1
|
Grimm K, Sadeghi F, Schön G, Okar A, Gelderblom M, Schulz R, Zittel S. Atrophy of cerebellar lobule VI and primary motor cortex in cervical dystonia - a region of interest-based study. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02839-2. [PMID: 39370479 DOI: 10.1007/s00702-024-02839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Recently, a network model of cervical dystonia (CD) has been adopted that implicates nodes and pathways involving cerebellar, basal-ganglia and cortico-cortical connections. Although functional changes in the cerebello-thalamo-cortical network in dystonia have been reported in several studies, structural information of this network remain sparse. OBJECTIVE To characterize the structural properties of the cerebellar motor network in isolated CD patients. This includes cerebellar lobules involved in motor processing, the dentate nucleus (DN), the thalamus, and the primary motor cortex (M1). METHODS Magnetic resonance imaging data of 18 CD patients and 18 healthy control subjects were acquired. In CD patients, the motor part of the Toronto Western Spasmodic Torticollis Rating Scale was assessed to evaluate motor symptom severity. The volume of cerebellar lobules I-VI and VIII, the DN and thalamus, and the cortical thickness (CT) of M1 were determined for a region of interest (ROI)-based quantitative analysis. Volumes/CT of these ROIs were compared between groups and associated with motor symptom severity in patients. RESULTS The volume of lobule VI and the CT of M1 were reduced in CD patients. The volumes of the other ROIs were not different between groups. No association was identified between the structural properties of lobule VI or M1 and the severity of CD motor symptoms. CONCLUSION Atrophy within the cerebellum and M1 contributes to CD's complex motor network pathology. Further investigations are needed to ascertain the mechanisms underlying the local volume loss.
Collapse
Affiliation(s)
- Kai Grimm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Fatemeh Sadeghi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abdullah Okar
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Lee CW, Krüger MT, Akram H, Zrinzo L, Rubin J, Birchall MA, Fishman JM. Central Mechanisms and Pathophysiology of Laryngeal Dystonia: An Up-to-Date Review. J Voice 2024:S0892-1997(24)00217-0. [PMID: 39138040 DOI: 10.1016/j.jvoice.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Laryngeal dystonia (LD), previously termed spasmodic dysphonia, is an isolated focal dystonia that involves involuntary, uncontrolled contractions of the laryngeal muscles during speech. It is a severely disabling condition affecting patients' work and social lives through prevention of normal speech production. Our understanding of the pathophysiology of LD and available therapeutic options are currently limited. The aim of this short review is to provide an up-to-date summary of what is known about the central mechanisms and the pathophysiology of LD. METHODS A systematic review of the literature was performed searching Embase, CINHAL, Medline, and Cochrane with the cover period January 1990-October 2023 with a search strategy (("Laryngeal dystonia" OR "Spasmodic dysphonia") AND ("Central Mechanism" OR "Pathophysiology")). Original studies involving LD patients that discussed central mechanisms and/or pathophysiology of LD were chosen. RESULTS Two hundred twenty-six articles were identified of which 27 articles were included to formulate this systematic review following the screening inclusion and exclusion criteria. LD is a central neurological disorder involving a multiregional altered neural network. Affected neural circuits not only involve the motor control circuit, but also the feedforward, and the feedback circuits of the normal speech production neural network, involving higher-order planning, somatosensory perception and integration regions of the brain. CONCLUSION Speech production is a complex process, and LD is a central neurological disorder involving multiregional neural network connectivity alteration reflecting this. Neuromodulation targeting the central nervous system could therefore be considered and explored as a new potential therapeutic option for LD in the future, and should assist in elucidating the underlying central mechanisms responsible for causing the condition.
Collapse
Affiliation(s)
- Chang Woo Lee
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Dorset NHS Foundation Trust, Poole, UK.
| | - Marie T Krüger
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK; Department of Neurosurgery, University Medical Centre, Freiburg, Germany
| | - Harith Akram
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Ludvic Zrinzo
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - John Rubin
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Martin A Birchall
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Jonathan M Fishman
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
3
|
Luo Y, Liu H, Zhong L, Weng A, Yang Z, Zhang Y, Zhang J, He X, Ou Z, Yan Z, Cheng Q, Fan X, Zhang X, Zhang W, Hu Q, Peng K, Liu G, Xu J. Regional structural abnormalities in thalamus in idiopathic cervical dystonia. BMC Neurol 2024; 24:174. [PMID: 38789945 PMCID: PMC11127434 DOI: 10.1186/s12883-024-03680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.
