1
|
Wang Y, Fan Y, Zhou Y, Chen T, Xu S, Liu J, Li L. Oroxylin A, a broad‑spectrum anticancer agent, relieves monocrotaline‑induced pulmonary arterial hypertension by inhibiting the Warburg effect in rats. Mol Med Rep 2024; 30:195. [PMID: 39219283 PMCID: PMC11391512 DOI: 10.3892/mmr.2024.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from Scutellaria baicalensis, which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Non‑targeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCT‑PAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCT‑PAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCT‑induced PAH in rats by reducing the Warburg effect.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yamin Fan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanzi Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tianwang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Onida S, Lees HJ, Bergner R, Shalhoub J, Holmes E, Davies AH. 1H Nuclear Magnetic Resonance Spectroscopy Reveals Changes in Metabolic Phenotype Associated with Disease Stage in Patients with Chronic Venous Disease. Eur J Vasc Endovasc Surg 2024:S1078-5884(24)00811-6. [PMID: 39303804 DOI: 10.1016/j.ejvs.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Chronic venous disease (CVD) is a condition presenting a great burden to patients and society, with poorly characterised pathophysiology. Metabolic phenotyping can elucidate mechanisms of disease and identify candidate biomarkers. The aim of this study was to determine differences in the metabolic signature between symptomatic patients with CVD and asymptomatic volunteers using proton nuclear magnetic resonance spectroscopy (1H-NMR). METHODS This was a prospective case control study of consecutive patients with symptomatic CVD and asymptomatic volunteers recruited from a single centre. Participants underwent clinical assessment, venous duplex ultrasound, and blood and urine sampling. Disease stage was defined according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) classification. 1H-NMR experiments were performed, with data analysed via multivariable statistical techniques. RESULTS A total of 622 participants were recruited, including 517 symptomatic patients with CVD (telangiectasia [C1] 0.6%, varicose veins [C2] 48.5%, swelling [C3] 12.0%, skin changes [C4] 27.7%, healed or active ulceration [C5/6] 11.2%) and 105 asymptomatic participants (no disease [C0] 69.5%, telangiectasia [C1] 29.6%). Multivariable analysis revealed differences between the metabolic profile of the symptomatic CVD and asymptomatic groups, and between CEAP clinical classes in the CVD group. Serum aromatic amino acids positively correlated with increasing CEAP clinical class (p < .001). Urinary formate, creatinine, glycine, citrate, succinate, pyruvate, and 2-hydroxyisobutyrate negatively correlated with increasing CEAP clinical class (p < .001). These metabolites are involved in the tricarboxylic acid cycle, hypoxia inducible factor pathway, and one carbon metabolism. CONCLUSION Untargeted biofluid analysis via 1H-NMR has detected metabolites associated with the presence and severity of CVD, highlighting biological pathways of relevance and providing candidate biomarkers to explore in future research.
Collapse
Affiliation(s)
- Sarah Onida
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Hannah J Lees
- Section of Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK; Donald B. and Catherine C. Marron Cancer Metabolism Centre, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Richmond Bergner
- Section of Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Elaine Holmes
- Section of Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK; Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
3
|
Hemnes A, Fortune N, Simon K, Trenary IA, Shay S, Austin E, Young JD, Britain E, West J, Talati M. A multimodal approach identifies lactate as a central feature of right ventricular failure that is detectable in human plasma. Front Med (Lausanne) 2024; 11:1387195. [PMID: 39346939 PMCID: PMC11428650 DOI: 10.3389/fmed.2024.1387195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background In PAH metabolic abnormalities in multiple pathways are well-recognized features of right ventricular dysfunction, however, prior work has focused mainly on the use of a single "omic" modality to describe a single deranged pathway. We integrated metabolomic and epigenomic data using transcriptomics in failing and non-failing RVs from a rodent model to provide novel mechanistic insight and translated these findings to accessible human specimens by correlation with plasma from PAH patients. Methods Study was conducted in a doxycycline-inducible BMPR2 mutant mouse model of RV failure. Plasma was collected from controls and PAH patients. Transcriptomic and metabolomic analyses were done on mouse RV tissue and human plasma. For mouse RV, we layered metabolomic and transcriptomic data for multiple metabolic pathways and compared our findings with metabolomic and transcriptomic data obtained for human plasma. We confirmed our key findings in cultured cardiomyocyte cells with BMPR2 mutation. Results In failing mouse RVs, (1) in the glycolysis pathway, glucose is converted to lactate via aerobic glycolysis, but may also be utilized for glycogen, fatty acid, and nucleic acid synthesis, (2) in the fatty acid pathway, FAs are accumulated in the cytoplasm because the transfer of FAs to mitochondria is reduced, however, the ß-oxidation pathway is likely to be functional. (3) the TCA cycle is altered at multiple checkpoints and accumulates citrate, and the glutaminolysis pathway is not activated. In PAH patients, plasma metabolic and transcriptomic data indicated that unlike in the failing BMPR2 mutant RV, expression of genes and metabolites measured for the glycolysis pathway, FA pathway, TCA cycle, and glutaminolysis pathway were increased. Lactate was the only metabolite that was increased both in RV and circulation. We confirmed using a stable isotope of lactate that cultured cardiomyocytes with mutant BMPR2 show a modest increase in endogenous lactate, suggesting a possibility of an increase in lactate production by cardiomyocytes in failing BMPR2 mutant RV. Conclusion In the failing RV with mutant BMPR2, lactate is produced by RV cardiomyocytes and may be secreted out, thereby increasing lactate in circulation. Lactate can potentially serve as a marker of RV dysfunction in PAH, which warrants investigation.
Collapse
Affiliation(s)
- Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niki Fortune
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katie Simon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Evan Britain
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Wu D, Wang S, Wang F, Zhang Q, Zhang Z, Li X. Lactate dehydrogenase A (LDHA)-mediated lactate generation promotes pulmonary vascular remodeling in pulmonary hypertension. J Transl Med 2024; 22:738. [PMID: 39103838 PMCID: PMC11302077 DOI: 10.1186/s12967-024-05543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND High levels of lactate are positively associated with prognosis and mortality in pulmonary hypertension (PH). Lactate dehydrogenase A (LDHA) is a key enzyme for the production of lactate. This study is undertaken to investigate the role and molecular mechanisms of lactate and LDHA in PH. METHODS Lactate levels were measured by a lactate assay kit. LDHA expression and localization were detected by western blot and Immunofluorescence. Proliferation and migration were determined by CCK8, western blot, EdU assay and scratch-wound assay. The right heart catheterization and right heart ultrasound were measured to evaluate cardiopulmonary function. RESULTS In vitro, we found that lactate promoted proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) in an LDHA-dependent manner. In vivo, we found that LDHA knockdown reduced lactate overaccumulation in the lungs of mice exposed to hypoxia. Furthermore, LDHA knockdown ameliorated hypoxia-induced vascular remodeling and right ventricular dysfunction. In addition, the activation of Akt signaling by hypoxia was suppressed by LDHA knockdown both in vivo and in vitro. The overexpression of Akt reversed the inhibitory effect of LDHA knockdown on proliferation in PASMCs under hypoxia. Finally, LDHA inhibitor attenuated vascular remodeling and right ventricular dysfunction in Sugen/hypoxia mouse PH model, Monocrotaline (MCT)-induced rat PH model and chronic hypoxia-induced mouse PH model. CONCLUSIONS Thus, LDHA-mediated lactate production promotes pulmonary vascular remodeling in PH by activating Akt signaling pathway, suggesting the potential role of LDHA in regulating the metabolic reprogramming and vascular remodeling in PH.
