1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
3
|
Ge Y, Liu K, Chi Y, Zhu X, Wu T, Zhao K, Qiao Q, Wu B, Zhu F, Cui L. Exosomal microRNA expression profiles derived from A549 human lung cells in response to influenza A/H1N1pdm09 infection. Virology 2022; 574:9-17. [PMID: 35868217 DOI: 10.1016/j.virol.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Exosomes participate in intercellular communication by shuttling various small molecules from donor to recipient cells. We aimed to examine the role of exosomes and exosomal miRNAs in influenza virus infection. The results showed that influenza A/H1N1pdm09 infection could promote A549 cells to secrete exosomes, while blocking the generation of exosomes reduced viral RNA production. A total of 97 exosomal miRNAs with significantly altered expression were identified during influenza infection. Of 12 candidate miRNAs chosen for further validation, ten were confirmed by qRT-PCR. Among 5978 predicted target genes,we found 37 interferon pathway-related genes to be the potential targets of 29 differentially expressed miRNAs. Many target genes were annotated to various KEGG signaling pathways, some of which played important roles in influenza infection. These data will help to further understand the mechanism of influenza virus-host interactions, which is important for the development of preventative and therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Kang Liu
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Ying Chi
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaojuan Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Tao Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Kangchen Zhao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qiao Qiao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Bin Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Fengcai Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| |
Collapse
|
4
|
MicroRNAs miR-451a and Let-7i-5p Profiles in Circulating Exosomes Vary among Individuals with Different Sickle Hemoglobin Genotypes and Malaria. J Clin Med 2022; 11:jcm11030500. [PMID: 35159951 PMCID: PMC8837188 DOI: 10.3390/jcm11030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Sickle cell disease (SCD) occurs when two alleles of mutated hemoglobin (HbS or HbC) are inherited (HbSS and HbSC) rather than one (HbAS or HbAC), which indicates a person carries the sickle cell trait. The high prevalence of these two alleles in Africa have been associated with reduced malaria susceptibility. Recent in vitro research has been shown that microRNAs (miRNAs) miR-451a and let-7i-5p are differentially expressed in HbSS erythrocytes compared to healthy controls (HbAA) and are overexpressed in Plasmodium-infected malaria erythrocytes. However, these miRNAs have not been fully examined in the plasma of people with different sickle hemoglobin genotypes. Plasma circulating miRNAs are commonly encapsulated in extracellular vesicles, such as exosomes, and are thought to play a role in disease development. Circulating exosomal miR-451a and let-7i-5p were quantified from individuals with various hemoglobin genotypes (HbAA, HbAS, HbAC, HbSS, HbSC, and HbCC) with (+) and without (-) malaria. The results showed a higher level of exosomal let-7i-5p and miR-451a in HbSS-. Exosomal let-7i-5p and miR-451a levels were lower in HbSS+ compared to other genotypes. Based on the area under the curve (AUC) of the Receiver Operating Characteristics (ROCs), both exosomal miRNAs may be useful disease biomarkers for SCD with malaria. Finally, miR-451a and let-7i-5p modulate genes involved in inflammation, making them potential biomarkers of pathogenesis for both diseases.
Collapse
|
5
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
6
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
McCord JM, Hybertson BM, Cota-Gomez A, Geraci KP, Gao B. Nrf2 Activator PB125 ® as a Potential Therapeutic Agent against COVID-19. Antioxidants (Basel) 2020; 9:E518. [PMID: 32545518 PMCID: PMC7346195 DOI: 10.3390/antiox9060518] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2-activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-CoV-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells, we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL-1-beta, IL-6, TNF-α, the cell adhesion molecules ICAM-1, VCAM-1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the "cytokine storm" observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Kara P. Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| |
Collapse
|
8
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 Activator PB125® as a Potential Therapeutic Agent Against COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511372 PMCID: PMC7263501 DOI: 10.1101/2020.05.16.099788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2 activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-Cov-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL1-beta, IL6, TNF-α the cell adhesion molecules ICAM1, VCAM1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the “cytokine storm” observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|
10
|
Zhao L, Zhang X, Wu Z, Huang K, Sun X, Chen H, Jin M. The Downregulation of MicroRNA hsa-miR-340-5p in IAV-Infected A549 Cells Suppresses Viral Replication by Targeting RIG-I and OAS2. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:509-519. [PMID: 30753994 PMCID: PMC6370596 DOI: 10.1016/j.omtn.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
The influenza A virus poses serious public health challenges worldwide. Strikingly, small noncoding microRNAs (miRNAs) that modulate gene expression are closely involved in antiviral responses, although the underlying mechanisms are essentially unknown. We now report that microRNA-340 (miR340) is downregulated following influenza A and other RNA virus infections, implying that host cells deplete miR340 as an antiviral defense mechanism. Accordingly, the inhibition or knockdown of endogenous miR340 clearly prevents the infection of cultured cells, whereas the forced expression of miR340 significantly enhances virus replication. Using next-generation sequencing, we found that miR340 attenuates cellular antiviral immunity. Moreover, mechanistic studies defined miR340 as a repressor of RIG-I and OAS2, critical factors for the establishment of an antiviral response. Collectively, these data indicate that host cells may lower their viral loads by regulating miRNA pathways, which may, in turn, provide new opportunities for treatment.
