1
|
He Y, Li S, Jiang L, Wu K, Chen S, Su L, Liu C, Liu P, Luo W, Zhong S, Li Z. Palmitic Acid Accelerates Endothelial Cell Injury and Cardiovascular Dysfunction via Palmitoylation of PKM2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412895. [PMID: 39665133 PMCID: PMC11791964 DOI: 10.1002/advs.202412895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
High serum level of palmitic acid(PA) is implicated in pathogenesis of cardiovascular diseases. PA serves as the substrate for protein palmitoylation. However, it is still unknown whether palmitoylation is involved in PA-induced cardiovascular dysfunction. Here, in clinical cohort studies of 1040 patients with coronary heart disease, high level of PA is associated with risk of major adverse cardiovascular events (MACE) and death. In ApoE-/-mice, 10 mg/kg-1 PA treatment induces blood pressure elevation, cardiac contractile dysfunction, endothelial dysfunction and atherosclerotic plaqueformation. In endothelial cells, inhibition of palmitoylation bypalmitoyl-transferase inhibitor 2-BP eliminates PA-induced endothelial injury, whereas promotion of palmitoylation by depalmitoylase inhibitor ML349 exacerbates the harmful effect of PA. Palmitoyl-proteomics analysis identifies pyruvate kinase isozyme type M2 (PKM2) as the palmitoylated protein responsible for PA-induced endothelial injury, and Cys31 as the predominant palmitoylated site. PKM2-C31S mutants (cysteine replaced by serine) prevents PA-induced endothelial injury. Endothelial-specific AAV-C31S PKM2endo ameliorates cardiovascular dysfunction caused by PA in ApoE-/- mice. Mechanistically, PKM2-C31 palmitoylation impairs PKM2 tetramerization to inhibit its pyruvate kinase activity and endothelial glycolysis. Finally, zDHHC13 is identified as the palmitoyl acyltransferase of PKM2. In conclusion, these findings suggest that PKM2-C31 palmitoylation contributes to PA-induced endothelial injury and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Yu He
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Senlin Li
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080P. R. China
- School of MedicineSouth China University of TechnologyGuangzhou510006P. R. China
| | - Lujing Jiang
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Kejue Wu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Shanshan Chen
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Linjie Su
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Cui Liu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Peiqing Liu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Wenwei Luo
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Shilong Zhong
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080P. R. China
- School of MedicineSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zhuoming Li
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
2
|
Wei Q, Xiao X, Huo E, Guo C, Zhou X, Hu X, Dong C, Shi H, Dong Z. Hypermethylation and suppression of microRNA219a-2 activates the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis. Mol Ther 2025; 33:249-262. [PMID: 39295147 PMCID: PMC11764320 DOI: 10.1016/j.ymthe.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA219a-2 by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyrosequencing, we detected the hypermethylation of microRNA219a-2 in renal fibrosis induced by unilateral ureteral obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in microRNA-219a-5p expression. Functionally, overexpression of microRNA219a-2 enhanced fibronectin induction during hypoxia or TGF-β1 treatment of cultured renal cells. In mice, inhibition of microRNA-219a-5p suppressed fibronectin accumulation in UUO and ischemic/reperfused kidneys. Aldehyde dehydrogenase 1 family member L2 (ALDH1L2) was identified to be the direct target gene of microRNA-219a-5p in renal fibrotic models. MicroRNA-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of microRNA-219a-5p prevented the decrease of ALDH1L2 in injured kidneys. Knockdown of ALDH1L2 enhanced plasminogen activator inhibitor-1 (PAI-1) induction during TGF-β1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of microRNA219a-2 in response to fibrotic stress may attenuate microRNA-219a-5p expression and induce the upregulation of its target gene ALDH1L2, which reduces fibronectin deposition by suppressing PAI-1.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Xiao Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Emily Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Augusta Preparatory Day School, 285 Flowing Wells Rd, Martinez, GA 30907, USA
| | - Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 414300, Hubei, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan, China
| | - Charles Dong
- Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
3
|
Liu K, Hao X, Gao Y, Cao Z, Hou M, Qin L, Song Y, Wang M, Jiang B, Liu Q, Zou Y, Gong Y, Liu G, Sun G. CUL4B protects kidneys from acute injury by restraining p53/PAI-1 signaling. Cell Death Dis 2024; 15:915. [PMID: 39695153 DOI: 10.1038/s41419-024-07299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) caused by nephrotoxins, ischemia reperfusion (IR) or sepsis is associated with high morbidity and mortality. Unveiling new mechanisms underlying AKI can help develop new therapeutic strategy. Cullin 4B (CUL4B) is a scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Here, we demonstrate that CUL4B can protect kidneys from acute injury induced by cisplatin and IR. CUL4B is upregulated in mouse tubular epithelial cells (TECs) after cisplatin treatment or IR. Loss of CUL4B in kidneys exacerbates renal injury, inflammation, and apoptosis of TECs caused by cisplatin and IR. Transcriptome analysis reveals that Cul4b deficiency enhances injury-induced PAI-1 expression. CUL4B suppresses PAI-1 expression by promoting polyubiquitination and degradation of p53. Inhibition of either PAI-1 or p53 can prevent the aggravated renal injury and inflammation caused by loss of CUL4B. Our work has identified the kidney-protective role of CUL4B against acute injury.
Collapse
Affiliation(s)
- Kaixuan Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Hao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yangfan Gao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyuan Cao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Hou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lining Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Mizukami Y, Kawao N, Ohira T, Okada K, Yamao H, Matsuo O, Kaji H. Effects of plasminogen activator inhibitor-1 deficiency on bone disorders and sarcopenia caused by adenine-induced renal dysfunction in mice. PLoS One 2024; 19:e0311902. [PMID: 39388484 PMCID: PMC11469609 DOI: 10.1371/journal.pone.0311902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a significant global health issue and often involves CKD-mineral and bone disorder (MBD) and sarcopenia. Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor of fibrinolysis. PAI-1 has been implicated in the pathogenesis of osteoporosis and muscle wasting induced by inflammatory conditions. However, the roles of PAI-1 in CKD-MBD and sarcopenia remain unknown. Therefore, the present study investigated the roles of PAI-1 in bone loss and muscle wasting induced by adenine in PAI-1-deficient mice. CKD was induced in PAI-1+/+ and PAI-1-/- mice by administration of adenine for ten weeks. Muscle wasting was assessed by grip strength test, quantitative computed tomography (CT) analysis and muscle weight measurement. Osteoporosis was assessed by micro-CT analysis of femoral microstructural parameters. PAI-1 deficiency did not affect adenine-induced decreases in body weight and food intake or renal dysfunction in male or female mice. PAI-1 deficiency also did not affect adenine-induced decreases in grip strength, muscle mass in the lower limbs, or the tissue weights of the gastrocnemius, soleus, and tibialis anterior muscles in male or female mice. PAI-1 deficiency aggravated trabecular bone loss in CKD-induced male mice, but significantly increased trabecular bone in CKD-induced female mice. On the other hand, PAI-1 deficiency did not affect cortical bone loss in CKD-induced mice. In conclusion, PAI-1 is not critical for the pathophysiology of CKD-MBD or CKD-induced sarcopenia in mice. However, PAI-1 may be partly related to bone metabolism in trabecular bone in the CKD state with sex differences.
Collapse
Affiliation(s)
- Yuya Mizukami
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| | - Naoyuki Kawao
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| | - Takashi Ohira
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| | - Kiyotaka Okada
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| | - Hisatoshi Yamao
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| | - Osamu Matsuo
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| | - Hiroshi Kaji
- Kindai University Faculty of Medicine, Department of Physiology and Regenerative Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
5
|
Medipally A, Xiao M, Biederman L, Dasgupta A, Satoskar AA, Parikh S, Ivanov I, Mikhalina G, Brodsky SV. Role of plasminogen activated inhibitor-1 in the pathogenesis of anticoagulant related nephropathy. FRONTIERS IN NEPHROLOGY 2024; 4:1406655. [PMID: 39006160 PMCID: PMC11239567 DOI: 10.3389/fneph.2024.1406655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
Anticoagulant related nephropathy (ARN) is the result of glomerular hemorrhage in patients on systemic anticoagulation therapy or underlying coagulopathy. Red blood cells (RBC) that passed through the glomerular filtration barrier form RBC casts in the tubules, increase oxidative stress and result in acute tubular necrosis (ATN). The mechanisms of ARN still not completely discovered. Plasminogen activator inhibitor-1 (PAI-1) plays a significant role in the maintenance of coagulation homeostasis. We developed an animal model to study ARN in 5/6 nephrectomy (5/6NE) rats. The aim of this study was to elucidate the role of PAI-1 in the ARN pathogenesis. 5/6NE rats were treated per os with warfarin (0.75 mg/kg/day) or dabigatran (150 mg/kg/day) alone or in combination with PAI-1 antagonist TM5441 (2.5, 5.0 and 10 mg/kg/day). TM5441 in a dose dependent manner ameliorated anticoagulant-induced increase in serum creatinine in 5/6NE rats. Anticoagulant-associated increase in hematuria was no affected by TM5441. The levels of reactive oxygen species (ROS) in the kidneys were in a dose-dependent manner decreased in 5/6NE rats treated with an anticoagulant and TM5441. Our data demonstrates that PAI-1 may reduce ARN by decreasing ROS in the kidneys. Glomerular hemorrhage is not affected by anti-PAI-1 treatment. These findings indicate that while symptoms of ARN can be reduced by PAI-1 inhibition, the main pathogenesis of ARN - glomerular hemorrhage - cannot be prevented.
