1
|
Roberts E, Nuttall TJ, Gkekas G, Mellanby RJ, Fitzgerald JR, Paterson GK. Not just in man's best friend: A review of Staphylococcus pseudintermedius host range and human zoonosis. Res Vet Sci 2024; 174:105305. [PMID: 38805894 DOI: 10.1016/j.rvsc.2024.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Staphylococcus pseudintermedius is one species in the commensal staphylococcal population in dogs. While it is commonly carried on healthy companion dogs it is also an opportunistic pathogen associated with a range of skin, ear, wound and other infections. While adapted to dogs, it is not restricted to them, and we have reviewed its host range, including increasing reports of human colonisation and infections. Despite its association with pet dogs, S. pseudintermedius is found widely in animals, covering companion, livestock and free-living species of birds and mammals. Human infections, typically in immunocompromised individuals, are increasingly being recognised, in part due to improved diagnosis. Colonisation, infection, and antimicrobial resistance, including frequent multidrug resistance, among S. pseudintermedius isolates represent important One Health challenges.
Collapse
Affiliation(s)
- E Roberts
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - T J Nuttall
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G Gkekas
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - R J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J R Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G K Paterson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Kittl S, Frey CF, Brodard I, Scalisi N, Vargas Amado ME, Thomann A, Schierack P, Jores J. Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13261. [PMID: 38747071 PMCID: PMC11094574 DOI: 10.1111/1758-2229.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context.
Collapse
Affiliation(s)
- Sonja Kittl
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Caroline F. Frey
- Vetsuisse Faculty, Institute of ParasitologyUniversity of BernBernSwitzerland
| | - Isabelle Brodard
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Nadia Scalisi
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Maria Elena Vargas Amado
- Department of GeographyUniversity of ZürichZürichSwitzerland
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Andreas Thomann
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Peter Schierack
- Faculty Environment and Natural Sciences, Institute of BiotechnologyBrandenburg University of Technology Cottbus‐SenftenbergSenftenbergGermany
- Faculty of Health Sciences BrandenburgBrandenburg University of Technology Cottbus‐SenftenbergSenftenbergGermany
| | - Joerg Jores
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
- Multidisciplinary Center for Infectious DiseasesUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Heiderich E, Origgi FC, Pisano SRR, Kittl S, Oevermann A, Ryser-Degiorgis MP, Marti IA. LISTERIA MONOCYTOGENES INFECTION IN FREE-RANGING RED FOXES ( VULPES VULPES) AND EURASIAN LYNX ( LYNX LYNX) IN SWITZERLAND. J Zoo Wildl Med 2024; 55:268-276. [PMID: 38453511 DOI: 10.1638/2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 03/09/2024] Open
Abstract
Listeria monocytogenes is an ubiquitous environmental saprophytic bacterium causing listeriosis in domestic animals, humans, and occasionally wildlife. In animals, this foodborne zoonotic disease mainly occurs in ruminants and it is rare in carnivores. Seven red foxes (Vulpes vulpes) and one Eurasian lynx (Lynx lynx) were diagnosed with listeriosis between 2010 and 2021 at the Institute for Fish and Wildlife Health, Bern, Switzerland. Necropsy and histopathology revealed meningitis (six of seven red foxes), hepatitis (six of seven red foxes), pneumonia (five of seven red foxes), splenitis (two of seven red foxes) and splenomegaly (the Eurasian lynx, two of seven red foxes). Listeria monocytogenes was isolated from either lung, spleen, liver, or kidney of all animals. Serotyping detected L. monocytogenes serotype 1/2a in five red foxes and the Eurasian lynx and serotype 4b in two red foxes. Six red foxes were positive for canine distemper virus (CDV) by polymerase chain reaction, whereas the Eurasian lynx and one red fox were negative. One red fox that was positive for CDV and listeriosis was also diagnosed with salmonellosis. The identified L. monocytogenes serotypes are among the three most frequently isolated serotypes (1/2a, 1/2b, and 4b) from food or the food production environment and those that cause most listeriosis cases in humans and animals. Coinfection with CDV in six red foxes questions the role of CDV as potential predisposing factor for septicemic listeriosis. The detection of listeriosis in the regionally endangered Eurasian lynx and in carnivores highly abundant in urban settings, such as red foxes, reinforces the importance of wildlife health surveillance in a One Health context and adds the Eurasian lynx to the list of carnivores susceptible to the disease. Further investigations are required to assess the prevalence and epidemiology of L. monocytogenes in free-ranging carnivores and its interaction with CDV.
Collapse
Affiliation(s)
- Elisabeth Heiderich
- Institute for Fish and Wildlife Health, University of Bern, Postfach, 3001 Bern, Switzerland,
| | - Francesco C Origgi
- Institute for Fish and Wildlife Health, University of Bern, Postfach, 3001 Bern, Switzerland
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, University of Bern, Postfach, 3001 Bern, Switzerland
| | - Sonja Kittl
- Institute of Veterinary Bacteriology, University of Bern, Postfach, 3001 Bern, Switzerland
| | - Anna Oevermann
- Department of Clinical Research and Veterinary Public Health, Neurological Sciences, University of Bern, 3001 Bern, Switzerland
| | | | - Iris A Marti
- Institute for Fish and Wildlife Health, University of Bern, Postfach, 3001 Bern, Switzerland
| |
Collapse
|
4
|
Hahaj-Siembida A, Nowakiewicz A, Korzeniowska-Kowal A, Szecówka K, Trościańczyk A, Zięba P, Kania MG. Red foxes (Vulpes vulpes) as a specific and underappreciated reservoir of resistant and virulent coagulase-positive Staphylococcus spp. strains. Res Vet Sci 2024; 166:105111. [PMID: 38113638 DOI: 10.1016/j.rvsc.2023.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
The aim of the study was to analyze the presence of coagulase-positive Staphylococcus in swabs collected from red foxes and to characterize the drug resistance and virulence of these bacteria. In total, 415 rectal and oral swabs were collected, and coagulase-positive strains of S. pseudintermedius (n = 104) and S. aureus (n = 27) were identified using multiplex-PCR and MALDI TOF MS. Subsequent analyses showed the highest phenotypic resistance of the strains to penicillin (16.8%) and tetracycline (30.5%) confirmed by the presence of the blaZ, tetM, and tetK genes. Slightly lower resistance to erythromycin (6.9%), clindamycin (9.2%), gentamicin, streptogramins, rifampicin, nitrofurantoin, and sulphamethoxazol/trimetophrim was exhibited by single strains. Several virulence genes in a few different combinations were detected in S. aureus; LukE-LukD, and seB were the most frequent genes (37%), LukE-LukD, seB, and seC were detected in 11% of the strains, and PVL, etA, etB, and tst genes were present in two or single strains. The results of our research have confirmed that the red fox is an underestimated reservoir of coagulase-positive Staphylococcus strains, with approximately 50% of carriers of at least one resistance gene. In turn, 88.8% of the S. aureus strains had one or more virulence genes; therefore, this species of wildlife animals should be monitored as part of epidemiological surveillance.
