1
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
2
|
Xuan L, Chen J, Yang H, Hao J, Li S, Zhang Q, Zhang H, Wang S, Luo H, Guo J, Yang X, Wang G, Sun F, Hu X, Kang K, Sun L. CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis. J Mol Med (Berl) 2025; 103:219-237. [PMID: 39755856 DOI: 10.1007/s00109-024-02511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR. The expression of CDR1AS increases after myocardial IR, and overexpression of CDR1AS detrimentally affects cardiac function, increases infarct area, promotes excessive autophagy, and blocks the flow of autophagy to induce autosis after IR. Conversely, knockdown of CDR1AS reversed the autophagy-related markers caused by IR, increasing cardiomyocyte activity, improving cardiac dysfunction and infarct area, and restoring the flow of autophagy. Further analysis of RNA sequencing and validation experiments revealed that CDR1AS aggravated autophagic damage, increased autophagosome accumulation, and promoted autosis by inhibiting the levels of LAMP2 and mTORC1 proteins. Additionally, RIP and pull-down assays showed that CDR1AS interacts with LAMP2 or mTORC1. First-time evidence reveals that circRNA CDR1AS regulates lysosomal membrane proteins by regulating the mTORC1/ULK1 pathway during myocardial IR-induced autosis. This suggests that maintaining moderate autophagy is a crucial part of the fight against myocardial IR damage. KEY MESSAGES: CDR1AS expression was significantly increased in myocardium following IR. CDR1AS can increase the occurrence of autosis after IR. CDR1AS reduces the phosphorylation of ULK1, promoting the formation of autophagosomes. CDR1AS binds to LAMP2 and blocks the autophagosome clearance pathway. The specific mechanism of CDR1AS regulating IR is achieved by regulating autosis.
Collapse
Affiliation(s)
- Lina Xuan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Jun Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hua Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Junwei Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Siyun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Qingqing Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hailong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Shengjie Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Huishan Luo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jianjun Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xingmei Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Guangze Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Feihan Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiaolin Hu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| | - Lihua Sun
- Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
4
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
5
|
Almouh M, Soukkarieh C, Kassouha M, Ibrahim S. Crosstalk between circular RNAs and the STAT3 signaling pathway in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195051. [PMID: 39121909 DOI: 10.1016/j.bbagrm.2024.195051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Circular RNAs (circRNAs) are endogenous covalently closed single-stranded RNAs produced by reverse splicing of pre-mRNA. Emerging evidence suggests that circRNAs contribute to cancer progression by modulating the oncogenic STAT3 signaling pathway, which plays key roles in human malignancies. STAT3 signaling-related circRNAs expression appears to be extensively dysregulated in diverse cancer types, where they function either as tumor suppressors or oncogenes. However, the biological effects of STAT3 signaling-related circRNAs and their associations with cancer have not been systematically studied before. Given this, shedding light on the interaction between circRNAs and STAT3 signaling pathway in human malignancies may provide several novel insights into cancer therapy. In this review, we provide a comprehensive introduction to the molecular mechanisms by which circRNAs regulate STAT3 signaling in cancer progression, and the crosstalk between STAT3 signaling-related circRNAs and other signaling pathways. We also further discuss the role of the circRNA/STAT3 axis in cancer chemotherapy sensitivity.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Animal Production, Faculty of Veterinary Medicine, Hama University, Hama, Syria.
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Morshed Kassouha
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria
| | - Samer Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria; Faculty of Dentistry, Arab Private University of science and Technology, Hama, Syria
| |
Collapse
|
6
|
Zheng L, Tang R, Fang J, Hu H, Ahmad F, Tang Q, Liu J, Zhong M, Li J. Circular RNA hsa_circ_0081343 modulates trophoblast autophagy through Rbm8a nuclear translocation. Placenta 2024; 158:89-101. [PMID: 39413593 DOI: 10.1016/j.placenta.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a kind of obstetric complication that seriously endangers fetal life. Recent studies reported significant reduction of hsa_circ_0081343 in human placenta developed in FGR and is involved in cell migration, invasion, and apoptosis of trophoblast by acting as microRNA sponges. Autophagy is required for invasion of trophoblast cells and for vascular remodeling during placentation. In this study, we aimed to explore the mechanistic link between hsa_circ_0081343 and autophagy. METHODS We investigated the interactions between hsa_circ_0081343 and RNA-binding proteins were studied by RNA pull-down assay, mass spectrometry and RNA immunoprecipitation assay. The mechanism of nuclear translocation of Rbm8a were assessed by reverse transcription-quantitative PCR, Western blot, immunofluorescence and Co-Immunoprecipitation. Western blot, immunofluorescence and transmission electron microscopy were performed to elucidate the mechanism underlying hsa_circ_0081343 and/or Rbm8a mediated regulation of autophagy. RESULTS hsa_circ_0081343 served as an RNA-binding protein (RBP) sponge. RNA binding motif protein 8A (Rbm8a) was directly bound to hsa_circ_0081343 in the cytoplasm, while knockdown of hsa_circ_0081343 facilitated Rbm8a localization in the nucleus. We also identified Rbm8a as a potential import cargo for Importin13 (Ipo13), which transported Rbm8a across the nuclear membrane into the nucleus. Ipo13 recognized Rbm8a via a functional nuclear localization signal (NLS). Furthermore, the mechanistic study revealed that hsa_circ_0081343-mediated nuclear translocation of Rbm8a activated trophoblast autophagy. DISCUSSION Our results suggest that hsa_circ_0081343 could bind to RBP and the interaction between hsa_circ_0081343 and Rbm8a participate in regulating autophagy. These findings offer novel molecular targets and insights for a potential therapeutic strategy against FGR.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Tang
- Department of Hepatological Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Junbo Fang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fiaz Ahmad
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, Shaanxi, China
| | - Qiong Tang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Jinfu Liu
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Pu X, Sheng S, Fu Y, Yang Y, Xu G. Construction of circRNA-miRNA-mRNA ceRNA regulatory network and screening of diagnostic targets for tuberculosis. Ann Med 2024; 56:2416604. [PMID: 39435612 PMCID: PMC11497567 DOI: 10.1080/07853890.2024.2416604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 10/23/2024] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), which threatens human health and safety all over the world. Hundreds of thousands of people die from TB every year. Timely early diagnosis and treatment of patients is the most important measure to control the source of infection and curb the epidemic of tuberculosis. The existing diagnostic methods have the disadvantages of poor sensitivity and long culture time. Competitive endogenous RNAs (ceRNAs) can regulate the expression of corresponding target genes by competing for the same microRNA (miRNA) response elements (MREs) as mRNA. Recent studies have found that circRNA has the advantages of long half-life, good stability and tissue specificity, and can be used as a biomarker for predicting, diagnosing and treating various diseases, and is an ideal candidate for biomarkers in body fluid biopsy. In this study, transcriptome sequencing was performed on whole blood samples to screen out TB-related mirna and mRNA differential expression, and to construct the ceRNA regulatory network. Through the analysis of ceRNA regulatory network, it was found that circRNA could competitively bind has-miR-607 and induce down-regulation of has-miR-607, thereby inhibiting the expression of IFNG. The hsa_circ_0000566, hsa_circ_0001844, hsa_circ_0005408, hsa_circ_0007587, hsa_circ_0086710, IFNG and has-miR-607 couble be used as new diagnostic targets for TB. The results of this study not only provide a new perspective for studying the potential role of ceRNA regulatory network in tuberculosis, but also provide a new target and method for the diagnosis of tuberculosis.