Collapse
Affiliation(s)
- Ajay Medipally
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Min Xiao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Laura Biederman
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Alana Dasgupta
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anjali A. Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Samir Parikh
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Iouri Ivanov
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Galina Mikhalina
- Medicine, Rochester Regional Health Nephrology, Rochester, NY, United States
| | - Sergey V. Brodsky
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Shibeko AM, Ilin IS, Podoplelova NA, Sulimov VB, Panteleev MA. Chemical Adjustment of Fibrinolysis. Pharmaceuticals (Basel) 2024; 17:92. [PMID: 38256925 PMCID: PMC10819531 DOI: 10.3390/ph17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibrinolysis is the process of the fibrin-platelet clot dissolution initiated after bleeding has been stopped. It is regulated by a cascade of proteolytic enzymes with plasmin at its core. In pathological cases, the balance of normal clot formation and dissolution is replaced by a too rapid lysis, leading to bleeding, or an insufficient one, leading to an increased thrombotic risk. The only approved therapy for emergency thrombus lysis in ischemic stroke is recombinant tissue plasminogen activator, though streptokinase or urokinase-type plasminogen activators could be used for other conditions. Low molecular weight compounds are of great interest for long-term correction of fibrinolysis dysfunctions. Their areas of application might go beyond the hematology field because the regulation of fibrinolysis could be important in many conditions, such as fibrosis. They enhance or weaken fibrinolysis without significant effects on other components of hemostasis. Here we will describe and discuss the main classes of these substances and their mechanisms of action. We will also explore avenues of research for the development of new drugs, with a focus on the use of computational models in this field.
Collapse
Affiliation(s)
- Alexey M. Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (A.M.S.); (M.A.P.)
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named after Dmitry Rogachev, 117197 Moscow, Russia
| | - Ivan S. Ilin
- Research Computing Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.S.I.); (V.B.S.)
- Dimonta, Ltd., 117186 Moscow, Russia
| | - Nadezhda A. Podoplelova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (A.M.S.); (M.A.P.)
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named after Dmitry Rogachev, 117197 Moscow, Russia
| | - Vladimir B. Sulimov
- Research Computing Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.S.I.); (V.B.S.)
- Dimonta, Ltd., 117186 Moscow, Russia
| | - Mikhail A. Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (A.M.S.); (M.A.P.)
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named after Dmitry Rogachev, 117197 Moscow, Russia
| |
Collapse
|
7
|
Li F, Ma Z, Cai Y, Zhou J, Liu R. Optimizing diabetic kidney disease animal models: Insights from a meta-analytic approach. Animal Model Exp Med 2023; 6:433-451. [PMID: 37723622 PMCID: PMC10614131 DOI: 10.1002/ame2.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/12/2023] [Indexed: 09/20/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes, often leading to end-stage renal disease. Animal models have been widely used to study the pathogenesis of DKD and evaluate potential therapies. However, current animal models often fail to fully capture the pathological characteristics of renal injury observed in clinical patients with DKD. Additionally, modeling DKD is often a time-consuming, costly, and labor-intensive process. The current review aims to summarize modeling strategies in the establishment of DKD animal models by utilizing meta-analysis related methods and to aid in the optimization of these models for future research. A total of 1215 articles were retrieved with the keywords of "diabetic kidney disease" and "animal experiment" in the past 10 years. Following screening, 84 articles were selected for inclusion in the meta-analysis. Review manager 5.4.1 was employed to analyze the changes in blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, serum creatinine, blood urea nitrogen, and urinary albumin excretion rate in each model. Renal lesions shown in different models that were not suitable to be included in the meta-analysis were also extensively discussed. The above analysis suggested that combining various stimuli or introducing additional renal injuries to current models would be a promising avenue to overcome existing challenges and limitations. In conclusion, our review article provides an in-depth analysis of the limitations in current DKD animal models and proposes strategies for improving the accuracy and reliability of these models that will inspire future research efforts in the DKD research field.
Collapse
Affiliation(s)
- Fanghong Li
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Yajie Cai
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jingwei Zhou
- Department of Nephrology, Dongzhimen HospitalThe First Affiliated Hospital of Beijing University of Chinese MedicineBeijingChina
| | - Runping Liu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
8
|
Chen BH, Lu XQ, Liang XH, Wang P. Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci Rep 2023; 13:16210. [PMID: 37758806 PMCID: PMC10533493 DOI: 10.1038/s41598-023-43411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
As a leading cause of chronic kidney disease, diabetic kidney disease (DKD) involves insidious but progressive impairments of renal tubules, and is associated with premature renal aging. The underlying pathomechanisms remain elusive. Post hoc analyses of the publicly-available renal transcriptome revealed that TGFβ1 is overexpressed in renal tubulointerstitia in patients with DKD and positively correlated with kidney aging signaling. This finding was validated in kidney biopsy specimens collected from patients with DKD, associated with renal tubular senescence and degenerative changes. In vitro in renal tubular epithelial cells, exposure to a diabetic milieu, stimulated with high ambient glucose and TGFβ1, elicited premature senescence, as evidenced by staining for senescence-associated β-galactosidase activity and increased expression of p16INK4A, and p53. This coincided with Serpin E1 induction, in parallel with increased fibronectin accumulation and reduced expression of the epithelial marker E-cadherin, all indicative of degenerative changes. Reminiscent of the action of typical senolytics, a small molecule inhibitor of Serpin E1 substantially mitigated the pro-senescent and degenerating effects of the diabetic milieu, suggesting an essential role of Serpin E1 in mediating renal tubular senescence upon diabetic insult. Moreover, inhibition of Serpin E1 abolished the diabetic insult-triggered paracrine senescence of renal tubular cells. In consistency, in patients with DKD, renal tubular expression of Serpin E1 was upregulated and positively correlated with tubular senescence and fibrosis in renal tubulointerstitia. Collectively, diabetic insult induces renal tubular degeneration and premature senescence via, at least in part, Serpin E1 signaling.
Collapse
Affiliation(s)
- Bo Han Chen
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xiao Qing Lu
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian Hui Liang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei Wang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Blood Purification Center, Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
10
|
Xiao X, Huo E, Guo C, Zhou X, Hu X, Dong C, Shi H, Dong Z, Wei Q. Hypermethylation suppresses microRNA-219a-2 to activate the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2986934. [PMID: 37333081 PMCID: PMC10275039 DOI: 10.21203/rs.3.rs-2986934/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA-219a-2 (mir-219a-2) by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyro-sequencing, we detected the hypermethylation of mir-219a-2 in renal fibrosis induced by unilateral ureter obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in mir-219a-5p expression. Functionally, overexpression of mir-219a-2 enhanced fibronectin induction during hypoxia or TGF-β1 treatment of cultured renal cells. In mice, inhibition of mir-219a-5p suppressed fibronectin accumulation in UUO kidneys. ALDH1L2 was identified to be the direct target gene of mir-219a-5p in renal fibrosis. Mir-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of mir-219a-5p prevented the decrease of ALDH1L2 in UUO kidneys. Knockdown of ALDH1L2 enhanced PAI-1 induction during TGF-β1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of mir-219a-2 in response to fibrotic stress attenuates mir-219a-5p expression and induces the up-regulation of its target gene ALDH1L2, which may reduce fibronectin deposition by suppressing PAI-1.
Collapse
Affiliation(s)
- Xiao Xiao
- Zhongnan Hospital of Wuhan University
| | | | - Chunyuan Guo
- Shanghai Skin Disease Hospital, Tongji University School of Medicine
| | | | - Xiaoru Hu
- The Second Xiangya Hospital at Central South University
| | | | | | | | | |
Collapse
|
11
|
Callegari K, Dash S, Uchida H, Shingai Y, Liu C, Khodarkovskaya A, Lee Y, Ito A, Lopez A, Zhang T, Xiang J, Kluk MJ, Sanchez T. Molecular profiling of the stroke-induced alterations in the cerebral microvasculature reveals promising therapeutic candidates. Proc Natl Acad Sci U S A 2023; 120:e2205786120. [PMID: 37058487 PMCID: PMC10120001 DOI: 10.1073/pnas.2205786120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.