Collapse
Affiliation(s)
- Agata Hahaj-Siembida
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Agnieszka Korzeniowska-Kowal
- Polish Collection of Microorganisms (PCM), Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Kamila Szecówka
- Polish Collection of Microorganisms (PCM), Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Monika Greguła Kania
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
5
|
Santana JA, Zanon IP, Sarsur Ribeirode Freitas RJ, Viegas FM, de Campos BH, Bicalho GC, de Almeida LR, Hemetrio NS, Nogueira de Carvalho MP, Silveira Silva RO. DISTRIBUTION AND ANTIMICROBIAL RESISTANCE OF STAPHYLOCOCCI ISOLATED FROM FREE-LIVING SOUTH AMERICAN COATI ( NASUA NASUA) IN AN URBAN PARK IN MINAS GERAIS, BRAZIL. J Zoo Wildl Med 2023; 54:578-583. [PMID: 37817624 DOI: 10.1638/2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 10/12/2023] Open
Abstract
The scientific information regarding staphylococci in procyonids is scarce. Hence, the aim of this study was to evaluate the frequency, distribution, and pattern of antimicrobial resistance of staphylococcal species isolated from free-roaming coatis (Nasua nasua) in an urban park in Belo Horizonte, Minas Gerais, Brazil. Rectal swabs from 55 free-living coatis were plated onto mannitol salt agar for isolating staphylococci, and species were identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry, polymerase chain reaction (PCR) of nuc, and sequencing of 16S rRNA and rpoB when needed. Antimicrobial susceptibility was investigated using the disk diffusion method, and the presence of the mecA gene was investigated by PCR. A total of 72.7% of the animals tested positive for staphylococci. Nine different species were identified, and Staphylococcus intermedius (60.4%) and S. delphini (20.9%) were the most frequently isolated species. Most of the isolates were susceptible to most of the antimicrobials evaluated, with a resistance pattern seen for penicillin (13.9%). One isolate was multidrug-resistant (MDR). The present study suggests that coatis are natural hosts of S. intermedius and S. delphini and, despite living in a heavily anthropized environment, the Staphylococcus spp. isolates showed a low incidence of drug resistance.
Collapse
Affiliation(s)
- Jordana Almeida Santana
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil
| | - Isabela Pádua Zanon
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil
| | | | - Flávia Mello Viegas
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil
| | - Bruna Hermine de Campos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil
| | - Gustavo Canesso Bicalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil
| | - Lara Ribeiro de Almeida
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil
| | - Nadja Simbera Hemetrio
- Municipal Parks and Zoobotanic Foundation of Belo Horizonte, Belo Horizonte, MG 31365-450, Brazil
| | | | - Rodrigo Otávio Silveira Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, Belo Horizonte, MG 31270-901, Brazil,
| |
Collapse
|
6
|
de Alcântara LP, Santana JA, Clark Xavier RG, Tinoco HP, Coelho CM, Dos Santos DO, Santos RL, Nogueira de Carvalho MP, Silveira Silva RO. ANTIMICROBIAL SUSCEPTIBILITY OF STAPHYLOCOCCUS SPP. ISOLATED FROM FELIDS AND CANIDS IN BELO HORIZONTE ZOO, BRAZIL. J Zoo Wildl Med 2023; 54:584-592. [PMID: 37817625 DOI: 10.1638/2022-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 10/12/2023] Open
Abstract
The epidemiology of Staphylococcus spp. has become a major concern among humans and animals due to increasing antimicrobial resistance and frequent reports of infection. Despite the importance of animals as reservoirs for staphylococci, little is known about the epidemiology of Staphylococcus spp. in most nondomestic species, including canids and felids. This study evaluated the frequency, distribution, and patterns of antimicrobial resistance of staphylococcal species isolated from captive felids and canids from Belo Horizonte Zoo, Brazil. Rectal, oral, and nasal swabs from apparently healthy maned wolves (Chrysocyon brachyurus, n= 7), a lion (Panthera leo, n = 1), jaguars (Panthera onca, n = 3), and one swab of a cougar (Puma concolor) with an ear infection were streaked onto mannitol salt agar. Colonies identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, polymerase chain reaction for the Staphylococcus intermedius group (SIG), and 16S rRNA gene sequencing. Isolates were subjected to antimicrobial susceptibility tests and Staphylococcus pseudintermedius strains were subjected to multilocus sequence typing. Staphylococcus species were isolated from 24 of the 34 samples (70.6%). Among the isolated strains, S. pseudintermedius and Staphylococcus felis were the most frequent species (41.7 and 25%, respectively). Five novel sequence types were identified among the S. pseudintermedius isolates. Resistance to tetracycline (7/24, 29.2%) or penicillin (6/23, 26.1%) was significantly higher than the other antimicrobial agents tested (P < 0.05). One isolate, Staphylococcus nepalensis, was positive for mecA and resistant to five antimicrobials, and was thus classified as multidrug-resistant. The present work suggests that maned wolves are natural hosts of SIG and also reports the isolation of S. felis in sick and healthy, captive, nondomestic carnivores. The isolated staphylococci were susceptible to most classes of antimicrobials tested. However, the multidrug-resistance capability of an S. nepalensis strain reinforces the hypothesis that felids and canids act as reservoirs of pathogens with antimicrobial resistance.