Collapse
Affiliation(s)
- Xinyi Pu
- College of Pharmacy, Beihua University, Jilin, China
| | - Siyu Sheng
- College of Pharmacy, Beihua University, Jilin, China
| | - Yujuan Fu
- College of Pharmacy, Beihua University, Jilin, China
| | - Yue Yang
- College of Pharmacy, Beihua University, Jilin, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
8
|
Lan X, Yu R, Xu J. Identification of circRNA CDR1as/miR-214-3p regulatory axis in Legg-Calvé-Perthes disease. Orphanet J Rare Dis 2024; 19:380. [PMID: 39407304 PMCID: PMC11481470 DOI: 10.1186/s13023-024-03394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) commonly occurs among adolescents, threatening their health. However, the potential mechanism underlying LCPD remains unclear. miR-214-3p is shown as a critical role in LCPD development with unspecified upstream regulators. METHODS Levels of miR-214-3p and circCDR1as in healthy controls and LCPD patients were determined by qRT-PCR. The role of circCDR1as/miR-214-3p axis in LCPD was determined by testing the cell viability and apoptosis in TC28 cells and primary chondrocytes. Regulation between circCDR1as and miR-214-3p was examined by RIP and ChIP assays. The inflammatory response and angiogenesis were evaluated by M2 macrophage polarization and HUVECs tumor formation. RESULTS circCDR1as was overexpressed in LCPD patients with a negative correlation with miR-214-3p. Inhibition of circCDR1as alleviated the cell viability and apoptosis of DEX-treated chondrocytes, stimulated M2 macrophage polarization and angiogenesis. miR-214-3p was proved as a downstream effector to participate in circCDR1as mediated actions. circCDR1as recruited PRC2 complex to epigenetically suppress miR-214-3p. CONCLUSION Our study illustrated the role and mechanism of circCDR1as in LCPD development by targeting miR-214-3p, highlighting its potential in the therapy for LCPD.
Collapse
Affiliation(s)
- Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China.
| | - Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Jianyun Xu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| |
Collapse
|
9
|
Jiang H, Meng T, Li Z. Role of circular RNAs in preeclampsia (Review). Exp Ther Med 2024; 28:372. [PMID: 39091629 PMCID: PMC11292168 DOI: 10.3892/etm.2024.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy characterized by new-onset hypertension and proteinuria after 20 weeks of gestation, which affects 3-8% of pregnant individuals worldwide each year. Prevention, diagnosis and treatment of PE are some of the most important problems faced by obstetrics. There is growing evidence that circular RNAs (circRNAs) are involved in the pathogenesis of PE. The present review summarizes the research progress of circRNAs and then describes the expression patterns of circRNAs in PE and their functional mechanisms affecting PE development. The role of circRNAs as biomarkers for the diagnosis of PE, and the research status of circRNAs in PE are summarized in the hope of finding novel strategies for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Hengxue Jiang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Obstetrics and Gynecology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ziwei Li
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
10
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
11
|
Xu Z, Guan C, Cheng Z, Zhou H, Qin W, Feng J, Wan M, Zhang Y, Jia C, Shao S, Guo H, Li S, Liu B. Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Noncoding RNA Res 2024; 9:930-944. [PMID: 38680417 PMCID: PMC11047193 DOI: 10.1016/j.ncrna.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
From a global perspective, cardiovascular diseases (CVDs), the leading factor accounting for population mortality, and circRNAs, RNA molecules with stable closed-loop structures, have been proven to be closely related. The latent clinical value and the potential role of circRNAs in CVDs have been attracting increasing, active research interest, but bibliometric studies in this field are still lacking. Thus, in this study, we conducted a bibliometric analysis by using software such as VOSviewer, CiteSpace, Microsoft Excel, and the R package to determine the current research progress and hotspots and ultimately provide an overview of the development trends and future frontiers in this field. In our study, based on our search strategy, a total of 1206 publications published before July 31, 2023 were accessed from the WOSCC database. According to our findings, there is a notable increasing trend in global publications in the field of circRNA in CVDs. China was found to be the dominant country in terms of publication number, but a lack of high-quality articles was a significant fault. A cluster analysis on the co-cited references indicated that dilated cardiomyopathy, AMI, and cardiac hypertrophy are the greatest objects of concern. In contrast, a keywords analysis indicated that high importance has been ascribed to MI, abdominal aortic aneurysm, cell proliferation, and coronary artery diseases.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
12
|
Neufeldt D, Schmidt A, Mohr E, Lu D, Chatterjee S, Fuchs M, Xiao K, Pan W, Cushman S, Jahn C, Juchem M, Hunkler HJ, Cipriano G, Jürgens B, Schmidt K, Groß S, Jung M, Hoepfner J, Weber N, Foo R, Pich A, Zweigerdt R, Kraft T, Thum T, Bär C. Circular RNA circZFPM2 regulates cardiomyocyte hypertrophy and survival. Basic Res Cardiol 2024; 119:613-632. [PMID: 38639887 PMCID: PMC11319402 DOI: 10.1007/s00395-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.