Collapse
Grants
- 62006220, 81771137, 82271300, and 81971103 National Natural Science Foundation of China
- 62006220, 81771137, 82271300, and 81971103 National Natural Science Foundation of China
- 62006220, 81771137, 82271300, and 81971103 National Natural Science Foundation of China
- 2023A1515012739, 2016A030310132, and 2021A1515010600 Natural Science Foundation of Guangdong Province
- 2023A1515012739, 2016A030310132, and 2021A1515010600 Natural Science Foundation of Guangdong Province
- 2023B03J0466 Science and Technology Program of Guangzhou
- 2020B1212060017 Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases
- 2018B030335001, 2023A1515012739 Guangdong Key Project
- 2015B050501003 and 2020A0505020004 Southern China International Cooperation Base for Early Intervention and Functional Rehabilitation of Neurological Diseases
- JCYJ20200109114816594 Shenzhen Science and Technology Research Program
- 202007030002 Guangzhou Key Project
- Guangdong Provincial Engineering Center for Major Neurological Disease Treatment
- Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease
Collapse
Affiliation(s)
- Yuhan Luo
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huiming Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Linchang Zhong
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ai Weng
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengkun Yang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiana Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiuye He
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zilin Ou
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinxin Fan
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weixi Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kangqiang Peng
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Gang Liu
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
4
|
MacIver CL, Tax CMW, Jones DK, Peall KJ. Structural magnetic resonance imaging in dystonia: A systematic review of methodological approaches and findings. Eur J Neurol 2022; 29:3418-3448. [PMID: 35785410 PMCID: PMC9796340 DOI: 10.1111/ene.15483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Structural magnetic resonance techniques have been widely applied in neurological disorders to better understand tissue changes, probing characteristics such as volume, iron deposition and diffusion. Dystonia is a hyperkinetic movement disorder, resulting in abnormal postures and pain. Its pathophysiology is poorly understood, with normal routine clinical imaging in idiopathic forms. More advanced tools provide an opportunity to identify smaller scale structural changes which may underpin pathophysiology. This review aims to provide an overview of methodological approaches undertaken in structural brain imaging of dystonia cohorts, and to identify commonly identified pathways, networks or regions that are implicated in pathogenesis. METHODS Structural magnetic resonance imaging studies of idiopathic and genetic forms of dystonia were systematically reviewed. Adhering to strict inclusion and exclusion criteria, PubMed and Embase databases were searched up to January 2022, with studies reviewed for methodological quality and key findings. RESULTS Seventy-seven studies were included, involving 1945 participants. The majority of studies employed diffusion tensor imaging (DTI) (n = 45) or volumetric analyses (n = 37), with frequently implicated areas of abnormality in the brainstem, cerebellum, basal ganglia and sensorimotor cortex and their interconnecting white matter pathways. Genotypic and motor phenotypic variation emerged, for example fewer cerebello-thalamic tractography streamlines in genetic forms than idiopathic and higher grey matter volumes in task-specific than non-task-specific dystonias. DISCUSSION Work to date suggests microstructural brain changes in those diagnosed with dystonia, although the underlying nature of these changes remains undetermined. Employment of techniques such as multiple diffusion weightings or multi-exponential relaxometry has the potential to enhance understanding of these differences.
Collapse
Affiliation(s)
- Claire L. MacIver
- Neuroscience and Mental Health Research InstituteDivision of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK,Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Chantal M. W. Tax
- Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK,Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Derek K. Jones
- Cardiff University Brain Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research InstituteDivision of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK
| |
Collapse
|
5
|
Huang X, Zhang M, Li B, Shang H, Yang J. Structural and functional brain abnormalities in idiopathic cervical dystonia: A multimodal meta-analysis. Parkinsonism Relat Disord 2022; 103:153-165. [DOI: 10.1016/j.parkreldis.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
|
6
|
Wu Y, Zhang C, Li Y, Feng J, Zhang M, Li H, Wang T, Zhang Y, Jin Z, Zhang C, Zhang Y, Li D, Wu Y, Wei H, Sun B. Imaging Insights of Isolated Idiopathic Dystonia: Voxel-Based Morphometry and Activation Likelihood Estimation Studies. Front Neurol 2022; 13:823882. [PMID: 35557619 PMCID: PMC9087834 DOI: 10.3389/fneur.2022.823882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The understanding of brain structural abnormalities across different clinical forms of dystonia and their contribution to clinical characteristics remains unclear. The objective of this study is to investigate shared and specific gray matter volume (GMV) abnormalities in various forms of isolated idiopathic dystonia. We collected imaging data from 73 isolated idiopathic dystonia patients and matched them with healthy controls to explore the GMV alterations in patients and their correlations with clinical characteristics using the voxel-based morphometry (VBM) technique. In addition, we conducted an activation likelihood estimation (ALE) meta-analysis of previous VBM studies. Our study demonstrated widespread morphometry alterations in patients with idiopathic dystonia. Multiple systems were affected, which mainly included basal ganglia, sensorimotor, executive control, and visual networks. As the result of the ALE meta-analysis, a convergent cluster with increased GMV was found in the left globus pallidus. In subgroup VBM analyses, decreased putamen GMV was observed in all clinic forms, while the increased GMV was observed in parahippocampal, lingual, and temporal gyrus. GD demonstrated the most extensive GMV abnormalities in cortical regions, and the aberrant GMV of the posterior cerebellar lobe was prominent in CD. Moreover, trends of increased GMV regions of the left precuneus and right superior frontal gyrus were demonstrated in the moderate-outcome group compared with the superior-outcome group. Results of our study indicated shared pathophysiology of the disease-centered on the dysfunction of the basal ganglia-thalamo-cortical circuit, impairing sensorimotor integration, high-level motor execution, and cognition of patients. Dysfunction of the cerebello-thalamo-cortical circuit could also be involved in CD especially. Finally, the frontal-parietal pathway may act as a potential marker for predicting treatment outcomes such as deep brain stimulation.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Hongjiang Wei