Collapse
Affiliation(s)
| | - Jordana Almeida Santana
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, 31270-901
| | | | - Herlandes Penha Tinoco
- Municipal Parks and Zoobotanic Foundation of Belo Horizonte, Belo Horizonte, MG, Brazil, 31365-450
| | - Carlyle Mendes Coelho
- Municipal Parks and Zoobotanic Foundation of Belo Horizonte, Belo Horizonte, MG, Brazil, 31365-450
| | | | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, 31270-901
| | | | | |
Collapse
|
7
|
Biedrzycka A, Konopiński MK, Popiołek M, Zawiślak M, Bartoszewicz M, Kloch A. Non-MHC immunity genes do not affect parasite load in European invasive populations of common raccoon. Sci Rep 2023; 13:15696. [PMID: 37735177 PMCID: PMC10514260 DOI: 10.1038/s41598-023-41721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Understanding the evolutionary mechanisms behind invasion success enables predicting which alien species and populations are the most predisposed to become invasive. Parasites may mediate the success of biological invasions through their effect on host fitness. The evolution of increased competitive ability (EICA) hypothesis assumes that escape from parasites during the invasion process allows introduced species to decrease investment in immunity and allocate resources to dispersal and reproduction. Consequently, the selective pressure of parasites on host species in the invasive range should be relaxed. We used the case of the raccoon Procyon lotor invasion in Europe to investigate the effect of gastrointestinal pathogen pressure on non-MHC immune genetic diversity of newly established invasive populations. Despite distinct differences in parasite prevalence between analysed populations, we detected only marginal associations between two analysed SNPs and infection intensity. We argue that the differences in parasite prevalence are better explained by detected earlier associations with specific MHC-DRB alleles. While the escape from native parasites seems to allow decreased investment in overall immunity, which relaxes selective pressure imposed on immune genes, a wide range of MHC variants maintained in the invasive range may protect from newly encountered parasites.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Maciej K Konopiński
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Marcin Popiołek
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | - Marlena Zawiślak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | | | - Agnieszka Kloch
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-089, Warszawa, Poland
| |
Collapse
|
8
|
Trościańczyk A, Nowakiewicz A, Kasela M, Malm A, Tracz AM, Hahaj-Siembida A, Osińska M, Gula S, Jankowiak I. Multi-Host Pathogen Staphylococcus aureus-Epidemiology, Drug Resistance and Occurrence in Humans and Animals in Poland. Antibiotics (Basel) 2023; 12:1137. [PMID: 37508233 PMCID: PMC10376275 DOI: 10.3390/antibiotics12071137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is a drug resistant pathogen with zoonotic potential commonly isolated from humans and animals. The aim of this study was to compare the occurrence of drug resistance, resistance genes, sequence types (STs), and genotypes of S. aureus isolated from humans, livestock, and wildlife in eastern Poland. A high percentage of isolates resistant to penicillin (63%), erythromycin (39%), clindamycin (37%), tetracycline (31%), and methicillin (MRSA-19%), an intermediate resistant to vancomycin (VISA-13%), and a multidrug resistant (MDR-39%) was obtained. Multilocus sequence typing analysis showed the presence of 35 different STs (with dominance ST 15, ST 45, ST 7, and ST 582 in human, and ST 398 and ST 8139 in porcine and cattle isolates, respectively), including 9 new ones that had never been reported before (ST 8133-8141). Identical genotypic patterns were detected among porcine and cattle isolates as well as from humans and cattle. A high percentage of MDR, MRSA, and VISA in humans and livestock combined with the presence of the same genotypes among S. aureus isolated from human and cattle indicates the circulation of strains common in the region and their zoonotic potential. There is a need to develop new strategies to counteract this phenomenon according to the One Health policy.
Collapse
Affiliation(s)
- Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Magdalena Tracz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Agata Hahaj-Siembida
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Marcelina Osińska
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Szczepan Gula
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-033 Lublin, Poland
| | - Igor Jankowiak
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-033 Lublin, Poland
| |
Collapse
|
9
|
Kalisińska E, Kot K, Łanocha-Arendarczyk N. Red fox as a potential bioindicator of metal contamination in a European environment. CHEMOSPHERE 2023; 319:138037. [PMID: 36736471 DOI: 10.1016/j.chemosphere.2023.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In times of widespread environmental pollution with heavy metals of anthropogenic origin and the increasing dynamics of this process, it is justified to collect as much data as possible on the concentration of metals in terrestial mammals from unpolluted areas. The purpose of this research was to present the concentration of essential (chromium, copper, iron, manganese, molybdenum, and zinc), probably essential (nickel, vanadium) and non-esential element (cadmium, lead, silver, strontium, and tin) in the liver, kidneys, muscles and brain of red fox (Vulpes vulpes) inhabiting north-western Poland. We revealed that the concentration of all metals, apart from Ni, was different between studied tissues. Sn and Mo have the highest affinity to the liver, whereas Ag, Sr, Cr had higher concentrations in the brain than in other organs. Various positive relationship between the concentrations of metals were observed in the tissues. Moreover, we noted negative correlations between Ag and Sn in the kidneys and brain, and between Cu and Ag in the liver. In our study the red fox was used as biomonitor for the assessment of exposure of carnivores to metals, in the generally unpolluted areas of Central Europe. Data presented in the report may be used as comparative values in similar ecotoxicological studies.
Collapse
Affiliation(s)
- Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| |
Collapse
|
10
|
Prevalence of Different Salmonella enterica Subspecies and Serotypes in Wild Carnivores in Emilia-Romagna Region, Italy. Animals (Basel) 2022; 12:ani12233368. [PMID: 36496889 PMCID: PMC9738870 DOI: 10.3390/ani12233368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Salmonella is a pathogen of considerable health concern, given its zoonotic potential, and, in Italy, is the most frequently reported causative agent for foodborne outbreaks. Wild animals and in particular wild carnivores may be carriers of different Salmonella enterica subspecies and serotypes. Given their potential role as reservoirs, surveillance activities are necessary. This study aims to investigate the presence of different Salmonella subspecies and serotypes in wild carnivores in the Emilia-Romagna Region. A total of 718 fox (Vulpes vulpes), 182 badger (Meles meles) and 27 wolf (Canis lupus) carcasses, submitted between 2016-2022, were included for the present work. Gender and age data were collected along with geographical coordinates of carcass' discovery site. Contents of the large intestine were sampled and cultured according to ISO 6579-1 and both serogroup and serotype identification were performed according to ISO/TR 6579-3:2014. Salmonella was retrieved from 42 foxes (6%), 21 badgers (12%) and 3 wolves (12%), respectively. Isolated Salmonella enterica strains belonged to 4 different subspecies and 25 different serotypes. S. veneziana and S. typhimurium were the most frequent serotypes found (11/67 and 10/67, respectively). In conclusion, zoonotic serotypes were found in all these species of wildlife, thus confirming their potential role in the ecology of Salmonella spp.