Collapse
MESH Headings
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Humans
- Animals
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/metabolism
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Cell Survival
- Apoptosis/genetics
- Cells, Cultured
- Reactive Oxygen Species/metabolism
- RNA/genetics
- Animals, Newborn
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Dimyana Neufeldt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Wen Pan
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christopher Jahn
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Giuseppe Cipriano
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Bjarne Jürgens
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Roger Foo
- Institute of Molecular and Cell Biology, A*Star, Singapore, Singapore
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Robert Zweigerdt
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| |
Collapse
|
13
|
Bontempo P, Capasso L, De Masi L, Nebbioso A, Rigano D. Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions. Nutrients 2024; 16:2399. [PMID: 39125279 PMCID: PMC11314203 DOI: 10.3390/nu16152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
14
|
Dinh P, Tran C, Dinh T, Ali A, Pan S. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of
ETS1. J Biomol Struct Dyn 2024; 42:5114-5127. [DOI: https:/doi.org/10.1080/07391102.2023.2225109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 02/23/2025]
Affiliation(s)
- PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Dinh P, Tran C, Dinh T, Ali A, Pan S. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of
ETS1. J Biomol Struct Dyn 2024; 42:5114-5127. [DOI: https:/www.tandfonline.com/doi/abs/10.1080/07391102.2023.2225109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 02/23/2025]
Affiliation(s)
- PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Dinh P, Tran C, Dinh T, Ali A, Pan S. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn 2024; 42:5114-5127. [PMID: 37334706 DOI: 10.1080/07391102.2023.2225109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Coronary heart disease (CHD) is a prevalent global cause of death. Research suggests that circular RNAs (circRNAs) play a role in the development of CHD. In this study, we investigated the expression of hsa_circRNA_0000284 in peripheral blood leukocytes (PBLs) obtained from a cohort of 94 CHD patients aged over 50 years, as well as 126 age-matched healthy controls (HC). An in vitro inflammatory and oxidative injury cell model that simulates CHD was used to evaluate changes in hsa_ circRNA _0000284 under stress. CRISPR/Cas9 technology was used to evaluate changes in hsa_circRNA_0000284 expression. An hsa_ circRNA_0000284 overexpression and silencing cell model was used to analyze the biological functions of hsa_circRNA_0000284. Bioinformatics, qRT-PCR, viral transfection technology, and luciferase assays were used to evaluate the potential hsa_circRNA_0000284/miRNA-338-3p/ETS1 axis. Western blotting analysis was performed to detect protein expression. Herein, PBLs from CHD patients exhibited downregulation of hsa_circRNA_0000284 expression. Exposure to oxidative stress and inflammation can induce damage to human umbilical endothelial cells, resulting in the downregulation of hsa_circRNA_0000284 expression. The expression of hsa_circRNA_0000284 in EA-hy926 cells was significantly reduced after the AluSq2 element of hsa_circRNA_0000284 had been knocked out. The expression of hsa_circRNA_0000284 affected proliferation, cycle distribution, aging, and apoptosis in EA-hy926 cells. Consistent with the results of cell transfection experiments and luciferase assays, Western blotting showed that hsa_circRNA_0000284 plays a role in the regulation of hsa-miRNA-338-3p expression. Subsequently, hsa-miRNA-338-3p was found to be involved in the regulation of ETS1 expression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Tang L, Nyarige V, Li P, Wang J, Zhu W. Identification of circular RNAs regulating cardiomyocyte proliferation in neonatal pig hearts. JCI Insight 2024; 9:e175625. [PMID: 38916964 PMCID: PMC11383601 DOI: 10.1172/jci.insight.175625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Little is known about the expression patterns and functions of circular RNAs (circRNAs) in the heart of large mammals. In this study, we examined the expression profiles of circRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in neonatal pig hearts. Pig heart samples collected on postnatal days 1 (P1), 3 (P3), 7 (P7), and 28 (P28) were sent for total RNA sequencing. Our data revealed a total of 7,000 circRNAs in the 24 pig hearts. Pathway enrichment analysis of hallmark gene sets demonstrated that differentially expressed circRNAs were engaged in different pathways. The most significant difference was observed between P1 and the other 3 groups (P3, P7, and P28) in pathways related to cell cycle and muscle development. Out of the 10 circRNAs that were validated through real-time quantitative PCR to verify their expression, 6 exhibited significant effects on cell cycle activity in human induced pluripotent stem cell-derived cardiomyocytes following small interfering RNA-mediated knockdown. circRNA-miRNA-mRNA networks were constructed to understand the potential mechanisms of circRNAs in the heart. In conclusion, our study provided a data set for exploring the roles of circRNAs in pig hearts. In addition, we identified several circRNAs that regulate cardiomyocyte cell cycle.
Collapse
Affiliation(s)
- Ling Tang
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
| | - Verah Nyarige
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
- Department of Quantitative Health Sciences Research, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Pengsheng Li
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
| | - Junwen Wang
- Department of Quantitative Health Sciences Research, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Wuqiang Zhu
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, and
| |
Collapse
|
18
|
Wang W, Liu C, He D, Shi G, Song P, Zhang B, Li T, Wei J, Jiang Y, Ma L. CircRNA CDR1as affects functional repair after spinal cord injury and regulates fibrosis through the SMAD pathway. Pharmacol Res 2024; 204:107189. [PMID: 38649124 DOI: 10.1016/j.phrs.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-βR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-βR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Post-doctoral Scientific Research Workstation, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, China; Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Guidong Shi
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Song
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianlu Wei
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yunpeng Jiang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
19
|
Olson SR, Tang WHW, Liu CF. Non-Coding Ribonucleic Acids as Diagnostic and Therapeutic Targets in Cardiac Fibrosis. Curr Heart Fail Rep 2024; 21:262-275. [PMID: 38485860 PMCID: PMC11090942 DOI: 10.1007/s11897-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW Cardiac fibrosis is a crucial juncture following cardiac injury and a precursor for many clinical heart disease manifestations. Epigenetic modulators, particularly non-coding RNAs (ncRNAs), are gaining prominence as diagnostic and therapeutic tools. RECENT FINDINGS miRNAs are short linear RNA molecules involved in post-transcriptional regulation; lncRNAs and circRNAs are RNA sequences greater than 200 nucleotides that also play roles in regulating gene expression through a variety of mechanisms including miRNA sponging, direct interaction with mRNA, providing protein scaffolding, and encoding their own products. NcRNAs have the capacity to regulate one another and form sophisticated regulatory networks. The individual roles and disease relevance of miRNAs, lncRNAs, and circRNAs to cardiac fibrosis have been increasingly well described, though the complexity of their interrelationships, regulatory dynamics, and context-specific roles needs further elucidation. This review provides an overview of select ncRNAs relevant in cardiac fibrosis as a surrogate for many cardiac disease states with a focus on crosstalk and regulatory networks, variable actions among different disease states, and the clinical implications thereof. Further, the clinical feasibility of diagnostic and therapeutic applications as well as the strategies underway to advance ncRNA theranostics is explored.