Collapse
Affiliation(s)
- Daiqian Wu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, PR China
| | - Shuo Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, PR China
| | - Fengxian Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, 400042, PR China
| | - Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, PR China.
| | - Xingbing Li
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China.
| |
Collapse
|
5
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Zhang H, Leng S, Gao F, Kovalik JP, Wee HN, Chua KV, Ching J, Allen JC, Zhao X, Tan RS, Wu Q, Leiner T, Koh AS, Zhong L. Characteristics of pulmonary artery strain assessed by cardiovascular magnetic resonance imaging and associations with metabolomic pathways in human ageing. Front Cardiovasc Med 2024; 11:1346443. [PMID: 38486706 PMCID: PMC10937542 DOI: 10.3389/fcvm.2024.1346443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Background Pulmonary artery (PA) strain is associated with structural and functional alterations of the vessel and is an independent predictor of cardiovascular events. The relationship of PA strain to metabolomics in participants without cardiovascular disease is unknown. Methods In the current study, community-based older adults, without known cardiovascular disease, underwent simultaneous cine cardiovascular magnetic resonance (CMR) imaging, clinical examination, and serum sampling. PA global longitudinal strain (GLS) analysis was performed by tracking the change in distance from the PA bifurcation to the pulmonary annular centroid, using standard cine CMR images. Circulating metabolites were measured by cross-sectional targeted metabolomics analysis. Results Among n = 170 adults (mean age 71 ± 6.3 years old; 79 women), mean values of PA GLS were 16.2 ± 4.4%. PA GLS was significantly associated with age (β = -0.13, P = 0.017), heart rate (β = -0.08, P = 0.001), dyslipidemia (β = -2.37, P = 0.005), and cardiovascular risk factors (β = -2.49, P = 0.001). Alanine (β = -0.007, P = 0.01) and proline (β = -0.0009, P = 0.042) were significantly associated with PA GLS after adjustment for clinical risk factors. Medium and long-chain acylcarnitines were significantly associated with PA GLS (C12, P = 0.027; C12-OH/C10-DC, P = 0.018; C14:2, P = 0.036; C14:1, P = 0.006; C14, P = 0.006; C14-OH/C12-DC, P = 0.027; C16:3, P = 0.019; C16:2, P = 0.006; C16:1, P = 0.001; C16:2-OH, P = 0.016; C16:1-OH/C14:1-DC, P = 0.028; C18:1-OH/C16:1-DC, P = 0.032). Conclusion By conventional CMR, PA GLS was associated with aging and vascular risk factors among a contemporary cohort of older adults. Metabolic pathways involved in PA stiffness may include gluconeogenesis, collagen synthesis, and fatty acid oxidation.
Collapse
Affiliation(s)
- Hongzhou Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Fei Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | | | | | - Jianhong Ching
- Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | | | - Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Qinghua Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Angela S. Koh
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
8
|
Yegambaram M, Sun X, Lu Q, Jin Y, Ornatowski W, Soto J, Aggarwal S, Wang T, Tieu K, Gu H, Fineman JR, Black SM. Mitochondrial hyperfusion induces metabolic remodeling in lung endothelial cells by modifying the activities of electron transport chain complexes I and III. Free Radic Biol Med 2024; 210:183-194. [PMID: 37979892 DOI: 10.1016/j.freeradbiomed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE Pulmonary hypertension (PH) is a progressive disease with vascular remodeling as a critical structural alteration. We have previously shown that metabolic reprogramming is an early initiating mechanism in animal models of PH. This metabolic dysregulation has been linked to remodeling the mitochondrial network to favor fission. However, whether the mitochondrial fission/fusion balance underlies the metabolic reprogramming found early in PH development is unknown. METHODS Utilizing a rat early model of PH, in conjunction with cultured pulmonary endothelial cells (PECs), we utilized metabolic flux assays, Seahorse Bioassays, measurements of electron transport chain (ETC) complex activity, fluorescent microscopy, and molecular approaches to investigate the link between the disruption of mitochondrial dynamics and the early metabolic changes that occur in PH. RESULTS We observed increased fusion mediators, including Mfn1, Mfn2, and Opa1, and unchanged fission mediators, including Drp1 and Fis1, in a two-week monocrotaline-induced PH animal model (early-stage PH). We were able to establish a connection between increases in fusion mediator Mfn1 and metabolic reprogramming. Using an adenoviral expression system to enhance Mfn1 levels in pulmonary endothelial cells and utilizing 13C-glucose labeled substrate, we found increased production of 13C lactate and decreased TCA cycle metabolites, revealing a Warburg phenotype. The use of a 13C5-glutamine substrate showed evidence that hyperfusion also induces oxidative carboxylation. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels secondary to the disruption of cellular bioenergetics and higher levels of mitochondrial reactive oxygen species (mt-ROS). The elevation in mt-ROS correlated with attenuated ETC complexes I and III activities. Utilizing a mitochondrial-targeted antioxidant to suppress mt-ROS, limited HIF-1α protein levels, which reduced cellular glycolysis and reestablished mitochondrial membrane potential. CONCLUSIONS Our data connects mitochondrial fusion-mediated mt-ROS to the Warburg phenotype in early-stage PH development.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | | | - Jamie Soto
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - Saurabh Aggarwal
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
9
|
Bassareo PP, D’Alto M. Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology. Int J Mol Sci 2023; 24:13227. [PMID: 37686034 PMCID: PMC10487467 DOI: 10.3390/ijms241713227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michele D’Alto
- Pulmonary Hypertension Unit, Dipartimento di Cardiologia, Università della Campania “Luigi Vanvitelli”, Ospedale Monaldi, 80131 Naples, Italy;
| |
Collapse
|
10
|
Simpson CE, Ambade AS, Harlan R, Roux A, Graham D, Klauer N, Tuhy T, Kolb TM, Suresh K, Hassoun PM, Damico RL. Spatial and temporal resolution of metabolic dysregulation in the Sugen hypoxia model of pulmonary hypertension. Pulm Circ 2023; 13:e12260. [PMID: 37404901 PMCID: PMC10315560 DOI: 10.1002/pul2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.
Collapse
Affiliation(s)
- Catherine E. Simpson
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Anjira S. Ambade
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Robert Harlan
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Aurelie Roux
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - David Graham
- Johns Hopkins All Children's Hospital Molecular Determinants CoreSt. PetersburgFloridaUSA
| | - Neal Klauer
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Tijana Tuhy
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Todd M. Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Paul M. Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| | - Rachel L. Damico
- Johns Hopkins University Division of Pulmonary and Critical Care MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Lu Q, Sun X, Yegambaram M, Ornatowski W, Wu X, Wang H, Garcia-Flores A, Da Silva V, Zemskov EA, Tang H, Fineman JR, Tieu K, Wang T, Black SM. Nitration-mediated activation of the small GTPase RhoA stimulates cellular glycolysis through enhanced mitochondrial fission. J Biol Chem 2023; 299:103067. [PMID: 36841483 PMCID: PMC10060112 DOI: 10.1016/j.jbc.2023.103067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.
