc Dis 2019; 29:4-8. [PMID: 30503707 DOI: 10.1016/j.numecd.2018.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
AIMS To review the formation, catabolism, and the possible atherogenic properties of Lp-X. DATA SYNTHESIS The conversion of cholesterol to bile acids is regulated by several mechanisms including cholesterol 7 alpha hydroxylase, fibroblast growth factor 19, and farnesoid X receptors. During cholestasis these mechanisms are altered and there is an accumulation of bile acids and cholesterol in plasma. The hypercholesterolemia observed in cholestasis is due to the presence of an anomalous lipoprotein called lipoprotein-X (Lp-X). Lp-X is a lipoprotein rich in phospholipid and free cholesterol present in plasma of patients with cholestasis and, with some variations, in patients with lecithin-cholesterol-acyl-transferase deficiency (LCAT), and after lipid infusion. Lp-X is formed from a bile lipoprotein moving to the blood vessels where it incorporates small quantities of triglycerides, apo-C and esterified cholesterol and becomes a "mature" Lp-X. The activity of the phosphatidilcholine canalicular transporter Mdr2 P-glycoprotein (homologous to the human ABCB4) is essential for LpX appearance, since its suppression abolishes Lp-X formation. However, the concentration of Lp-X in plasma is determined also by the degree of the cholestasis, the residual liver function, and the LCAT deficiency. The Lp-X catabolism seems to be mediated by the reticuloendothelial system and possibly the kidney. CONCLUSIONS Lp-X might be considered a defense mechanism against the toxic effect of free cholesterol in cholestasis. The frequency of cardiovascular events in patients affected by primary biliary cholangitis, in whom the Lp-X is present in high concentration, are not increased. Further studies could now clarify the remaining open questions on the role of Lp-X in the dyslipidemia of cholestasis.
Collapse
Affiliation(s)
- R Fellin
- Department of Internal Medicine, University of Ferrara, Italy
| | - E Manzato
- Department of Medicine, University of Padua, Italy.
| |
Collapse
|
46
|
Vaisman BL, Neufeld EB, Freeman LA, Gordon SM, Sampson ML, Pryor M, Hillman E, Axley MJ, Karathanasis SK, Remaley AT. LCAT Enzyme Replacement Therapy Reduces LpX and Improves Kidney Function in a Mouse Model of Familial LCAT Deficiency. J Pharmacol Exp Ther 2018; 368:423-434. [PMID: 30563940 DOI: 10.1124/jpet.118.251876] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Familial LCAT deficiency (FLD) is due to mutations in lecithin:cholesterol acyltransferase (LCAT), a plasma enzyme that esterifies cholesterol on lipoproteins. FLD is associated with markedly reduced levels of plasma high-density lipoprotein and cholesteryl ester and the formation of a nephrotoxic lipoprotein called LpX. We used a mouse model in which the LCAT gene is deleted and a truncated version of the SREBP1a gene is expressed in the liver under the control of a protein-rich/carbohydrate-low (PRCL) diet-regulated PEPCK promoter. This mouse was found to form abundant amounts of LpX in the plasma and was used to determine whether treatment with recombinant human LCAT (rhLCAT) could prevent LpX formation and renal injury. After 9 days on the PRCL diet, plasma total and free cholesterol, as well as phospholipids, increased 6.1 ± 0.6-, 9.6 ± 0.9-, and 6.7 ± 0.7-fold, respectively, and liver cholesterol and triglyceride concentrations increased 1.7 ± 0.4- and 2.8 ±0.9-fold, respectively, compared with chow-fed animals. Transmission electron microscopy revealed robust accumulation of lipid droplets in hepatocytes and the appearance of multilamellar LpX particles in liver sinusoids and bile canaliculi. In the kidney, LpX was found in glomerular endothelial cells, podocytes, the glomerular basement membrane, and the mesangium. The urine albumin/creatinine ratio increased 30-fold on the PRCL diet compared with chow-fed controls. Treatment of these mice with intravenous rhLCAT restored the normal lipoprotein profile, eliminated LpX in plasma and kidneys, and markedly decreased proteinuria. The combined results suggest that rhLCAT infusion could be an effective therapy for the prevention of renal disease in patients with FLD.