Collapse
|
11
|
Schoder D, Guldimann C, Märtlbauer E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022; 11:3472. [PMID: 36360084 PMCID: PMC9654558 DOI: 10.3390/foods11213472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Humans and animals can become asymptomatic carriers of Listeria monocytogenes and introduce the pathogen into their environment with their feces. In turn, this environmental contamination can become the source of food- and feed-borne illnesses in humans and animals, with the food production chain representing a continuum between the farm environment and human populations that are susceptible to listeriosis. Here, we update a review from 2012 and summarize the current knowledge on the asymptomatic carrier statuses in humans and animals. The data on fecal shedding by species with an impact on the food chain are summarized, and the ways by which asymptomatic carriers contribute to the risk of listeriosis in humans and animals are reviewed.
Collapse
Affiliation(s)
- Dagmar Schoder
- Department of Veterinary Public Health and Food Science, Institute of Food Safety, University of Veterinary Medicine, 1210 Vienna, Austria
- Veterinarians without Borders Austria, 1210 Vienna, Austria
| | - Claudia Guldimann
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Food Safety and Analytics, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Milk Hygiene, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
12
|
Assessment of the Role of Free-living and Farmed Fallow Deer (Dama dama) as A Potential Source of Human Infection with Multiple-Drug-Resistant Strains of Yersinia enterocolitica and Yersinia pseudotuberculosis. Pathogens 2022; 11:pathogens11111266. [DOI: 10.3390/pathogens11111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Yersinia enterocolitica and Y. pseudotuberculosis are Gram-negative, facultative anaerobic bacteria that cause yersiniosis—one of the most important zoonotic diseases of the digestive tract. The aim of this study was to determine the prevalence of potentially human-pathogenic Y. enterocolitica and Y. pseudotuberculosis strains in free-living and farmed fallow deer, and to evaluate their sensitivity to chemotherapeutics. A total of 372 rectal swabs were analyzed, including 262 from free-living and 110 from farmed fallow deer. Due to the psychrophilic properties of Yersinia, two samples were collected from each animal. Seven Y. enterocolitica strains were isolated from free-living fallow deer, while two strains were isolated from farmed fallow deer. Yersinia pseudotuberculosis strains were not identified. All isolated Y. enterocolitica strains were ystB-positive, and phylogenetic analysis based on the nucleotide sequences of this gene revealed the presence of two phylogenetic groups. Yersinia enterocolitica strains isolated from fallow deer belonged to biotype 1A, and serotyping analysis demonstrated that the vast majority did not agglutinate with any diagnostic sera. All strains were multiple drug resistant and were not sensitive to at least four of the tested chemotherapeutics (amoxicillin with clavulanic acid, ampicillin, cefalexin, and streptomycin). One Y. enterocolitica strain isolated from a free-living animal was resistant to nine out of the 13 analyzed chemotherapeutics and was intermediately sensitive to the four remaining chemotherapeutics. The highest sensitivity was noted in case of ciprofloxacin (five strains) and trimethoprim-sulfamethoxazole (three strains). Only one strain isolated from a free-living animal was sensitive to three out of the 13 examined antibiotics, whereas the remaining strains were sensitive to only one drug or were not sensitive to any of the chemotherapeutics used. The results of this study indicate that multiple drug-resistant Y. enterocolitica strains can be carried by free-living and farmed fallow deer. This observation gives serious cause for concern because the meat of fallow deer and other ruminants is often consumed semi-raw (steak) or raw (tartar steak).
Collapse
|
13
|
Draft Genome Sequences of Two Listeria monocytogenes Strains Isolated from Raccoon Feces in Japan. Microbiol Resour Announc 2022; 11:e0049522. [PMID: 36005763 PMCID: PMC9476924 DOI: 10.1128/mra.00495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes serotype 4b strains RF01 and RF06 were isolated from raccoon feces in Japan. Here, we report the draft genome sequences of the two isolated strains; the genome sizes were 2,918,024 and 2,872,491 bp, with 535× and 510× coverage, for the RF01 and RF06 strains, respectively.
Collapse
|
14
|
Characterisation of Yersinia enterocolitica strains isolated from wildlife in the northwestern Italian Alps. J Vet Res 2022; 66:141-149. [PMID: 35892105 PMCID: PMC9281523 DOI: 10.2478/jvetres-2022-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Yersiniosis is a zoonosis causing gastroenteritis, diarrhoea, and occasionally reactive arthritis and septicaemia. Cases are often linked to meat consumption and the most common aetiological agent is the Gram-negative bacilliform Yersinia enterocolitica bacterium. The occurrence of Yersinia spp. among wild animals has mostly been studied in wild boar, but it has seldom been in other species. Material and Methods A total of 1,868 faecal samples from animals found dead or hunted were collected between 2015 and 2018 in the Valle d’Aosta region of the northwestern Italian Alps. Alpine ibex faecal samples were collected during a health monitoring program in 2018. Bacteria were isolated via PCR and confirmed as Y. enterocolitica biochemically. Strain antimicrobial susceptibility was tested by Kirby–Bauer disc diffusion, and the presence of virulence factors and antimicrobial resistance genes was investigated using whole-genome sequencing. Results Yersinia enterocolitica strains of biotype 1A were detected in six faecal samples from red deer (0.93%), roe deer (0.49%) and red foxes (0.7%). Strains found in beech martens (3.57%) and Alpine ibex (2.77%) belonged to biotypes 1B and 5, respectively and harboured the pYPTS01 plasmid that had only been detected in Y. pseudotuberculosis PB1/+. All the isolates were resistant to ampicillin and erythromycin. Conclusion The biovar 1A strains exhibited different virulence factors and behaved like non-pathogenic commensals. The strain from an Alpine ibex also harboured the self-transmissible pYE854 plasmid that can mobilise itself and the pYPTS01 plasmid to other strains. The beech marten could be considered a sentinel animal for Y. enterocolitica. Phenotypic resistance may account for the ability of all the strains to resist β-lactams.