Collapse
Affiliation(s)
- Qing Lu
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | | | - Wojciech Ornatowski
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Hui Wang
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Alejandro Garcia-Flores
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Victoria Da Silva
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Evgeny A Zemskov
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Haiyang Tang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
12
|
Pi H, Xia L, Ralph DD, Rayner SG, Shojaie A, Leary PJ, Gharib SA. Metabolomic Signatures Associated With Pulmonary Arterial Hypertension Outcomes. Circ Res 2023; 132:254-266. [PMID: 36597887 PMCID: PMC9904878 DOI: 10.1161/circresaha.122.321923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a complex disease characterized by progressive right ventricular (RV) failure leading to significant morbidity and mortality. Investigating metabolic features and pathways associated with RV dilation, mortality, and measures of disease severity can provide insight into molecular mechanisms, identify subphenotypes, and suggest potential therapeutic targets. METHODS We collected data from a prospective cohort of PAH participants and performed untargeted metabolomic profiling on 1045 metabolites from circulating blood. Analyses were intended to identify metabolomic differences across a range of common metrics in PAH (eg, dilated versus nondilated RV). Partial least squares discriminant analysis was first applied to assess the distinguishability of relevant outcomes. Significantly altered metabolites were then identified using linear regression, and Cox regression models (as appropriate for the specific outcome) with adjustments for age, sex, body mass index, and PAH cause. Models exploring RV maladaptation were further adjusted for pulmonary vascular resistance. Pathway enrichment analysis was performed to identify significantly dysregulated processes. RESULTS A total of 117 participants with PAH were included. Partial least squares discriminant analysis showed cluster differentiation between participants with dilated versus nondilated RVs, survivors versus nonsurvivors, and across a range of NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, REVEAL 2.0 composite scores, and 6-minute-walk distances. Polyamine and histidine pathways were associated with differences in RV dilation, mortality, NT-proBNP, REVEAL score, and 6-minute walk distance. Acylcarnitine pathways were associated with NT-proBNP, REVEAL score, and 6-minute walk distance. Sphingomyelin pathways were associated with RV dilation and NT-proBNP after adjustment for pulmonary vascular resistance. CONCLUSIONS Distinct plasma metabolomic profiles are associated with RV dilation, mortality, and measures of disease severity in PAH. Polyamine, histidine, and sphingomyelin metabolic pathways represent promising candidates for identifying patients at high risk for poor outcomes and investigation into their roles as markers or mediators of disease progression and RV adaptation.
Collapse
Affiliation(s)
- Hongyang Pi
- University of Washington, Department of Medicine
| | - Lu Xia
- University of Washington, Department of Biostatistics
| | | | | | - Ali Shojaie
- University of Washington, Department of Biostatistics
| | - Peter J. Leary
- University of Washington, Department of Medicine
- University of Washington, Department of Epidemiology
| | | |
Collapse
|
13
|
He X, Jarrell ZR, Smith MR, Ly VT, Liang Y, Orr M, Go YM, Jones DP. Metabolomics of V 2O 5 nanoparticles and V 2O 5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol Appl Pharmacol 2023; 459:116327. [PMID: 36460058 PMCID: PMC9986994 DOI: 10.1016/j.taap.2022.116327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
He YY, Yan Y, Chen JW, Liu S, Hua L, Jiang X, Xu XQ, Lu D, Jing ZC, Yan FX, Han ZY. Plasma metabolomics in the perioperative period of defect repair in patients with pulmonary arterial hypertension associated with congenital heart disease. Acta Pharmacol Sin 2022; 43:1710-1720. [PMID: 34848852 PMCID: PMC9253009 DOI: 10.1038/s41401-021-00804-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The quality of life and survival rates of patients with pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) have been greatly improved by defect-repair surgery and personalized treatments. However, those who survive surgery may remain at risk of persistent PAH, the prognosis may be considerably worse than those unoperated. Dynamic monitoring of clinical measures during the perioperative period of shunt correction is therefore indispensable and of great value. In this study, we explored the plasma-metabolite profiling in 13 patients with CHD-PAH during the perioperative period of defect repair. Plasma was harvested at four time points: prior to cardiopulmonary bypass (CPB) after anesthesia (Pre), immediately after CPB (T0), 24 h (T24), and 48 h (T48) after defect repair. Untargeted metabolomics strategy based on UPLC Q-TOF MS was used to detect the metabolites. A total of 193 distinguishing metabolites were determined at different time points, enriched in pathways such as oxidation of branched-chain fatty acids. We found that 17 metabolite alterations were significantly correlated with the reduction in mean pulmonary arterial pressure (MPAP) at T48 versus Pre. Gradients in diastolic pulmonary arterial pressure (DPAP), bicarbonate in radial artery (aHCO3), bicarbonate in superior vena cava (svcHCO3), and the partial pressure of dissolved CO2 gas in radial artery (aPCO2) were positively correlated with MPAP gradient. Notably, these clinical-measure gradients were correlated with alterations in shunt-correction-associated metabolites. In total, 12 out of 17 identified metabolites in response to defect repair were increased at both T24 and T48 (all P < 0.05, except propionylcarnitine with P < 0.05 at T24). In contrast, galactinol dihydrate, guanosine monophosphate, and hydroxyphenylacetylglycine tended to decline at T24 and T48 (only galactinol dihydrate with P < 0.05 at T48). In conclusion, 17 metabolites that respond to shunt correction could be used as suitable noninvasive markers, and clinical measures, including DPAP, aHCO3, svcHCO3, and aPCO2, would be of great value in disease monitoring and evaluating future therapeutic interventions.
Collapse
Affiliation(s)
- Yang-yang He
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China ,grid.256922.80000 0000 9139 560XSchool of Pharmacy, Henan University, Kaifeng, 475004 China
| | - Yi Yan
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ji-wang Chen
- grid.185648.60000 0001 2175 0319Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Sheng Liu
- grid.506261.60000 0001 0706 7839Department of Surgery, FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Lu Hua
- grid.506261.60000 0001 0706 7839Department of Internal Medicine, FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Xin Jiang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Complex, Severe, and Rare Diseases, and Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Xi-qi Xu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Complex, Severe, and Rare Diseases, and Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Dan Lu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Complex, Severe, and Rare Diseases, and Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Zhi-cheng Jing
- grid.506261.60000 0001 0706 7839State Key Laboratory of Complex, Severe, and Rare Diseases, and Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Fu-xia Yan
- grid.506261.60000 0001 0706 7839Department of Anesthesiology, FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Zhi-yan Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China ,grid.506261.60000 0001 0706 7839Department of Anesthesiology, FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| |
Collapse
|
15
|
Abstract
Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Liang S, Yegambaram M, Wang T, Wang J, Black SM, Tang H. Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10020341. [PMID: 35203550 PMCID: PMC8961787 DOI: 10.3390/biomedicines10020341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressure due to increased pulmonary vascular resistance, secondary to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Work over the last decade has led to the identification of a critical role for metabolic reprogramming in the PAH pathogenesis. It is becoming clear that in addition to its role in ATP generation, the mitochondrion is an important organelle that regulates complex and integrative metabolic- and signal transduction pathways. This review focuses on mitochondrial metabolism alterations that occur in deranged pulmonary vessels and the right ventricle, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, redox homeostasis, as well as iron and calcium metabolism. Further understanding of these mitochondrial metabolic mechanisms could provide viable therapeutic approaches for PAH patients.