Collapse
Affiliation(s)
- Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhu Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
11
|
Khanduri A, Sahu AR, Wani SA, Khan RIN, Pandey A, Saxena S, Malla WA, Mondal P, Rajak KK, Muthuchelvan D, Mishra B, Sahoo AP, Singh YP, Singh RK, Gandham RK, Mishra BP. Dysregulated miRNAome and Proteome of PPRV Infected Goat PBMCs Reveal a Coordinated Immune Response. Front Immunol 2018; 9:2631. [PMID: 30524425 PMCID: PMC6262310 DOI: 10.3389/fimmu.2018.02631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, the miRNAome and proteome of virulent Peste des petits ruminants virus (PPRV) infected goat peripheral blood mononuclear cells (PBMCs) were analyzed. The identified differentially expressed miRNAs (DEmiRNAs) were found to govern genes that modulate immune response based on the proteome data. The top 10 significantly enriched immune response processes were found to be governed by 98 genes. The top 10 DEmiRNAs governing these 98 genes were identified based on the number of genes governed by them. Out of these 10 DEmiRNAs, 7 were upregulated, and 3 were downregulated. These include miR-664, miR-2311, miR-2897, miR-484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and miR-30. miR-664 and miR-484 with proviral and antiviral activities, respectively, were upregulated in PPRV infected PBMCs. miR-210 that inhibits apoptosis was downregulated. miR-21-5p that decreases the sensitivity of cells to the antiviral activity of IFNs and miR-30b that inhibits antigen processing and presentation by primary macrophages were downregulated, indicative of a strong host response to PPRV infection. miR-21-5p was found to be inhibited on IPA upstream regulatory analysis of RNA-sequencing data. This miRNA that was also highly downregulated and was found to govern 16 immune response genes in the proteome data was selected for functional validation vis-a-vis TGFBR2 (TGF-beta receptor type-2). TGFBR2 that regulates cell differentiation and is involved in several immune response pathways was found to be governed by most of the identified immune modulating DEmiRNAs. The decreased luciferase activity in Dual Luciferase Reporter Assay indicated specific binding of miR-21-5p and miR-484 to their target thus establishing specific binding of the miRNAs to their targets.This is the first report on the miRNAome and proteome of virulent PPRV infected goat PBMCs.
Collapse
Affiliation(s)
- Alok Khanduri
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,The Ohio State University, Columbus, Ohio, OH, United States
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Piyali Mondal
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - D Muthuchelvan
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aditya P Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Yash Pal Singh
- ARIS Cell, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
12
|
Nguyen TH, Liu X, Su ZZ, Hsu ACY, Foster PS, Yang M. Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. Front Immunol 2018; 9:1541. [PMID: 30022983 PMCID: PMC6039551 DOI: 10.3389/fimmu.2018.01541] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza is a major health burden worldwide and is caused by influenza viruses that are enveloped and negative stranded RNA viruses. Little progress has been achieved in targeted intervention, either at a population level or at an individual level (to treat the cause), due to the toxicity of drugs and ineffective vaccines against influenza viruses. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene expression, cell differentiation, and tissue development and have been shown to silence viral replication in a sequence-specific manner. Investigation of these small endogenous nucleotides may lead to new therapeutics against influenza virus infection. Here, we describe our current understanding of the role of miRNAs in host defense response against influenza virus, as well as their potential and limitation as new therapeutic approaches.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiaoming Liu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Zhen Zhong Su
- Department of Respiratory Medicine, The Second Hospital, Jilin University, ChangChun, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
13
|
Keshavarz M, Dianat-Moghadam H, Sofiani VH, Karimzadeh M, Zargar M, Moghoofei M, Biglari H, Ghorbani S, Nahand JS, Mirzaei H. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10:829-844. [DOI: 10.2217/epi-2017-0170] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Influenza A virus is known worldwide as a threat associated with human and livestock diseases. Hence, identification of physiological and molecular aspects of influenza A could contribute to better design of therapeutic approaches for reducing adverse effects associated with disease caused by this virus. miRNAs are epigenetic regulators playing important roles in many pathological processes that help in progression of influenza A. Besides miRNAs, exosomes have ememrged as other effective players in influenza A pathogenesis. Exosomes exert their effects via targeting their cargos (e.g., DNAs, mRNA, miRNAs and proteins) to recipient cells. Here, we summarized various roles of miRNAs and exosomes in influenza A pathogenesis. Moreover, we highlighted therapeutic applications of miRNAs and exosomes in influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medicine Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering & Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Laurie KL, Horman W, Carolan LA, Chan KF, Layton D, Bean A, Vijaykrishna D, Reading PC, McCaw JM, Barr IG. Evidence for Viral Interference and Cross-reactive Protective Immunity Between Influenza B Virus Lineages. J Infect Dis 2018; 217:548-559. [PMID: 29325138 PMCID: PMC5853430 DOI: 10.1093/infdis/jix509] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