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bomin Sun
| |
Collapse
|
7
|
Wu Y, Wang T, Ding Q, Li H, Wu Y, Li D, Sun B, Pan Y. Cortical and Subcortical Structural Abnormalities in Patients With Idiopathic Cervical and Generalized Dystonia. FRONTIERS IN NEUROIMAGING 2022; 1:807850. [PMID: 37555168 PMCID: PMC10406292 DOI: 10.3389/fnimg.2022.807850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES In this study, we sought to investigate structural imaging alterations of patients with idiopathic dystonia at the cortical and subcortical levels. The common and specific changes in two subtypes of dystonia, cervical dystonia (CD) and generalized dystonia (GD), were intended to be explored. Additionally, we sought to identify the morphometric measurements which might be related to patients' clinical characteristics, thus providing more clues of specific brain regions involved in the mechanism of idiopathic dystonia. METHODS 3D T1-weighted MRI scans were acquired from 56 patients with idiopathic dystonia and 30 healthy controls (HC). Patients were classified as CD or GD, according to the distinct symptom distributions. Cortical thickness (CT) of 30 CD and 26 GD were estimated and compared to HCs using Computational Anatomy Toolbox (CAT12), while volumes of subcortical structures and their shape alterations (29 CD, 25 GD, and 27 HCs) were analyzed via FSL software. Further, we applied correlation analyses between the above imaging measurements with significant differences and patients' clinical characteristics. RESULTS The results of comparisons between the two patient groups and HCs were highly consistent, demonstrating increased CT of bilateral postcentral, superiorparietal, superiorfrontal/rostralmiddlefrontal, occipital gyrus, etc., and decreased CT of bilateral cingulate, insula, entorhinal, and fusiform gyrus (PFWE < 0.005 at the cluster level). In CD, trends of negative correlations were found between disease severity and CT alterations mostly located in pre/postcentral, rostralmiddlefrontal, superiorparietal, and supramarginal regions. Besides, volumes of bilateral putamen, caudate, and thalamus were significantly reduced in both patient groups, while pallidum volume reduction was also presented in GD compared to HCs. Caudate volume reduction had a trend of correlation to increasing disease severity in GD. Last, shape analysis directly demonstrated regional surface alterations in bilateral thalamus and caudate, where the atrophy located in the head of caudate had a trend of correlation to earlier ages of onset in GD. CONCLUSIONS Our study demonstrates wide-spread morphometric changes of CT, subcortical volumes, and shapes in idiopathic dystonia. CD and GD presented similar patterns of morphometric abnormalities, indicating shared underlying mechanisms in two different disease forms. Especially, the clinical associations of CT of multiple brain regions with disease severity, and altered volume/shape of caudate with disease severity/age of onset separately in CD and GD might serve as potential biomarkers for further disease exploration.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Kothare H, Schneider S, Mizuiri D, Hinkley L, Bhutada A, Ranasinghe K, Honma S, Garrett C, Klein D, Naunheim M, Yung K, Cheung S, Rosen C, Courey M, Nagarajan S, Houde J. Temporal specificity of abnormal neural oscillations during phonatory events in laryngeal dystonia. Brain Commun 2022; 4:fcac031. [PMID: 35356032 PMCID: PMC8962453 DOI: 10.1093/braincomms/fcac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Laryngeal dystonia is a debilitating disorder of voicing in which the laryngeal muscles are intermittently in spasm resulting in involuntary interruptions during speech. The central pathophysiology of laryngeal dystonia, underlying computational impairments in vocal motor control, remains poorly understood. Although prior imaging studies have found aberrant activity in the CNS during phonation in patients with laryngeal dystonia, it is not known at what timepoints during phonation these abnormalities emerge and what function may be impaired. To investigate this question, we recruited 22 adductor laryngeal dystonia patients (15 female, age range = 28.83-72.46 years) and 18 controls (eight female, age range = 27.40-71.34 years). We leveraged the fine temporal resolution of magnetoencephalography to monitor neural activity around glottal movement onset, subsequent voice onset and after the onset of pitch feedback perturbations. We examined event-related beta-band (12-30 Hz) and high-gamma-band (65-150 Hz) neural oscillations. Prior to glottal movement onset, we observed abnormal frontoparietal motor preparatory activity. After glottal movement onset, we observed abnormal activity in the somatosensory cortex persisting through voice onset. Prior to voice onset and continuing after, we also observed abnormal activity in the auditory cortex and the cerebellum. After pitch feedback perturbation onset, we observed no differences between controls and patients in their behavioural responses to the perturbation. But in patients, we did find abnormal activity in brain regions thought to be involved in the auditory feedback control of vocal pitch (premotor, motor, somatosensory and auditory cortices). Our study results confirm the abnormal processing of somatosensory feedback that has been seen in other studies. However, there were several remarkable findings in our study. First, patients have impaired vocal motor activity even before glottal movement onset, suggesting abnormal movement preparation. These results are significant because (i) they occur before movement onset, abnormalities in patients cannot be ascribed to deficits in vocal performance and (ii) they show that neural abnormalities in laryngeal dystonia are more than just abnormal responses to sensory feedback during phonation as has been hypothesized in some previous studies. Second, abnormal auditory cortical activity in patients begins even before voice onset, suggesting abnormalities in setting up auditory predictions before the arrival of auditory feedback at voice onset. Generally, activation abnormalities identified in key brain regions within the speech motor network around various phonation events not only provide temporal specificity to neuroimaging phenotypes in laryngeal dystonia but also may serve as potential therapeutic targets for neuromodulation.