Collapse
|
15
|
Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D, Trościańczyk A. A rich mosaic of resistance in extended-spectrum β-lactamase-producing Escherichia coli isolated from red foxes (Vulpes vulpes) in Poland as a potential effect of increasing synanthropization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151834. [PMID: 34808162 DOI: 10.1016/j.scitotenv.2021.151834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
In our research, we analyzed the resistance of cephalosporin-resistant E. coli strains to antimicrobial agents. The strains were collected during five years from wild animal species commonly inhabiting Poland. We have identified the type of β-lactamases produced and the multidrug-resistance profile. Most strains (73.8%) had genes encoding ESBL enzymes, mainly CTX-M-1 and TEM. Almost all AmpC-β-lactamase-producing isolates had the blaCMY-2 gene. Almost 70% of the strains tested showed a multi-drug resistance profile. The dominant phenotype was resistance to tetracycline (69.05%), and/or sulfamethoxazole (57.1%). We also found high resistance to quinolones: ciprofloxacin 35.7% and nalidixic acid 52.4%. The phenotypic resistance of the strains was in most cases confirmed by the presence of corresponding genes. Among strains, 26.2% were carriers of plasmid-mediated quinolone resistance genes (PMQR). MLST analysis revealed a large clonal variation of the strains, which was reflected in 28 different sequence types. More than half of the strains (54.7%) were classified into the following sequence complexes: 10, 23, 69, 101, 155, 156, 168, 354, 398, 446, and 648. Only one strain in the studied group was assigned to the ExPEC pathotype and represented sequence type 117. The results of our research have confirmed that isolates obtained from wild animals possess many resistance determinants and sequence types, which are also found in food-producing animals and humans. This reflects the doctrine of "One health", which clearly indicates that human health is inextricably linked with animal health as well as degree of environmental contamination. We conclude that the resistance and virulence profiles of strains isolated from wildlife animals may be a resultant of various sources encountered by animals, creating a rich and varied mosaic of genes, which is very often unpredictable and not reflected in the correlation between the sequence type and the gene profile of resistance or virulence observed in epidemic clones.
Collapse
Affiliation(s)
- Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| |
Collapse
|
16
|
Höche J, House RV, Heinrich A, Schliephake A, Albrecht K, Pfeffer M, Ellenberger C. Pathogen Screening for Possible Causes of Meningitis/Encephalitis in Wild Carnivores From Saxony-Anhalt. Front Vet Sci 2022; 9:826355. [PMID: 35464387 PMCID: PMC9021439 DOI: 10.3389/fvets.2022.826355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation in meninges and/or brain is regularly noticed in red foxes and other wild carnivores during rabies control programs. Despite negative rabies virus (RABV) results, the etiologies of these cases remain unknown. Thus, the aim of this study was to provide an overview of the occurrence of pathogens that may cause diseases in the brains of wild carnivores and pose a risk to humans and other animals. In addition to RABV and canine distemper virus (CDV), a variety of pathogens, including members of Flaviviridae, Bornaviridae, Herpesviridae, Circoviridae, as well as bacteria and parasites can also cause brain lesions. In 2016 and 2017, brain samples of 1,124 wild carnivores were examined by direct fluorescent antibody test for RABV as well as (reverse-transcriptase) quantitative polymerase chain reaction (PCR) for the presence of CDV as part of a monitoring program in Saxony-Anhalt, Germany. Here, we applied similar methods to specifically detect suid herpesvirus 1 (SuHV-1), West Nile virus (WNV), Borna disease virus 1 (BoDV-1), canid alphaherpesvirus 1 (CaHV-1), canine parvovirus type 2 (CPV-2), fox circovirus (FoxCV), and Neospora caninum (N. caninum). Further, bacteriogical examination for the existence of Listeria monocytogenes (L. monocytogenes) and immunohistochemistry of selected cases to detect Toxoplasma gondii (T. gondii) antigen were performed. Of all pathogens studied, CDV was found most frequently (31.05%), followed by FoxCV (6.80%), CPV-2 (6.41%), T. gondii (4/15; 26.67%), nematode larvae (1.51%), L. monocytogenes (0.3%), and various other bacterial pathogens (1.42%). In 68 of these cases (6.05%), multiple pathogen combinations were present simultaneously. However, RABV, WNV, BoDV-1, SuHV-1, CaHV-1, and N. caninum were not detected. The majority of the histopathological changes in 440 animals were inflammation (320/440; 72.73%), predominantly non-suppurative in character (280/320; 87.50%), and in many cases in combination with gliosis, satellitosis, neuronophagia, neuronal necrosis, and/or vacuolization/demyelination, or in single cases with malacia. Thus, it could be shown that wild carnivores in Saxony-Anhalt are carriers mainly for CDV and sometimes also for other, partly zoonotic pathogens. Therefore, the existing monitoring program should be expanded to assess the spill-over risk from wild carnivores to humans and other animals and to demonstrate the role of wild carnivores in the epidemiology of these zoonotic pathogens.