Collapse
Affiliation(s)
- Boris L Vaisman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Edward B Neufeld
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Lita A Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Scott M Gordon
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Maureen L Sampson
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Milton Pryor
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Emily Hillman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Milton J Axley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (B.L.V., E.B.N., L.A.F., S.M.G., M.L.S., M.P., E.H., A.T.R.) and MedImmune, Gaithersburg, Maryland (M.J.A., S.K.K.)
| |
Collapse
|
47
|
A proteomic approach to identify novel disease biomarkers in LCAT deficiency. J Proteomics 2018; 198:113-118. [PMID: 30529744 DOI: 10.1016/j.jprot.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
Genetic LCAT deficiency is a rare recessive autosomal disease due to loss-of-function mutations in the gene coding for the enzyme lecithin:cholesterol acyltransferase (LCAT). Homozygous carriers are characterized by corneal opacity, haemolytic anaemia and renal disease, which represent the first cause of morbidity and mortality in these subjects. Diagnostic and prognostic markers capable of early detecting declining kidney function in these subjects are not available, and the specific serum or urine proteomic signature of LCAT deficient carriers has never been assessed. Taking advantage of a proteomic approach, we performed 2-DE analysis of carriers' plasma and identified proteins present at different concentration in samples from homozygous carriers. Our data confirm the well-known alterations in the concentration of circulating apolipoproteins, with a statistically significant decrease of both apoA-I and apoA-II and a statistically significant increase of apoC-III. Furthermore, we observed increased level of alpha-1-antitrypsin, zinc-alpha-2-glycoprotein and retinol-binding protein 4, and reduced level of clusterin and haptoglobin. Interestingly, only beta but not alpha subunit of haptoglobin is significant reduced in homozygous subjects. Despite the limited sample size, our findings set the basis for assessing the identified protein in a larger population and for correlating their levels with clinical markers of renal function and anaemia. SIGNIFICANCE: This investigation defines the effects of LCAT deficiency on the level of the major plasma proteins in homozygous and heterozygous carriers. Increase for some proteins, with different function, together with a drop for haptoglobin, and specifically for haptoglobin beta chains, are reported for the first time as part of a coherent signature. We are glad to have the opportunity to report our findings on this subject, which is one of the main interests for our research group, when Journal of Proteomics celebrates its 10th anniversary. With its various sections devoted to different areas of research, this journal is a privileged forum for publishing proteomic investigations without restrictions either in sample type or in technical approach. It is as well a privileged forum for reviewing literature data on various topics related to proteomics investigation, as colleagues in our research group have done over the years; by the way, a good share of the reviewed papers were as well reports published in Journal of Proteomics itself. The journal also offers opportunities for focused surveys through thematic issues devoted to a variety of subjects, timely selected for their current relevance in research; it was an honour for colleagues in our group to recently act as editors of one of those. Out of this diverse experience, we express our appreciation for the endeavour of Journal of Proteomics in its first 10 years of life - and wish identical and possibly greater success for the time to come.