Collapse
Affiliation(s)
- Hardik Kothare
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Schneider
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Leighton Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Abhishek Bhutada
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Susanne Honma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Coleman Garrett
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - David Klein
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Molly Naunheim
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Katherine Yung
- San Francisco Voice & Swallowing, San Francisco, CA, USA
| | - Steven Cheung
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Clark Rosen
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Courey
- Department of Otolaryngology—Head and Neck Surgery, Mount Sinai Health System, New York, NY, USA
| | - Srikantan Nagarajan
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John Houde
- Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Huang X, Lin J, Shang H, Yang J. Voxel-based meta-analysis of gray matter abnormalities in idiopathic dystonia. J Neurol 2022; 269:2862-2873. [PMID: 35013788 DOI: 10.1007/s00415-022-10961-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroimaging studies have reported gray matter changes in patients with idiopathic dystonia but with considerable variations. Here, we aimed to investigate the convergence of dystonia-related gray matter changes across studies. METHODS The whole brain voxel-based morphometry studies comparing idiopathic dystonia and healthy controls were systematically searched in the PubMed, Web of Science and Embase. Meta-analysis of gray matter changes was performed using the anisotropic effect size-based signed differential mapping. RESULTS Twenty-eight studies comparing 701 idiopathic dystonia patients and 712 healthy controls were included in the meta-analysis. Compared to healthy controls, idiopathic dystonia patients showed increased gray matter in bilateral precentral and postcentral gyri, bilateral putamen and pallidum, right insula, and left supramarginal gyrus, while decreased gray matter in bilateral temporal poles, bilateral supplementary motor areas, right angular gyrus, inferior parietal gyrus and precuneus, left insula and inferior frontal gyrus. These findings remained robust in the jackknife sensitivity analysis, and no significant heterogeneity was detected. Subgroup analyses of different phenotypes of dystonia were performed to further confirm the above findings. CONCLUSION The meta-analysis showed that consistent widespread gray matter abnormalities were shared in different subtypes of idiopathic dystonia and were not restricted to the corticostriatal circuits.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Wei S, Chen X, Xiao Y, Jiang W, Yin Q, Lu C, Yang L, Wei J, Liu Y, Li W, Tang J, Guo W, Luo S. Abnormal Network Homogeneity in the Right Superior Medial Frontal Gyrus in Cervical Dystonia. Front Neurol 2021; 12:729068. [PMID: 34803879 PMCID: PMC8602349 DOI: 10.3389/fneur.2021.729068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Increasing evidence from modern neuroimaging has confirmed that cervical dystonia (CD) is caused by network abnormalities. Specific brain networks are known to be crucial in patients suffering from CD. However, changes in network homogeneity (NH) in CD patients have not been characterized. Therefore, the purpose of this study was to investigate the NH of patients with CD. Methods: An automated NH method was used to analyze resting-state functional magnetic resonance (fMRI) data from 19 patients with CD and 21 gender- and age-matched healthy controls (HC). Correlation analysis were conducted between NH, illness duration and symptom severity measured by the Tsui scale. Results: Compared with the HC group, CD patients showed a lower NH in the right superior medial frontal gyrus. No significant correlations were found between abnormal NH values and illness duration or symptom severity. Conclusion: Our findings suggest the existence of abnormal NH in the default mode network (DMN) of CD patients, and thereby highlight the importance of the DMN in the pathophysiology of CD.