Background Two influenza B virus lineages, B/Victoria and B/Yamagata, cocirculate in the human population. While the lineages are serologically distinct, cross-reactive responses to both lineages have been detected. Viral interference describes the situation whereby infection with one virus limits infection and replication of a second virus. We investigated the potential for viral interference between the influenza B virus lineages. Methods Ferrets were infected and then challenged 3, 10, or 28 days later with pairs of influenza B/Victoria and B/Yamagata viruses. Results Viral interference occurred at challenge intervals of 3 and 10 days and occasionally at 28 days. At the longer interval, shedding of challenge virus was reduced, and this correlated with cross-reactive interferon γ responses from lymph nodes from virus-infected animals. Viruses from both lineages could prevent or significantly limit subsequent infection with a virus from the other lineage. Coinfections were rare, indicating the potential for reassortment between lineages is limited. Conclusions These data suggest that innate and cross-reactive immunity mediate viral interference and that this may contribute to the dominance of a specific influenza B virus lineage in any given influenza season. Furthermore, infection with one influenza B virus lineage may be beneficial in protecting against subsequent infection with either influenza B virus lineage.
Collapse
Affiliation(s)
- Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - William Horman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Kok Fei Chan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Daniel Layton
- Australian Animal Health Laboratory, Health and Biosecurity Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Andrew Bean
- Australian Animal Health Laboratory, Health and Biosecurity Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - James M McCaw
- Centre for Epidemiology and Biostatistics, School of Mathematics and Statistics and Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Modelling and Simulation Unit, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| |
Collapse
|
15
|
Wang K, Lai C, Gu H, Zhao L, Xia M, Yang P, Wang X. miR-194 Inhibits Innate Antiviral Immunity by Targeting FGF2 in Influenza H1N1 Virus Infection. Front Microbiol 2017; 8:2187. [PMID: 29163456 PMCID: PMC5674008 DOI: 10.3389/fmicb.2017.02187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factor 2 (FGF2 or basic FGF) regulates a wide range of cell biological functions including proliferation, angiogenesis, migration, differentiation, and injury repair. However, the roles of FGF2 and the underlying mechanisms of action in influenza A virus (IAV)-induced lung injury remain largely unexplored. In this study, we report that microRNA-194-5p (miR-194) expression is significantly decreased in A549 alveolar epithelial cells (AECs) following infection with IAV/Beijing/501/2009 (BJ501). We found that miR-194 can directly target FGF2, a novel antiviral regulator, to suppress FGF2 expression at the mRNA and protein levels. Overexpression of miR-194 facilitated IAV replication by negatively regulating type I interferon (IFN) production, whereas reintroduction of FGF2 abrogated the miR-194-induced effects on IAV replication. Conversely, inhibition of miR-194 alleviated IAV-induced lung injury by promoting type I IFN antiviral activities in vivo. Importantly, FGF2 activated the retinoic acid-inducible gene I signaling pathway, whereas miR-194 suppressed the phosphorylation of tank binding kinase 1 and IFN regulatory factor 3. Our findings suggest that the miR-194-FGF2 axis plays a vital role in IAV-induced lung injury, and miR-194 antagonism might be a potential therapeutic target during IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengcai Lai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingna Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Min Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Penghui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing 302 Hospital, Beijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
16
|
MicroRNA-134 regulates poliovirus replication by IRES targeting. Sci Rep 2017; 7:12664. [PMID: 28978937 PMCID: PMC5627394 DOI: 10.1038/s41598-017-12860-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Global poliovirus eradication efforts include high vaccination coverage with live oral polio vaccine (OPV), surveillance for acute flaccid paralysis, and OPV “mop-up” campaigns. An important objective involves host-directed strategies to reduce PV replication to diminish viral shedding in OPV recipients. In this study, we show that microRNA-134-5p (miR-134) can regulate Sabin-1 replication but not Sabin-2 or Sabin-3 via direct interaction with the PV 5′UTR. Hypochromicity data showed miR-134 binding to Sabin-1 and 3 but not Sabin-2 IRES. Transfection of a miR-134 mimic repressed translation of Sabin-1 5′UTR driven luciferase validating the mechanism of miR-134-mediated repression of Sabin-1. Further, site directed mutagenesis of the miR-134 binding site in Sabin-1 IRES relieved miR-134-mediated repression indicating that these regulatory molecules have an important role in regulating the host gene response to PV. Binding of miR-134 to Sabin-1 IRES caused degradation of the IRES transcript in a miR-134 and sequence specific manner. The miR-134 binding site was found to be highly conserved in wild type PV-1 as well as EV71 strains indicating that miR-134 may regulate function of these IRES sequences in circulation.