Collapse
Affiliation(s)
- Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Yunkyoung Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Akira Ito
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Amanda Lopez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY10065
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY10065
| | - Michael J. Kluk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
12
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
13
|
Ghosh AK, Kalousdian AA, Shang M, Lux E, Eren M, Keating A, Wilsbacher LD, Vaughan DE. Cardiomyocyte PAI-1 influences the cardiac transcriptome and limits the extent of cardiac fibrosis in response to left ventricular pressure overload. Cell Signal 2023; 104:110555. [PMID: 36584735 DOI: 10.1016/j.cellsig.2022.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a specific and rapid-acting inhibitor of endogenous plasminogen activators (uPA and tPA). The global PAI-1 knockout mice (PAI-1KO) develop age-dependent cardiac-selective fibrosis, and young global PAI-1KO mice exhibit augmented susceptibility to developing cardiac fibrosis in response to hypertension. Here, we tested the hypothesis that cardiomyocyte PAI-1 is necessary to provide cardioprotective effects in a left ventricular pressure overload-induced murine model of cardiac hypertrophy and fibrosis using cardiomyocyte-specific PAI-1 knockout (cmPAI-1KO) mice. The results revealed that cmPAI-1KO mice display significantly worse cardiac fibrosis than controls. To investigate the molecular mechanisms responsible for these effects, genome-wide cardiac transcriptome analysis was performed. Loss of cardiomyocyte PAI-1 led to differential expression of 978 genes compared to controls in response to left ventricular pressure overload. Pathway enrichment analysis identified the inflammatory response, cell substrate adhesion, regulation of cytokine production, leukocyte migration, extracellular matrix organization, and cytokine-mediated signaling pathways as being significantly upregulated in cmPAI-1KO hearts. Conversely, specific epigenetic repressors, cation transmembrane transport, muscle system processes, and nitric oxide signaling were significantly downregulated in cmPAI-1KO hearts compared to control hearts in response to left ventricular pressure overload. Collectively, the present study provides strong evidence of the impact of cardiomyocyte PAI-1 in regulation of the transcriptome network involved in the cardiac stress response. In response to stress, the deregulatory impact of cardiomyocyte PAI-1 loss on the cardiac transcriptome may be the underlying cause of cardiac-selective accelerated fibrogenesis in global PAI-1-deficient mice.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Anthony A Kalousdian
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth Lux
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mesut Eren
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Keating
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lisa D Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Douglas E Vaughan
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Tanaka K, Harada H, Kamuro H, Sakai H, Yamamoto A, Tomimatsu M, Ikeda A, Chosokabe R, Tanaka S, Okada Y, Fujio Y, Obana M. Arid5a/IL-6/PAI-1 Signaling Is Involved in the Pathogenesis of Lipopolysaccharide-Induced Kidney Injury. Biol Pharm Bull 2023; 46:1753-1760. [PMID: 38044094 DOI: 10.1248/bpb.b23-00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A systemic inflammatory response leads to widespread organ dysfunction, such as kidney dysfunction. Plasminogen activator inhibitor-1 (PAI-1) is involved in the pathogenesis of inflammatory kidney injury; however, the regulatory mechanism of PAI-1 in injured kidneys remains unclear. PAI-1 is induced by interleukin (IL)-6 in patients with sepsis. In addition, the stabilization of IL-6 is regulated by the adenine-thymine-rich interactive domain-containing protein 5a (Arid5a). Therefore, the aim of the present study was to examine the involvement of Arid5a/IL-6/PAI-1 signaling in lipopolysaccharide (LPS)-induced inflammatory kidney injury. LPS treatment to C57BL/6J mice upregulated Pai-1 mRNA in the kidneys. Enzyme-linked immunosorbent assay (ELISA) revealed that PAI-1 expression was induced in the culture supernatants of LPS-treated human umbilical vein endothelial cells, but not in those of LPS-treated human kidney 2 (HK-2) cells, a tubular cell line. Combined with single-cell analysis, endothelial cells were found to be responsible for PAI-1 elevation in LPS-treated kidneys. Administration of TM5441, a PAI-1 inhibitor, reduced the urinary albumin/creatinine ratio, concomitant with downregulation of Il-6 and Arid5a mRNA expressions. IL-6 treatment in LPS model mice further upregulated Pai-1 mRNA expression compared with LPS alone, accompanied by renal impairment. Furthermore, the expression of Il-6 and Pai-1 mRNA was lower in Arid5a knockout mice than in wild-type mice after LPS treatment. Taken together, the vicious cycle of Arid5a/IL-6/PAI-1 signaling is involved in LPS-induced kidney injury.
Collapse
Affiliation(s)
- Koki Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroki Harada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroyasu Kamuro
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hibiki Sakai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Ayaha Yamamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Akari Ikeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Renya Chosokabe
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
- Global Center for Medical Engineering and Informatics (MEI), Osaka University
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University
| |
Collapse
|
15
|
Kundu S, Hossain KS, Moni A, Zahan MS, Rahman MM, Uddin MJ. Potentials of ketogenic diet against chronic kidney diseases: pharmacological insights and therapeutic prospects. Mol Biol Rep 2022; 49:9749-9758. [PMID: 35441940 DOI: 10.1007/s11033-022-07460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a worldwide public health concern. Nutritional interventions become a primary concern in managing various diseases, including CKD. Ketogenic diets (KD) are a popular diet and an increasingly used diet for weight loss. MAIN BODY With the increasing cases of CKD, KD has been proposed as a treatment by many scientists. Several studies have shown that KD can slow down the progression rate of renal abnormalities. Also, this diet is regarded as a safe route for managing CKD. CKD is generally associated with increased inflammation, oxidative stress, fibrosis, autophagy dysfunction, and mitochondrial dysfunction, while all of these can be attenuated by KD. The protective effect of KD is mainly mediated through inhibition of ROS, NF-κB, and p62 signaling. CONCLUSIONS It is suggested that KD could be considered a new strategy for managing and treating CKD more carefully. This review explores the potential of KD on CKD and the mechanism involved in KD-mediated kidney protection.
Collapse
Affiliation(s)
- Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh. .,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
16
|
Li Z, Yang W, Yang Y, Wu J, Luo P, Liu Y. The Astragaloside IV Derivative LS-102 Ameliorates Obesity-Related Nephropathy. Drug Des Devel Ther 2022; 16:647-664. [PMID: 35308255 PMCID: PMC8932932 DOI: 10.2147/dddt.s346546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Astragaloside IV is the most important bioactive component of Radix Astragali. Previous studies have shown that astragaloside IV plays an important role in the control of early- and mid-stage diabetes and late diabetic nephropathy. However, it is disappointing that the in vivo solubility of astragaloside IV and its bioavailability after oral administration are very low. We recently obtained a new water-soluble derivative of astragaloside IV-astragaloside formic acid (LS-102), which has higher bioavailability than the parent compound. In our previous study, we found that there was a significant inflammatory response in the perirenal adipose tissue of mice with obesity-related nephropathy induced by a high-fat diet (HFD), which was related to macrophage infiltration. We hypothesized that in model mice with obesity-related nephropathy, LS-102 effectively regulated the inflammatory response and pathological changes in obesity-related nephropathy through macrophages in perirenal adipose tissue. If this hypothesis is true, the effects of LS-102 and astragaloside IV on TGF-β1/Smad signal transduction will be further investigated. Methods In this study, adipose stem cells and an HFD-induced obesity-related nephropathy mouse model were used to observe the regulatory effect of LS-102 on perirenal fat inflammation and the mechanism. Adipose mesenchymal stem cells were extracted from mice that were fed a normal diet and those with obesity-related nephropathy. The effects of LS-102 on the proliferation of two kinds of cells were measured by the CCK-8 method. The levels of tumor necrosis factor-α (TNF-a) and plasminogen activator inhibitor-1 (PAI-1) were measured by ELISA. Obesity-related nephropathy mice were randomly divided into five groups: the HFD group, the LAS group (HFD+low concentration of astragaloside IV [10 mg/kg], intragastrically [ig]), the HAS group (HFD+high concentration of astragaloside IV [40 mg/kg], ig), the L102 group (HFD+low concentration of LS-102 [10 mg/kg], ig) and the H102 group (HFD+high concentration of LS-102 [40 mg/kg], ig). Body weight was measured, and the levels of serum glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC), serum creatinine (Crea) and blood urea were measured. The kidneys were stained with HE, PAS and Masson's trichrome. Perirenal adipose tissue was harvested to examine the expression of CD68, LCA, CD11C, TNF-a, TGF-β1, Fn1, Smad2, Smad3, Smad4, and Smad7 by immunohistochemical staining, and F4/80 was examined by immunofluorescence staining. Results LS-102 significantly inhibited the in vitro secretion of TNF-a and PAI-1 by adipose stem cells in a concentration-dependent manner (P < 0.05). In vivo, the body weights in the LAS group, HAS group, L102 group and H102 group were significantly lower than those in the HFD group (P < 0.05). Except for that in the HFD group, the volume of perirenal adipocytes in the other groups was small and uniform (P < 0.05). Compared with the LAS, HAS, L102 and H102 groups, the HFD group had a larger glomerular cross-sectional area, proliferation of mesangial cells and the mesangial matrix, and increased matrix area/glomerular area (P < 0.05). The effect of LS-102 was better than that of astragaloside IV at the same concentration (P < 0.05). Compared with those in the HFD group, glucose, HDL-C, LDL-C and urea levels in the LAS group, HAS group, L102 group and H102 group were significantly decreased (P < 0.05). The expression of F4/80, CD68, LCA, TNF-a, CD11C, and PAI-1 in perirenal adipose tissue in the HFD group was significantly higher than that in the LAS group, HAS group, L102 group and H102 group (P < 0.05). Compared with those in the HFD group, the expression levels of TGF-β1 and Fn1 in the HAS group, L102 group and H102 group were significantly increased (P < 0.05). Compared with the HFD group, the HAS group, L102 group and H102 group had decreased immunopositive rates of Smad2, Smad3 and Smad4 (P < 0.05). At the same concentration, the effect of LS-102 was better than that of astragaloside IV (P < 0.05). There was no significant difference in the expression of Smad7 among the different experimental groups (P > 0.05). Conclusion Astragaloside IV and LS-102 improved the inflammatory reaction in perirenal adipose tissue and renal pathological changes in obesity-related nephropathy model mice and inhibited the TGF-β1/Smad signaling cascade. At the same concentration, the effect of LS-102 was better than that of astragaloside IV. These results suggest that LS-102 has a better protective effect against obesity-related nephropathy. LS-102 may be a new type of traditional Chinese medicine for the clinical treatment of obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wei Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yong Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Yong Liu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Medical Equipment Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
17
|
Akter S, Moni A, Faisal GM, Uddin MR, Jahan N, Hannan MA, Rahman A, Uddin MJ. Renoprotective Effects of Mangiferin: Pharmacological Advances and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031864. [PMID: 35162887 PMCID: PMC8834953 DOI: 10.3390/ijerph19031864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Both acute and chronic kidney diseases substantially contribute to the morbidities and mortality of patients worldwide. The existing therapeutics, which are mostly developed from synthetic sources, present some unexpected effects in patients, provoking researchers to explore potential novel alternatives. Natural products that have protective effects against various renal pathologies could be potential drug candidates for kidney diseases. Mangiferin is a natural polyphenol predominantly isolated from Mangifera indica and possesses multiple health benefits against various human ailments, including kidney disease. The main objective of this review is to update the renoprotective potentials of mangiferin with underlying molecular pharmacology and to highlight the recent development of mangiferin-based therapeutics toward kidney problems. Literature published over the past decade suggests that treatment with mangiferin attenuates renal inflammation and oxidative stress, improves interstitial fibrosis and renal dysfunction, and ameliorates structural alteration in the kidney. Therefore, mangiferin could be used as a multi-target therapeutic candidate to treat renal diseases. Although mangiferin-loaded nanoparticles have shown therapeutic promise against various human diseases, there is limited information on the targeted delivery of mangiferin in the kidney. Further research is required to gain insight into the molecular pharmacology of mangiferin targeting kidney diseases and translate the preclinical results into clinical use.