Collapse
Affiliation(s)
- Shubao Wei
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiuqiong Chen
- Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiong Yin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunhui Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingqun Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Waugh JL, Hassan A, Kuster JK, Levenstein JM, Warfield SK, Makris N, Brüggemann N, Sharma N, Breiter HC, Blood AJ. An MRI method for parcellating the human striatum into matrix and striosome compartments in vivo. Neuroimage 2021; 246:118714. [PMID: 34800665 PMCID: PMC9142299 DOI: 10.1016/j.neuroimage.2021.118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian striatum is comprised of intermingled tissue compartments, matrix and striosome. Though indistinguishable by routine histological techniques, matrix and striosome have distinct embryologic origins, afferent/efferent connections, surface protein expression, intra-striatal location, susceptibilities to injury, and functional roles in a range of animal behaviors. Distinguishing the compartments previously required post-mortem tissue and/or genetic manipulation; we aimed to identify matrix/striosome non-invasively in living humans. We used diffusion MRI (probabilistic tractography) to identify human striatal voxels with connectivity biased towards matrix-favoring or striosome-favoring regions (determined by prior animal tract-tracing studies). Segmented striatal compartments replicated the topological segregation and somatotopic organization identified in animal matrix/striosome studies. Of brain regions mapped in prior studies, our human brain data confirmed 93% of the compartment-selective structural connectivity demonstrated in animals. Test-retest assessment on repeat scans found a voxel classification error rate of 0.14%. Fractional anisotropy was significantly higher in matrix-like voxels, while mean diffusivity did not differ between the compartments. As mapped by the Talairach human brain atlas, 460 regions were significantly biased towards either matrix or striosome. Our method allows the study of striatal compartments in human health and disease, in vivo, for the first time.
Collapse
Affiliation(s)
- J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States; Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - Aao Hassan
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - J K Kuster
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Rheumatology, Allergy and Immunology Section, Massachusetts General Hospital, Boston, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Yale School of Medicine, New Haven, CN, United States; Wellcome Centre for Integrative Neuroimaging, National Institutes of Health, Bethesda, MD, United States.
| | - S K Warfield
- Department of Radiology, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - N Makris
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| | - N Brüggemann
- Department of Neurology, University of Oxford, Oxford, United Kingdom; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - N Sharma
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - H C Breiter
- Laboratory of Neuroimaging and Genetics, United States; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| |
Collapse
|
12
|
Sondergaard RE, Rockel CP, Cortese F, Jasaui Y, Pringsheim TM, Sarna JR, Monchi O, Sadikot AF, Pike BG, Martino D. Microstructural Abnormalities of the Dentatorubrothalamic Tract in Cervical Dystonia. Mov Disord 2021; 36:2192-2198. [PMID: 34050556 DOI: 10.1002/mds.28649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The dentatorubrothalamic tract (DRTT) remains understudied in idiopathic cervical dystonia (CD), despite evidence that the pathway is relevant in the pathophysiology of the disorder. OBJECTIVE The aim of this study was to examine the DRTT in patients with CD using diffusion tensor imaging (DTI)-based tractography. METHODS Magnetic resonance imaging scans from 67 participants were collected to calculate diffusion tractography metrics using a binary tractography-based DRTT template. Fractional anisotropy and diffusivity measures of left and right DRTT were computed and compared between 32 subjects with CD and 35 age-matched healthy volunteers. RESULTS Fractional anisotropy of right DRTT and mean and axial diffusivity of left DRTT were significantly reduced in patients with CD. Similar abnormalities were observed in patients with focal CD and patients with CD without tremor. DTI metrics did not correlate with disease duration or severity. CONCLUSIONS Significant reductions in DTI measures suggest microstructural abnormalities within the DRTT in CD, characterized by a tractography pattern consistent with decreased axonal integrity. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rachel E Sondergaard
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Conrad P Rockel
- Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Neuroimaging Research Unit, Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Yamile Jasaui
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Continuing Medical Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamara M Pringsheim
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Justyna R Sarna
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Abbas F Sadikot
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bruce G Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Groth CL, Brown M, Honce JM, Shelton E, Sillau SH, Berman BD. Cervical Dystonia Is Associated With Aberrant Inhibitory Signaling Within the Thalamus. Front Neurol 2021; 11:575879. [PMID: 33633655 PMCID: PMC7900407 DOI: 10.3389/fneur.2020.575879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The objective of this study is to investigate whether alterations in the neurotransmission of gamma-aminobutyric acid (GABA) in the thalamus are present in patients with cervical dystonia compared to healthy controls. Methods: GABA magnetic resonance spectroscopy was used to investigate concentration levels of GABA in the thalamus of cervical dystonia patients (n = 17) compared to healthy controls (n = 18). Additionally, a focused post hoc analysis of thalamic GABAA receptor availability data in a similar cohort (n = 15 for both groups) using data from a previously collected 11C-flumazenil positron emission tomography study was performed. Group comparisons for all evaluations were performed using two-sided t-tests with adjustments for age and sex, and Bonferroni correction for multiple comparisons was applied. Spearman's coefficient was used to test correlations. Results: We found significantly reduced GABA+/Cre levels in the thalamus of cervical dystonia patients compared to controls, and these levels positively correlated with disease duration. Although mean thalamic GABAA receptor availability did not differ between patients and controls, GABAA availability negatively correlated with both disease duration and dystonia severity. Conclusions: These findings support that aberrant inhibitory signaling within the thalamus contributes to the pathophysiology of cervical dystonia. Additionally, these results suggest that an inadequate ability to compensate for the loss of GABA through upregulation of GABAA receptors may underlie more severe symptoms.