Collapse
Affiliation(s)
- Samuel R Olson
- Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chia-Feng Liu
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
20
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
21
|
Tuerdi R, Zhang H, Wang W, Shen M, Wei X. Bibliometric analysis of the research hotspots and trends of circular RNAs. Heliyon 2024; 10:e31478. [PMID: 38818139 PMCID: PMC11137546 DOI: 10.1016/j.heliyon.2024.e31478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Background and objective Circular RNAs (circRNAs) have garnered considerable attention in the study of various human diseases due to their ubiquitous expression and potential biological functions. This study conducts a bibliometric and visualization-based analysis of circRNA-related research in diseases, aiming to reveal the current status, hotspots and emerging trends within the field. Methods Literature published between 2013 and 2022 and indexed in the Web of Science core databases was retrieved. Visualizations of publication volume, countries, authors, institutions, journals, references, and keywords were performed. Microsoft Excel (2021) was used to analyze and graph publication volume and growth trends. Additionally, CiteSpace (version 6.1.R6) and VOSviewer (version 1.6.18) were employed to visualize the bibliographic information. Results Between 2013 and 2022, a total of 4195 relevant articles on circRNA in the context of diseases were identified. These articles covered 56 countries, 2528 institutions, 19,842 authors and 698 journals, citing 85,541 references. The annual publication volume showed an exponential growth trend, with rapid development post-2017. China, the United States and Germany emerged as the top three contributors, demonstrating high publication volume and total citations. Notably, Nanjing Medical University exhibited the highest publication volume, boasting 291 articles. Burton B. Yang and Li Yang consistently ranked among the top 10 authors in terms of publication volume and citations, emerging as core contributors in this research field. The journal Bioengineered ranked first in terms of published articles (160), with an impact factor of 6.832, while Molecular Cancer garnered the highest impact factor (41.4), solidifying its position as a top journal in this field. Furthermore, high-frequency keywords included "expression" "proliferation" "biomarker" "microRNA" "cancer", signifying the prevailing research hotspots and principal themes of this field over the past decade. As of 2022, "biomarker", "prostate cancer","drug resistance","papillary thyroid carcinoma", etc. continued as keywords during the outbreak period. At present, the value of circRNA application is mainly reflected in the two aspects of biomarkers and therapeutic targets, and the prediction of accurate diagnosis and precise treatment based on big data analysis, especially in cancer, will become a hot spot of research in the future. Conclusion The trajectory of circRNA research from its biological origins to its applications in diseases has been delineated from 2013 to 2022. However, the transition to disease-specific applications and exploration of biological functions warrants further attention in future research endeavors.
Collapse
Affiliation(s)
- Reyila Tuerdi
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Hui Zhang
- Pathogenic Biology Laboratory, Gansu Provincial Center for Disease Prevention and Control, Lanzhou, 730000, Gansu, China
| | - Wenxin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Minghui Shen
- Center of Laboratory Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xingmin Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| |
Collapse
|
22
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Goina CA, Goina DM, Farcas SS, Andreescu NI. The Role of Circular RNA for Early Diagnosis and Improved Management of Patients with Cardiovascular Diseases. Int J Mol Sci 2024; 25:2986. [PMID: 38474233 PMCID: PMC10932049 DOI: 10.3390/ijms25052986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for approximately 17.9 million deaths every year. There is growing evidence that circular RNAs (circRNAs) may play a significant role in the early diagnosis and treatment of cardiovascular diseases. As regulatory molecules, circular RNAs regulate gene expression, interact with proteins and miRNAs, and are translated into proteins that play a key role in a wide variety of biological processes, including the division and proliferation of cells, as well as the growth and development of individuals. An overview of the properties, expression profiles, classification, and functions of circRNAs is presented here, along with an explanation of their implications in cardiovascular diseases including heart failure, hypertension, ischemia/reperfusion injury, myocardial infarction, cardiomyopathies, atherosclerosis, and arrhythmia.
Collapse
Affiliation(s)
- Claudia Alexandrina Goina
- Doctoral School, Discipline of Genetics, “Victor Babes” University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania;
| | - Daniela Marcela Goina
- Faculty of Animal Husbandry and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine of Banat, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Simona Sorina Farcas
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babeș” University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania;
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babeș” University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania;
| |
Collapse
|
24
|
Tang X, Guo J, Qi F, Rezaei MJ. Role of non-coding RNAs and exosomal non-coding RNAs in vasculitis: A narrative review. Int J Biol Macromol 2024; 261:129658. [PMID: 38266857 DOI: 10.1016/j.ijbiomac.2024.129658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
A category of very uncommon systemic inflammatory blood vessel illnesses known as vasculitides. The pathogenesis and etiology of vasculitis are still poorly known. Despite all of the progress made in understanding the genetics and causes behind vasculitis, there is still more to learn. Epigenetic dysregulation is a significant contributor to immune-mediated illnesses, and epigenetic aberrancies in vasculitis are becoming more widely acknowledged. Less than 2 % of the genome contains protein-encoding DNA. Studies have shown that a variety of RNAs originating from the non-coding genome exist. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) have attracted the most attention in recent years as they are becoming more and more important regulators of different biological processes, such as diseases of the veins. Extracellular vehicles (EVs) such as exosomes, are membrane-bound vesicular structures that break free either during programmed cell death, such as apoptosis, pyroptosis, and necroptosis or during cell activation. Exosomes may be involved in harmful ways in inflammation, procoagulation, autoimmune reactions, endothelial dysfunction/damage, intimal hyperplasia and angiogenesis, all of which may be significant in vasculitis. Herein, we summarized various non-coding RNAs that are involved in vasculitides pathogenesis. Moreover, we highlighted the role of exosomes in vasculitides.
Collapse
Affiliation(s)
- Xiuming Tang
- Department of Cardiology, The affiliated hospital to Changchun University of Chinise Medicine, Changchun, Jilin 130021, China.
| | - Jiajuan Guo
- Department of Cardiology, The affiliated hospital to Changchun University of Chinise Medicine, Changchun, Jilin 130021, China
| | - Feng Qi
- Department of Cardiology, The affiliated hospital to Changchun University of Chinise Medicine, Changchun, Jilin 130021, China
| | - Mohammad J Rezaei
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
25
|
Barbosa DF, Oliveira LS, Nachtigall PG, Valentini Junior R, de Souza N, Paschoal AR, Kashiwabara AY. cirCodAn: A GHMM-based tool for accurate prediction of coding regions in circRNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:289-334. [PMID: 38448139 DOI: 10.1016/bs.apcsb.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Studies focusing on characterizing circRNAs with the potential to translate into peptides are quickly advancing. It is helping to elucidate the roles played by circRNAs in several biological processes, especially in the emergence and development of diseases. While various tools are accessible for predicting coding regions within linear sequences, none have demonstrated accurate open reading frame detection in circular sequences, such as circRNAs. Here, we present cirCodAn, a novel tool designed to predict coding regions in circRNAs. We evaluated the performance of cirCodAn using datasets of circRNAs with strong translation evidence and showed that cirCodAn outperformed the other tools available to perform a similar task. Our findings demonstrate the applicability of cirCodAn to identify coding regions in circRNAs, which reveals the potential of use of cirCodAn in future research focusing on elucidating the biological roles of circRNAs and their encoded proteins. cirCodAn is freely available at https://github.com/denilsonfbar/cirCodAn.
Collapse
Affiliation(s)
- Denilson Fagundes Barbosa
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC), Canoinhas, Santa Catarina, Brazil
| | - Liliane Santana Oliveira
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rodolpho Valentini Junior
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Nayane de Souza
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Alexandre Rossi Paschoal
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - André Yoshiaki Kashiwabara
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil.
| |
Collapse
|
26
|
Xie Q, Ma Y, Ren Z, Gu T, Jiang Z. Circular RNA: A new expectation for cardiovascular diseases. J Cell Biochem 2024; 125:e30512. [PMID: 38098251 DOI: 10.1002/jcb.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.