Collapse
Affiliation(s)
- Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Manivannan Yegambaram
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Ting Wang
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
| | - Stephen M. Black
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA
- Correspondence: (S.M.B.); (H.T.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- Correspondence: (S.M.B.); (H.T.)
| |
Collapse
|
17
|
Leung SWS, Shi Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacol Sin 2022; 43:251-259. [PMID: 33850277 PMCID: PMC8791959 DOI: 10.1038/s41401-021-00647-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells play an obligatory role in regulating local vascular tone and maintaining homeostasis in vascular biology. Cell metabolism, converting food to energy in organisms, is the primary self-sustaining mechanism for cell proliferation and reproduction, structure maintenance, and fight-or-flight responses to stimuli. Four major metabolic processes take place in the energy-producing process, including glycolysis, oxidative phosphorylation, glutamine metabolism, and fatty acid oxidation. Among them, glycolysis is the primary energy-producing mechanism in endothelial cells. The present review focused on glycolysis in endothelial cells under both physiological and pathological conditions. Since the switches among metabolic processes precede the functional changes and disease developments, some prophylactic and/or therapeutic strategies concerning the role of glycolysis in cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Susan, Wai Sum Leung
- grid.194645.b0000000121742757Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Shi
- grid.8547.e0000 0001 0125 2443Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
18
|
Weckerle J, Picart-Armada S, Klee S, Bretschneider T, Luippold AH, Rist W, Haslinger C, Schlüter H, Thomas MJ, Krawczyk B, Fernandez-Albert F, Kästle M, Veyel D. Mapping the metabolomic and lipidomic changes in the Bleomycin model of pulmonary fibrosis in young and aged mice. Dis Model Mech 2021; 15:274099. [PMID: 34845494 PMCID: PMC8807555 DOI: 10.1242/dmm.049105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Alterations in metabolic pathways were recently recognized as potential underlying drivers of idiopathic pulmonary fibrosis (IPF), translating into novel therapeutic targets. However, knowledge of metabolic and lipid regulation in fibrotic lungs is limited. To comprehensively characterize metabolic perturbations in the bleomycin mouse model of IPF, we analyzed the metabolome and lipidome by mass spectrometry. We identified increased tissue turnover and repair, evident by enhanced breakdown of proteins, nucleic acids and lipids and extracellular matrix turnover. Energy production was upregulated, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, lactate production and fatty acid oxidation. Higher eicosanoid synthesis indicated inflammatory processes. Because the risk of IPF increases with age, we investigated how age influences metabolomic and lipidomic changes in the bleomycin-induced pulmonary fibrosis model. Surprisingly, except for cytidine, we did not detect any significantly differential metabolites or lipids between old and young bleomycin-treated lungs. Together, we identified metabolomic and lipidomic changes in fibrosis that reflect higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation, which might serve to improve diagnostic and therapeutic options for fibrotic lung diseases in the future. Editor's choice: Using bleomycin-induced lung injury as a mouse model for idiopathic pulmonary fibrosis, this study identifies metabolomic and lipidomic changes in fibrosis reflecting higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation.
Collapse
Affiliation(s)
- Jelena Weckerle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Sergio Picart-Armada
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Stephan Klee
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Andreas H Luippold
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Christian Haslinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Holger Schlüter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Matthew J Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Bartlomiej Krawczyk
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Marc Kästle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Immunology and Respiratory Disease research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Daniel Veyel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department Drug Discovery Sciences, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
19
|
Comparison of l-Carnitine and l-Carnitine HCL salt for targeted lung treatment of pulmonary hypertension (PH) as inhalation aerosols: Design, comprehensive characterization, in vitro 2D/3D cell cultures, and in vivo MCT-Rat model of PH. Pulm Pharmacol Ther 2021; 65:101998. [PMID: 33556627 PMCID: PMC8985976 DOI: 10.1016/j.pupt.2021.101998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023]
Abstract
Disrupted l-Carnitine (L-Car) homeostasis has been implicated in the development of pulmonary hypertension (PH). L-Car has been administered orally and intravenously causing systemic side effects. To the authors' knowledge, there are no reports using L-Car or L-Car HCl as an inhaled aerosol through the respiratory route in a targeted manner either from dry powder inhaler (DPI) or liquid delivery system. The purpose of the comprehensive and systematic comparative study between L-Car and L-Car HCl salt was to design and develop dry powder inhalers (DPIs) of each. This was followed by comprehensive physicochemical characterization, in vitro cell viability as a function of dose on 2D human pulmonary cell lines from different lung regions and in vitro cell viability on 3D small airway epithelia human primary cells at the air-liquid interface (ALI). In addition in vitro transepithelial electrical resistance (TEER) in air-interface culture (AIC) conditions on 2D human pulmonary cell line and 3D small airway epithelia human primary cells was carried out. In vitro aerosol dispersion performance using three FDA-approved human DPI devices with different device properties was also examined. Following advanced spray drying under various conditions, two spray drying pump rates (low and medium) were found to successfully produce spray-dried L-Car powders while four spray drying pump rates (low, medium, medium-high, and high) all resulted in the production of spray-dried L-Car HCl powders. Raw L-Car and L-Car HCl were found to be crystalline. All SD powders retained crystallinity following spray drying and polymorphic interconversion in the solid-state was identified as the mechanism for retaining crystallinity after the advanced spray drying process. All SD powders aerosolized readily with all three human DPI devices. However, the in vitro dispersion parameters for the SD powders was not conducive for in vivo administration to rats in DPIs due to hygroscopicity and nanoaggreation. In vivo rat studies were successfully accomplished using inhaled liquid aerosols. Safety was successfully demonstrated in vivo in healthy Sprague Dawley rats. Furthermore, therapeutic efficacy was successfully demonstrated in vivo in the monocrotaline (MCT)-rat model of PH after two weeks of daily L-Car inhalation aerosol treatment.
Collapse
|
20
|
Varghese MV, James J, Rafikova O, Rafikov R. Glucose-6-phosphate dehydrogenase deficiency contributes to metabolic abnormality and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L508-L521. [PMID: 33502933 DOI: 10.1152/ajplung.00165.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that several patients with idiopathic pulmonary hypertension (PH) had different types of G6PD deficiency. However, the role of G6PD in PH is multifactorial because G6PD is involved in controlling oxidative stress, metabolic switch, and red blood cell fragility. To delineate the contribution of G6PD to PH pathogenesis, we utilized a mouse line with decreased expression of G6PD (10% from wild-type level). We confirmed that mice with G6PD deficiency develop spontaneous pulmonary hypertension with pulmonary artery and right heart remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38 pathway, which we recently reported induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD deficient mice indicates the switch to alternative metabolic fluxes that feed into the pentose phosphate pathway (PPP), resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found the upregulation of myo-inositol oxidase, reduction in GSH/GSSG ratio, and increased nitration in the lungs of G6PD-deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2, and AMPK that contribute to the proliferation of pulmonary vasculature. Therefore, G6PD deficiency has a multimodal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to the PH phenotype in mice.
Collapse
Affiliation(s)
| | - Joel James
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
21
|
Mamazhakypov A, Weiß A, Zukunft S, Sydykov A, Kojonazarov B, Wilhelm J, Vroom C, Petrovic A, Kosanovic D, Weissmann N, Seeger W, Fleming I, Iglarz M, Grimminger F, Ghofrani HA, Pullamsetti SS, Schermuly RT. Effects of macitentan and tadalafil monotherapy or their combination on the right ventricle and plasma metabolites in pulmonary hypertensive rats. Pulm Circ 2020; 10:2045894020947283. [PMID: 33240483 PMCID: PMC7672745 DOI: 10.1177/2045894020947283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension is a severe respiratory disease characterized by pulmonary artery remodeling. RV dysfunction and dysregulated circulating metabolomics are associated with adverse outcomes in pulmonary arterial hypertension. We investigated effects of tadalafil and macitentan alone or in combination on the RV and plasma metabolomics in SuHx and PAB models. For SuHx model, rats were injected with SU5416 and exposed to hypoxia for three weeks and then were returned to normoxia and treated with either tadalafil (10 mg/kg in chow) or macitentan (10 mg/kg in chow) or their combination (both 10 mg/kg in chow) for two weeks. For PAB model, rats were subjected to either sham or PAB surgery for three weeks and treated with above-mentioned drugs from week 1 to week 3. Following terminal echocardiographic and hemodynamic measurements, tissue samples were collected for metabolomic, histological and gene expression analysis. Both SuHx and PAB rats developed RV remodeling/dysfunction with severe and mild plasma metabolomic alterations, respectively. In SuHx rats, tadalafil and macitentan alone or in combination improved RV remodeling/function with the effects of macitentan and combination therapy being superior to tadalafil. All therapies similarly attenuated SuHx-induced changes in plasma metabolomics. In PAB rats, only macitentan improved RV remodeling/function, while only tadalafil attenuated PAB-induced changes in plasma metabolomics.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Astrid Weiß
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany & German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Akylbek Sydykov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Christina Vroom
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Aleksandar Petrovic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Djuro Kosanovic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany.,Department of Lung Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany & German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Marc Iglarz
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Soni S Pullamsetti
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany.,Department of Lung Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Krupenko NI, Sharma J, Pediaditakis P, Helke KL, Hall MS, Du X, Sumner S, Krupenko SA. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum Genomics 2020; 14:41. [PMID: 33168096 PMCID: PMC7654619 DOI: 10.1186/s40246-020-00291-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00291-3.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Madeline S Hall
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, UNC Charlotte, Charlotte, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA. .,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Benavides-Córdoba V, Gómez MP. Relationship between Invasive and Non-Invasive Hemodynamic Measures in Experimental Pulmonary Hypertension. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x16666200516180118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Animal models have been used to understand the pathophysiology of
pulmonary hypertension, to describe the mechanisms of action and to evaluate promising active
ingredients. The monocrotaline-induced pulmonary hypertension model is the most used animal
model. In this model, invasive and non-invasive hemodynamic variables that resemble human
measurements have been used. Aim: To define if non-invasive variables can predict hemodynamic
measures in the monocrotaline-induced pulmonary hypertension model.
