1
|
Pun S, Prakash A, Demaree D, Krummel DP, Sciumè G, Sengupta S, Barrile R. Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma. Adv Healthc Mater 2024; 13:e2401876. [PMID: 39101329 PMCID: PMC11616263 DOI: 10.1002/adhm.202401876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Microphysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel-based microchannels mimicking vasculature, within an SLA resin framework using cost-effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co-culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS-free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
| | - Anusha Prakash
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- AbbvieWorcesterMassachusetts01605USA
| | - Dalee Demaree
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- Thermo Fisher ScientificWalthamMassachusetts02451USA
| | - Daniel Pomeranz Krummel
- Department of NeurologyUniversity of CincinnatiCincinnatiOH45219USA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNC27599USA
| | - Giuseppe Sciumè
- Institute of Mechanics and Engineering‐12 MUniversity of BordeauxBordeaux33607France
| | - Soma Sengupta
- Department of NeurologyUniversity of CincinnatiCincinnatiOH45219USA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNC27599USA
- Department of NeurologyUniversity of North CarolinaChapel HillNC27599‐7025USA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNC27599‐7295USA
| | - Riccardo Barrile
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- Center for Stem Cells and Organoid Medicine (CuSTOM)Cincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| |
Collapse
|
2
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
3
|
Selvaraj A, Kulkarni A, Pearce JM. Open-source 3-D printable autoinjector: Design, testing, and regulatory limitations. PLoS One 2023; 18:e0288696. [PMID: 37450496 PMCID: PMC10348544 DOI: 10.1371/journal.pone.0288696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Autoinjectors have become popular modern injectable medical devices used as drug delivery systems. Due to their ease, capability and reliability compared to other conventional injectable medical devices, the market and manufacturing demand for autoinjector devices are increasing rapidly and expected to reach a market of $37.5 billion globally by 2025. Although autoinjectors can offset healthcare treatment costs through self-administered medication, they can be expensive for consumers, which limit their accessibility. This study describes the design and manufacture of a spring-driven and 3-D printed autoinjector to overcome this economic accessibility challenge. The digitally replicable device is released as open-source hardware to enable low-cost distributed manufacturing. The bill of materials and assembly instructions are detailed, and the effectiveness of the autoinjector is tested against the current standard (ISO 11608-1:2022) for needle-based injection systems. The safety and dosing accuracy was tested by measuring the weight of 100% ethyl alcohol expelled from six BD Insulin syringes with varying capacities or needle lengths. A one-way analysis assessed the variability between the dose delivery efficiency of 1mL, 0.5mL, and 0.3mL syringes. Testing indicated that the entire dose was delivered over 97.5% of the time for 1mL and 0.5mL syringes, but the autoinjector's loaded spring force and size exceeded structural limitations of 0.3mL or smaller syringes. Components can be manufactured in about twelve hours using an open-source desktop RepRap-class fused filament 3-D printer. The construction requires two compression springs and 3-D printed parts. The total material cost of CAD$6.83 is less than a tenth of comparable commercial autoinjectors, which makes this approach promising. The autoinjector, however, is a class two medical device and must be approved by regulators. Future work is needed to make distributed manufacturing of such medical devices feasible and reliable to support individuals burdened by healthcare costs.
Collapse
Affiliation(s)
- Anjutha Selvaraj
- Faculty of Science, Medical Sciences and Environmental Sciences, Western University, London, ON, Canada
| | - Apoorv Kulkarni
- Department of Electrical & Computer Engineering, Western University, London, ON, Canada
| | - J. M. Pearce
- Department of Electrical & Computer Engineering, Western University, London, ON, Canada
- Ivey Business School, Western University, London, ON, Canada
| |
Collapse
|
4
|
Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies, integration, and applications. LAB ON A CHIP 2023; 23:1279-1299. [PMID: 36779387 DOI: 10.1039/d2lc01177h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.
Collapse
Affiliation(s)
- Ruitao Su
- School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Fujun Wang
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Bate C, King P, Sim J, Manogharan G. A Novel Approach to Visualize Liquid Aluminum Flow to Advance Casting Science. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020756. [PMID: 36676493 PMCID: PMC9866359 DOI: 10.3390/ma16020756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 05/27/2023]
Abstract
Turbulent filling of molten metal in sand-casting leads to bi-films, porosity and oxide inclusions which results in poor mechanical properties and high scrap rate of sand castings. Hence, it is critical to understand the metal flow in sand-molds, i.e., casting hydrodynamics to eliminate casting defects. While multiple numerical methods have been applied to simulate this phenomenon for decades, harsh foundry environments and expensive x-ray equipment have limited experimental approaches to accurately visualize metal flow in sand molds. In this paper, a novel approach to solve this challenge is proposed using Succinonitrile (SCN) as a more accurate metal analog in place of water. SCN has a long history in solidification research due to its BCC (Body-Centered-Cubic) crystal structure and dendrite-like solidification (melting temperature ~60 °C) like molten aluminum. However, this is the first reported study on applying SCN through novel casting hydrodynamics to accurately visualize melt flow for casting studies. This paper used numerical simulations and experiments using both water and SCN to identify the critical dimensionless numbers to perform accurate metal flow analog testing. Froude's number and wall roughness were identified as critical variables. Experimental results show that SCN flow testing was more accurate in recreating the flow profile of molten aluminum, thus validating its utility as a metal analog for metal flow research. Findings from this study can be used in future metal flow analysis such as: runner, in-gate and integrated filling-feeding-solidification studies.
Collapse
|
6
|
Nordin AN, Abd Manaf A. Design and fabrication technologies for microfluidic sensors. MICROFLUIDIC BIOSENSORS 2023:41-85. [DOI: 10.1016/b978-0-12-823846-2.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Flores D, Noboa J, Tarapues M, Vizuete K, Debut A, Bejarano L, Streitwieser DA, Ponce S. Simple Preparation of Metal-Impregnated FDM 3D-Printed Structures. MICROMACHINES 2022; 13:1675. [PMID: 36296028 PMCID: PMC9612141 DOI: 10.3390/mi13101675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Modifying the natural characteristics of PLA 3D-printed models is of interest in various research areas in which 3D-printing is applied. Thus, in this study, we describe the simple impregnation of FDM 3D-printed PLA samples with well-defined silver nanoparticles and an iron metal salt. Quasi-spherical and dodecahedra silver particles were strongly attached at the channels of 3D-printed milli-fluidic reactors to demonstrate their attachment and interaction with the flow, as an example. Furthermore, Fenton-like reactions were successfully developed by an iron catalyst impregnated in 3D-printed stirrer caps to induce the degradation of a dye and showed excellent reproducibility.