Collapse
Affiliation(s)
- Qiao Xie
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
27
|
Li F, Liu J, Miao J, Hong F, Liu R, Lv Y, Yang Y, He A, Wang J. Circular RNA circXPO1 Promotes Multiple Myeloma Progression by Regulating miR-495-3p/DNA Damage-Induced Transcription 4 Axis. DNA Cell Biol 2024; 43:39-55. [PMID: 38079253 PMCID: PMC10825292 DOI: 10.1089/dna.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy that results from uncontrolled plasma cell proliferation. Circular RNAs are versatile regulators that influence cancer aggression. The pathogenic mechanism of circXPO1 in MM is still unknown. In this study, the expression of circXPO1, miR-495-3p, and DNA damage-induced transcription 4 (DDIT4) was detected. Knockdown and overexpression assays were used to evaluate the effect of circXPO1 on MM. Specifically, 5-ethynyl-2'-deoxyuridine and cell counting kit-8 assay were used to investigate cell proliferation. Meanwhile, flow cytometry was adopted to detect cell apoptosis and cell cycle. Apoptosis-associated and cell cycle-related proteins were detected by Western blot. Mechanistically, biotin RNA pull-down assay and dual-luciferase assay were implemented to verify the combination among miR495-3p and circXPO1 or DDIT4. The function of circXPO1 in vivo was explored in xenograft experiments. The results showed that circXPO1 was up-regulated in both MM samples and MM cell lines and miR-495-3p was down-regulated in MM patients. Silencing circXPO1 inhibited cell proliferation, increased apoptosis rates, and caused the G1 phase arrest. Overexpression of circXPO1 yielded opposite results. In addition, RNA pull-down experiment demonstrated the interaction between circXPO1 and miR-495-3p. Silencing miR-495-3p rescued the inhibitory function caused by the knockdown of circXPO1. DDIT4 was the target of miR-495-3p. Finally, silencing circXPO1 inhibited the growth of subcutaneous tumors in vivo. In conclusion, our findings showed that circXPO1 could promote MM progression via the miR-495-3p/DDIT4 axis.
Collapse
Affiliation(s)
- Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Jing Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yang Lv
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Jianli Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
28
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
29
|
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. EXTRACELLULAR VESICLE 2023; 2:100025. [PMID: 38188000 PMCID: PMC10768935 DOI: 10.1016/j.vesic.2023.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/Jacobi Medical Center, The Bronx, NY, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Yu CJ, Xia F, Ruan L, Hu SP, Zhu WJ, Yang K. Circ_0004771 Promotes Hypoxia/Reoxygenation Induced Cardiomyocyte Injury via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. Int Heart J 2023; 64:1125-1132. [PMID: 37967979 DOI: 10.1536/ihj.23-333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
This study aimed to observe the mechanism and effect of circ_0004771 on cardiomyocyte injury in acute myocardial infarction (AMI). The differences in circ_0004771 expression in the blood of AMI patients and healthy volunteers were observed by Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction. AMI cell models were constructed by hypoxia/reoxygenation (H/R)-induced injury in human cardiomyocytes (AC16 cells). The changes of circ_0004771 expression in AMI cells were observed. After transfection with the knockdown or overexpression of circ_0004771 vector in AMI cells, Cell Counting Kit-8 (CCK-8) assay and propidium iodide/FITC-Annexin V staining were performed to detect cell proliferation and apoptosis levels, extracellular lactate dehydrogenase (LDH) activity, malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) activity. Expression levels of Mitogen-activated protein kinase (MAPK) signaling pathway-related proteins (p-MEK1/2, MEK1/2, p-ERK1/2, ERK1/2), and endoplasmic reticulum (ER) stress proteins (GRP78 and CHOP-1) were observed in each group of cells by western blot method. The expression level of circ_0004771 was significantly reduced in both clinical samples and cells of AMI. When circ_0004771 was knocked down in AMI cells, it resulted in a decrease in cell proliferation level and significant increase in apoptosis level. The inhibition of circ_0004771 expression caused leakage of LDH in AMI cells, accumulation of intracellular MDA, and inhibition of SOD activity. In addition, the knockdown of circ_0004771 significantly increased the levels of p-MEK1/2, p-ERK1/2, GRP78, and CHOP-1 in H/R-induced AC16 cells. However, the overexpression of circ_0004771 resulted in the opposite result as when circ_0004771 was knocked down. A low level of circ_0004771 in AMI activates the MAPK signaling pathway in cardiomyocytes as well as encourages intracellular oxidative stress and ER stress, thereby inhibiting cell proliferation and promoting apoptosis.
Collapse
Affiliation(s)
- Chun-Jun Yu
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Feng Xia
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Lin Ruan
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Sheng-Peng Hu
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Wen-Jie Zhu
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Kai Yang
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| |
Collapse
|
31
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
33
|
Liu Y, Wang J, Zhao X, Li W, Liu Y, Li X, Zhao D, Yu J, Ji H, Shao B, Li Z, Wang J, Yang Y, Hao Y, Wu Y, Yuan Y, Du Z. CDR1as promotes arrhythmias in myocardial infarction via targeting the NAMPT-NAD + pathway. Biomed Pharmacother 2023; 165:115267. [PMID: 37542851 DOI: 10.1016/j.biopha.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Cardiac ventricular arrhythmia triggered by acute myocardial infarction (AMI) is a major cause of sudden cardiac death. We have reported previously that an increased serum level of circular RNA CDR1as is a potential biomarker of AMI. However, the possible role of CDR1as in post-infarct arrhythmia remains unclear. This study in MI mice investigated the effects and underlying mechanism of CDR1as in ventricular arrhythmias associated with MI. We showed that knockdown of CDR1as abbreviated the duration of the abnormally prolonged QRS complex and QTc intervals and decreased susceptibility to ventricular arrhythmias. Optical mapping demonstrated knockdown of CDR1as also reduced post-infarct arrhythmia by increasing the conduction velocity and decreasing dispersion of repolarization. Mechanistically, CDR1as led to the depletion of NAD+ and caused mitochondrial dysfunction by directly targeting the NAMPT protein and repressing its expression. Moreover, CDR1as aggravated dysregulation of the NaV1.5 and Kir6.2 channels in cardiomyocytes, a change which was alleviated by the replenishment of NAD+. These findings suggest that anti-CDR1as is a potential therapeutic approach for ischemic arrhythmias.