Materials and Methods:
Twenty 6-week old male Wistar rats weighing between 250-300g from the
bioterium of the Universidad del Valle (Cali - Colombia) were used in order to establish that the
relationships between invasive and non-invasive variables are sustained in different conditions
(healthy, hypertrophy and treated). The animals were organized into three groups, a control group
who was given 0.9% saline solution subcutaneously (sc), a group with pulmonary hypertension
induced with a single subcutaneous dose of Monocrotaline 30 mg/kg, and a group with pulmonary
hypertension with 30 mg/kg of monocrotaline treated with Sildenafil. Right ventricle ejection
fraction, heart rate, right ventricle systolic pressure and the extent of hypertrophy were measured.
The functional relation between any two variables was evaluated by the Pearson correlation
coefficient.
Results:
It was found that all correlations were statistically significant (p <0.01). The strongest
correlation was the inverse one between the RVEF and the Fulton index (r = -0.82). The Fulton index
also had a strong correlation with the RVSP (r = 0.79). The Pearson correlation coefficient between
the RVEF and the RVSP was -0.81, meaning that the higher the systolic pressure in the right
ventricle, the lower the ejection fraction value. Heart rate was significantly correlated to the other
three variables studied, although with relatively low correlation.
Conclusion:
The correlations obtained in this study indicate that the parameters evaluated in the
research related to experimental pulmonary hypertension correlate adequately and that the
measurements that are currently made are adequate and consistent with each other, that is, they have
good predictive capacity.
Collapse
|
24
|
Novel Molecular Mechanisms of Pulmonary Hypertension: A Search for Biomarkers and Novel Drug Targets-From Bench to Bed Site. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7265487. [PMID: 32566097 PMCID: PMC7261339 DOI: 10.1155/2020/7265487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.
Collapse
|
25
|
Niihori M, Eccles CA, Kurdyukov S, Zemskova M, Varghese MV, Stepanova AA, Galkin A, Rafikov R, Rafikova O. Rats with a Human Mutation of NFU1 Develop Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020; 62:231-242. [PMID: 31461310 DOI: 10.1165/rcmb.2019-0065oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NFU1 is a mitochondrial protein that is involved in the biosynthesis of iron-sulfur clusters, and its genetic modification is associated with disorders of mitochondrial energy metabolism. Patients with autosomal-recessive inheritance of the NFU1 mutation G208C have reduced activity of the respiratory chain Complex II and decreased levels of lipoic-acid-dependent enzymes, and develop pulmonary arterial hypertension (PAH) in ∼70% of cases. We investigated whether rats with a human mutation in NFU1 are also predisposed to PAH development. A point mutation in rat NFU1G206C (human G208C) was introduced through CRISPR/Cas9 genome editing. Hemodynamic data, tissue samples, and fresh mitochondria were collected and analyzed. NFU1G206C rats showed increased right ventricular pressure, right ventricular hypertrophy, and high levels of pulmonary artery remodeling. Computed tomography and angiography of the pulmonary vasculature indicated severe angioobliterative changes in NFU1G206C rats. Importantly, the penetrance of the PAH phenotype was found to be more prevalent in females than in males, replicating the established sex difference among patients with PAH. Male and female homozygote rats exhibited decreased expression and activity of mitochondrial Complex II, and markedly decreased pyruvate dehydrogenase activity and lipoate binding. The limited development of PAH in males correlated with the preserved levels of oligomeric NFU1, increased expression of ISCU (an alternative branch of the iron-sulfur assembly system), and increased complex IV activity. Thus, the male sex has additional plasticity to overcome the iron-sulfur cluster deficiency. Our work describes a novel, humanized rat model of NFU1 deficiency that showed mitochondrial dysfunction similar to that observed in patients and developed PAH with the same sex dimorphism.
Collapse
Affiliation(s)
- Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Cody A Eccles
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Marina Zemskova
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | | | - Anna A Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| |
Collapse
|
26
|
Joshi SR, Kitagawa A, Jacob C, Hashimoto R, Dhagia V, Ramesh A, Zheng C, Zhang H, Jordan A, Waddell I, Leopold J, Hu CJ, McMurtry IF, D'Alessandro A, Stenmark KR, Gupte SA. Hypoxic activation of glucose-6-phosphate dehydrogenase controls the expression of genes involved in the pathogenesis of pulmonary hypertension through the regulation of DNA methylation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L773-L786. [PMID: 32159369 PMCID: PMC7191486 DOI: 10.1152/ajplung.00001.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is considered important in the pathogenesis of the occlusive vasculopathy observed in pulmonary hypertension (PH). However, the mechanisms that link reprogrammed metabolism to aberrant expression of genes, which modulate functional phenotypes of cells in PH, remain enigmatic. Herein, we demonstrate that, in mice, hypoxia-induced PH was prevented by glucose-6-phosphate dehydrogenase deficiency (G6PDDef), and further show that established severe PH in Cyp2c44-/- mice was attenuated by knockdown with G6PD shRNA or by G6PD inhibition with an inhibitor (N-ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl]urea, NEOU). Mechanistically, G6PDDef, knockdown and inhibition in lungs: 1) reduced hypoxia-induced changes in cytoplasmic and mitochondrial metabolism, 2) increased expression of Tet methylcytosine dioxygenase 2 (Tet2) gene, and 3) upregulated expression of the coding genes and long noncoding (lnc) RNA Pint, which inhibits cell growth, by hypomethylating the promoter flanking region downstream of the transcription start site. These results suggest functional TET2 is required for G6PD inhibition to increase gene expression and to reverse hypoxia-induced PH in mice. Furthermore, the inhibitor of G6PD activity (NEOU) decreased metabolic reprogramming, upregulated TET2 and lncPINT, and inhibited growth of control and diseased smooth muscle cells isolated from pulmonary arteries of normal individuals and idiopathic-PAH patients, respectively. Collectively, these findings demonstrate a previously unrecognized function for G6PD as a regulator of DNA methylation. These findings further suggest that G6PD acts as a link between reprogrammed metabolism and aberrant gene regulation and plays a crucial role in regulating the phenotype of cells implicated in the pathogenesis of PH, a debilitating disorder with a high mortality rate.