Collapse
|
17
|
Rosenberger CM, Podyminogin RL, Diercks AH, Treuting PM, Peschon JJ, Rodriguez D, Gundapuneni M, Weiss MJ, Aderem A. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog 2017; 13:e1006305. [PMID: 28380049 PMCID: PMC5393898 DOI: 10.1371/journal.ppat.1006305] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Antiviral responses must rapidly defend against infection while minimizing inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that suppress protein levels by binding target sequences on their cognate mRNA. Here, we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses in primary mouse lung epithelial cells: influenza virus, EMCV, and VSV. We identified the transcriptional network regulated by miR-144 and demonstrate that miR-144 post-transcriptionally suppresses TRAF6 levels. In vivo ablation of miR-144 reduced influenza virus replication in the lung and disease severity. These data suggest that miR-144 reduces the antiviral response by attenuating the TRAF6-IRF7 pathway to alter the cellular antiviral transcriptional landscape. Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage. However, the mechanisms for establishing the magnitude of response within an infected cell are incompletely understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding complementary sequences on their target mRNA. In this study, we show that microRNA-144 impairs the ability of host cells to control the replication of three viruses: influenza virus, EMCV, and VSV. We identify a mechanism underlying the effect of this microRNA on antiviral responses. microRNA-144 suppresses TRAF6 levels and impairs the gene expression program regulated by the transcription factor IRF7. The resulting dysregulated expression of antiviral genes correlates with enhanced viral replication. Our findings in isolated lung epithelial cells were consistent with the effects observed in influenza virus-infected mice lacking miR-144. Together, these data support a role for miRNAs in tuning transcriptional programs during early responses to viral infection.
Collapse
Affiliation(s)
- Carrie M. Rosenberger
- Center for Infectious Disease Research, Seattle, WA United States of America
- * E-mail: (CMR); (AA)
| | | | - Alan H. Diercks
- Center for Infectious Disease Research, Seattle, WA United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jacques J. Peschon
- Center for Infectious Disease Research, Seattle, WA United States of America
| | - David Rodriguez
- Center for Infectious Disease Research, Seattle, WA United States of America
| | | | - Mitchell J. Weiss
- Hematology, St. Jude Children's Research Hospital, Memphis, TN United States of America
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA United States of America
- * E-mail: (CMR); (AA)
| |
Collapse
|
18
|
Preusse M, Schughart K, Pessler F. Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection. Front Immunol 2017; 8:246. [PMID: 28377766 PMCID: PMC5359533 DOI: 10.3389/fimmu.2017.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. RESULTS miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs (n = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs (n = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the more susceptible DBA/2J strain. CONCLUSION Substantial differences in pulmonary miRNA expression between the two differentially susceptible mouse strains were evident even before infection, but evolved further throughout infection and could in part be attributed to differences in peripheral blood leukocyte populations. Thus, pulmonary miRNA expression both before and during IAV infection is in part determined genetically and contributes to susceptibility to IAV infection in this murine host, and likely in humans.
Collapse
Affiliation(s)
- Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
19
|
Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med 2016; 23:80-93. [PMID: 27989642 PMCID: PMC5836316 DOI: 10.1016/j.molmed.2016.11.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Some RNA viruses possess miRNA-binding sites in a range of locations within the viral genome, including the 5′ and 3′ non-translated regions. Host cell miRNAs can bind to RNA virus genomes, enhancing genome stability, repressing translation of the viral genome, or altering free miRNA levels within the cell. miRNAs contribute to viral pathogenesis by promoting evasion of the host antiviral immune response, enhancing viral replication, or, potentially, altering miRNA-mediated host gene regulation. RNA virus infection can lead to widespread changes in the host transcriptome by modulating cell-specific miRNA levels.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
20
|
Shi J, Sun J, Wu M, Wang H, Hu N, Hu Y. Comprehensive profiling and characterization of cellular miRNAs in response to hepatitis A virus infection in human fibroblasts. INFECTION GENETICS AND EVOLUTION 2016; 45:176-186. [DOI: 10.1016/j.meegid.2016.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 11/27/2022]
|
21
|
Xu J, Lu L, Li L. NEK7: a novel promising therapy target for NLRP3-related inflammatory diseases. Acta Biochim Biophys Sin (Shanghai) 2016; 48:966-968. [PMID: 27563009 DOI: 10.1093/abbs/gmw080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jin Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Liqun Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| |
Collapse
|