Collapse
Affiliation(s)
- Christopher L Groth
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.,Department of Neurology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | - Mark Brown
- Department of Radiology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | - Justin M Honce
- Department of Radiology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | - Erika Shelton
- Department of Neurology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | - Stefan H Sillau
- Department of Neurology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | - Brian D Berman
- Department of Neurology, University of Colorado Anschutz Medical, Aurora, CO, United States.,Department of Radiology, University of Colorado Anschutz Medical, Aurora, CO, United States.,Neurology Section, Denver VA Medical Center, Aurora, CO, United States
| |
Collapse
|
14
|
Are there two different forms of functional dystonia? A multimodal brain structural MRI study. Mol Psychiatry 2020; 25:3350-3359. [PMID: 30120414 DOI: 10.1038/s41380-018-0222-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 11/08/2022]
Abstract
This study assessed brain structural alterations in two diverse clinical forms of functional (psychogenic) dystonia (FD) - the typical fixed dystonia (FixFD) phenotype and the "mobile" dystonia (MobFD) phenotype, which has been recently described in one study. Forty-four FD patients (13 FixFD and 31 MobFD) and 43 healthy controls were recruited. All subjects underwent 3D T1-weighted and diffusion tensor (DT) magnetic resonance imaging (MRI). Cortical thickness, volumes of gray matter (GM) structures, and white matter (WM) tract integrity were assessed. Normal cortical thickness in both FD patient groups compared with age-matched healthy controls were found. When compared with FixFD, MobFD patients showed cortical thinning of the left orbitofrontal cortex, and medial and lateral parietal and cingulate regions bilaterally. Additionally, compared with controls, MobFD patients showed reduced volumes of the left nucleus accumbens, putamen, thalamus, and bilateral caudate nuclei, whereas MobFD patients compared with FixFD demonstrated atrophy of the right hippocampus and globus pallidus. Compared with both controls and MobFD cases, FixFD patients showed a severe disruption of WM architecture along the corpus callous, corticospinal tract, anterior thalamic radiations, and major long-range tracts bilaterally. This study showed different MRI patterns in two variants of FD. MobFD had alterations in GM structures crucial for sensorimotor processing, emotional, and cognitive control. On the other hand, FixFD patients were characterized by a global WM disconnection affecting main sensorimotor and emotional control circuits. These findings may have important implications in understanding the neural substrates underlying different phenotypic FD expression levels.
Collapse
|
15
|
A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform. Proc Natl Acad Sci U S A 2020; 117:26398-26405. [PMID: 33004625 PMCID: PMC7586425 DOI: 10.1073/pnas.2009165117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research identified a microstructural neural network biomarker for objective and accurate diagnosis of isolated dystonia based on the disorder pathophysiology using an advanced deep learning algorithm, DystoniaNet, and raw structural brain images of large cohorts of patients with isolated focal dystonia and healthy controls. DystoniaNet significantly outperformed shallow machine-learning pipelines and substantially exceeded the current agreement rates between clinicians, reaching an overall accuracy of 98.8% in diagnosing different forms of isolated focal dystonia. These results suggest that DystoniaNet could serve as an objective, robust, and generalizable algorithmic platform of dystonia diagnosis for enhanced clinical decision-making. Implementation of the identified biomarker for objective and accurate diagnosis of dystonia may be transformative for clinical management of this disorder. Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.
Collapse
|
16
|
Tomić A, Agosta F, Sarasso E, Svetel M, Kresojević N, Fontana A, Canu E, Petrović I, Kostić VS, Filippi M. Brain Structural Changes in Focal Dystonia—What About Task Specificity? A Multimodal
MRI
Study. Mov Disord 2020; 36:196-205. [DOI: 10.1002/mds.28304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
- Aleksandra Tomić
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Nikola Kresojević
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo Foggia Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
| | - Igor Petrović
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Vladimir S. Kostić
- Clinic of Neurology, Faculty of Medicine University of Belgrade Belgrade Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
- Neurology Unit and Neurophysiology Unit IRCCS San Raffaele Scientific Institute Milan Italy
| |
Collapse
|
17
|
Ghusayni R, Richardson JP, Uchitel J, Abdelnour E, McLean M, Prange L, Abrahamsen T, Song A, Petrella JR, Mikati MA. Magnetic resonance imaging volumetric analysis in patients with Alternating hemiplegia of childhood: A pilot study. Eur J Paediatr Neurol 2020; 26:15-19. [PMID: 32115366 DOI: 10.1016/j.ejpn.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
Quantitative MRI is increasingly being used as a biomarker in neurological disorders. Cerebellar atrophy occurs in some Alternating Hemiplegia of Childhood (AHC) patients. However, it is not known if cerebellar atrophy can be a potential biomarker in AHC or if quantitative MRI is a reliable method to address this question. Here we determine the reproducibility of an MRI-volumetrics method to investigate brain volumes in AHC and apply it to a population of 14 consecutive AHC patients (ages 4-11 years). We studied method reproducibility in the first 11 patients and then performed correlation of cerebellar volumes, relative to published normal population means, with age in all 14. We used FreeSurfer 6.0.0 to automatically segment MRI images, then performed manual resegmentation correction by two different observers. No significant differences were observed in any of ten brain regions between the two reviewers: p > .591 and interclass Correlation Coefficient (ICC) ≥0.975 in all comparisons. Additionally, there were no significant differences between the means of the two reviewers and the automatic segmentation values: p ≥ .106 and ICC ≥0.994 in all comparisons. We found a negative correlation between cerebellar volume and age (R = -0.631, p = .037), even though only one patient showed any cerebellar atrophy upon formal readings of the MRIs by neuroradiology. Sample size did not allow us to rule out potential confounding variables. Thus, findings from this cross-sectional study should be considered as exploratory. Our study supports the prospective investigation of quantitative MRI-volumetrics of the cerebellum as a potential biomarker in AHC.