Collapse
Affiliation(s)
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ryota Hashimoto
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amrit Ramesh
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Jane Leopold
- Department of Medicine, Division of Cardiology, Brigham Women and Children's Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ivan F McMurtry
- Departments of Pharmacology and Internal Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
27
|
Rafikova O, James J, Eccles CA, Kurdyukov S, Niihori M, Varghese MV, Rafikov R. Early progression of pulmonary hypertension in the monocrotaline model in males is associated with increased lung permeability. Biol Sex Differ 2020; 11:11. [PMID: 32188512 PMCID: PMC7079376 DOI: 10.1186/s13293-020-00289-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background The mechanisms involved in pulmonary hypertension (PH) development in patients and pre-clinical models are poorly understood. PH has a well-established sex dimorphism in patients with increased frequency of PH in females, and more severe disease with poor survival prognosis in males. Previously, we found that heme signaling plays an essential role in the development phase of the Sugen/Hypoxia (SU/Hx) model. This study is focused on the elucidation of sex differences in mechanisms of PH development related to heme action at the early stage of the monocrotaline (MCT) PH model. Methods Rats received MCT injection (60 mg/kg, i.p.) and followed for 14 days to investigate early disease changes. Hemodynamic parameters were recorded at the end of the study; plasma, lung homogenates, and nuclear fractions were used for the evaluation of protein levels. Results Our data indicate that on day 14, rats did not show any significant increase in the Fulton index due to the early disease phase. However, the right ventricular systolic pressure was significantly increased in male rats, while female rats showed only a trend. Interestingly, only males demonstrated an increased lung-to-bodyweight ratio that indicated lung edema. Indeed, lung histology confirmed severe perivascular edema in males. Previously, we have reported that the increased perivascular edema in SU/Hx model correlated with intravascular hemolysis and activated heme signaling. Here, we found that elevated free hemoglobin levels and perivascular edema were increased, specifically in males showing more rapid progress of PH. A high level of heme carrier protein 1 (HCP-1), which is involved in heme uptake from the bloodstream into the cells, was also found elevated in the lungs of males. The upregulation of heme oxygenase in males indicated increased intracellular heme catabolism. Increased heme signaling resulted in the activation of heme-mediated barrier-disruptive mechanisms. Thus, hemolysis in males can be responsible for increased permeability of the lungs and early disease development. Conclusions Our study indicates the importance of barrier-disruptive mechanisms as an earlier event in the induction of pulmonary hypertension. Importantly, males are more susceptible to hemolysis and develop PH earlier than females.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Joel James
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Cody A Eccles
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
28
|
Kim S, Rigatto K, Gazzana MB, Knorst MM, Richards EM, Pepine CJ, Raizada MK. Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension. Hypertension 2020; 75:1063-1071. [PMID: 32088998 DOI: 10.1161/hypertensionaha.119.14294] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is considered a disease of the pulmonary vasculature. Limited progress has been made in preventing or arresting progression of PAH despite extensive efforts. Our previous studies indicated that PAH could be considered a systemic disease since its pathology involves interplay of multiple organs. This, coupled with increasing implication of the gut and its microbiome in chronic diseases, led us to hypothesize that patients with PAH exhibit a distinct gut microbiome that contributes to, and predicts, the disease. Fecal microbiome of 18 type 1 PAH patients (mean pulmonary arterial pressure, 57.4, SD 16.7 mm Hg) and 13 reference subjects were compared by shotgun metagenomics to evaluate this hypothesis. Significant taxonomic and functional changes in microbial communities in the PAH cohort were observed. Pathways for the synthesis of arginine, proline, and ornithine were increased in PAH cohort compared with reference cohort. Additionally, groups of bacterial communities associated with trimethylamine/ trimethylamine N-oxide and purine metabolism were increased in PAH cohort. In contrast, butyrate-and propionate-producing bacteria such as Coprococcus, Butyrivibrio, Lachnospiraceae, Eubacterium, Akkermansia, and Bacteroides were increased in reference cohort. A random forest model predicted PAH from the composition of the gut microbiome with 83% accuracy. Finally, virome analysis showed enrichment of Enterococcal and relative depletion of Lactococcal phages in the PAH cohort. In conclusion, patients with PAH exhibit a unique microbiome profile that has the high predictive potential for PAH. This highlights previously unknown roles of gut bacteria in this disease and could lead to new therapeutic, diagnostic, or management paradigms for PAH.
Collapse
Affiliation(s)
- Seungbum Kim
- From the Department of Physiology and Functional Genomics (S.K., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville.,Gilead Sciences, Foster City, California (S.K.)
| | - Katya Rigatto
- Department of Basic Health Sciences (K.R.), Federal University of Health Sciences of Porto Alegre, Brazil
| | - Marcelo B Gazzana
- Department of Pulmonology, Hospital de Clinicas de Porto Alegre, and Faculty of Medicine (M.B.G., M.M.K.), Federal University of Health Sciences of Porto Alegre, Brazil
| | - Marli M Knorst
- Department of Pulmonology, Hospital de Clinicas de Porto Alegre, and Faculty of Medicine (M.B.G., M.M.K.), Federal University of Health Sciences of Porto Alegre, Brazil
| | - Elaine M Richards
- From the Department of Physiology and Functional Genomics (S.K., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (S.K., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| |
Collapse
|
29
|
Chen C, Luo F, Wu P, Huang Y, Das A, Chen S, Chen J, Hu X, Li F, Fang Z, Zhou S. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J Cell Mol Med 2020; 24:2484-2496. [PMID: 31945804 PMCID: PMC7028857 DOI: 10.1111/jcmm.14937] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/01/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
The specific mechanism of pulmonary arterial hypertension (PAH) remains elusive. The present study aimed to explore the underlying mechanism of PAH through the identity of novel biomarkers for PAH using metabolomics approach. Serum samples from 40 patients with idiopathic PAH (IPAH), 20 patients with congenital heart disease-associated PAH (CHD-PAH) and 20 healthy controls were collected and analysed by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). Orthogonal partial least square-discriminate analysis (OPLS-DA) was applied to screen potential biomarkers. These results were validated in monocrotaline (MCT)-induced PAH rat model. The OPLS-DA model was successful in screening distinct metabolite signatures which distinguished IPAH and CHD-PAH patients from healthy controls, respectively (26 and 15 metabolites). Unbiased analysis from OPLS-DA identified 31 metabolites from PAH patients which were differentially regulated compared to the healthy controls. Our analysis showed dysregulation of the different metabolic pathways, including lipid metabolism, glucose metabolism, amino acid metabolism and phospholipid metabolism pathways in PAH patients compared to their healthy counterpart. Among these metabolites from dysregulated metabolic pathways, a panel of metabolites from lipid metabolism and fatty acid oxidation (lysophosphatidylcholine, phosphatidylcholine, perillic acid, palmitoleic acid, N-acetylcholine-d-sphingomyelin, oleic acid, palmitic acid and 2-Octenoylcarnitine metabolites) were found to have a close association with PAH. The results from the analysis of both real-time quantitative PCR and Western blot showed that expression of LDHA, CD36, FASN, PDK1 GLUT1 and CPT-1 in right heart/lung were significantly up-regulated in MCT group than the control group.
Collapse
Affiliation(s)
- Chenyang Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Department of Cardiovascular MedicineThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Fei Luo
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Panyun Wu
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yiyuan Huang
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Avash Das
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Shenglan Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingyuan Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xinqun Hu
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fei Li
- Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Zhenfei Fang
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Shenhua Zhou
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
30
|
Rafikov R, Coletta DK, Mandarino LJ, Rafikova O. Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites. J Clin Med 2020; 9:E217. [PMID: 31947516 PMCID: PMC7019706 DOI: 10.3390/jcm9010217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an incurable, progressive disorder, and the early diagnosis and treatment of PAH are associated with increased survival [...].