Collapse
Affiliation(s)
- Sumaya Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Golam Mahbub Faisal
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Muhammad Ramiz Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Nourin Jahan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Japan;
| | - Md Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Japan;
- Correspondence: (A.R.); (M.J.U.)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
- Correspondence: (A.R.); (M.J.U.)
| |
Collapse
|
18
|
Zahan MS, Ahmed KA, Moni A, Sinopoli A, Ha H, Uddin MJ. Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:1-13. [PMID: 34965991 PMCID: PMC8723984 DOI: 10.4196/kjpp.2022.26.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.
Collapse
Affiliation(s)
| | | | - Akhi Moni
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
| | - Alessandra Sinopoli
- Department of Prevention, Local Health Unit Roma 1, Rome 00185, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00185, Italy
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, Ewha Womans University College of Pharmacy, Seoul 03760, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
- Graduate School of Pharmaceutical Sciences, Ewha Womans University College of Pharmacy, Seoul 03760, Korea
| |
Collapse
|
19
|
Paniagua-Sancho M, Quiros Y, Casanova AG, Blanco-Gozalo V, Agüeros-Blanco C, Benito-Hernández A, Ramos-Barron MA, Gómez-Alamillo C, Arias M, Sancho-Martínez SM, López-Hernández FJ. Urinary Plasminogen Activator Inhibitor-1: A Biomarker of Acute Tubular Injury. Am J Nephrol 2021; 52:714-724. [PMID: 34518454 DOI: 10.1159/000518455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) is a threatening, multiaetiological syndrome encompassing a variety of forms and damage patterns. AKI lacks sufficiently specific diagnostic tools to evaluate the distinct combination of pathophysiological events underlying each case, which limits personalized and optimized handling. Therefore, a pathophysiological diagnosis based on new urinary biomarkers is sought for practical (readiness and noninvasiveness) and conceptual reasons, as the urine is a direct product of the kidneys. However, biomarkers found in the urine may also have extrarenal origin, thus conveying pathophysiological information from other organs or tissues. Urinary plasminogen activator inhibitor-1 (PAI-1) has been associated to AKI, although its origin and traffic to the urine are not known. METHODS Herein, we studied the blood or renal origin of urinary PAI-1 (uPAI-1) in experimental AKI in Wistar rats, by means of the in situ renal perfusion method. For this purpose, urine was collected while the kidneys of rats with AKI showing increased uPAI-1 excretion, and controls, were in situ perfused with a saline solution. RESULTS Our results show that during perfusion, PAI-1 remained in the urine of AKI rats, suggesting that renal cells shed this protein directly to the urine. PAI-1 is also significantly increased in the urine of AKI patients. Its low correlation with other urinary markers such as NGAL or NAG suggests that PAI-1 provides complementary and distinct phenotypical information. CONCLUSION In conclusion, uPAI-1 is a biomarker produced by damaged kidneys following AKI, whose precise pathophysiological meaning in AKI needs to be further investigated.
Collapse
Affiliation(s)
- María Paniagua-Sancho
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Yaremi Quiros
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Víctor Blanco-Gozalo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Consuelo Agüeros-Blanco
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Adalberto Benito-Hernández
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - María A Ramos-Barron
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Carlos Gómez-Alamillo
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Manuel Arias
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
- Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
- Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int J Mol Sci 2021; 22:ijms22063170. [PMID: 33804680 PMCID: PMC8003717 DOI: 10.3390/ijms22063170] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Hypofibrinolysis is a key abnormality in diabetes and contributes to the adverse vascular outcome in this population. Plasminogen activator inhibitor (PAI)-1 is an important regulator of the fibrinolytic process and levels of this antifibrinolytic protein are elevated in diabetes and insulin resistant states. This review describes both the physiological and pathological role of PAI-1 in health and disease, focusing on the mechanism of action as well as protein abnormalities in vascular disease with special focus on diabetes. Attempts at inhibiting protein function, using different techniques, are also discussed including direct and indirect interference with production as well as inhibition of protein function. Developing PAI-1 inhibitors represents an alternative approach to managing hypofibrinolysis by targeting the pathological abnormality rather than current practice that relies on profound inhibition of the cellular and/or acellular arms of coagulation, and which can be associated with increased bleeding events. The review offers up-to-date knowledge on the mechanisms of action of PAI-1 together with the role of altering protein function to improve hypofirbinolysis. Developing PAI-1 inhibitors may form for the basis of future new class of antithrombotic agents that reduce vascular complications in diabetes.
Collapse
|
21
|
Curcumin analogue C66 attenuates obesity-induced renal injury by inhibiting chronic inflammation. Biomed Pharmacother 2021; 137:111418. [PMID: 33761621 DOI: 10.1016/j.biopha.2021.111418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity has been recognized as a major risk factor for the development of chronic kidney disease, which is accompanied by increased renal inflammation, fibrosis, and apoptosis. C66 is a curcumin derivative that exerts anti-inflammatory effects by inhibiting the JNK pathway and prevents diabetic nephropathy. The present study investigates the possible protective effect of C66 on high-fat diet (HFD)-induced obesity-related glomerulopathy. Mice were fed with HFD for 8 weeks while some were treated with C66 every 2 days for 11 weeks. The HFD-fed mice developed renal dysfunction, as well as elevated triglyceride and cholesterol. Kidneys of the HFD-fed mice showed marked glomerular injuries, apoptosis, and inflammation with markedly increased cytokine production. Interestingly, treating HFD-fed mice with C66 remarkably reversed these pathological changes via inhibiting inflammation and NF-κB/JNK activation. In cultured mesangial cells, Palmitic Acid was able to activate the pro-fibrotic mechanisms, apoptosis, inflammatory response, and NF-κB and JNK signaling pathways, all of which could be attenuated by C66 treatment. In all, we demonstrated that curcumin analogue C66 attenuates obesity-induced renal injury by inhibiting chronic inflammation and apoptosis via targeting NF-κB and JNK. Our data suggest that C66 can be potentially used to prevent obesity-associated renal diseases warranting future investigations.
Collapse
|
22
|
Abuhelaiqa E, Snopkowski C, Li C, Salvatore S, Lee JR, Muthukumar T, Lee JB, Hartono C, Ding R, Seshan SV, Suthanthiran M, Dadhania DM. Validation of a noninvasive prognostic signature for allograft failure following BK virus associated nephropathy. Clin Transplant 2021; 35:e14200. [PMID: 33349997 DOI: 10.1111/ctr.14200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Identifying kidney transplant recipients at risk for graft failure following BK virus nephropathy (BKVN) may allow personalization of therapy. We have reported that a noninvasive composite signature of urinary cell level of plasminogen activator inhibitor-1(PAI-1) mRNA and serum creatinine level, measured at the time of BKVN diagnosis, is prognostic of graft failure. In this investigation, we determined whether the composite signature is prognostic of graft failure in an independent cohort of 25 patients with BKVN. Of the 25 patients, 8 developed graft failure and 17 did not. We measured urinary cell levels of PAI-1 mRNA, 18S rRNA, and BKV VP1 mRNA at the time of BKVN diagnosis and evaluated clinical parameters including Banff pathology scores, acute rejection, and graft function. The area under the receiver operating characteristic curve for the noninvasive composite signature was 0.95 (P < .001) for prognosticating graft failure. The previously reported threshold of -0.858 predicted graft failure with a sensitivity of 75% and a specificity of 94%. Our current study validates the use of composite signature and the threshold of -0.858 to identify those at risk for graft failure following BKVN diagnosis, and supports future studies utilizing the composite signature score to personalize treatment of BKVN.