Collapse
|
48
|
Manthei KA, Yang SM, Baljinnyam B, Chang L, Glukhova A, Yuan W, Freeman LA, Maloney DJ, Schwendeman A, Remaley AT, Jadhav A, Tesmer JJ. Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol. eLife 2018; 7:41604. [PMID: 30479275 PMCID: PMC6277198 DOI: 10.7554/elife.41604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/06/2018] [Indexed: 01/29/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients. Cholesterol is a fatty substance found throughout the body that is essential to our health. However, if too much cholesterol builds up in our blood vessels, it can cause blockages that lead to heart and kidney problems. The body removes excess cholesterol by sending out high-density lipoproteins (HDL) that capture the fatty molecules and carry them to the liver where they are eliminated. The first step in this process requires an enzyme called LCAT, which converts cholesterol into a form that HDL particles can efficiently pack and transport. The enzyme acts by interacting with HDL particles, and chemically joining cholesterol with another compound. Finding ways to make LCAT perform better and produce more HDL could improve treatments for heart disease. This could be particularly helpful to people with genetic changes that make LCAT defective. Several small molecules that ‘dial up’ the activity of LCAT have been identified, but how they act on the enzyme is not always well understood. Manthei et al. therefore set out to determine precisely how one such small activator promotes LCAT function. The experiments involved using a method known as crystallography to look at the structure of LCAT when it is attached to the small molecule. They also evaluated the activity of the enzyme and other aspects of the protein in the presence of the small molecule and HDL particles. Taken together, the results led Manthei et al. to suggest that the small molecule works by more efficiently bringing into LCAT the materials that this enzyme needs to create the transport-ready form of cholesterol. The small molecule also partially restored the activity of mutant LCAT found in human disease. This knowledge may help to design more drug-like chemicals to ‘boost’ the activity of LCAT and prevent heart and kidney disease, especially in people who carry a defective version of the enzyme.
Collapse
Affiliation(s)
- Kelly A Manthei
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Alisa Glukhova
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences and Biointerfaces Institute, University of Michigan, Ann Arbor, United States
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and Biointerfaces Institute, University of Michigan, Ann Arbor, United States
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - John Jg Tesmer
- Department of Biological Sciences, Purdue University, Indiana, United States
| |
Collapse
|
49
|
Oldoni F, Baldassarre D, Castelnuovo S, Ossoli A, Amato M, van Capelleveen J, Hovingh GK, De Groot E, Bochem A, Simonelli S, Barbieri S, Veglia F, Franceschini G, Kuivenhoven JA, Holleboom AG, Calabresi L. Complete and Partial Lecithin:Cholesterol Acyltransferase Deficiency Is Differentially Associated With Atherosclerosis. Circulation 2018; 138:1000-1007. [DOI: 10.1161/circulationaha.118.034706] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Federico Oldoni
- Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.A.K.)
| | - Damiano Baldassarre
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy (D.B.)
| | | | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| | - Mauro Amato
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
| | - Julian van Capelleveen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Eric De Groot
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Andrea Bochem
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| | - Simone Barbieri
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
| | - Guido Franceschini
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.A.K.)
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| |
Collapse
|
50
|
Hanna EV, Simonelli S, Chamney S, Ossoli A, Mullan RN. Paradoxical fall in proteinuria during pregnancy in an LCAT-deficient patient-A case report. J Clin Lipidol 2018; 12:1151-1156. [PMID: 30201532 DOI: 10.1016/j.jacl.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/03/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
A 29-year-old lady was diagnosed with lecithin:cholesterol acyltransferase (LCAT) deficiency having presented with bilateral corneal clouding, severely reduced high density lipoproteins cholesterol, and proteinuria. She is a compound heterozygote with two LCAT gene mutations, one of which is novel, c.321C>A in exon 3. Surprisingly, the level of proteinuria significantly improved during pregnancy, despite stopping the angiotensin-converting enzyme inhibitor. However, LCAT concentration and activity remained identical during pregnancy and postpartum. Her pregnancy was complicated by rising triglyceride levels from the second trimester requiring treatment with omega-3 fatty acid and fenofibrate. In the last trimester, a further complication arose when she became hypertensive and proteinuria worsened. She was diagnosed with pre-eclampsia and had an emergency cesarean section at 39 weeks delivering a healthy baby. This case adds to the knowledge of the pathophysiology of LCAT deficiency during pregnancy and will be useful in future patient management.
Collapse
Affiliation(s)
- Elinor V Hanna
- Department of Biochemistry, Antrim Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK.
| | - Sara Simonelli
- Department of Pharmacological and Biomolecular Sciences, Center E. Grossi Paoletti, Università degli Studi di Milano, Milano, Italy
| | - Sarah Chamney
- Department of Opthalmology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Alice Ossoli
- Department of Pharmacological and Biomolecular Sciences, Center E. Grossi Paoletti, Università degli Studi di Milano, Milano, Italy.
| | - Robert N Mullan
- Renal Unit, Antrim Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| |
Collapse
|