Collapse
Affiliation(s)
- Diana Flores
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Avenida Interoceánica, Quito 170157, Ecuador
| | - Jose Noboa
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Avenida Interoceánica, Quito 170157, Ecuador
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Mickaela Tarapues
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Avenida Interoceánica, Quito 170157, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Lorena Bejarano
- Department of Mechanical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y AvenidaInteroceánica, Quito 170157, Ecuador
| | - Daniela Almeida Streitwieser
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Avenida Interoceánica, Quito 170157, Ecuador
- Faculty for Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Sebastian Ponce
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Avenida Interoceánica, Quito 170157, Ecuador
| |
Collapse
|
9
|
Wang J, Yang L, Wang H, Wang L. Application of Microfluidic Chips in the Detection of Airborne Microorganisms. MICROMACHINES 2022; 13:1576. [PMID: 36295928 PMCID: PMC9611547 DOI: 10.3390/mi13101576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The spread of microorganisms in the air, especially pathogenic microorganisms, seriously affects people's normal life. Therefore, the analysis and detection of airborne microorganisms is of great importance in environmental detection, disease prevention and biosafety. As an emerging technology with the advantages of integration, miniaturization and high efficiency, microfluidic chips are widely used in the detection of microorganisms in the environment, bringing development vitality to the detection of airborne microorganisms, and they have become a research highlight in the prevention and control of infectious diseases. Microfluidic chips can be used for the detection and analysis of bacteria, viruses and fungi in the air, mainly for the detection of Escherichia coli, Staphylococcus aureus, H1N1 virus, SARS-CoV-2 virus, Aspergillus niger, etc. The high sensitivity has great potential in practical detection. Here, we summarize the advances in the collection and detection of airborne microorganisms by microfluidic chips. The challenges and trends for the detection of airborne microorganisms by microfluidic chips was also discussed. These will support the role of microfluidic chips in the prevention and control of air pollution and major outbreaks.
Collapse
Affiliation(s)
- Jinpei Wang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Engineering Research Center of Personalized Anti-Aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an 710077, China
- Applied Research Center for Life Science, Xi’an International University, Xi’an 710077, China
| | - Lixia Yang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Engineering Research Center of Personalized Anti-Aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an 710077, China
- Applied Research Center for Life Science, Xi’an International University, Xi’an 710077, China
| | - Hanghui Wang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lin Wang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Engineering Research Center of Personalized Anti-Aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an 710077, China
- Applied Research Center for Life Science, Xi’an International University, Xi’an 710077, China
| |
Collapse
|
10
|
Saggiomo V. A 3D Printer in the Lab: Not Only a Toy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202610. [PMID: 35831252 PMCID: PMC9507339 DOI: 10.1002/advs.202202610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Although 3D printers are becoming more common in households, they are still under-represented in many laboratories worldwide and regarded as toys rather than as laboratory equipment. This short review wants to change this conservative point of view. This mini-review focuses on fused deposition modeling printers and what happens after acquiring your first 3D printer. In short, these printers melt plastic filament and deposit it layer by layer to create the final object. They are getting cheaper and easier to use, and nowadays it is not difficult to find good 3D printers for less than €500. At such a price, a 3D printer is one, if not the most, versatile piece of equipment you can have in a laboratory.
Collapse
Affiliation(s)
- Vittorio Saggiomo
- Department of BioNanoTechnologyWageningen UniversityBornse Weilanden 9Wageningen6708WGThe Netherlands
| |
Collapse
|
11
|
Ongaro AE, Ndlovu Z, Sollier E, Otieno C, Ondoa P, Street A, Kersaudy-Kerhoas M. Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. LAB ON A CHIP 2022; 22:3122-3137. [PMID: 35899603 PMCID: PMC9397368 DOI: 10.1039/d2lc00380e] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Single-use, disposable, point-of-care diagnostic devices carry great promise for global health, including meeting urgent needs for testing and diagnosis in places with limited laboratory facilities. Unfortunately, the production and disposal of single-use devices, whether in lateral flow assay, cartridges, cassettes, or lab-on-chip microfluidic format, also poses significant challenges for environmental and human health. Point-of-care devices are commonly manufactured from unsustainable polymeric materials derived from fossil sources. Their disposal often necessitates incineration to reduce infection risk, thereby creating additional release of CO2. Many devices also contain toxic chemicals, such as cyanide derivatives, that are damaging to environmental and human health if not disposed of safely. Yet, in the absence of government regulatory frameworks, safe and sustainable waste management for these novel medical devices is often left unaddressed. There is an urgent need to find novel solutions to avert environmental and human harm from these devices, especially in low- and middle-income countries where waste management infrastructure is often weak and where the use of point-of-care tests is projected to rise in coming years. We review here common materials used in the manufacture of single-use point-of-care diagnostic tests, examine the risks they pose to environmental and human health, and investigate replacement materials that can potentially reduce the impact of microfluidic devices on the production of harmful waste. We propose solutions available to point-of-care test developers to start embedding sustainability at an early stage in their design, and to reduce their non-renewable plastic consumption in research and product development.
Collapse
Affiliation(s)
| | - Zibusiso Ndlovu
- Medecins Sans Frontières (MSF), Southern Africa Medical Unit (SAMU), Cape Town, South Africa
| | | | - Collins Otieno
- African Society for Laboratory Medicine (ASLM), Addis Ababa, Ethiopia
| | - Pascale Ondoa
- African Society for Laboratory Medicine (ASLM), Addis Ababa, Ethiopia
| | - Alice Street
- School of Social and Political Sciences, University of Edinburgh, Edinburgh, UK
| | - Maïwenn Kersaudy-Kerhoas
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
- Infection Medicine, College of Medicine and Veterinary Medicine University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2885-2906. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review paper examines recent (mostly 2018 or later) advancements in 3D printed microfluidics. Microfluidic devices are widely applied in various fields such as drug delivery, point-of-care diagnosis, and bioanalytical research. In addition to soft lithography, 3D printing has become an appealing technology to develop microfluidics recently. In this work, three main 3D printing technologies, stereolithography, fused filament deposition, and polyjet, which are commonly used to fabricate microfluidic devices, are thoroughly discussed. The advantages, limitations, and recent microfluidic applications are analyzed. New technical advancements within these technology frameworks are also summarized, which are especially suitable for microfluidic development. Next, new emerging 3D-printing technologies are introduced, including the direct printing of polydimethylsiloxane (PDMS), glass, and biopolymers. Although limited microfluidic applications based on these technologies can be found in the literature, they show high potential to revolutionize the next generation of 3D-printed microfluidic apparatus.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
13
|
Lee S, Liu S, Bristol RE, Preul MC, Blain Christen J. Hydrogel Check-Valves for the Treatment of Hydrocephalic Fluid Retention with Wireless Fully-Passive Sensor for the Intracranial Pressure Measurement. Gels 2022; 8:gels8050276. [PMID: 35621574 PMCID: PMC9141151 DOI: 10.3390/gels8050276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrocephalus (HCP) is a neurological disease resulting from the disruption of the cerebrospinal fluid (CSF) drainage mechanism in the brain. Reliable draining of CSF is necessary to treat hydrocephalus. The current standard of care is an implantable shunt system. However, shunts have a high failure rate caused by mechanical malfunctions, obstructions, infection, blockage, breakage, and over or under drainage. Such shunt failures can be difficult to diagnose due to nonspecific systems and the lack of long-term implantable pressure sensors. Herein, we present the evaluation of a fully realized and passive implantable valve made of hydrogel to restore CSF draining operations within the cranium. The valves are designed to achieve a non-zero cracking pressure and no reverse flow leakage by using hydrogel swelling. The valves were evaluated in a realistic fluidic environment with ex vivo CSF and brain tissue. They display a successful operation across a range of conditions, with negligible reverse flow leakage. Additionally, a novel wireless pressure sensor was incorporated alongside the valve for in situ intracranial pressure measurement. The wireless pressure sensor successfully replicated standard measurements. Those evaluations show the reproducibility of the valve and sensor functions and support the system’s potential as a chronic implant to replace standard shunt systems.