Collapse
Affiliation(s)
- Ryan Ghusayni
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| | - Jordan P Richardson
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| | - Julie Uchitel
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| | - Elie Abdelnour
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| | - Melissa McLean
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| | - Lyndsey Prange
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| | - Tavis Abrahamsen
- Department of Statistical Sciences, Trinity College of Arts and Sciences, Duke University, 214 Old Chemistry Bldg, Box 90251, Durham, NC, 27708, USA.
| | - Allen Song
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, 308 Research Drive, LSRC M051, Campus Box 91003, Durham, NC, 27708, USA.
| | - Jeffrey R Petrella
- Division of Neuroradiology, Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA.
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, T0913 Children's Health Center, DUMC Box 3936, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Waugh J, Dure L. How should we normalize regional volume abnormalities in childhood neurodegenerative disorders? Neurology 2019; 92:779-780. [DOI: 10.1212/wnl.0000000000007353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Blood AJ, Kuster JK, Waugh JL, Levenstein JM, Multhaupt-Buell TJ, Sudarsky LR, Breiter HC, Sharma N. White Matter Changes in Cervical Dystonia Relate to Clinical Effectiveness of Botulinum Toxin Treatment. Front Neurol 2019; 10:265. [PMID: 31019484 PMCID: PMC6459077 DOI: 10.3389/fneur.2019.00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary "driver" of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - John K Kuster
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Division of Child Neurology, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Jacob M Levenstein
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | | | - Lewis R Sudarsky
- Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department Neurology, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
20
|
Central Effects of Botulinum Neurotoxin-Evidence from Human Studies. Toxins (Basel) 2019; 11:toxins11010021. [PMID: 30621330 PMCID: PMC6356587 DOI: 10.3390/toxins11010021] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022] Open
Abstract
For more than three decades, Botulinum neurotoxin (BoNT) has been used to treat a variety of clinical conditions such as spastic or dystonic disorders by inducing a temporary paralysis of the injected muscle as the desired clinical effect. BoNT is known to primarily act at the neuromuscular junction resulting in a biochemical denervation of the treated muscle. However, recent evidence suggests that BoNT’s pharmacological properties may not only be limited to local muscular denervation at the injection site but may also include additional central effects. In this review, we report and discuss the current evidence for BoNT’s central effects based on clinical observations, neurophysiological investigations and neuroimaging studies in humans. Collectively, these data strongly point to indirect mechanisms via changes to sensory afferents that may be primarily responsible for the marked plastic effects of BoNT on the central nervous system. Importantly, BoNT-related central effects and consecutive modulation and/or reorganization of the brain may not solely be considered “side-effects” but rather an additional therapeutic impact responsible for a number of clinical observations that cannot be explained by merely peripheral actions.
Collapse
|
21
|
Abstract
Dystonia is a neurological disorder characterized by involuntary, repetitive movements. Although the precise mechanisms of dystonia development remain unknown, the diversity of its clinical phenotypes is thought to be associated with multifactorial pathophysiology, which is linked not only to alterations of brain organization, but also environmental stressors and gene mutations. This chapter will present an overview of the pathophysiology of isolated dystonia through the lens of applications of major neuroimaging methodologies, with links to genetics and environmental factors that play a prominent role in symptom manifestation.