Collapse
Affiliation(s)
- Jennifer Höche
- Department of Veterinary Medicine, State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
- *Correspondence: Jennifer Höche
| | - Robert Valerio House
- Department of Veterinary Medicine, State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Anja Heinrich
- Department of Veterinary Medicine, State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Annette Schliephake
- Department of Veterinary Medicine, State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Kerstin Albrecht
- Department of Veterinary Medicine, State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Martin Pfeffer
- Centre of Veterinary Public Health, Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Christin Ellenberger
- Department of Veterinary Medicine, State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| |
Collapse
|
17
|
Uelze L, Bloch A, Borowiak M, Grobbel M, Deneke C, Fischer M, Malorny B, Pietsch M, Simon S, Szabó I, Tausch SH, Fischer J. What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany. Microorganisms 2021; 9:1911. [PMID: 34576806 PMCID: PMC8471515 DOI: 10.3390/microorganisms9091911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to gain an overview of the genetic diversity of Salmonella found in wildlife in Germany. We were particularly interested in exploring whether wildlife acts as a reservoir of certain serovars/subtypes or antimicrobial resistance (AMR) genes. Moreover, we wanted to explore the potential of Salmonella in spreading from wildlife to livestock and humans. To answer these questions, we sequenced 260 Salmonella enterica subsp. enterica isolates sampled between 2002 and 2020 from wildlife across Germany, using short-read whole genome sequencing. We found, consistent with previous findings, that some Salmonella sequence types are associated with certain animal species, such as S. Choleraesuis ST145 with wild boar and S. Enteritidis ST183 with hedgehogs. Antibiotic resistance was detected in 14.2% of all isolates, with resistance against important WATCH group antibiotics present in a small number of isolates. We further found that wildlife isolates do not form separate phylogenetic clusters distant to isolates from domestic animals and foodstuff, thus indicating frequent transmission events between these reservoirs. Overall, our study shows that Salmonella in German wildlife are diverse, with a low AMR burden and close links to Salmonella populations of farm and food-production environments.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Angelina Bloch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Matthias Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Michael Pietsch
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany; (M.P.); (S.S.)
| | - Sandra Simon
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany; (M.P.); (S.S.)
| | - István Szabó
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| |
Collapse
|
18
|
Wierzbicki H, Zatoń-Dobrowolska M, Mucha A, Moska M. Insight into the Genetic Population Structure of Wild Red Foxes in Poland Reveals Low Risk of Genetic Introgression from Escaped Farm Red Foxes. Genes (Basel) 2021; 12:genes12050637. [PMID: 33922932 PMCID: PMC8146073 DOI: 10.3390/genes12050637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
In this study we assessed the level of genetic introgression between red foxes bred on fur farms in Poland and the native wild population. We also evaluated the impact of a geographic barrier and isolation by distance on gene flow between two isolated subpopulations of the native red fox and their genetic differentiation. Nuclear and mitochondrial DNA was collected from a total of 308 individuals (200 farm and 108 wild red foxes) to study non-native allele flow from farm into wild red fox populations. Genetic structure analyses performed using 24 autosomal microsatellites showed two genetic clusters as being the most probable number of distinct populations. No strong admixture signals between farm and wild red foxes were detected, and significant genetic differentiation was identified between the two groups. This was also apparent from the mtDNA analysis. None of the concatenated haplotypes detected in farm foxes was found in wild animals. The consequence of this was that the haplotype network displayed two genetically distinct groups: farm foxes were completely separated from native ones. Neither the River Vistula nor isolation by distance had a significant impact on gene flow between the separated wild red fox subpopulations. The results of our research indicate a low probability of genetic introgression between farm and native red foxes, and no threat to the genetic integrity of this species.
Collapse
|
19
|
Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy. Antibiotics (Basel) 2021; 10:antibiotics10040353. [PMID: 33801648 PMCID: PMC8065399 DOI: 10.3390/antibiotics10040353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Wild animals are potential vectors of antibiotic-resistant bacteria in the environment. The present study aimed to investigate the occurrence of antimicrobial resistance among Salmonella serovars isolated from wildlife and the environment in Italy. A total of 164 Salmonella isolates were analyzed, and six different subspecies and 64 serovars were detected. High proportions of Salmonella isolates proved resistant to streptomycin (34.1%), followed by trimethoprim-sulfamethoxazole (23.2%), tetracycline (17.7%), ciprofloxacin (14.63%) and ampicillin (11.59%). By source, the lowest level of resistance was observed in Salmonella serovars isolated from a water environment, while antimicrobial resistance was frequent in strains collected from shellfish, reptiles and birds. Multidrug-resistant strains were recovered from seafood (n = 11), mammals (n = 3) and water (n = 1). Three S. Typhimurium monophasic variant strains showed asimultaneous resistance to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole, which represents a recognized alert resistance profile for this serovar. These data indicate the environmental dissemination of resistant strains due to anthropogenic activities, which, in southern Italy, probably have a higher impact on marine ecosystems than on terrestrial ones. Moreover, as most of the animals considered in the present study are usually consumed by humans, the presence of resistant bacteria in them is a matter of great concern.
Collapse
|
20
|
The Prevalence of Salmonella spp. in Two Arctic Fox ( Alopex lagopus) Farms in Poland. Animals (Basel) 2020; 10:ani10091688. [PMID: 32962072 PMCID: PMC7552655 DOI: 10.3390/ani10091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Salmonella enterica subsp. enterica derived from poultry meat is the primary cause of Salmonella infection in humans and the second most ubiquitous zoonosis in the European Union after campylobacteriosis. Wildlife animals and livestock can be a reservoir of Salmonella spp., and they can contribute to the persistence of bacteria in the environment. Salmonella spp. pathogens can also be a source of widespread infections in fur-bearing animals, such as foxes (Vulpes vulpes) and mink (Neovison vision). This study analysed the prevalence of Salmonella spp. in two Arctic fox (Alopex lagopus) farms and the correlations between animals that tested positive for Salmonella spp and breeding results. Salmonella Heidelberg, S. Saintpaul, and S. Reading were isolated. All three serotypes are typically isolated from commercial poultry flocks. In this study, Salmonella spp. increased the risk of female infertility, but further research is needed to confirm the results. This is the first report on the prevalence of S. Heidelberg, S. Saintpaul, and S. Reading in an Arctic fox (Alopex lagopus) population. Abstract The objective of the study was to determine the occurrence of Salmonella spp. infections in two Arctic fox (Alopex lagopus) farms in Poland, and to analyse the correlations between animals that tested positive for Salmonella spp and breeding results. Faecal samples were taken from 1094 clinically healthy blue foxes from the basic stock of farms A and B. Salmonella spp. were detected in 18.06% (56/310) of the samples collected in farm A and in 15.94% (125/784) of the samples collected in farm B. All isolated strains belonged to S. enterica subsp. enterica serotypes Salmonella Saintpaul (S. Saintpaul), Salmonella Reading (S. Reading), and Salmonella Heidelberg (S. Heidelberg). All three serotypes are typically isolated from commercial poultry flocks. Salmonella spp. infections significantly increased the risk of female infertility, but further research is needed to confirm the results. This is the first report on the prevalence of S. Heidelberg, S. Saintpaul, and S. Reading in faecal samples collected from Arctic fox (Alopex lagopus) farms in Poland.