Collapse
Affiliation(s)
- Yunqi Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yaohua Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xingda Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dan Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongyu Ji
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Bing Shao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhendong Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yilian Yang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Hao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuting Wu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
34
|
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA, Dergunov AD. Circular RNAs Variously Participate in Coronary Atherogenesis. Curr Issues Mol Biol 2023; 45:6682-6700. [PMID: 37623241 PMCID: PMC10453518 DOI: 10.3390/cimb45080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which results in the formation of closed single-stranded circRNA molecules that lack 5'-end caps and 3'-end poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous RNAs. Numerous circRNAs are involved in the circRNA-miRNA-mRNA regulatory axes associated with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887, сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD) with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD. We also discuss the main modern approaches to detecting and studying circRNA-miRNA-mRNA interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| |
Collapse
|
35
|
Malviya A, Bhuyan R. The recent advancements in circRNA research: From biogenesis to therapeutic interventions. Pathol Res Pract 2023; 248:154697. [PMID: 37506629 DOI: 10.1016/j.prp.2023.154697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Circular RNAs (circRNAs) belong to the genre of long non-coding RNAs that are formed by special back-splicing events and are currently the molecule of interest for studies globally due their involvement in various ailments like diabetes, neurodegenerative disorders, cardio-vascular diseases and cancers. These class of highly stable RNAs participate in diverse cellular functionalities including microRNA (miRNA) sponging, ceRNA (competing endogenous RNA) activity or via exhibiting RNA binding protein (RBP) interactions. They are also known to regulate cancer progression both positively and negatively through various biological pathways such as, modulating the cell cycle and apoptotic pathways, epigenetic regulation, and translational and/or transcriptional regulations etc. Given its significance, a variety of computational tools and dedicated databases have been created for the identification, quantification, and differential expression of such RNAs in combination with sequencing approaches. In this review, we provide a comprehensive analysis of the numerous computational tools, pipelines, and online resources developed in recent years for the detection and annotation of circRNAs. We also summarise the most recent findings regarding the characteristics, functions, biological processes, and involvement of circRNAs in diseases. The review emphasises the significance of circRNAs as potential disease biomarkers and new treatment targets.
Collapse
Affiliation(s)
- Ayushi Malviya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| | - Rajabrata Bhuyan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India.
| |
Collapse
|
36
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
37
|
He S, Fu Y, Li C, Gan X, Wang Y, Zhou H, Jiang R, Zhang Q, Jia Q, Chen X, Jia EZ. Interaction between the expression of hsa_circRPRD1A and hsa_circHERPUD2 and classical coronary risk factors promotes the development of coronary artery disease. BMC Med Genomics 2023; 16:131. [PMID: 37316908 DOI: 10.1186/s12920-023-01540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Recent studies suggest that classical coronary risk factors play a significant role in the pathogenesis of coronary artery disease. Our study aims to explore the interaction of circRNA with classical coronary risk factors in coronary atherosclerotic disease. METHOD Combined analysis of RNA sequencing results from coronary segments and peripheral blood mononuclear cells of patients with coronary atherosclerotic disease was employed to identify critical circRNAs. Competing endogenous RNA networks were constructed by miRanda-3.3a and TargetScan7.0. The relative expression quantity of circRNA in peripheral blood mononuclear cells was determined by qRT-PCR in a large cohort including 256 patients and 49 controls. Spearman's correlation test, receiver operating characteristic curve analysis, multivariable logistic regression analysis, one-way analysis of variance, and crossover analysis were performed. RESULTS A total of 34 circRNAs were entered into our study, hsa_circRPRD1A, hsa_circHERPUD2, hsa_circLMBR1, and hsa_circDHTKD1 were selected for further investigation. A circRNA-miRNA-mRNA network is composed of 20 microRNAs and 66 mRNAs. The expression of hsa_circRPRD1A (P = 0.004) and hsa_circHERPUD2 (P = 0.003) were significantly down-regulated in patients with coronary artery disease compared to controls. The area under the curve of hsa_circRPRD1A and hsa_circHERPUD2 is 0.689 and 0.662, respectively. Univariate and multivariable logistic regression analyses identified hsa_circRPRD1A (OR = 0.613, 95%CI:0.380-0.987, P = 0.044) as a protective factor for coronary artery disease. Based on the additive model, crossover analysis demonstrated that there was an antagonistic interaction between the expression of hsa_circHERPUD2 and alcohol consumption in subjects with coronary artery disease. CONCLUSION Our findings imply that hsa_circRPRD1A and hsa_circHERPUD2 could be used as biomarkers for the diagnosis of coronary artery disease and provide epidemiological support for the interactions between circRNAs and classical coronary risk factors.
Collapse
Affiliation(s)
- Shu He
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Rongli Jiang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Xiumei Chen
- Department of Geriatric, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China.
- Department of Cardiovascular Medicine, Liyang People's Hospital, Liyang, Jiangsu province, 213300, China.
| | - En-Zhi Jia
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
38
|
Odame E, Li L, Nabilla JA, Cai H, Xiao M, Ye J, Chen Y, Kyei B, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Zhang H. miR-145-3p Inhibits MuSCs Proliferation and Mitochondria Mass via Targeting MYBL1 in Jianzhou Big-Eared Goats. Int J Mol Sci 2023; 24:ijms24098341. [PMID: 37176056 PMCID: PMC10179409 DOI: 10.3390/ijms24098341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Joshua Abdulai Nabilla
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - He Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Miao Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
39
|
Nardin M, Verdoia M, Laera N, Cao D, De Luca G. New Insights into Pathophysiology and New Risk Factors for ACS. J Clin Med 2023; 12:jcm12082883. [PMID: 37109221 PMCID: PMC10146393 DOI: 10.3390/jcm12082883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular disease still represents the main cause of mortality worldwide. Despite huge improvements, atherosclerosis persists as the principal pathological condition, both in stable and acute presentation. Specifically, acute coronary syndromes have received substantial research and clinical attention in recent years, contributing to improve overall patients' outcome. The identification of different evolution patterns of the atherosclerotic plaque and coronary artery disease has suggested the potential need of different treatment approaches, according to the mechanisms and molecular elements involved. In addition to traditional risk factors, the finer portrayal of other metabolic and lipid-related mediators has led to higher and deep knowledge of atherosclerosis, providing potential new targets for clinical management of the patients. Finally, the impressive advances in genetics and non-coding RNAs have opened a wide field of research both on pathophysiology and the therapeutic side that are extensively under investigation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Third Medicine Division, Department of Medicine, ASST Spedali Civili, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13900 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 13100 Novara, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98166 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, 20161 Milan, Italy
| |
Collapse
|
40
|
Ding C, Zhou Y. Insights into circular
RNAs
: Biogenesis, function and their regulatory roles in cardiovascular disease. J Cell Mol Med 2023; 27:1299-1314. [PMID: 37002786 PMCID: PMC10183707 DOI: 10.1111/jcmm.17734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
As a distinctive member of the noncoding RNA family, circular RNAs (circRNAs) are generated from single-stranded, covalently closed structures and are ubiquitous in mammalian cells and tissues. Due to its atypical circular architecture, it was conventionally deemed insignificant dark matter for a prolonged duration. Nevertheless, studies conducted over the last decade have demonstrated that this abundant, structurally stable and tissue-specific RNA has been increasingly relevant in diverse diseases, including cancer, neurological disorders, diabetes mellitus and cardiovascular diseases (CVDs). Therefore, regulatory pathways controlled by circRNAs are widely involved in the occurrence and pathological processes of CVDs through their function as miRNA sponges, protein sponges and protein scaffolds. To better understand the role of circRNAs and their complex regulatory networks in CVDs, we summarize current knowledge of their biogenesis and function and the latest research on circRNAs in CVDs, with the hope of paving the way for the identification of promising biomarkers and therapeutic strategies for CVDs.