Collapse
Affiliation(s)
- Seunghyun Lee
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA; (S.L.); (S.L.)
- Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Shiyi Liu
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA; (S.L.); (S.L.)
| | | | - Mark C. Preul
- Barrow Neurological Institute, Phoenix, AZ 85013, USA;
| | - Jennifer Blain Christen
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA; (S.L.); (S.L.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
Three-dimensional (3D) printing has introduced a paradigm shift in the manufacturing world, and it is increasing in popularity. In cases of such rapid and widespread acceptance of novel technologies, material or process safety issues may be underestimated, due to safety research being outpaced by the breakthroughs of innovation. However, a definitive approach in studying the various occupational or environmental risks of new technologies is a vital part of their sustainable application. In fused filament fabrication (FFF) 3D printing, the practicality and simplicity of the method are juxtaposed by ultrafine particle (UFP) and volatile organic compound (VOC) emission hazards. In this work, the decision of selecting the optimal material for the mass production of a microfluidic device substrate via FFF 3D printing is supported by an emission/exposure assessment. Three candidate prototype materials are evaluated in terms of their comparative emission potential. The impact of nozzle temperature settings, as well as the microfluidic device’s structural characteristics regarding the magnitude of emissions, is evaluated. The projected exposure of the employees operating the 3D printer is determined. The concept behind this series of experiments is proposed as a methodology to generate an additional set of decision-support decision-making criteria for FFF 3D printing production cases.
Collapse
|
15
|
The LEGO® brick road to open science and biotechnology. Trends Biotechnol 2022; 40:1073-1087. [DOI: 10.1016/j.tibtech.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022]
|
16
|
Davidson SL, Niepa THR. Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Front Microbiol 2022; 12:745835. [PMID: 35154021 PMCID: PMC8831547 DOI: 10.3389/fmicb.2021.745835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
With recent advances in microfabrication technologies, the miniaturization of traditional culturing techniques has provided ideal methods for interrogating microbial communities in a confined and finely controlled environment. Micro-technologies offer high-throughput screening and analysis, reduced experimental time and resources, and have low footprint. More importantly, they provide access to culturing microbes in situ in their natural environments and similarly, offer optical access to real-time dynamics under a microscope. Utilizing micro-technologies for the discovery, isolation and cultivation of "unculturable" species will propel many fields forward; drug discovery, point-of-care diagnostics, and fundamental studies in microbial community behaviors rely on the exploration of novel metabolic pathways. However, micro-technologies are still largely proof-of-concept, and scalability and commercialization of micro-technologies will require increased accessibility to expensive equipment and resources, as well as simpler designs for usability. Here, we discuss three different miniaturized culturing practices; including microarrays, micromachined devices, and microfluidics; advancements to the field, and perceived challenges.
Collapse
Affiliation(s)
- Shanna-Leigh Davidson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tagbo H. R. Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Ghaznavi A, Lin Y, Douvidzon M, Szmelter A, Rodrigues A, Blackman M, Eddington D, Carmon T, Deych L, Yang L, Xu J. A Monolithic 3D Printed Axisymmetric Co-Flow Single and Compound Emulsion Generator. MICROMACHINES 2022; 13:188. [PMID: 35208313 PMCID: PMC8877394 DOI: 10.3390/mi13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
We report a microfluidic droplet generator which can produce single and compound droplets using a 3D axisymmetric co-flow structure. The design considered for the fabrication of the device integrated a user-friendly and cost-effective 3D printing process. To verify the performance of the device, single and compound emulsions of deionized water and mineral oil were generated and their features such as size, generation frequency, and emulsion structures were successfully characterized. In addition, the generation of bio emulsions such as alginate and collagen aqueous droplets in mineral oil was demonstrated in this study. Overall, the monolithic 3D printed axisymmetric droplet generator could offer any user an accessible and easy-to-utilize device for the generation of single and compound emulsions.
Collapse
Affiliation(s)
- Amirreza Ghaznavi
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA;
| | - Mark Douvidzon
- Physics Department and Solid-State Institute, Technion, Haifa 3200000, Israel;
| | - Adam Szmelter
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (A.S.); (A.R.); (D.E.)
| | - Alannah Rodrigues
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (A.S.); (A.R.); (D.E.)
| | - Malik Blackman
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - David Eddington
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (A.S.); (A.R.); (D.E.)
| | - Tal Carmon
- School of Electrical Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Lev Deych
- Physics Department, Queens College of CUNY, New York, NY 11367, USA;
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA;
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
18
|
Pellejero I, Clemente A, Reinoso S, Cornejo A, Navajas A, Vesperinas JJ, Urbiztondo MA, Gandía LM. Innovative catalyst integration on transparent silicone microreactors for photocatalytic applications. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Ma Q, Xu J. Green microfluidics in microchemical engineering for carbon neutrality. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Salguedo M, Zarate G, Coronel J, Comina G, Gilman RH, Sheen P, Oberhelman R, Zimic M. Low-cost 3D-printed inverted microscope to detect Mycobacterium tuberculosis in a MODS culture. Tuberculosis (Edinb) 2022; 132:102158. [PMID: 34864388 PMCID: PMC8818028 DOI: 10.1016/j.tube.2021.102158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023]
Abstract
MODS, an assay for diagnosis of tuberculosis and drug-susceptibility, is based in the microscopic observation of the characteristic cords of Mycobacterium tuberculosis colonies grown in liquid media. An inverted optical microscope (100× magnification) is required to observe and interpret MODS cultures. Unfortunately, the cost of commercial inverted microscopes is not affordable in low resource settings. To perform a diagnosis of tuberculosis using the MODS assay, images with modest quality are enough for proper interpretation. Therefore, the use of a high cost commercial inverted optical microscope is not indispensable. In this study, we designed a prototype of an optical inverted microscope created by 3D-printing and based on a smartphone. The system was evaluated with 226 MODS TB positive and 207 MODS TB negative digital images. These images were obtained from 10 sputum samples MODS positive and 10 sputum samples MODS negative. The quality of all images was assessed by a qualified technician, in terms of adequacy to interpret and classify them as positive or negative for tuberculosis. The quality of the images was considered appropriate for MODS interpretation. All the 20 samples were correctly classified (as TB positive/negative) by reading with the prototype 3D-printed inverted microscope.