Collapse
Affiliation(s)
| | | | | | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; (R.R.); (D.K.C.); (L.J.M.)
| |
Collapse
|
31
|
Barnes JW, Tian L, Krick S, Helton ES, Denson RS, Comhair SAA, Dweik RA. O-GlcNAc Transferase Regulates Angiogenesis in Idiopathic Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 20:E6299. [PMID: 31847126 PMCID: PMC6941156 DOI: 10.3390/ijms20246299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.
Collapse
Affiliation(s)
- Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Liping Tian
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - E. Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Rebecca S. Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Suzy A. A. Comhair
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
| | - Raed A. Dweik
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
32
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
33
|
Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci Rep 2019; 9:14937. [PMID: 31624291 PMCID: PMC6797707 DOI: 10.1038/s41598-019-51397-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.
Collapse
|
34
|
Alruwaili N, Kandhi S, Sun D, Wolin MS. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology. Antioxid Redox Signal 2019; 31:752-769. [PMID: 30403147 PMCID: PMC6708269 DOI: 10.1089/ars.2018.7657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: This review considers how some systems controlling pulmonary vascular function are potentially regulated by redox processes to examine how and why conditions such as prolonged hypoxia, pathological mediators, and other factors promoting vascular remodeling contribute to the development of pulmonary hypertension (PH). Recent Advances and Critical Issues: Aspects of vascular remodeling induction mechanisms described are associated with shifts in glucose metabolism through the pentose phosphate pathway and increased cytosolic NADPH generation by glucose-6-phosphate dehydrogenase, increased glycolysis generation of cytosolic NADH and lactate, mitochondrial dysfunction associated with superoxide dismutase-2 depletion, changes in reactive oxygen species and iron metabolism, and redox signaling. Future Directions: The regulation and impact of hypoxia-inducible factor and the function of cGMP-dependent and redox regulation of protein kinase G are considered for their potential roles as key sensors and coordinators of redox and metabolic processes controlling the progression of vascular pathophysiology in PH, and how modulating aspects of metabolic and redox regulatory systems potentially function in beneficial therapeutic approaches.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
35
|
Tawa M, Yano Y, Yamanaka M, Sawano T, Iesaki K, Murata Y, Tanaka R, Nakagawa K, Ohkita M, Matsumura Y. Effects of Beet Juice Supplementation on Monocrotaline-Induced Pulmonary Hypertension in Rats. Am J Hypertens 2019; 32:216-222. [PMID: 30265283 DOI: 10.1093/ajh/hpy144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Recently, attention has been focused on the cardiovascular protective effects of beet juice (BJ) with high amounts of nitrate. In this study, we examined the effect of BJ supplementation in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). METHODS MCT (60 mg/kg) was subcutaneously administered to rats, and BJ (prepared by dissolving BJ powder at a concentration of 1 g/l or 10 g/l in drinking water) supplementation was started from the day of, 1 week before, and 2 weeks after MCT injection. Saline-injected rats given drinking water were used as controls. RESULTS Low-dose BJ supplementation starting from the day of MCT injection exerted protective effects on the MCT-induced elevation of right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary arterial remodeling, without causing a significant increase in plasma nitrite plus nitrate (NOx) levels. On the other hand, such beneficial effects were not observed with high-dose BJ supplementation, although the NOx levels were slightly higher than those in the low-dose group. In addition, low-dose BJ supplementation starting from 1 week before MCT injection did not improve PH symptoms, as described above. Furthermore, low-dose BJ supplementation starting from 2 weeks after MCT injection was ineffective against functional and morphological alterations in pulmonary circulation associated with MCT-induced PH. CONCLUSIONS Habitual ingestion of a suitable amount of BJ could be a potential option for preventing PH. However, beneficial effects cannot be expected when PH has developed to some degree.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yoko Yano
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Misaki Yamanaka
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Tatsuya Sawano
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kana Iesaki
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuka Murata
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Ryosuke Tanaka
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Keisuke Nakagawa
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Mamoru Ohkita
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yasuo Matsumura
- Laboratory of Molecular and Pathological Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
36
|
Rafikov R, McBride ML, Zemskova M, Kurdyukov S, McClain N, Niihori M, Langlais PR, Rafikova O. Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L428-L444. [PMID: 30604625 DOI: 10.1152/ajplung.00393.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Matthew L McBride
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Marina Zemskova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Nolan McClain
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
37
|
Moreno P, Jiménez-Jiménez C, Garrido-Rodríguez M, Calderón-Santiago M, Molina S, Lara-Chica M, Priego-Capote F, Salvatierra Á, Muñoz E, Calzado MA. Metabolomic profiling of human lung tumor tissues - nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol 2018; 12:1778-1796. [PMID: 30099851 PMCID: PMC6165994 DOI: 10.1002/1878-0261.12369] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although metabolomics has attracted considerable attention in the field of lung cancer (LC) detection and management, only a very limited number of works have applied it to tissues. As such, the aim of this study was the thorough analysis of metabolic profiles of relevant LC tissues, including the most important histological subtypes (adenocarcinoma and squamous cell lung carcinoma). Mass spectrometry‐based metabolomics, along with genetic expression and histological analyses, were performed as part of this study, the widest to date, to identify metabolic alterations in tumors of the most relevant histological subtypes in lung. A total of 136 lung tissue samples were analyzed and 851 metabolites were identified through metabolomic analysis. Our data show the existence of a clear metabolic alteration not only between tumor vs. nonmalignant tissue in each patient, but also inherently intrinsic changes in both AC and SCC. Significant changes were observed in the most relevant biochemical pathways, and nucleotide metabolism showed an important number of metabolites with high predictive capability values. The present study provides a detailed analysis of the metabolomic changes taking place in relevant biochemical pathways of the most important histological subtypes of LC, which can be used as biomarkers and also to identify novel targets.
Collapse
Affiliation(s)
- Paula Moreno
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Unidad de Cirugía Torácica y Trasplante Pulmonar, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Carla Jiménez-Jiménez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | | | - Mónica Calderón-Santiago
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Química Analítica, Universidad de Córdoba, Cordoba, Spain
| | - Susana Molina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Química Analítica, Universidad de Córdoba, Cordoba, Spain
| | - Ángel Salvatierra
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Unidad de Cirugía Torácica y Trasplante Pulmonar, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
| |
Collapse
|
38
|
Shao FJ, Ying YT, Tan X, Zhang QY, Liao WT. Metabonomics Profiling Reveals Biochemical Pathways Associated with Pulmonary Arterial Hypertension in Broiler Chickens. J Proteome Res 2018; 17:3445-3453. [DOI: 10.1021/acs.jproteome.8b00316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Feng-Jin Shao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiao-Yan Zhang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wen-Ting Liao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
39
|
Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir Res 2018; 19:69. [PMID: 29685148 PMCID: PMC5914012 DOI: 10.1186/s12931-018-0776-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/12/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease; however, the mechanisms directly involved in triggering and the progression of PAH are not clear. Based on previous studies that demonstrated a possible role of mitochondrial dysfunction in the pathogenesis of PAH, we investigated the effects of chronic inhibition of mitochondrial function in vivo in healthy rodents. METHODS Right ventricle systolic pressure (RVSP) was measured in female rats at baseline and up to 24 days after inhibition of mitochondrial respiratory Complex III, induced by Antimycin A (AA, 0.35 mg/kg, given three times starting at baseline and then days 3 and 6 as a bolus injection into the right atrial chamber). RESULTS Rodents exposed to AA demonstrated sustained increases in RVSP from days 6 through 24. AA-exposed rodents also possessed a progressive increase in RV end-diastolic pressure but not RV hypertrophy, which may be attributed to either early stages of PAH development or to reduced RV contractility due to inhibition of myocardial respiration. Protein nitration levels in plasma were positively correlated with PAH development in AA-treated rats. This finding was strongly supported by results obtained from PAH humans where plasma protein nitration levels were correlated with markers of PAH severity in female but not male PAH patients. Based on previously reported associations between increased nitric oxide production levels with female gender, we speculate that in females with PAH mitochondrial dysfunction may represent a more deleterious form, in part, due to an increased nitrosative stress development. Indeed, the histological analysis of AA treated rats revealed a strong perivascular edema, a marker of pulmonary endothelial damage. Finally, AA treatment was accompanied by a severe metabolic shift toward glycolysis, a hallmark of PAH pathology. CONCLUSIONS Chronic mitochondrial dysfunction induces the combination of vascular damage and metabolic reprogramming that may be responsible for PAH development. This mechanism may be especially important in females, perhaps due to an increased NO production and nitrosative stress development.