Collapse
Affiliation(s)
- Chen Ding
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University Suzhou Dushu Lake Hospital Suzhou Jiangsu China
- Institute for Hypertension of Soochow University Suzhou Jiangsu China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University Suzhou Dushu Lake Hospital Suzhou Jiangsu China
- Institute for Hypertension of Soochow University Suzhou Jiangsu China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
41
|
Zhang Z, Huang Y, Guo AY, Yang L. Research progress of circular RNA molecules in aging and age-related diseases. Ageing Res Rev 2023; 87:101913. [PMID: 36934850 DOI: 10.1016/j.arr.2023.101913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-chain endogenous closed circular RNAs that do not have a poly(A) tail at the 3' end and a cap structure at the 5' end and are connected end-to-end by covalent bonds. CircRNAs, which are pervasive, diverse, stable, and conversed, have functions in transcriptional control and protein translation and play vital roles in modulating cell senescence, individual aging, as well as the occurrence and development of age-related diseases. Studies in recent years were reviewed from aspects including the biosynthesis mechanisms, classification, expression, biomedical functions, associations with aging and age-related diseases, and potential clinical applications of circRNAs. It will provide the theoretic basis for exploring the molecular biological mechanisms of aging, using circRNA as the therapeutic target to delay aging, and finding therapeutic strategies to prevent and treat age-related diseases.
Collapse
Affiliation(s)
- Zhidan Zhang
- Departments of Infectious Disease, The First Hospital of China Medical University, Shenyang, PR China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, PR China
| | - AYao Guo
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
42
|
Mehta SL, Chokkalla AK, Bathula S, Arruri V, Chelluboina B, Vemuganti R. CDR1as regulates α-synuclein-mediated ischemic brain damage by controlling miR-7 availability. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:57-67. [PMID: 36618263 PMCID: PMC9800254 DOI: 10.1016/j.omtn.2022.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transient focal ischemia decreased microRNA-7 (miR-7) levels, leading to derepression of its major target α-synuclein (α-Syn) that promotes secondary brain damage. Circular RNA CDR1as is known to regulate miR-7 abundance and function. Hence, we currently evaluated its functional significance after focal ischemia. Transient middle cerebral artery occlusion (MCAO) in adult mice significantly downregulated both CDR1as and miR-7 levels in the peri-infarct cortex between 3 and 72 h of reperfusion. Interestingly, neither pri-miR-7a nor 7b was altered in the ischemic brain. Intracerebral injection of an AAV9 vector containing a CDR1as gene significantly increased CDR1as levels by 21 days that persisted up to 4 months without inducing any observable toxicity in both sham and MCAO groups. Following transient MCAO, there was a significant increase in miR-7 levels and CDR1as binding to Ago2/miR-7 in the peri-infarct cortex of AAV9-CDR1as cohort compared with AAV9-Control cohort at 1 day of reperfusion. CDR1as overexpression significantly suppressed post-stroke α-Syn protein induction, promoted motor function recovery, decreased infarct size, and curtailed the markers of apoptosis, autophagy mitochondrial fragmentation, and inflammation in the post-stroke brain compared with AAV9-Control-treated cohort. Overall, our findings imply that CDR1as reconstitution is neuroprotective after stroke, probably by protecting miR-7 and preventing α-Syn-mediated neuronal death.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Anil K. Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI 53792, USA
| |
Collapse
|
43
|
Long Q, Lv B, Jiang S, Lin J. The Landscape of Circular RNAs in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054571. [PMID: 36902000 PMCID: PMC10003248 DOI: 10.3390/ijms24054571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality globally. Circular RNAs (circRNAs) have attracted extensive attention for their roles in the physiological and pathological processes of various cardiovascular diseases (CVDs). In this review, we briefly describe the current understanding of circRNA biogenesis and functions and summarize recent significant findings regarding the roles of circRNAs in CVDs. These results provide a new theoretical basis for diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Qi Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
44
|
Sun K, Yao H, Zhang P, Sun Y, Ma J, Xia Q. Emerging landscape of circFNDC3B and its role in human malignancies. Front Oncol 2023; 13:1097956. [PMID: 36793611 PMCID: PMC9924128 DOI: 10.3389/fonc.2023.1097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, more attention has been paid to expanding the abundance of Circular RNAs (circRNAs), while the circRNAs that have been found to have significant functions have not been studied in different diseases. CircFNDC3B is one of the most researched circRNAs generated from fibronectin type III domain-containing protein 3B (FNDC3B) gene. Accumulating researches have reported the multiple functions of circFNDC3B in different cancer types and other non-neoplastic diseases, and predicted that circFNDC3B might be a potential biomarker. Notably, circFNDC3B can play roles in different diseases by binding to various microRNAs (miRNAs), binding to RNA-binding proteins (RBPs), or encoding functional peptides. This paper systematically summarizes the biogenesis and function of circRNAs, reviews and discusses the roles and molecular mechanisms of circFNDC3B and its target genes in different cancers and non-neoplastic diseases, which will do favor to broaden our comprehension of the function of circRNAs and facilitate subsequent research on circFNDC3B.
Collapse
Affiliation(s)
- Kai Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peizhi Zhang
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Yanning Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| |
Collapse
|
45
|
Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023; 37:181-198. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiang-Qian Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Lu-Yu Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
46
|
CircSMARCC1 and CircLRBA are potential biomarkers in forensic postmortem diagnosis of acute myocardial infarction. Leg Med (Tokyo) 2023; 60:102184. [PMID: 36502647 DOI: 10.1016/j.legalmed.2022.102184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Postmortem diagnosis of acute myocardial infarction (AMI), especially early AMI, is a challenge for forensic scientists. Circular RNAs (circRNA) are a unique type of RNA with a closed loop structure and more stability, compared with linear RNA. We aimed at evaluating whether circRNAs are ideal postmortem diagnostic markers for AMI. We employed bioinformatics methods to screen for target circRNAs. Divergent and convergent primers were used to confirm the loop structure. Ribonuclease R (RNaseR) digestion and artificial simulated room temperature test were performed to evaluate the stability of circRNAs. Furthermore, RT-PCR analysis was performed to assess the expressions of target circRNAs in a mouse model of AMI and in autopsy cases, while the diagnostic significance of circRNAs was evaluated by the receiver-operator characteristic (ROC) curve. The bioinformatics analysis screened out circSMARCC1 and circLRBA as target circRNAs. Agarose gel electrophoresis revealed the loop structure of target circRNAs. RNaseR digestion and the artificial simulated room temperature test showed that the stability of circRNAs was good. In mouse AMI model, circSMARCC1 levels were elevated while circLRBA levels were suppressed. Finally, in forensic autopsy cases, circSMARCC1 levels were significantly elevated, while circLRBA levels were significantly suppressed in the MI and early-MI group, relative to the normal control group. The ROC curve analysis showed that both circSMARCC1 and circLRBA can distinguish between AMI and normal control cases. Futher, a combination of the two circRNAs can increase the diagnostic efficacy of AMI. Thus, circSMARCC1 and circLRBA are potential biomarkers for postmortem diagnosis of AMI.