Collapse
Affiliation(s)
- Mario Salguedo
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Guillermo Zarate
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Jorge Coronel
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Germán Comina
- Laboratorio de Ingeniería Física.Facultad de Ciencias. Universidad Nacional de Ingeniería. Av. Tupac Amaru 210, Rimac. Lima 25, Peru
| | - Robert H Gilman
- Department of International Health, School of Public Health, Johns Hopkins University. Baltimore, USA
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia. Lima, Peru
| | - Richard Oberhelman
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia. Lima, Peru.
| |
Collapse
|
21
|
Wu L, Beirne S, Cabot JM, Paull B, Wallace GG, Innis PC. Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. LAB ON A CHIP 2021; 21:3338-3351. [PMID: 34231640 DOI: 10.1039/d1lc00452b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing technique has been employed for the first time to produce microcapillary structures using low cost thermoplastics in a scalable electroosmotic pump application. Capillary structures were formed using a negative space 3D printing approach to deposit longitudinal filament arrangements with polylactic acid (PLA) in either "face-centre cubic" or "body-centre cubic" arrangements, where the voids deliberately formed within the deposited structure act as functional micro-capillaries. These 3D printed capillary structures were shown to be capable of functioning as a simple electroosmotic pump (EOP), where the maximum flow rate of a single capillary EOP was up to 1.0 μl min-1 at electric fields of up to 750 V cm-1. Importantly, higher flow rates were readily achieved by printing parallel multiplexed capillary arrays.
Collapse
Affiliation(s)
- Liang Wu
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, University of Wollongong, 2522 Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Aladese AD, Jeong HH. Recent Developments in 3D Printing of Droplet-Based Microfluidics. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Mehta V, Vilikkathala Sudhakaran S, Rath SN. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. ACS Biomater Sci Eng 2021; 7:3947-3963. [PMID: 34282888 DOI: 10.1021/acsbiomaterials.1c00633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
3D printing has emerged as a promising fabrication technique for microfluidic devices, overcoming some of the challenges associated with conventional soft lithography. Filament-based polymer extrusion (popularly known as fused deposition modeling (FDM)) is one of the most accessible 3D printing techniques available, offering a wide range of low-cost thermoplastic polymer materials for microfluidic device fabrication. However, low optical transparency is one of the significant limitations of extrusion-based microfluidic devices, rendering them unsuitable for cell culture-related biological applications. Moreover, previously reported extrusion-based devices were largely dependent on fluorescent dyes for cell imaging because of their poor transparency. First, we aim to improve the optical transparency of FDM-based microfluidic devices to enable bright-field microscopy of cells. This is achieved using (1) transparent polymer filament materials such as poly(ethylene terephthalate) glycol (PETg), (2) optimized 3D printing process parameters, and (3) a hybrid approach by integrating 3D printed microfluidic devices with cast poly(dimethylsiloxane) (PDMS) blocks. We begin by optimizing four essential 3D printing process parameters (layer height, printing speed, cooling fan speed, and extrusion flow), affecting the overall transparency of 3D printed devices. Optimized parameters produce exceptional optical transparency close to 80% in 3D printed PETg devices. Next, we demonstrate the potential of FDM-based 3D printing to fabricate transparent micromixing devices with complex planar and nonplanar channel networks. Most importantly, cells cultured on native 3D printed PETg surfaces show excellent cell attachment, spreading, and proliferation during 3 days of culture without extracellular matrix coating or surface treatment. Next, we introduce L929 cells inside hybrid PETg-PDMS biomicrofluidic devices as a proof of concept. We demonstrate that 3D printed hybrid biomicrofluidic devices promote cell adhesion, allow bright-field microscopy, and maintain high cell viability for 3 days. Finally, we demonstrate the applicability of the proposed fabrication approach for developing 3D printed microfluidic devices from other FDM-compatible transparent polymers such as polylactic acid (PLA) and poly(methyl methacrylate) (PMMA).
Collapse
Affiliation(s)
- Viraj Mehta
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502285, Telangana, India
| | - Sukanya Vilikkathala Sudhakaran
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502285, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
24
|
Berger J, Aydin MY, Stavins R, Heredia J, Mostafa A, Ganguli A, Valera E, Bashir R, King WP. Portable Pathogen Diagnostics Using Microfluidic Cartridges Made from Continuous Liquid Interface Production Additive Manufacturing. Anal Chem 2021; 93:10048-10055. [PMID: 34251790 DOI: 10.1021/acs.analchem.1c00654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomedical diagnostics based on microfluidic devices have the potential to significantly benefit human health; however, the manufacturing of microfluidic devices is a key limitation to their widespread adoption. Outbreaks of infectious disease continue to demonstrate the need for simple, sensitive, and translatable tests for point-of-care use. Additive manufacturing (AM) is an attractive alternative to conventional approaches for microfluidic device manufacturing based on injection molding; however, there is a need for development and validation of new AM process capabilities and materials that are compatible with microfluidic diagnostics. In this paper, we demonstrate the development and characterization of AM cartridges using continuous liquid interface production (CLIP) and investigate process characteristics and capabilities of the AM microfluidic device manufacturing. We find that CLIP accurately produces microfluidic channels as small as 400 μm and that it is possible to routinely produce fluid channels as small as 100 μm with high repeatability. We also developed a loop-mediated isothermal amplification (LAMP) assay for detection of E. coli from whole blood directly on the CLIP-based AM microfluidic cartridges, with a 50 cfu/μL limit of detection, validating the use of CLIP processes and materials for pathogen detection. The portable diagnostic platform presented in this paper could be used to investigate and validate other AM processes for microfluidic diagnostics and could be an important component of scaling up the diagnostics for current and future infectious diseases and pandemics.