Collapse
Affiliation(s)
- Essa Abuhelaiqa
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Catherine Snopkowski
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Steve Salvatore
- Department of Pathology, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Jun B Lee
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Choli Hartono
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Ruchuang Ding
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Surya V Seshan
- Department of Pathology, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| | - Darshana M Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA.,Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
23
|
Yasuzawa T, Nakamura T, Ueshima S, Mima A. Protective Effects of Eicosapentaenoic Acid on the Glomerular Endothelium via Inhibition of EndMT in Diabetes. J Diabetes Res 2021; 2021:2182225. [PMID: 34977254 PMCID: PMC8720008 DOI: 10.1155/2021/2182225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes-induced endothelial pathologies are hypothesized to lead to the progression of diabetic kidney disease (DKD). The endothelial to mesenchymal transition (EndMT) possibly induces fibrosis, leading to glomerulosclerosis in the kidney. Furthermore, this could lead to albuminuria in diabetic nephropathy due to glomerular endothelial dysfunction. Eicosapentaenoic acid (EPA), purified from fish oil, decreases inflammatory cytokine levels in glomerulonephritis. Here, we aimed at finding whether ethyl eicosapentaenoate (EPA-E) exerts renal protective effects via EndMT inhibition. To find out whether EPA inhibits EndMT in vitro, the changes in CD31 expression were studied in cultured mouse endothelial cells. The addition of the conditioned medium from the adipocyte culture significantly decreased the protein levels of CD31, while the addition of EPA-E partially reversed this inhibition. Further, EndMT inhibition by EPA-E treatment might occur via the inhibition of the protein kinase Cβ (PKCβ)/transforming growth factor-β (TGF-β)/plasminogen activator inhibitor-1 (PAI-1) signaling and not via microRNAs. Streptozotocin-induced diabetic mice fed a high-fat diet (60% from fat) exhibited mesangial expansion and albuminuria. Induction of EPA-E ameliorated the mesangial expansion and decreased albuminuria without affecting blood pressure, triglyceride and free fatty acid levels, and intraperitoneal glucose. These findings suggest that EPA-E exerts renal protective effects on endothelial cells, by normalizing EndMT followed by the PKCβ/TGF-β/PAI-1 signaling. Thus, EPA-E has the potential for imparting renal protection by regulating EndMT in DKD.
Collapse
Affiliation(s)
- Toshinori Yasuzawa
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan
| | - Tomomi Nakamura
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Shigeru Ueshima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
24
|
Aihemaiti A, Yamamoto N, Piao J, Oyaizu T, Ochi H, Sato S, Okawa A, Miyata T, Tsuji K, Ezura Y, Asou Y. A novel PAI-1 inhibitor prevents ageing-related muscle fiber atrophy. Biochem Biophys Res Commun 2020; 534:849-856. [PMID: 33213843 DOI: 10.1016/j.bbrc.2020.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Sarcopenia is among the most common medical problems of the aging population worldwide and a major social concern. Here, we explored the therapeutic potential of TM5484, a novel orally available PAI-1 inhibitor, to prevent sarcopenia. The sarcopenic phenotypes of the calf muscle of 12- and 6-month-old middle-aged mice were compared. Although significant decline of isometric gastrocnemius muscle force was detected in the older untreated mice, those administered TM5484 had significantly greater calf muscle force, as determined using isometric measurements by electrical stimulation. Histological analysis indicated that cross-sectional gastrocnemius muscle fibers in untreated older mice were thinner than those in younger mice; however, TM5484-treated group showed thicker fibers than younger mice. Treatment with TM5484 for 6 months enhanced Igf1, Atrogin-1, Mt-Co1, and Chrna1 mRNA expression in the mice gastrocnemius muscle, with increased serum IGF-1 concentration. TM5484 induced dose-dependent Igf1, Atrogin-1, and Chrna1 expression in C2C12 myoblastic cells, confirming cell autonomous effect. Further, the presence of plasmin for 72 h caused significantly increased Igf1 expression in C2C12 cells. These findings suggest that oral PAI-1 inhibitors represent a promising therapeutic candidate for preventing sarcopenia progression in humans.
Collapse
Affiliation(s)
- Aidehamu Aihemaiti
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Naoki Yamamoto
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Jinying Piao
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Takuya Oyaizu
- Hyperbaric Medical Center, Tokyo Medical and Dental University, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Japan
| | - Shingo Sato
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Atsushi Okawa
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Japan
| | - Yoichi Ezura
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Yoshinori Asou
- Department of Nano-Bioscience, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
25
|
Dastgheib SA, Najafi F, Shajari A, Bahrami R, Asadian F, Sadeghizadeh-Yazdi J, Akbarian E, Emarati SA, Neamatzadeh H. Association of plasminogen activator inhibitor-1 4G5G Polymorphism with risk of diabetic nephropathy and retinopathy: a systematic review and meta-analysis. J Diabetes Metab Disord 2020; 19:2005-2016. [PMID: 33520873 DOI: 10.1007/s40200-020-00675-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
Background The 4G5G polymorphism of Plasminogen activator inhibitor-1 (PAI-1) gene is reported to be associated with diabetes nephropathy and retinopathy (DNR) risk. However, the findings are conflicting. Herein, we conducted a case-control and meta-analysis study to explore the association of PAI-1 4G5G polymorphism with risk of DNR. Methods We retrieved PubMed, EMBASE, Web of Knowledge, and CNKI databases and screened eligible studies up to August 15, 2020. The strength of associations was assessed by odd ratio (OR) and the corresponding 95% confidence interval (95% CI). Results A total of 27 case-control studies including 16 studies with 1,825 cases case and 1,731 controls on DN and eleven studies with 1,397 cases and 1,545 controls on DR were selected. Pooled data showed that the PAI-1 4G5G polymorphism was significantly associated with DN (allele model: OR = 0.674, 95% CI 0.524-0.865, p = 0.002; homozygote model: OR = 0.536, 95% CI 0.351-0.817, p = 0.004; heterozygote model: OR = 0.621, 95% CI 0.427-0.903, p = 0.013; dominant model: OR = 0.575, 95% CI 0.399-0.831, p = 0.003; and recessive model: OR = 0.711, 95% CI 0.515-0.981, p = 0.038) and DR (homozygote model: OR = 0.770, 95% CI 0.621-0.955, p = 0.0.017) risk. Stratified analyses by ethnicity indicated that PAI-1 4G5G polymorphism was associated with DN and DR risk in Asians and Caucasians, respectively. Conclusions The present meta-analysis revealed that the PAI-1 4G5G polymorphism was associated with increased risk of DN and DR risk. However, well-designed large-scale clinical studies are required to further validate our results.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Najafi
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Shajari
- Department of Pediatrics, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalal Sadeghizadeh-Yazdi
- Department of Food Science and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Akbarian
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Emarati
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
26
|
Rampersaud AM, Dunk CE, Lye SJ, Renaud SJ. Palmitic acid induces inflammation in placental trophoblasts and impairs their migration toward smooth muscle cells through plasminogen activator inhibitor-1. Mol Hum Reprod 2020; 26:850-865. [PMID: 32898274 DOI: 10.1093/molehr/gaaa061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
A critical component of early human placental development includes migration of extravillous trophoblasts (EVTs) into the decidua. EVTs migrate toward and displace vascular smooth muscle cells (SMCs) surrounding several uterine structures, including spiral arteries. Shallow trophoblast invasion features in several pregnancy complications including preeclampsia. Maternal obesity is a risk factor for placental dysfunction, suggesting that factors within an obese environment may impair early placental development. Herein, we tested the hypothesis that palmitic acid, a saturated fatty acid circulating at high levels in obese women, induces an inflammatory response in EVTs that hinders their capacity to migrate toward SMCs. We found that SMCs and SMC-conditioned media stimulated migration and invasion of an EVT-like cell line, HTR8/SVneo. Palmitic acid impaired EVT migration and invasion toward SMCs, and induced expression of several vasoactive and inflammatory mediators in EVTs, including endothelin, interleukin (IL)-6, IL-8 and PAI1. PAI1 was increased in plasma of women with early-onset preeclampsia, and PAI1-deficient EVTs were protected from the anti-migratory effects of palmitic acid. Using first trimester placental explants, palmitic acid exposure decreased EVT invasion through Matrigel. Our findings reveal that palmitic acid induces an inflammatory response in EVTs and attenuates their migration through a mechanism involving PAI1. High levels of palmitic acid in pathophysiological situations like obesity may impair early placental development and predispose to placental dysfunction.
Collapse
Affiliation(s)
- Amanda M Rampersaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
27
|
Postoperative peritoneal adhesion: an update on physiopathology and novel traditional herbal and modern medical therapeutics. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:317-336. [PMID: 32979062 DOI: 10.1007/s00210-020-01961-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a serious clinical condition that affects the high percentage of patients after abdominal surgery. In this review, we have tried to focus on pathophysiology and different underlying signal pathways of adhesion formation based on recent progress in the molecular and cellular mechanisms. Also, the strategies, developed based on traditional herbal and modern medicines, to prevent and treat the PPA via regulation of the molecular mechanisms were investigated. The search engines such as Google Scholar, PubMed, Scopus, and Science Direct have been used to evaluate the current literature related to the pathogenesis of adhesion formation and novel products. Recently, different mechanisms have been defined for adhesion formation, mainly categorized in fibrin formation and adhesion fibroblast function, inflammation, and angiogenesis. Therefore, the suppression of these mechanisms via traditional and modern medicine has been suggested in several studies. While different strategies with encouraging findings have been developed, most of the studies showed contradictory results and were performed on animals. The herbal products have been introduced as safe and effective agent which can be considered in future preclinical and clinical studies. Although a wide range of therapeutics based on traditional and modern medicines have been suggested, there is no agreement in the efficacy of these methods to prevent or treat adhesion formation after surgeries. Further basic and clinical researches are still needed to propose the efficiency of recommended strategies for prevention and treatment of PPA.