Collapse
|
21
|
Parsons C, Niedermeyer J, Gould N, Brown P, Strules J, Parsons AW, Bernardo Mesa‐Cruz J, Kelly MJ, Hooker MJ, Chamberlain MJ, Olfenbuttel C, DePerno C, Kathariou S. Listeria monocytogenes at the human-wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria. Microb Biotechnol 2020; 13:706-721. [PMID: 31713354 PMCID: PMC7111103 DOI: 10.1111/1751-7915.13509] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the foodborne illness listeriosis, which can result in severe symptoms and death in susceptible humans and other animals. L. monocytogenes is ubiquitous in the environment and isolates from food and food processing, and clinical sources have been extensively characterized. However, limited information is available on L. monocytogenes from wildlife, especially from urban or suburban settings. As urban and suburban areas are expanding worldwide, humans are increasingly encroaching into wildlife habitats, enhancing the frequency of human-wildlife contacts and associated pathogen transfer events. We investigated the prevalence and characteristics of L. monocytogenes in 231 wild black bear capture events between 2014 and 2017 in urban and suburban sites in North Carolina, Georgia, Virginia and United States, with samples derived from 183 different bears. Of the 231 captures, 105 (45%) yielded L. monocytogenes either alone or together with other Listeria. Analysis of 501 samples, primarily faeces, rectal and nasal swabs for Listeria spp., yielded 777 isolates, of which 537 (70%) were L. monocytogenes. Most L. monocytogenes isolates exhibited serotypes commonly associated with human disease: serotype 1/2a or 3a (57%), followed by the serotype 4b complex (33%). Interestingly, approximately 50% of the serotype 4b isolates had the IVb-v1 profile, associated with emerging clones of L. monocytogenes. Thus, black bears may serve as novel vehicles for L. monocytogenes, including potentially emerging clones. Our results have significant public health implications as they suggest that the ursine host may preferentially select for L. monocytogenes of clinically relevant lineages over the diverse listerial populations in the environment. These findings also help to elucidate the ecology of L. monocytogenes and highlight the public health significance of the human-wildlife interface.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jeff Niedermeyer
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Nicholas Gould
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Phillip Brown
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jennifer Strules
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Arielle W. Parsons
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
- North Carolina Museum of Natural SciencesRaleighNCUSA
| | - J. Bernardo Mesa‐Cruz
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
- Department of BiologyElizabethtown CollegeElizabethtownPAUSA
| | - Marcella J. Kelly
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Michael J. Hooker
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
| | | | | | - Christopher DePerno
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
22
|
Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D, Trościańczyk A. Wildlife Carnivorous Mammals As a Specific Mirror of Environmental Contamination with Multidrug-Resistant Escherichia coli Strains in Poland. Microb Drug Resist 2020; 26:1120-1131. [PMID: 32915692 DOI: 10.1089/mdr.2019.0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In recent decades, the number of studies on the occurrence of resistant strains in wildlife animals has increased significantly, but data are still fragmentary. The aim of this study was to evaluate drug resistance of Escherichia coli strains isolated from wild carnivorous mammals, common in Poland. Selective media with antimicrobials (tetracycline, kanamycin, chloramphenicol, and cefotaxime) were used for isolation. Of 53 isolates shown to be distinct by the amplification of DNA fragments surrounding rare restriction site-fingerprinting method, 77.8% were multidrug-resistant (multidrug-resistant). All strains were resistant to ampicillin and many of them also exhibited resistance to tetracycline (76.2%), sulfamethoxazole (57.1%), streptomycin and kanamycin (49.2%), chloramphenicol (30.1%), and nalidixic acid (46%). In most cases, the phenotypic resistance profile was confirmed by detection of relevant genes mostly occurring in strains isolated from livestock animals and humans. Extended-spectrum β-lactamase-producing strains were detected in one mink and three martens. The strains were carriers of blaTEM-1, blaTEM-135, and blaCTX-M-15 genes. Our research confirmed a high carrier rate of MDR E. coli, even more than one MDR strain in a single individual; therefore, wider monitoring in this group of animals should be considered.
Collapse
Affiliation(s)
- Marcelina Osińska
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | | | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Dominik Łagowski
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| | - Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Lublin, Poland
| |
Collapse
|
23
|
Biedrzycka A, Popiołek M, Zalewski A. Host-parasite interactions in non-native invasive species are dependent on the levels of standing genetic variation at the immune locus. BMC Evol Biol 2020; 20:43. [PMID: 32299345 PMCID: PMC7164242 DOI: 10.1186/s12862-020-01610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Parasites may mediate the success of biological invasions through their effect on host fitness and thus, on host population growth and stability. However, a release from the pressure of parasites is strongly related to the genetic differentiation of the host. In invasive host populations, the number of available genetic variants, allowing them to ‘fight’ the infection, are likely to be influenced by founder events and genetic drift. The level standing genetic variation of invasive populations may be crucial in successfully adapting to new environments and resisting diseases. We studied invasive populations of raccoon that experienced a random reduction in genetic diversity during the establishment and evaluated the relationship between host immune genetic diversity and intestinal parasites infection. Results We distinguished two different genetic clusters that are characterized by different sets of functionally relevant MHC-DRB alleles. Both clusters were characterized by considerably different allele-parasite associations and different levels of parasite infection. The specific resistance MHC-DRB alleles explained the lower prevalence of Digenea parasites. An increased infection intensity was related to the presence of two MHC-DRB alleles. One of these alleles significantly decreased in frequency over time, causing a decrease of Digenea abundance in raccoons in consecutive years. Conclusions Our findings suggest that intestinal parasites can exert selective pressure on an invasive host with lowered levels of immune genetic diversity and contribute to promoting local adaptation over time. The random genetic drift that created the two different genetic clusters in the invasive raccoon range imposed completely different MHC-parasite associations, strongly associated with the infection status of populations. Our findings underline the role of standing genetic variation in shaping host-parasite relationships and provide empirical support that functional genetic variation may be, at least partly, responsible for differences in the success of invasive populations.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Marcin Popiołek