Collapse
Affiliation(s)
- Jacob Berger
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mehmet Y Aydin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Robert Stavins
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John Heredia
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ariana Mostafa
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anurup Ganguli
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Enrique Valera
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William P King
- Holonyak Micro and Nano Technology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Bacha TW, Manuguerra DC, Marano RA, Stanzione JF. Hydrophilic modification of SLA 3D printed droplet generators by photochemical grafting. RSC Adv 2021; 11:21745-21753. [PMID: 35478820 PMCID: PMC9034120 DOI: 10.1039/d1ra03057d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/05/2021] [Indexed: 12/05/2022] Open
Abstract
Few droplet generators manufactured using desktop stereolithography 3D printers have been reported in the literature. Moreover, 3D printed microfluidic chips are typically hydrophobic, limiting their application to water in oil droplets. Herein, we present designs for concentric and planar 3D printed microfluidic devices suitable for making polymeric microparticles using an off-the-shelf commercial stereolithography printer and resin. The devices consist of a microscope slide, binder clips, and printed components. Channels were modified by an ultraviolet grafting of methacrylic acid to the surface of chips, yielding a hydrophilic coating without modification to the bulk polymer. The water contact angle decreased from 97.0° to 25.4° after grafting. The presence of the coating was confirmed by microscopy and spectroscopy techniques. Polystyrene microparticles in the <100 μm size range were generated with varying molecular weights using the described microfluidic chips. Our work provides a facile method to construct droplet generators from commercial stereolithography printers and resins, and a rapid surface modification technique that has been under-utilized in 3D printed microfluidics. A wide range of microfluidic devices for other applications can be engineered using the methods described. A versatile method of manufacturing and directly modifying the surfaces of 3D printed microfluidic devices was developed. The device functionality was demonstrated by producing o/w emulsions that yielded polystyrene microspheres.![]()
Collapse
Affiliation(s)
- Tristan W Bacha
- Department of Chemical Engineering, Rowan University 201 Mullica Hill Rd, Glassboro NJ 08028 USA
| | - Dylan C Manuguerra
- Department of Chemical Engineering, Rowan University 201 Mullica Hill Rd, Glassboro NJ 08028 USA
| | - Robert A Marano
- Department of Chemical Engineering, Rowan University 201 Mullica Hill Rd, Glassboro NJ 08028 USA
| | - Joseph F Stanzione
- Department of Chemical Engineering, Rowan University 201 Mullica Hill Rd, Glassboro NJ 08028 USA
| |
Collapse
|
26
|
Gurung JP, Navvab Kashani M, Agarwal S, Peralta G, Gel M, Baker MAB. Separation and enrichment of sodium-motile bacteria using cost-effective microfluidics. BIOMICROFLUIDICS 2021; 15:034108. [PMID: 34084258 PMCID: PMC8163512 DOI: 10.1063/5.0046941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Many motile bacteria are propelled by the rotation of flagellar filaments. This rotation is driven by a membrane protein known as the stator-complex, which drives the rotor of the bacterial flagellar motor. Torque generation is powered in most cases by proton transit through membrane protein complexes known as stators, with the next most common ionic power source being sodium. Sodium-powered stators can be studied through the use of synthetic chimeric stators that combine parts of sodium- and proton-powered stator proteins. The most well studied example is the use of the sodium-powered PomA-PotB chimeric stator unit in the naturally proton-powered Escherichia coli. Here we designed a fluidics system at low cost for rapid prototyping to separate motile and non-motile populations of bacteria while varying the ionic composition of the media and thus the sodium-motive force available to drive this chimeric flagellar motor. We measured separation efficiencies at varying ionic concentrations and confirmed using fluorescence that our device delivered eightfold enrichment of the motile proportion of a mixed population. Furthermore, our results showed that we could select bacteria from reservoirs where sodium was not initially present. Overall, this technique can be used to implement the selection of highly motile fractions from mixed liquid cultures, with applications in directed evolution to investigate the adaptation of motility in bacterial ecosystems.
Collapse
Affiliation(s)
- Jyoti P. Gurung
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Sanaz Agarwal
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Gonzalo Peralta
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
27
|
Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review. MICROMACHINES 2021; 12:mi12030339. [PMID: 33810056 PMCID: PMC8004812 DOI: 10.3390/mi12030339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
In recent years, additive manufacturing has steadily gained attention in both research and industry. Applications range from prototyping to small-scale production, with 3D printing offering reduced logistics overheads, better design flexibility and ease of use compared with traditional fabrication methods. In addition, printer and material costs have also decreased rapidly. These advantages make 3D printing attractive for application in microfluidic chip fabrication. However, 3D printing microfluidics is still a new area. Is the technology mature enough to print complex microchannel geometries, such as droplet microfluidics? Can 3D-printed droplet microfluidic chips be used in biological or chemical applications? Is 3D printing mature enough to be used in every research lab? These are the questions we will seek answers to in our systematic review. We will analyze (1) the key performance metrics of 3D-printed droplet microfluidics and (2) existing biological or chemical application areas. In addition, we evaluate (3) the potential of large-scale application of 3D printing microfluidics. Finally, (4) we discuss how 3D printing and digital design automation could trivialize microfluidic chip fabrication in the long term. Based on our analysis, we can conclude that today, 3D printers could already be used in every research lab. Printing droplet microfluidics is also a possibility, albeit with some challenges discussed in this review.
Collapse
|
28
|
Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Int J Pharm 2021; 599:120464. [PMID: 33713759 DOI: 10.1016/j.ijpharm.2021.120464] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
During the last decade, an innovative lab on a chip technology known as microfluidics became popular in the pharmaceutical field to produce nanomedicines in a scalable way. Nevertheless, the predominant barriers for new microfluidics users are access to expensive equipment and device fabrication expertise. 3D printing technology promises to be an enabling new field that helps to overcome these drawbacks expanding the realm of microfluidics. Among 3D printing techniques, fused deposition modeling allows the production of devices with relatively inexpensive materials and printers. In this work, we developed two different microfluidic chips designed to obtain a passive micromixing by a "zigzag" bas-relief and by the presence of "split and recombine" channels. Computational fluid dynamics studies improved the evaluation of the mixing potential. A fused deposition modeling 3D printer was used to print the developed devices with polypropylene as manufacturing material. Then, two different model nanocarriers (i.e., polymeric nanoparticles and liposomes), loading cannabidiol as model drug, were formulated evaluating the influence of manufacturing parameters on the final nanocarrier characteristics with a design of experiments approach (2-level full factorial design). Both the chips showed an effective production of nanocarriers with tunable characteristics and with an efficient drug loading. These polypropylene-based microfluidic chips could represent an affordable and low-cost alternative to common microfluidic devices for the effective manufacturing of nanomedicines (both polymer- and lipid-based) after appropriate tuning of manufacturing parameters.
Collapse
|
29
|
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS One 2021; 16:e0245206. [PMID: 33534849 PMCID: PMC7857642 DOI: 10.1371/journal.pone.0245206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.
Collapse
|
30
|
Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Balakrishnan HK, Badar F, Doeven EH, Novak JI, Merenda A, Dumée LF, Loy J, Guijt RM. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Anal Chem 2020; 93:350-366. [DOI: 10.1021/acs.analchem.0c04672] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hari Kalathil Balakrishnan
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
| | - Faizan Badar
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Egan H. Doeven
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
| | - James I. Novak
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Andrea Merenda
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
| | - Ludovic F. Dumée
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 0000, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi 0000, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 0000, United Arab Emirates
| | - Jennifer Loy
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Rosanne M. Guijt
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
| |
Collapse
|
32
|
Cabrera A, Pellejero I, Oroz-Mateo T, Salazar C, Navajas A, Fernández-Acevedo C, Gandía LM. Three-Dimensional Printing of Acrylonitrile Butadiene Styrene Microreactors for Photocatalytic Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aarón Cabrera
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, Navarra 31006 Spain
| | - Ismael Pellejero
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, Navarra 31006 Spain
| | - Tamara Oroz-Mateo
- Centro Tecnológico Lurederra, Industrial Area Perguita, C/A No. 1, Los Arcos, Navarra 31210 Spain
| | - Cristina Salazar
- Centro Tecnológico Lurederra, Industrial Area Perguita, C/A No. 1, Los Arcos, Navarra 31210 Spain
| | - Alberto Navajas
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, Navarra 31006 Spain
| | | | - Luis M. Gandía
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, Navarra 31006 Spain
| |
Collapse
|
33
|
Tzivelekis C, Sgardelis P, Waldron K, Whalley R, Huo D, Dalgarno K. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS One 2020; 15:e0240237. [PMID: 33112867 PMCID: PMC7592796 DOI: 10.1371/journal.pone.0240237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Digital Light Processing (DLP) stereolithography (SLA) as a high-resolution 3D printing process offers a low-cost alternative for prototyping of microfluidic geometries, compared to traditional clean-room and workshop-based methods. Here, we investigate DLP-SLA printing performance for the production of micro-chamber chip geometries suitable for Polymerase Chain Reaction (PCR), a key process in molecular diagnostics to amplify nucleic acid sequences. A DLP-SLA fabrication protocol for printed micro-chamber devices with monolithic micro-channels is developed and evaluated. Printed devices were post-processed with ultraviolet (UV) light and solvent baths to reduce PCR inhibiting residuals and further treated with silane coupling agents to passivate the surface, thereby limiting biomolecular adsorption occurences during the reaction. The printed devices were evaluated on a purpose-built infrared (IR) mediated PCR thermocycler. Amplification of 75 base pair long target sequences from genomic DNA templates on fluorosilane and glass modified chips produced amplicons consistent with the control reactions, unlike the non-silanized chips that produced faint or no amplicon. The results indicated good functionality of the IR thermocycler and good PCR compatibility of the printed and silanized SLA polymer. Based on the proposed methods, various microfluidic designs and ideas can be validated in-house at negligible costs without the requirement of tool manufacturing and workshop or clean-room access. Additionally, the versatile chemistry of 3D printing resins enables customised surface properties adding significant value to the printed prototypes. Considering the low setup and unit cost, design flexibility and flexible resin chemistries, DLP-SLA is anticipated to play a key role in future prototyping of microfluidics, particularly in the fields of research biology and molecular diagnostics. From a system point-of-view, the proposed method of thermocycling shows promise for portability and modular integration of funcitonalitites for diagnostic or research applications that utilize nucleic acid amplification technology.