Collapse
|
28
|
Jin S, Li J, Barati M, Rane S, Lin Q, Tan Y, Zheng Z, Cai L, Rane MJ. Loss of NF-E2 expression contributes to the induction of profibrotic signaling in diabetic kidneys. Life Sci 2020; 254:117783. [PMID: 32413404 DOI: 10.1016/j.lfs.2020.117783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023]
|
29
|
Hosaka S, Yamada T, Takahashi K, Dan T, Kaneko K, Kodama S, Asai Y, Munakata Y, Endo A, Sugawara H, Kawana Y, Yamamoto J, Izumi T, Sawada S, Imai J, Miyata T, Katagiri H. Inhibition of Plasminogen Activator Inhibitor-1 Activation Suppresses High Fat Diet-Induced Weight Gain via Alleviation of Hypothalamic Leptin Resistance. Front Pharmacol 2020; 11:943. [PMID: 32670063 PMCID: PMC7327106 DOI: 10.3389/fphar.2020.00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Leptin resistance is an important mechanism underlying the development and maintenance of obesity and is thus regarded as a promising target of obesity treatment. Plasminogen activator inhibitor 1 (PAI-1), a physiological inhibitor of tissue-type and urokinase-type plasminogen activators, is produced at high levels in adipose tissue, especially in states of obesity, and is considered to primarily be involved in thrombosis. PAI-1 may also have roles in inter-organ tissue communications regulating body weight, because PAI-1 knockout mice reportedly exhibit resistance to high fat diet (HFD)-induced obesity. However, the role of PAI-1 in body weight regulation and the underlying mechanisms have not been fully elucidated. We herein studied how PAI-1 affects systemic energy metabolism. We examined body weight and food intake of PAI-1 knockout mice fed normal chow or HFD. We also examined the effects of pharmacological inhibition of PAI-1 activity by a small molecular weight compound, TM5441, on body weight, leptin sensitivities, and expressions of thermogenesis-related genes in brown adipose tissue (BAT) of HFD-fed wild type (WT) mice. Neither body weight gain nor food intake was reduced in PAI-1 KO mice under chow fed conditions. On the other hand, under HFD feeding conditions, food intake was decreased in PAI-1 KO as compared with WT mice (HFD-WT mice 3.98 ± 0.08 g/day vs HFD-KO mice 3.73 ± 0.07 g/day, P = 0.021), leading to an eventual significant suppression of weight gain (HFD-WT mice 40.3 ± 1.68 g vs HFD-KO mice 34.6 ± 1.84 g, P = 0.039). Additionally, TM5441 treatment of WT mice pre-fed the HFD resulted in a marked suppression of body weight gain in a PAI-1-dependent manner (HFD-WT-Control mice 37.6 ± 1.07 g vs HFD-WT-TM5441 mice 33.8 ± 0.97 g, P = 0.017). TM5441 treatment alleviated HFD-induced systemic and hypothalamic leptin resistance, before suppression of weight gain was evident. Moreover, improved leptin sensitivity in response to TM5441 treatment was accompanied by increased expressions of thermogenesis-related genes such as uncoupling protein 1 in BAT (HFD-WT-Control mice 1.00 ± 0.07 vs HFD-WT-TM5441 mice 1.32 ± 0.05, P = 0.002). These results suggest that PAI-1 plays a causative role in body weight gain under HFD-fed conditions by inducing hypothalamic leptin resistance. Furthermore, they indicate that pharmacological inhibition of PAI-1 activity is a potential strategy for alleviating diet-induced leptin resistance in obese subjects.
Collapse
Affiliation(s)
- Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Dan
- Department of Molecular Medicine and Therapy, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Khoukaz HB, Ji Y, Braet DJ, Vadali M, Abdelhamid AA, Emal CD, Lawrence DA, Fay WP. Drug Targeting of Plasminogen Activator Inhibitor-1 Inhibits Metabolic Dysfunction and Atherosclerosis in a Murine Model of Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2020; 40:1479-1490. [PMID: 32268785 PMCID: PMC7255962 DOI: 10.1161/atvbaha.119.313775] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Enhanced expression of PAI-1 (plasminogen activator inhibitor-1) has been implicated in atherosclerosis formation in humans with obesity and metabolic syndrome. However, little is known about the effects of pharmacological targeting of PAI-1 on atherogenesis. This study examined the effects of pharmacological PAI-1 inhibition on atherosclerosis formation in a murine model of obesity and metabolic syndrome. Approach and Results: LDL receptor-deficient (ldlr-/-) mice were fed a Western diet high in cholesterol, fat, and sucrose to induce obesity, metabolic dysfunction, and atherosclerosis. Western diet triggered significant upregulation of PAI-1 expression compared with normal diet controls. Addition of a pharmacological PAI-1 inhibitor (either PAI-039 or MDI-2268) to Western diet significantly inhibited obesity and atherosclerosis formation for up to 24 weeks without attenuating food consumption. Pharmacological PAI-1 inhibition significantly decreased macrophage accumulation and cell senescence in atherosclerotic plaques. Recombinant PAI-1 stimulated smooth muscle cell senescence, whereas a PAI-1 mutant defective in LRP1 (LDL receptor-related protein 1) binding did not. The prosenescent effect of PAI-1 was blocked by PAI-039 and R2629, a specific anti-LRP1 antibody. PAI-039 significantly decreased visceral adipose tissue inflammation, hyperglycemia, and hepatic triglyceride content without altering plasma lipid profiles. CONCLUSIONS Pharmacological targeting of PAI-1 inhibits atherosclerosis in mice with obesity and metabolic syndrome, while inhibiting macrophage accumulation and cell senescence in atherosclerotic plaques, as well as obesity-associated metabolic dysfunction. PAI-1 induces senescence of smooth muscle cells in an LRP1-dependent manner. These results help to define the role of PAI-1 in atherosclerosis formation and suggest a new plasma-lipid-independent strategy for inhibiting atherogenesis.
Collapse
Affiliation(s)
- Hekmat B Khoukaz
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Yan Ji
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Drew J Braet
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Manisha Vadali
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Ahmed A Abdelhamid
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti (C.D.E.)
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - William P Fay
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
- Department of Medical Pharmacology & Physiology (W.P.F.), University of Missouri School of Medicine
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (W.P.F.)
| |
Collapse
|
31
|
Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, de Cabo R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020; 59:101037. [PMID: 32109604 DOI: 10.1016/j.arr.2020.101037] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. The development of pharmacological interventions aimed at delaying or preventing the onset of chronic conditions and other age-related diseases has been at the forefront of the aging field. Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity on reaching the desired health- and lifespan-promoting pharmacological responses in model organisms. Translating the safety and efficacy of these interventions to humans and the lack of reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will survey current pharmacological interventions that promote lifespan extension and/or increased healthspan in animals and humans, and review the various anti-aging interventions selected for inclusion in the NIA's Interventions Testing Program as well as the ClinicalTrials.gov database that target aging or age-related diseases in humans.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Cardiovascular and Metabolic Diseases Group, Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - David Hauser
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, IMDEA Food, CEI, UAM/CSIC, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| |
Collapse
|
32
|
Chu SG, Villalba JA, Liang X, Xiong K, Tsoyi K, Ith B, Ayaub EA, Tatituri RV, Byers DE, Hsu FF, El-Chemaly S, Kim EY, Shi Y, Rosas IO. Palmitic Acid-Rich High-Fat Diet Exacerbates Experimental Pulmonary Fibrosis by Modulating Endoplasmic Reticulum Stress. Am J Respir Cell Mol Biol 2019; 61:737-746. [PMID: 31461627 PMCID: PMC6890409 DOI: 10.1165/rcmb.2018-0324oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/24/2019] [Indexed: 12/11/2022] Open
Abstract
The impact of lipotoxicity on the development of lung fibrosis is unclear. Saturated fatty acids, such as palmitic acid (PA), activate endoplasmic reticulum (ER) stress, a cellular stress response associated with the development of idiopathic pulmonary fibrosis (IPF). We tested the hypothesis that PA increases susceptibility to lung epithelial cell death and experimental fibrosis by modulating ER stress. Total liquid chromatography and mass spectrometry were used to measure fatty acid content in IPF lungs. Wild-type mice were fed a high-fat diet (HFD) rich in PA or a standard diet and subjected to bleomycin-induced lung injury. Lung fibrosis was determined by hydroxyproline content. Mouse lung epithelial cells were treated with PA. ER stress and cell death were assessed by Western blotting, TUNEL staining, and cell viability assays. IPF lungs had a higher level of PA compared with controls. Bleomycin-exposed mice fed an HFD had significantly increased pulmonary fibrosis associated with increased cell death and ER stress compared with those fed a standard diet. PA increased apoptosis and activation of the unfolded protein response in lung epithelial cells. This was attenuated by genetic deletion and chemical inhibition of CD36, a fatty acid transporter. In conclusion, consumption of an HFD rich in saturated fat increases susceptibility to lung fibrosis and ER stress, and PA mediates lung epithelial cell death and ER stress via CD36. These findings demonstrate that lipotoxicity may have a significant impact on the development of lung injury and fibrosis by enhancing pro-death ER stress pathways.