Collapse
|
40
|
Hashimoto R, Gupte S. Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:47-55. [PMID: 29047080 DOI: 10.1007/978-3-319-63245-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Redox signaling plays a critical role in the pathophysiology of cardiovascular diseases. The pentose phosphate pathway is a major source of NADPH redox in the cell. The activities of glucose-6-phosphate dehydrogenase (the rate-limiting enzyme in the pentose shunt) and glucose flux through the shunt pathway is increased in various lung cells including, the stem cells, in pulmonary hypertension. This chapter discusses the importance of the shunt pathway and glucose-6-phosphate dehydrogenase in the pathogenesis of pulmonary artery remodeling and occlusive lesion formation within the hypertensive lungs.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Pharmacology, New York Medical College, School of Medicine, Basic Science Building, Rm. 546, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, School of Medicine, Basic Science Building, Rm. 546, 15 Dana Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
41
|
Dumas SJ, Bru-Mercier G, Courboulin A, Quatredeniers M, Rücker-Martin C, Antigny F, Nakhleh MK, Ranchoux B, Gouadon E, Vinhas MC, Vocelle M, Raymond N, Dorfmüller P, Fadel E, Perros F, Humbert M, Cohen-Kaminsky S. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation 2018; 137:2371-2389. [PMID: 29444988 DOI: 10.1161/circulationaha.117.029930] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Calcium/pharmacology
- Cell Proliferation/drug effects
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Endothelin-1/pharmacology
- Glutamic Acid/metabolism
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Gilles Bru-Mercier
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Audrey Courboulin
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Marceau Quatredeniers
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Catherine Rücker-Martin
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Fabrice Antigny
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Morad K Nakhleh
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Benoit Ranchoux
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Elodie Gouadon
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Maria-Candida Vinhas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Matthieu Vocelle
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Nicolas Raymond
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Peter Dorfmüller
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Elie Fadel
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Frédéric Perros
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H.)
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.).
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| |
Collapse
|
42
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
43
|
Nagy BM, Nagaraj C, Meinitzer A, Sharma N, Papp R, Foris V, Ghanim B, Kwapiszewska G, Kovacs G, Klepetko W, Pieber TR, Mangge H, Olschewski H, Olschewski A. Importance of kynurenine in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 313:L741-L751. [DOI: 10.1152/ajplung.00517.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
The tryptophan metabolite kynurenine is significantly increased in pulmonary arterial hypertension (PAH) patients, and it is a potent vasodilator of systemic arteries. Our aim was to investigate the role of kynurenine in the pulmonary circulation. Serum tryptophan, kynurenine, and kynurenic acid levels were measured in 20 idiopathic PAH (IPAH) patients, 20 healthy controls, and 20 patients with chronic lung disease or metabolic syndrome without PH. Laser-dissected pulmonary arteries from IPAH and control lungs were tested for the expression of indoleamine-2, 3-dioxygenase (IDO), the rate-limiting enzyme for the conversion from tryptophan to kynurenine. Acute effects of kynurenine were tested in pulmonary vascular preparations, two different models of chronic pulmonary hypertension (PH), and in human pulmonary arterial smooth muscle cells (hPASMCs). In IPAH vs. control serum, kynurenine was significantly elevated (3.6 ± 0.2 vs. 2.6 ± 0.1 µM, P < 0.0001), and strongly associated with PH (area under the curve = 0.86), but kynurenine levels were not elevated in lung disease and metabolic syndrome. Among all investigated tryptophan metabolites, kynurenine displayed the strongest correlation with mean pulmonary arterial pressure (mPAP) (ρ: 0.770, P < 0.0001). Tryptophan was significantly decreased in IPAH lungs; however, IDO expression was not changed. In hPASMCs, kynurenine increased both cAMP and cGMP; in intrapulmonary arteries, it relaxed the preconstriction via NO/cGMP and cAMP pathways, and in two models of established PH, it acutely decreased the mPAP. Our data suggest that kynurenine elevation might be specifically associated with mPAP; kynurenine acts on hPASMCs in synergy with NO and exerts acute pulmonary vasodilatation in chronic PH models. Kynurenine might provide both a new biomarker and a new therapeutic option for PH.
Collapse
Affiliation(s)
- Bence M. Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Neha Sharma
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria; and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria; and
| | - Thomas R. Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
44
|
Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D'Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA, Frid MG, Reisz JA, Caruso P, El Kasmi KC, Ježek P, Morrell NW, Hu CJ, Stenmark KR. Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis. Circulation 2017; 136:2468-2485. [PMID: 28972001 DOI: 10.1161/circulationaha.117.028069] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Daren Wang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Lydie Plecitá-Hlavatá
- University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.)
| | - Jan Tauber
- University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.)
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Amanda Flockton
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - B Alexandre McKeon
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.)
| | - Paola Caruso
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.)
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.)
| | - Petr Ježek
- University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.)
| | - Nicholas W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.)
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine (C.-J.H.)
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| |
Collapse
|
45
|
Kar SK, Jansman AJM, Schokker D, Kruijt L, Harms AC, Wells JM, Smits MA. Amine Metabolism Is Influenced by Dietary Protein Source. Front Nutr 2017; 4:41. [PMID: 28920057 PMCID: PMC5585152 DOI: 10.3389/fnut.2017.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
Growth in world population will inevitably leads to increased demand for protein for humans and animals. Protein from insects and blood plasma are being considered as possible alternatives, but more research on their nutritional quality and health effects is needed. Here, we studied the effect of dietary protein source on metabolism and metabolic amine profiles in serum and urine of mice. Groups of mice were fed semi-purified diets containing 300 g/kg of soybean meal, casein, partially delactosed whey powder, spray-dried plasma protein, wheat gluten meal, and yellow mealworm. Feed and water intake as well as body weight gain were measured for 28 days. After 14 and 28 days, serum and urine samples were collected for measurement of a large panel of amine metabolites. MetaboAnalyst 3.0 was used for analysis of the raw metabolic data. Out of 68 targeted amine metabolites, we could detect 54 in urine and 41 in blood serum. Dietary protein sources were found to have profound effects on host metabolism, particularly in systemic amine profiles, considered here as an endophenotype. We recommend serum over urine to screen for the amine metabolic endophenotype based on partial least squares discriminant analysis. We concluded that metabolites like alpha-aminobutyric acid and 1-methylhistidine are sensitive indicators of too much or too little availability of specific amino acids in the different protein diets. Furthermore, we concluded that amine metabolic profiles can be useful for assessing the nutritional quality of different protein sources.
Collapse
Affiliation(s)
- Soumya K. Kar
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
| | - Alfons J. M. Jansman
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Dirkjan Schokker
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
| | - Leo Kruijt
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
| | - Amy C. Harms
- Netherlands Metabolomics Centre, Leiden University, Leiden, Netherlands
- Department of Analytical Biosciences, Leiden University, Leiden, Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mari A. Smits
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
- Wageningen Bioveterinary Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|