Collapse
Affiliation(s)
| | - Pavlos Sgardelis
- School of Engineering, Newcastle University, Newcastle, United Kingdom
| | - Kevin Waldron
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Richard Whalley
- School of Engineering, Newcastle University, Newcastle, United Kingdom
| | - Dehong Huo
- School of Engineering, Newcastle University, Newcastle, United Kingdom
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
34
|
Janvier AJ, Canty-Laird E, Henstock JR. A universal multi-platform 3D printed bioreactor chamber for tendon tissue engineering. J Tissue Eng 2020; 11:2041731420942462. [PMID: 32944210 PMCID: PMC7469720 DOI: 10.1177/2041731420942462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
A range of bioreactors use linear actuators to apply tensile forces in vitro, but differences in their culture environments can limit a direct comparison between studies. The widespread availability of 3D printing now provides an opportunity to develop a 'universal' bioreactor chamber that, with minimal exterior editing can be coupled to a wide range of commonly used linear actuator platforms, for example, the EBERS-TC3 and CellScale MCT6, resulting in a greater comparability between results and consistent testing of potential therapeutics. We designed a bioreactor chamber with six independent wells that was 3D printed in polylactic acid using an Ultimaker 2+ and waterproofed using a commercially available coating (XTC-3D), an oxirane resin. The cell culture wells were further coated with Sylgard-184 polydimethylsiloxane (PDMS) to produce a low-adhesion well surface. With appropriate coating and washing steps, all materials were shown to be non-cytotoxic by lactate dehydrogenase assay, and the bioreactor was waterproof, sterilisable and reusable. Tissue-engineered tendons were generated from human mesenchymal stem cells in a fibrin hydrogel and responded to 5% cyclic strain (0.5 Hz, 5 h/day, 21 days) in the bioreactor by increased production of collagen-Iα1 and decreased production of collagen-IIIα1. Calcification of the extracellular matrix was observed in unstretched tendon controls indicating abnormal differentiation, while tendons cultured under cyclic strain did not calcify and exhibited a tenogenic phenotype. The ease of manufacturing this bioreactor chamber enables researchers to quickly and cheaply reproduce this culture environment for use with many existing bioreactor actuator platforms by downloading the editable CAD files from a public database and following the manufacturing steps we describe.
Collapse
Affiliation(s)
- Adam J Janvier
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - James R Henstock
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Priyadarshini BM, Dikshit V, Zhang Y. 3D-printed Bioreactors for In Vitro Modeling and Analysis. Int J Bioprint 2020; 6:267. [PMID: 33088992 PMCID: PMC7557350 DOI: 10.18063/ijb.v6i4.267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, three-dimensional (3D) printing has markedly enhanced the functionality of bioreactors by offering the capability of manufacturing intricate architectures, which changes the way of conducting in vitro biomodeling and bioanalysis. As 3D-printing technologies become increasingly mature, the architecture of 3D-printed bioreactors can be tailored to specific applications using different printing approaches to create an optimal environment for bioreactions. Multiple functional components have been combined into a single bioreactor fabricated by 3D-printing, and this fully functional integrated bioreactor outperforms traditional methods. Notably, several 3D-printed bioreactors systems have demonstrated improved performance in tissue engineering and drug screening due to their 3D cell culture microenvironment with precise spatial control and biological compatibility. Moreover, many microbial bioreactors have also been proposed to address the problems concerning pathogen detection, biofouling, and diagnosis of infectious diseases. This review offers a reasonably comprehensive review of 3D-printed bioreactors for in vitro biological applications. We compare the functions of bioreactors fabricated by various 3D-printing modalities and highlight the benefit of 3D-printed bioreactors compared to traditional methods.
Collapse
Affiliation(s)
| | - Vishwesh Dikshit
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Yi Zhang
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.,School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| |
Collapse
|
36
|
Abstract
The microfluidics field is at a critical crossroads. The vast majority of microfluidic devices are presently manufactured using micromolding processes that work very well for a reduced set of biocompatible materials, but the time, cost, and design constraints of micromolding hinder the commercialization of many devices. As a result, the dissemination of microfluidic technology-and its impact on society-is in jeopardy. Digital manufacturing (DM) refers to a family of computer-centered processes that integrate digital three-dimensional (3D) designs, automated (additive or subtractive) fabrication, and device testing in order to increase fabrication efficiency. Importantly, DM enables the inexpensive realization of 3D designs that are impossible or very difficult to mold. The adoption of DM by microfluidic engineers has been slow, likely due to concerns over the resolution of the printers and the biocompatibility of the resins. In this article, we review and discuss the various printer types, resolution, biocompatibility issues, DM microfluidic designs, and the bright future ahead for this promising, fertile field.
Collapse
Affiliation(s)
- Arman Naderi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA;
| | - Nirveek Bhattacharjee
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA;
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
37
|
Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D Printed Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:45-65. [PMID: 31821017 PMCID: PMC7282950 DOI: 10.1146/annurev-anchem-091619-102649] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Traditional microfabrication techniques suffer from several disadvantages, including the inability to create truly three-dimensional (3D) architectures, expensive and time-consuming processes when changing device designs, and difficulty in transitioning from prototyping fabrication to bulk manufacturing. 3D printing is an emerging technique that could overcome these disadvantages. While most 3D printed fluidic devices and features to date have been on the millifluidic size scale, some truly microfluidic devices have been shown. Currently, stereolithography is the most promising approach for routine creation of microfluidic structures, but several approaches under development also have potential. Microfluidic 3D printing is still in an early stage, similar to where polydimethylsiloxane was two decades ago. With additional work to advance printer hardware and software control, expand and improve resin and printing material selections, and realize additional applications for 3D printed devices, we foresee 3D printing becoming the dominant microfluidic fabrication method.