Collapse
Affiliation(s)
- Sarah G. Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Julian A. Villalba
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
- Department of Pathology, Massachusetts General Hospital, and
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Bonna Ith
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Ehab A. Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Raju V. Tatituri
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Edy Y. Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
- Department of Pathology, Massachusetts General Hospital, and
| | - Yuanyuan Shi
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| |
Collapse
|
33
|
Sun T, Ghosh AK, Eren M, Miyata T, Vaughan DE. PAI-1 contributes to homocysteine-induced cellular senescence. Cell Signal 2019; 64:109394. [PMID: 31472244 DOI: 10.1016/j.cellsig.2019.109394] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Cellular Senescence is associated with organismal aging and related pathologies. Previously, we reported that plasminogen activator inhibitor-1 (PAI-1) is an essential mediator of senescence and a potential therapeutic target for preventing aging-related pathologies. In this study, we investigate the efficacies of PAI-1 inhibitors in both in vitro and in vivo models of homocysteine (Hcy)-induced cardiovascular aging. Elevated Hcy, a known risk factor of cardiovascular diseases, induces endothelial senescence as evidenced by increased senescence-associated β-Gal positivity (SA-β-Gal), flattened cellular morphology, and cylindrical appearance of cellular nuclei. Importantly, inhibition of PAI-1 by small molecule inhibitors reduces the number of SA-β-Gal positive cells, normalizes cellular morphology and nuclear shape. Furthermore, while Hcy induces the levels of senescence regulators PAI-1, p16, p53 and integrin β3, and suppresses catalase expression, treatment with PAI-1 inhibitors blocks the Hcy-induced stimulation of senescence cadres, and reverses the Hcy-induced suppression of catalase, indicating that PAI-1 specific small molecule inhibitors are efficient to prevent Hcy-induced cellular senescence. Our in vivo study shows that the levels of integrin β3, a recently identified potential regulator of cellular senescence, and its interaction with PAI-1 are significantly elevated in Hcy-treated heart tissues. In contrast, Hcy suppresses antioxidant gene regulator Nrf2 expression in hearts. However, co-treatment with PAI-1 inhibitor completely blocks the stimulation of Hcy-induced induction of integrin β3 and reverses Nrf2 expression. Collectively these in vitro and in vivo studies indicate that pharmacological inhibition of PAI-1 improves endothelial and cardiac health by suppressing the pro-senescence effects of hyperhomocysteinemia through suppression of Hcy-induced master regulators of cellular senescence PAI-1 and integrin β3. Therefore, PAI-1 inhibitors are promising drugs for amelioration of hyperhomocysteinemia-induced vascular aging and aging-related disease.
Collapse
Affiliation(s)
- Tianjiao Sun
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Mesut Eren
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Toshio Miyata
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; United Centers for Advanced Research and Translational Medicine, Tohoku University, Miyagi, Japan
| | - Douglas E Vaughan
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
34
|
Liu Y, Wang L, Luo M, Chen N, Deng X, He J, Zhang L, Luo P, Wu J. Inhibition of PAI-1 attenuates perirenal fat inflammation and the associated nephropathy in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab 2019; 316:E260-E267. [PMID: 30532990 DOI: 10.1152/ajpendo.00387.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is increasingly recognized as a mediator in extracellular matrix (ECM) accumulation in diabetic nephropathy. Previous studies have implicated PAI-1 in adipose tissue (AT) expansion, while also contributing to insulin resistance. As inflammation is also known to occur in perirenal AT during obesity, we hypothesized that in a high-fat diet (HFD)-induced obese mouse model, PAI-1 contributes to macrophage-mediated inflammation and diabetic nephropathy. The HFD mice showed increased expression of PAI-1 in perirenal fat and also displayed increased fat weight and macrophage numbers. We found that the macrophage polarization, proinflammatory macrophage-M1-phenotype, including CD11c, IL-6, and monocyte chemoattractant protein-1, were increased by an HFD and decreased by either the genetic depletion of PAI-1 or treatment with the PAI-1 inhibitor, PAI-039. Similarly, an enhanced anti-inflammatory M2-phenotype, including CD206 and IL-10, was accompanied by either the genetic deletion of PAI-1 or PAI-039 treatment. Furthermore, the inhibition of PAI-1 reduced HFD-induced renal histological lesions and abated profibrotic/extracellular-matrix protein. Collectively, our findings provide support that PAI-1 contributes to the development of inflammation in perirenal fat and correlates with the development of diabetic nephropathy in HFD-induced obesity.
Collapse
Affiliation(s)
- Yong Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Lin Wang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Mao Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Ni Chen
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Jing He
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Liping Zhang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
| | - Jianbo Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Laboratory for Cardiovascular Pharmacology of the Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan , People's Republic of China
- Department of Medicine and Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine and Research Service , Columbia, Missouri
- Harry S. Truman Memorial Veterans Hospital , Columbia, Missouri
| |
Collapse
|
35
|
Angelucci F, Čechová K, Průša R, Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 2018; 25:303-313. [PMID: 30403004 PMCID: PMC6488905 DOI: 10.1111/cns.13082] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Soluble oligomeric forms of amyloid beta (Aβ) play an important role in causing the cognitive deficits in Alzheimer’s disease (AD) by targeting and disrupting synaptic pathways. Thus, the present research is directed toward identifying the neuronal pathways targeted by soluble forms and, accordingly, develops alternative therapeutic strategies. The neurotrophin brain‐derived neurotrophic factor (BDNF) is synthesized as a precursor (pro‐BDNF) which is cleaved extracellularly by plasmin to release the mature form. The conversion from pro‐BDNF to BDNF is an important process that regulates neuronal activity and memory processes. Plasmin‐dependent maturation of BDNF in the brain is regulated by plasminogen activator inhibitor‐1 (PAI‐1), the natural inhibitor of tissue‐type plasminogen activator (tPA). Therefore, tPA/PAI‐1 system represents an important regulator of extracellular BDNF/pro‐BDNF ratio. In this review, we summarize the data on the components of the plasminogen activation system and on BDNF in AD. Moreover, we will hypothesize a possible pathogenic mechanism caused by soluble Aβ forms based on the effects on tPA/PAI‐1 system and on the consequence of an altered conversion from pro‐BDNF to the mature BDNF in the brain of AD patients. Translation into clinic may include a better characterization of the disease stage and future direction on therapeutic targets.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Čechová
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Richard Průša
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
36
|
Jin G, Aobulikasimu A, Piao J, Aibibula Z, Koga D, Sato S, Ochi H, Tsuji K, Nakabayashi T, Miyata T, Okawa A, Asou Y. A small-molecule PAI-1 inhibitor prevents bone loss by stimulating bone formation in a murine estrogen deficiency-induced osteoporosis model. FEBS Open Bio 2018; 8:523-532. [PMID: 29632806 PMCID: PMC5881535 DOI: 10.1002/2211-5463.12390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a progressive bone disease caused by an imbalance between bone resorption and formation. Recently, plasminogen activator inhibitor-1 (PAI-1) was shown to play an important role in bone metabolism using PAI-1-deficient mice. In this study, we evaluated the therapeutic benefits of novel, orally available small-molecule PAI-1 inhibitor (iPAI-1) in an estrogen deficiency-induced osteoporosis model. Eight-week-old C57BL/6J female mice were divided into three groups: a sham + vehicle (Sham), ovariectomy + vehicle (OVX + v), and OVX + iPAI-1 (OVX + i) group. iPAI-1 was administered orally each day for 6 weeks starting the day after the operation. Six weeks of iPAI-1 treatment prevented OVX-induced trabecular bone loss in both the femoral bone and lumbar spine. Bone formation activity was significantly higher in the OVX + i group than in the OVX + v and Sham groups. Unexpectedly, OVX-induced osteoclastogenesis was partially, but significantly reduced. Fluorescence-activated cell sorting analyses indicated that the number of bone marrow stromal cells was higher in the OVX + i group than that in the OVX + v group. A colony-forming unit-osteoblast assay indicated enhanced mineralized nodule formation activity in bone marrow cells isolated from iPAI-1-treated animals. Bone marrow ablation analysis indicated that the remodeled trabecular bone volume was significantly higher in the iPAI-1-treated group than that in the control group. In conclusion, our results suggest PAI-1 blockade via a small-molecule inhibitor is a new therapeutic approach for the anabolic treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Guangwen Jin
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan.,Department of Orthopaedic Surgery Yanbian University Hospital Yanji City Jilin Province China
| | | | - Jinying Piao
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Zulipiya Aibibula
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Daisuke Koga
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Shingo Sato
- Department of Physiology and Cell Biology Tokyo Medical and Dental University Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology Tokyo Medical and Dental University Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration Tokyo Medical and Dental University Japan
| | - Tetsuo Nakabayashi
- Department of Molecular Medicine and Therapy United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine Miyagi Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine Miyagi Japan
| | - Atsushi Okawa
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Yoshinori Asou
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| |
Collapse
|
37
|
Fang WF, Chen YM, Lin CY, Huang HL, Yeh H, Chang YT, Huang KT, Lin MC. Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression. JOURNAL OF INFLAMMATION-LONDON 2018; 15:3. [PMID: 29344006 PMCID: PMC5763578 DOI: 10.1186/s12950-018-0179-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection, and is primarily characterized by an uncontrolled systemic inflammatory response. In the present study, we developed an effective adjunct therapy mediated by a novel mechanism, to attenuate overt inflammation. LPS-treated macrophages were adopted as an in vitro model of endotoxin-induced inflammation during sepsis. Experiments were carried out using primary mouse peritoneal macrophages and the murine macrophage cell line RAW264.7, to elucidate the mechanisms by which HDAC2 modulates endotoxin-induced inflammation. Results Results revealed that PAI-1, TNF, and MIP-2 expression were inhibited by theophylline, an HDAC2 enhancer, in a RAW macrophage cell line, following LPS-induced inflammation. Thus, HDAC2 plays an important role in immune defense by regulating the expression of inflammatory genes via the c-Jun/PAI-1 pathway. During LPS-induced inflammation, overexpression of HDAC2 was found to inhibit PAI-1, TNF, and MIP-2 expression. Following LPS stimulation, HDAC2 knockdown increased nuclear translocation and DNA binding of c-Jun to the PAI-1 gene promoter, thereby activating PAI-1 gene transcription. Furthermore, inhibition of PAI-1 by TM5275 alone or in combination with theophylline notably suppressed TNF and MIP-2 expression. Conclusion HDAC2 can attenuate lipopolysaccharide-induced inflammation by regulating c-Jun and PAI-1 expression in macrophages.