Collapse
|
47
|
Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM. Circular RNAs as a Diagnostic and Therapeutic Target in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24032125. [PMID: 36768449 PMCID: PMC9916891 DOI: 10.3390/ijms24032125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Circular RNAs (circRNAs) are a family of noncoding RNAs (ncRNAs) that are endogenous and widely distributed in different species, performing several functions, mainly their association with microRNAs (miRNAs) and RNA-binding proteins. CVDs remain the leading cause of death worldwide; therefore, the development of new therapies and strategies, such as gene therapies or nonpharmacological therapies, with low cost, such as physical exercise, to alleviate these diseases is of extreme importance for society. With increasing evidence of ncRNA participating in the progression of CVDs, several studies have reported these RNAs as promising targets for diagnosis and treatment. There are several studies of CVDs and the role of miRNAs and lncRNAs; however, little is known about the new class of RNAs, called circRNAs, and CVDs. In this mini review, we focus on the mechanisms of circRNAs and CVDs.
Collapse
|
48
|
Emami Meybodi SM, Soleimani N, Yari A, Javadifar A, Tollabi M, Karimi B, Emami Meybodi M, Seyedhossaini S, Brouki Milan P, Dehghani Firoozabadi A. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications. Int J Biol Macromol 2023; 225:1049-1071. [PMID: 36414082 DOI: 10.1016/j.ijbiomac.2022.11.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders with major global health consequences. The prevalence of CVDs continues to grow due to population-aging and lifestyle modifications. Non-coding RNAs (ncRNAs) as key regulators of cell signaling pathways have gained attention in the occurrence and development of CVDs. Exosomal-lncRNAs (exos-lncRNAs) are emerging biomarkers due to their high sensitivity and specificity, stability, accuracy and accessibility in the biological fluids. Recently, circulatory and exos-based-lncRNAs are emerging and novel bio-tools in various pathogenic conditions. It is worth mentioning that dysregulation of these molecules has been found in different types of CVDs. In this regard, we aimed to discuss the knowledge gaps and suggest research priorities regarding circulatory and exos-lncRNAs as novel bio-tools and therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nafiseh Soleimani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Mciences, Birjand, Iran.
| | - Amin Javadifar
- Immunology Research Center, Inflammation and Inflammatory Disease Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Tollabi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahmoud Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyedmostafa Seyedhossaini
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Dehghani Firoozabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Liang Q, Zhou Z, Li H, Tao Q, Wang Y, Lin A, Xu J, Zhang B, Wu Y, Min H, Wang L, Song S, Wang D, Gao Q. Identification of pathological-related and diagnostic potential circular RNAs in Stanford type A aortic dissection. Front Cardiovasc Med 2023; 9:1074835. [PMID: 36712253 PMCID: PMC9880160 DOI: 10.3389/fcvm.2022.1074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Stanford type A aortic dissection (TAAD) is one of the lethal macrovascular diseases caused by the invasion of blood into the media layer of ascending aortic wall. Inflammation, smooth muscle dysfunction, and extracellular matrix (ECM) degradation were regarded as the major pathology in affected tissue. However, the expression pattern and its regulation especially through circular RNAs (circRNAs) as an overall characteristic of TAAD molecular pathology remain unclear. Methods We employed CIRCexplorer2 to identify circRNAs based on the RNA sequencing (RNA-seq) data of human ascending aortic tissues to systematically assess the role of circRNA in the massive alterations of gene expression in TAAD aortas. The key circRNAs were determined by LASSO model and functionally annotated by competing endogenous RNAs (ceRNA) network and co-analysis with mRNA profile. The expression level and diagnostic capability of the 4 key circRNAs in peripheral serum were confirmed by real-time polymerase chain reaction (RT-PCR). Results The 4 key circRNAs, namely circPTGR1 (chr9:114341075-114348445[-]), circNOX4 (chr11:89069012-89106660[-]), circAMN1 (chr12:31854796-31862359[-]) and circUSP3 (chr15:63845913-63855207[+]), demonstrated a high power to discriminate between TAAD and control tissues, suggesting that these molecules stand for a major difference between the tissues at gene regulation level. Functionally, the ceRNA network of circRNA-miRNA-mRNA predicted by the online databases, combining gene set enrichment analysis (GSEA) and cell component prediction, revealed that the identified circRNAs covered all the aspects of primary TAAD pathology, centralized with increasing inflammatory factors and cells, and ECM destruction and loss of vascular inherent cells along with the circRNAs. Importantly, we validated the high concentration and diagnostic capability of the 4 key circRNAs in the peripheral serum in TAAD patients. Discussion This study reinforces the vital status of circRNAs in TAAD and the possibility of serving as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zeyi Zhou
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Li
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yali Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bin Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzheng Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haiyan Min
- Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Qian Gao ✉
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Dongjin Wang ✉
| |
Collapse
|
50
|
Comprehensive evaluation of circRNAs in cirrhotic cardiomyopathy before and after liver transplantation. Int Immunopharmacol 2023; 114:109495. [PMID: 36462338 DOI: 10.1016/j.intimp.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Cirrhotic cardiomyopathy (CCM) is a common complication of liver cirrhosis. Many patients with cirrhotic livers do not die from liver failure but from abnormal hemodynamics secondary to liver cirrhosis. Liver transplantation is one of the most effective treatments for liver diseases. Recent studies have found that liver transplantation can reverse CCM and improve cardiac function; however, its role and remedial mechanism remain unclear. Circular RNAs (circRNAs) have become an important marker for diagnosing diseases. The differential expression of circRNAs is associated with heart diseases. In this study, we used gene sequencing to detect the circRNA expression profile of patients with CCM before and after liver transplantation and predicted the differential circRNA target genes. The results showed that a total of 1495 circRNAs were dysregulated after liver transplantation, 1319 genes were downregulated, and 176 were upregulated (P < 0.05, log2 (fold change) > 2.0). The qRT-PCR results showed that circ-ASAP1, circ-N4BP2L2, circ-EXOC6B were significantly downregulated (P < 0.05), which were consistent with the RNA sequencing data, and circ-ASAP1 had the most significant difference. Bioinformatics analysis suggested that mTOR and MAPK signaling pathways might be involved in the pathogenesis of CCM. By constructing a circRNA-miRNA-mRNA interaction network, hsa-miR-197-3p, hsa-miR-483-3p, and hsa-miR-885-3p, particularly key miRNA (hsa-miR-483-3p), were found to be the major potential genes involved in CCM regulation. In summary, this study suggested that circRNAs play a crucial regulatory role in the occurrence of CCM before and after liver transplantation, and their potential biological function might be the key to diagnosis and treatment.
Collapse
|