Collapse
Affiliation(s)
- Anna V Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA;
| | - Michael J Beauchamp
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA;
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA;
| |
Collapse
|
38
|
Alkayyali T, Ahmadi A. Fabrication of microfluidic chips using controlled dissolution of
3D
printed scaffolds. J Appl Polym Sci 2020. [DOI: 10.1002/app.49524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tartela Alkayyali
- Faculty of Sustainable Design EngineeringUniversity of Prince Edward Island Charlottetown Prince Edward Island Canada
| | - Ali Ahmadi
- Faculty of Sustainable Design EngineeringUniversity of Prince Edward Island Charlottetown Prince Edward Island Canada
| |
Collapse
|
39
|
Tiboni M, Benedetti S, Skouras A, Curzi G, Perinelli DR, Palmieri GF, Casettari L. 3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. Int J Pharm 2020; 584:119436. [PMID: 32445905 DOI: 10.1016/j.ijpharm.2020.119436] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
18-α-Glycyrrhetinic acid (GA) is a bioactive compound extracted from licorice that exhibits many biological and pharmacological effects such as anti-inflammatory and antioxidant activities on the skin. However, its lipophilic nature results in poor bioavailability that limits clinical applications. Liposomes, presenting the ability to carry both hydrophobic and hydrophilic payloads and a good cytocompatibility, are effective to overcome this barrier. Furthermore, the addition of permeation enhancers such as ethanol into liposomal formulations helps the diffusion of these systems through the skin barrier. Here, we aimed to formulate GA-loaded ethanolic liposomes, using a natural soybean lecithin via a microfluidic approach. Using a fused deposition modeling (FDM) 3D printer we customized a microfluidic chip, and manufactured vesicles that presented spherical shape with a size of 202 ± 5.2 nm, a narrow size distribution and a good stability over a period of 30 days. After reaching a drug encapsulation efficiency of 63.15 ± 2.2%, liposomes were evaluated for their cytocompatibility and skin permeation potentiality after hydrogelation using xanthan gum. The in vitro release and permeation studies were performed using Franz diffusion cells comparing two different media and three synthetic membranes including a polymeric skin-mimicking membrane. The selected formulation presented no cytotoxicity and an increased permeation compared to GA saturated hydrogel. It could perform therapeutically better effects than conventional formulations containing free GA, as prolonged and controlled release topical dosage forms, which may lead to improved efficiency and better patient compliance.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Athanasios Skouras
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Giulia Curzi
- Prosopika srl, Via del Trabocchetto, 1, 61034 Fossombrone, PU, Italy
| | | | | | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| |
Collapse
|
40
|
Alimi OA, Akinnawo CA, Onisuru OR, Meijboom R. 3-D printed microreactor for continuous flow oxidation of a flavonoid. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00089-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Bernard P, Mendez JD. Drawing in 3D: Using 3D printer pens to draw chemical models. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:253-258. [PMID: 31899605 DOI: 10.1002/bmb.21334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Development of three-dimensional (3D) printing technology has started a new chapter for in-classroom modeling of chemical molecules. The technology provides the opportunity to design and produce various types of personalized models. However, using classical 3D printers is time consuming, and it is hard to involve students in the modeling process during traditional class times. One solution can be using hand-held 3D printers (3D pens) that allow users to instantly draw geometrical structures. Unfortunately, drawing directly in 3D is very difficult, and precise modeling of even small molecules is simply not possible. In this article, a new approach to 3D modeling is described. It is based on 3D templates that enable the drawing of molecular models directly in three dimensions. The modular nature of the templates allows for the creation of a wide variety of structures. The resulting models provide an accurate representation of molecules including correct bond angles and geometry. This approach makes 3D pens a powerful tool for the modeling of chemical structures.
Collapse
Affiliation(s)
- Paweł Bernard
- Department of Chemical Education, Jagiellonian University, Krakow, Poland
| | - James D Mendez
- Indiana University - Purdue University Columbus, Columbus, Indiana
| |
Collapse
|
42
|
Abstract
Microfluidic devices developed over the past decade feature greater intricacy, increased performance requirements, new materials, and innovative fabrication methods. Consequentially, new algorithmic and design approaches have been developed to introduce optimization and computer-aided design to microfluidic circuits: from conceptualization to specification, synthesis, realization, and refinement. The field includes the development of new description languages, optimization methods, benchmarks, and integrated design tools. Here, recent advancements are reviewed in the computer-aided design of flow-, droplet-, and paper-based microfluidics. A case study of the design of resistive microfluidic networks is discussed in detail. The review concludes with perspectives on the future of computer-aided microfluidics design, including the introduction of cloud computing, machine learning, new ideation processes, and hybrid optimization.
Collapse
Affiliation(s)
- Elishai Ezra Tsur
- Neuro-Biomorphic Engineering Lab (NBEL), Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana 4353701, Israel;
| |
Collapse
|
43
|
Kim K, Ratri MC, Choe G, Nam M, Cho D, Shin K. Three-dimensional, printed water-filtration system for economical, on-site arsenic removal. PLoS One 2020; 15:e0231475. [PMID: 32330139 PMCID: PMC7182265 DOI: 10.1371/journal.pone.0231475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
The threat of arsenic contamination to public health, particularly in developing countries, has become a serious problem. Millions of people in their daily lives are still highly dependent on groundwater containing high levels of arsenic, which causes excessive exposure to this toxic element, due to the high cost and lack of water-treatment infrastructures. Therefore, a technique for large-scale treatment of water in rural areas to remove arsenic is needed and should be low-cost, be easily customized, and not rely on electrical power. In this study, in an effort to fulfill those requirements, we introduce a three-dimensional (3D), printed water-filtration system for arsenic removal. Three-dimensional printing can provide a compact, customized filtration system that can fulfill the above-mentioned requirements and that can be made from plastic materials, which are abundant. Armed with the versatility of 3D printing, we were able to design the internal surface areas of filters, after which we modified the surfaces of the 3D, printed filters by using iron (III) oxide as an adsorbent for arsenite. We investigated the effects of the controlled surface area on the flow rate and the deposition of the adsorbent, which are directly related to the adsorption of arsenic. We conducted isotherm studies to quantify the adsorption of arsenic on our 3D, printed filtration system.