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wroclaw, Poland
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, ul. Stoczek 1, 17-230, Białowieża, Poland
| |
Collapse
|
24
|
Nowakiewicz A, Zięba P, Gnat S, Trościańczyk A, Osińska M, Łagowski D, Kosior-Korzecka U, Puzio I. A significant number of multi-drug resistant Enterococcus faecalis in wildlife animals; long-term consequences and new or known reservoirs of resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135830. [PMID: 31818604 DOI: 10.1016/j.scitotenv.2019.135830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
As the last link in the food chain in a complex ecosystem covering at least three different environmental spheres, species of wildlife carnivorous mammals constitute a group accumulating potential pathogens and factors resulting from human activity, including the emergence of drug resistance. Therefore, the aim of this study was to evaluate the level and range of resistance in commensal E. faecalis isolated from wildlife carnivorous mammals and genetic relationships in terms of the source of these strains as well as resistance and virulence genes. Differentiation between strains was performed based on ADSRRS-fingerprinting method. The results showed that almost half of the tested animals (48%) were carriers of at least one multidrug resistant E. faecalis strain. Moreover, 44% of MDR-positive animals showed two or three strains differing in both the genotype and the resistance phenotype. A significant percentage of strains were resistant to high-level aminoglycosides (from 20% to even 57.5%). The resistance and virulence gene profiles showed a rich panel of genes closely related to isolates from nosocomial infection and from livestock animals. The presence of the same genotypes in different hosts reflects not only a possible transfer of genes between E. faecalis strains but also exchange of strains between animals. The obtained results reflect a very high level of contamination of animals that are not subjected to targeted antibiotic therapy, which may suggest the degree of pollution of the environment. Wildlife animals and their environment can be a link closing the circulation cycle of genes and even epidemiologically important strains; therefore, there is a high risk that this pool will never run out and will be maintained at a high level.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Urszula Kosior-Korzecka
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Pathophysiology, Akademicka 12, 20-033 Lublin, Poland
| | - Iwona Puzio
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Animal Physiology, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|
25
|
Luque-Sastre L, Arroyo C, Fox EM, McMahon BJ, Bai L, Li F, Fanning S. Antimicrobial Resistance in Listeria Species. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0031-2017. [PMID: 30027884 PMCID: PMC11633604 DOI: 10.1128/microbiolspec.arba-0031-2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century the use of antibiotics to treat infectious diseases has benefited human and animal health. In recent years there has been an increase in the emergence of antibiotic-resistant bacteria, in part attributed to the overuse of compounds in clinical and farming settings. The genus Listeria currently comprises 17 recognized species found throughout the environment. Listeria monocytogenes is the etiological agent of listeriosis in humans and many vertebrate species, including birds, whereas Listeria ivanovii causes infections mainly in ruminants. L. monocytogenes is the third-most-common cause of death from food poisoning in humans, and infection occurs in at-risk groups, including pregnant women, newborns, the elderly, and immunocompromised individuals.
Collapse
Affiliation(s)
- Laura Luque-Sastre
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Cristina Arroyo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, Victoria, Australia
| | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China
| | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| |
Collapse
|
26
|
Feßler AT, Thomas P, Mühldorfer K, Grobbel M, Brombach J, Eichhorn I, Monecke S, Ehricht R, Schwarz S. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from zoo and wild animals. Vet Microbiol 2018; 218:98-103. [DOI: 10.1016/j.vetmic.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/26/2022]
|
27
|
Sándor AD, D'Amico G, Gherman CM, Dumitrache MO, Domșa C, Mihalca AD. Mesocarnivores and macroparasites: altitude and land use predict the ticks occurring on red foxes (Vulpes vulpes). Parasit Vectors 2017; 10:173. [PMID: 28381228 PMCID: PMC5382496 DOI: 10.1186/s13071-017-2113-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/24/2017] [Indexed: 02/02/2023] Open
Abstract
Background The red fox Vulpes vulpes is the most common mesocarnivore in Europe and with a wide geographical distribution and a high density in most terrestrial habitats of the continent. It is fast urbanising species, which can harbor high numbers of different tick species, depending on the region. Here we present the results of a large-scale study, trying to disentangle the intricate relationship between environmental factors and the species composition of ectoparasites in red foxes. The samples were collected in Transylvania (Romania), a region with a diverse geography and high biodiversity. The dead foxes (collected primarily through the National Surveillance Rabies Program) were examined carefully for the presence of ticks. Results Ticks (n = 4578) were found on 158 foxes (out of 293 examined; 53.9%). Four species were identified: Dermacentor marginatus, Ixodes canisuga, I. hexagonus and I. ricinus. The most common tick species was I. hexagonus (mean prevalence 37.5%, mean intensity 32.2), followed by I. ricinus (15.0%; 4.86), I. canisuga (4.8%; 7.71) and D. marginatus (3.7%; 3.45). Co-occurrence of two or more tick species on the same host was relatively common (12.6%), the most common co-occurrence being I. hexagonus - I. ricinus. For D. marginatus and I. canisuga the highest prevalence was recorded in lowlands, for I. hexagonus in hilly areas, while for I. ricinus in mountains. Conclusions Altitude influenced the intensity of parasitism, with highest intensity observed for all Ixodes species in hilly areas. Dermacentor marginatus occurred only in lowlands, I. canisuga in lowlands and hilly areas while the other two species occurred in all of the regions studied. Foxes from lower altitudes had the most tick species associated, with most incidences of co-parasitism also recorded here. Land use affected tick-species composition, with the presence of D. marginatus strongly associated with the extension of arable areas and lack of forests. The presence of I. hexagonus was determined only by the extent of arable lands. As foxes are frontrunners of wildlife urbanization process, with a continuous increase of their numbers in urban areas, the knowledge of their ticks’ ecology (and the pathogens vectored by these) is of utmost importance.
Collapse
Affiliation(s)
- Attila D Sándor
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj Napoca, Romania.
| | - Gianluca D'Amico
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj Napoca, Romania
| | - Călin M Gherman
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj Napoca, Romania
| | - Mirabela O Dumitrache
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj Napoca, Romania
| | - Cristian Domșa
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj Napoca, Romania
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj Napoca, Romania
| |
Collapse
|