Collapse
|
22
|
Blood AJ, Waugh JL, Münte TF, Heldmann M, Domingo A, Klein C, Breiter HC, Lee LV, Rosales RL, Brüggemann N. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism. NEUROIMAGE-CLINICAL 2017. [PMID: 29527488 PMCID: PMC5842648 DOI: 10.1016/j.nicl.2017.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP) suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively) can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either “matrix-weighted”, or “striosome-weighted” connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset. Previous work suggested striosomes might degenerate preferentially in early XDP. We developed a DTI tractography method to assess striosome and matrix integrity. Striosomal afferents to putamen were elevated in XDP, despite reduced putamen volume. Connectivity was particularly elevated from the insula (two to three-fold). Striosome connectivity strength was not associated with disease duration.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Psychiatry, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Division of Child Neurology, Boston Children's Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Psychiatry, MGH, Boston, MA, USA; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lillian V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Raymond L Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
23
|
Jinnah HA, Neychev V, Hess EJ. The Anatomical Basis for Dystonia: The Motor Network Model. Tremor Other Hyperkinet Mov (N Y) 2017; 7:506. [PMID: 29123945 PMCID: PMC5673689 DOI: 10.7916/d8v69x3s] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Background The dystonias include a clinically and etiologically very diverse group of disorders. There are both degenerative and non-degenerative subtypes resulting from genetic or acquired causes. Traditionally, all dystonias have been viewed as disorders of the basal ganglia. However, there has been increasing appreciation for involvement of other brain regions including the cerebellum, thalamus, midbrain, and cortex. Much of the early evidence for these other brain regions has come from studies of animals, but multiple recent studies have been done with humans, in an effort to confirm or refute involvement of these other regions. The purpose of this article is to review the new evidence from animals and humans regarding the motor network model, and to address the issues important to translational neuroscience. Methods The English literature was reviewed for articles relating to the neuroanatomical basis for various types of dystonia in both animals and humans. Results There is evidence from both animals and humans that multiple brain regions play an important role in various types of dystonia. The most direct evidence for specific brain regions comes from animal studies using pharmacological, lesion, or genetic methods. In these studies, experimental manipulations of specific brain regions provide direct evidence for involvement of the basal ganglia, cerebellum, thalamus and other regions. Additional evidence also comes from human studies using neuropathological, neuroimaging, non-invasive brain stimulation, and surgical interventions. In these studies, the evidence is less conclusive, because discriminating the regions that cause dystonia from those that reflect secondary responses to abnormal movements is more challenging. Discussion Overall, the evidence from both animals and humans suggests that different regions may play important roles in different subtypes of dystonia. The evidence so far provides strong support for the motor network model. There are obvious challenges, but also advantages, of attempting to translate knowledge gained from animals into a more complete understanding of human dystonia and novel therapeutic strategies.
Collapse
Affiliation(s)
- H. A. Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Vladimir Neychev
- Department of Surgery, University Multiprofile Hospital for Active Treatment “Alexandrovska”, Medical University of Sofia, Sofia, Bulgaria
| | - Ellen J. Hess
- Departments of Pharmacology and Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Hintze JM, Ludlow CL, Bansberg SF, Adler CH, Lott DG. Spasmodic Dysphonia: A Review. Part 1: Pathogenic Factors. Otolaryngol Head Neck Surg 2017; 157:551-557. [PMID: 28850801 DOI: 10.1177/0194599817728521] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective The purpose of this review is to describe the recent advances in identifying possible factors involved in the pathogenesis of spasmodic dysphonia. Spasmodic dysphonia is a task-specific focal laryngeal dystonia characterized by irregular and uncontrolled voice breaks. Pathogenesis of the disorder is poorly understood. Data Sources PubMed, Google Scholar, and Cochrane Library. Review Methods The data sources were searched using the following search terms: ( spasmodic dysphonia or laryngeal dystonia) and ( etiology, aetiology, diagnosis, pathogenesis, or pathophysiology). Conclusions Several potential etiological factors have been proposed by epidemiological, genetic, and neuropathological studies. Spasmodic dysphonia is a rare disorder primarily affecting females beginning in their 40s. Vocal tremor co-occurs in 30% to 60%. Large cohort studies identified risk factors such as a family history of neurological disorders including dystonia and tremor, recent viral illness, and heavy voice use. As none are rare events, a complex interactive process may contribute to pathogenesis in a small proportion of those at risk. Consequences to pathogenesis are neurological processes found in spasmodic dysphonia: loss of cortical inhibition, sensory processing disturbances, and neuroanatomical and physiological differences in the laryngeal motor control system. Implications for Practice Diagnosis of spasmodic dysphonia usually includes speech and laryngoscopic assessment. However, as diagnosis is sometimes problematic, measurement of neurophysiological abnormalities may contribute useful adjuncts for the diagnosis of spasmodic dysphonia in the future.
Collapse
Affiliation(s)
- Justin M Hintze
- 1 Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Christy L Ludlow
- 2 Department of Communication Sciences and Disorders, James Madison University, Virginia, USA
| | - Stephen F Bansberg
- 3 Department of Otorhinolaryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Charles H Adler
- 4 Department of Neurology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - David G Lott
- 1 Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic Arizona, Phoenix, Arizona, USA.,3 Department of Otorhinolaryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
25
|
Bianchi S, Battistella G, Huddleston H, Scharf R, Fleysher L, Rumbach AF, Frucht SJ, Blitzer A, Ozelius LJ, Simonyan K. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia. Mov Disord 2017; 32:560-568. [PMID: 28186656 DOI: 10.1002/mds.26920] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. METHODS Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). RESULTS Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. CONCLUSIONS Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giovanni Battistella
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hailey Huddleston
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rebecca Scharf
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anna F Rumbach
- School of Health and Rehabilitation Sciences, Speech Pathology, University of Queensland, Brisbane, Queensland, Australia
| | - Steven J Frucht
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Blitzer
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Head and Neck Surgical Group, New York, New York, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|