Collapse
Affiliation(s)
- Kihoon Kim
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Republic of Korea
| | - Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Republic of Korea
- Department of Chemistry Education, Sanata Dharma University, Yogyakarta, Republic of Indonesia
| | - Giho Choe
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Republic of Korea
| | - Myeongyun Nam
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Republic of Korea
| | - Daehyoung Cho
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
44
|
Gursoy A, Iranshahi K, Wei K, Tello A, Armagan E, Boesel LF, Sorin F, Rossi RM, Defraeye T, Toncelli C. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers. Polymers (Basel) 2020; 12:E633. [PMID: 32164361 PMCID: PMC7182802 DOI: 10.3390/polym12030633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022] Open
Abstract
Microfluidic wet spinning has gained increasing interest in recent years as an alternative to conventional wet spinning by offering higher control in fiber morphology and a gateway for the development of multi-material fibers. Conventionally, microfluidic chips used to create such fibers are fabricated by soft lithography, a method that requires both time and investment in necessary cleanroom facilities. Recently, additive manufacturing techniques were investigated for rapid and cost-efficient prototyping. However, these microfluidic devices are not yet matching the resolutions and tolerances offered by soft lithography. Herein, we report a facile and rapid method using selected arrays of hypodermic needles as templates within a silicone elastomer matrix. The produced microfluidic spinnerets display co-axially aligned circular channels. By simulation and flow experiments, we prove that these devices can maintain laminar flow conditions and achieve precise 3D hydrodynamic focusing. The devices were tested with a commercial polyurethane formulation to demonstrate that fibers with desired morphologies can be produced by varying the degree of hydrodynamic focusing. Thanks to the adaptability of this concept to different microfluidic spinneret designs-as well as to its transparency, ease of fabrication, and cost-efficient procedure-this device sets the ground for transferring microfluidic wet spinning towards industrial textile settings.
Collapse
Affiliation(s)
- Akin Gursoy
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Kamran Iranshahi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Alexis Tello
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Efe Armagan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Luciano F. Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Fabien Sorin
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Thijs Defraeye
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Claudio Toncelli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| |
Collapse
|
45
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
46
|
Rocha DP, Squissato AL, da Silva SM, Richter EM, Munoz RA. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135688] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Charmet J, Rodrigues R, Yildirim E, Challa PK, Roberts B, Dallmann R, Whulanza Y. Low-Cost Microfabrication Tool Box. MICROMACHINES 2020; 11:mi11020135. [PMID: 31991826 PMCID: PMC7074766 DOI: 10.3390/mi11020135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/27/2023]
Abstract
Microsystems are key enabling technologies, with applications found in almost every industrial field, including in vitro diagnostic, energy harvesting, automotive, telecommunication, drug screening, etc. Microsystems, such as microsensors and actuators, are typically made up of components below 1000 microns in size that can be manufactured at low unit cost through mass-production. Yet, their development for commercial or educational purposes has typically been limited to specialized laboratories in upper-income countries due to the initial investment costs associated with the microfabrication equipment and processes. However, recent technological advances have enabled the development of low-cost microfabrication tools. In this paper, we describe a range of low-cost approaches and equipment (below £1000), developed or adapted and implemented in our laboratories. We describe processes including photolithography, micromilling, 3D printing, xurography and screen-printing used for the microfabrication of structural and functional materials. The processes that can be used to shape a range of materials with sub-millimetre feature sizes are demonstrated here in the context of lab-on-chips, but they can be adapted for other applications. We anticipate that this paper, which will enable researchers to build a low-cost microfabrication toolbox in a wide range of settings, will spark a new interest in microsystems.
Collapse
Affiliation(s)
- Jérôme Charmet
- Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK;
- Correspondence: (J.C.); (Y.W.); Tel.: +44-24-765-73566 (J.C.); +62-21-7270032 (Y.W.)
| | - Rui Rodrigues
- Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK;
| | - Ender Yildirim
- Mechanical Engineering Department, Middle East Technical University, 06800 Ankara, Turkey;
| | - Pavan Kumar Challa
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Benjamin Roberts
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (B.R.); (R.D.)
- MRC Doctoral Training Programme in Interdisciplinary Biomedical Research, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (B.R.); (R.D.)
| | - Yudan Whulanza
- Department of Mechanical Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Correspondence: (J.C.); (Y.W.); Tel.: +44-24-765-73566 (J.C.); +62-21-7270032 (Y.W.)
| |
Collapse
|
48
|
Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA, Castell OK. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901719. [PMID: 31921557 PMCID: PMC6947711 DOI: 10.1002/advs.201901719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/04/2019] [Indexed: 05/05/2023]
Abstract
The bottom-up construction of synthetic cells with user-defined chemical organization holds considerable promise in the creation of bioinspired materials. Complex emulsions, droplet networks, and nested vesicles all represent platforms for the engineering of segregated chemistries with controlled communication, analogous to biological cells. Microfluidic manufacture of such droplet-based materials typically results in radial or axisymmetric structures. In contrast, biological cells frequently display chemical polarity or gradients, which enable the determination of directionality, and inform higher-order interactions. Here, a dual-material, 3D-printing methodology to produce microfluidic architectures that enable the construction of functional, asymmetric, hierarchical, emulsion-based artificial cellular chassis is developed. These materials incorporate droplet networks, lipid membranes, and nanoparticle components. Microfluidic 3D-channel arrangements enable symmetry-breaking and the spatial patterning of droplet hierarchies. This approach can produce internal gradients and hemispherically patterned, multilayered shells alongside chemical compartmentalization. Such organization enables incorporation of organic and inorganic components, including lipid bilayers, within the same entity. In this way, functional polarization, that imparts individual and collective directionality on the resulting artificial cells, is demonstrated. This approach enables exploitation of polarity and asymmetry, in conjunction with compartmentalized and networked chemistry, in single and higher-order organized structures, thereby increasing the palette of functionality in artificial cellular materials.
Collapse
Affiliation(s)
- Jin Li
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - Divesh Kamal Baxani
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| | - William David Jamieson
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| | - Wen Xu
- Cardiff Business School Cardiff UniversityAberconway Building, Colum DrCardiffCF10 3EUUK
| | - Victoria Garcia Rocha
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - David Anthony Barrow
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - Oliver Kieran Castell
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| |
Collapse
|
49
|
Karayannis P, Petrakli F, Gkika A, Koumoulos EP. 3D-Printed Lab-on-a-Chip Diagnostic Systems-Developing a Safe-by-Design Manufacturing Approach. MICROMACHINES 2019; 10:E825. [PMID: 31795128 PMCID: PMC6969929 DOI: 10.3390/mi10120825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.
Collapse
Affiliation(s)
| | | | | | - Elias P. Koumoulos
- Innovation in Research & Engineering Solutions (IRES), Boulevard Edmond Machtens 79/22, 1080 Brussels, Belgium; (P.K.); (F.P.); (A.G.)
| |
Collapse
|
50
|
Zhang JM, Ji Q, Duan H. Three-Dimensional Printed Devices in Droplet Microfluidics. MICROMACHINES 2019; 10:E754. [PMID: 31690055 PMCID: PMC6915402 DOI: 10.3390/mi10110754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
Droplet microfluidics has become the most promising subcategory of microfluidics since it contributes numerous applications to diverse fields. However, fabrication of microfluidic devices for droplet formation, manipulation and applications is usually complicated and expensive. Three-dimensional printing (3DP) provides an exciting alternative to conventional techniques by simplifying the process and reducing the cost of fabrication. Complex and novel structures can be achieved via 3DP in a simple and rapid manner, enabling droplet microfluidics accessible to more extensive users. In this article, we review and discuss current development, opportunities and challenges of applications of 3DP to droplet microfluidics.
Collapse
Affiliation(s)
- Jia Ming Zhang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| | - Qinglei Ji
- Department of Production Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
- CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, China.
| |
Collapse
|