Collapse
Affiliation(s)
- Wen-Feng Fang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan.,2Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung Dist, Kaohsiung, 833 Taiwan.,3Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, 813 Taiwan
| | - Yu-Mu Chen
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Chiung-Yu Lin
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Hui-Lin Huang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Hua Yeh
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Ya-Ting Chang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Kuo-Tung Huang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Meng-Chih Lin
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan.,2Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung Dist, Kaohsiung, 833 Taiwan
| |
Collapse
|
38
|
Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, Samarakoon R, Conti DJ, Higgins PJ. TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal 2017; 43:1-10. [PMID: 29191563 DOI: 10.1016/j.cellsig.2017.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 01/04/2023]
Abstract
Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, constitutes an increasing medical burden affecting >15% of the US population. Regardless of etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading to impaired kidney function and, eventually, to chronic and end-stage disease. TGF-β1 activates the ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes required for transcription of the renal fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from acute to chronic renal injury, further supporting the involvement of p53 in disease progression. This review focuses on the pathophysiology of TGF-β1-initiated renal fibrogenesis and the role of p53 as a regulator of profibrotic gene expression.
Collapse
Affiliation(s)
- Stephen P Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Craig E Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Badar Mian
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Ralf-Peter Czekay
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States.
| | - David J Conti
- Department of Surgery, Albany Medical College, Albany, NY 12208, United States; Division of Transplantation Surgery, Albany Medical College, Albany, NY 12208, United States.
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States; Department of Surgery, Albany Medical College, Albany, NY 12208, United States; The Urological Institute of Northeastern New York, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
39
|
McKeown-Longo PJ, Higgins PJ. Integration of Canonical and Noncanonical Pathways in TLR4 Signaling: Complex Regulation of the Wound Repair Program. Adv Wound Care (New Rochelle) 2017; 6:320-329. [PMID: 29062589 DOI: 10.1089/wound.2017.0736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Significance: Chronic inflammation and maladaptive repair contribute to the development of fibrosis that negatively impacts quality of life and organ function. The toll-like receptor (TLR) system is a critical node in the tissue response to both exogenous (pathogen-associated) and endogenous (damage-associated) molecular pattern factors (PAMPs and DAMPs, respectively). The development of novel TLR ligand-, pathway-, and/or target gene-specific therapeutics may have clinical utility in the management of the exuberant inflammatory/fibrotic tissue response to injury without compromising the host defense to pathogens. Recent Advances: DAMP ligands, released upon wounding, and microbial-derived PAMPs interact with several TLRs, and their various coreceptor partners, engaging downstream pathways that include Src family kinases, the epidermal growth factor receptor, integrins and the tumor suppressor phosphatase and tensin homolog (PTEN). Toll-like receptor 4 (TLR4) activation enhances cellular responses to the potent profibrotic cytokine transforming growth factor-β1 (TGF-β1) by attenuating the expression of receptors that inhibit TGF-β1 signaling. Critical Issues: Common as well as unique pathways may be activated by PAMP and DAMP ligands that bind to the repertoire of TLRs on various cell types. Dissecting mechanisms underlying ligand-dependent engagement of this complex, highly interactive, network will provide for adaptation of new and focused therapies directed to the regulation of pathologically significant profibrotic genes. Inherent in this diversity are therapeutic opportunities to modulate the pathophysiologic consequences of persistent TLR signaling. The recently identified involvement of receptor and nonreceptor kinase pathways in TLR signaling may present novel opportunities for pharmacologic intervention. Future Directions: Clarifying the identity and function of DAMP-activated TLR complexes or ligand-binding partners, as well as their engaged downstream effectors and target genes, are key factors in the eventual design of pathway-specific treatment modalities. Such approaches may be tailored to address the spectrum of TLR-initiated pathologies (including localized and persistent inflammation, maladaptive repair/fibrosis) and, perhaps, even titrated to achieve patient-unique beneficial clinical outcomes.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| |
Collapse
|
40
|
Lee SM, Dorotea D, Jung I, Nakabayashi T, Miyata T, Ha H. TM5441, a plasminogen activator inhibitor-1 inhibitor, protects against high fat diet-induced non-alcoholic fatty liver disease. Oncotarget 2017; 8:89746-89760. [PMID: 29163785 PMCID: PMC5685706 DOI: 10.18632/oncotarget.21120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022] Open
Abstract
Recent evidences showed that elevation of plasminogen activator inhibitor 1 (PAI-1) was responsible in mediating obesity-induced non-alcoholic fatty liver disease (NAFLD) and metabolic disorders. Here, we investigated the effect of TM5441, an oral PAI-1 inhibitor that lacks of bleeding risk, on high-fat diet (HFD)-induced NAFLD. HFD-fed C57BL/6J mice was daily treated with 20 mg/kg TM5441. To examine the preventive effect, 10-week-treatment was started along with initiation of HFD; alternatively, 4-week-treatment was started in mice with glucose intolerance in the interventional strategy. In vivo study showed that early and delayed treatment decreased hepatic steatosis. Particularly, early treatment prevented the progression of hepatic inflammation and fibrosis in HFD mice. Interestingly, both strategies abrogated hepatic insulin resistance and mitochondrial dysfunction, presented by enhanced p-Akt and p-GSK3β, reduced p-JNK signaling, along with p-AMPK and PGC-1α activation. Consistently, TM5441 treatment in the presence of either PAI-1 exposure or TNF-α stimulated-PAI-1 activity showed a restoration of mitochondrial biogenesis related genes expression on HepG2 cells. Thus, improvement of insulin sensitivity and mitochondrial function was imperative to partially explain the therapeutic effects of TM5441, a novel agent targeting HFD-induced NAFLD.
Collapse
Affiliation(s)
- Seon Myeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Inji Jung
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Tetsuo Nakabayashi
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Gregório PC, Favretto G, Sassaki GL, Cunha RS, Becker-Finco A, Pecoits-Filho R, Souza WM, Barreto FC, Stinghen AEM. Sevelamer reduces endothelial inflammatory response to advanced glycation end products. Clin Kidney J 2017; 11:89-98. [PMID: 29423208 PMCID: PMC5798142 DOI: 10.1093/ckj/sfx074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Background Advanced glycation end products (AGEs) have been related to the pathogenesis of cardiovascular diseases (CVD), chronic kidney disease (CKD) and diabetes mellitus. We sought to investigate the binding capacity of sevelamer to both AGEs and uremic serum in vitro and then test this pharmaceutical effect as a potential vascular anti-inflammatory strategy. Methods AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. Human endothelial cells were incubated in culture media containing AGEs and uremic serum with or without sevelamer. Receptor for advanced glycation end product (RAGE) expression was evaluated through immunocytochemistry and western blot to explore the interactions between AGEs and the endothelium. Inflammatory and endothelial dysfunction biomarkers, such as interleukin 6 (IL-6) and IL-8, monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and serum amyloid A (SAA) were also measured in cell supernatant. The chemotactic property of the supernatant was evaluated. Results AGEs significantly induced the expression of RAGE, inflammatory and endothelial activation biomarkers [IL-6, (P < 0.005); IL-8, MCP-1, PAI-1 and SAA (P < 0.001)] and monocyte chemotaxis as compared with controls. In addition, AGEs increased the levels of inflammatory biomarkers, which were observed after 6 h of endothelial cell incubation with uremic serum [IL-6 (P < 0.001) IL-8, MCP-1 and PAI-1 (P < 0.05)]. On the other hand, after 6 h of endothelial cell treatment with sevelamer, RAGE expression (P < 0.05) and levels of inflammatory biomarkers [IL-6 and IL-8 (P < 0.001), MCP-1 (P < 0.01), PAI-1 and SAA (P < 0.005)] significantly decreased compared with the AGEs/uremic serum treatment alone. Conclusions Sevelamer decreased both endothelial expression of RAGE and endothelial dysfunction biomarkers, induced by AGEs, and uremic serum. Further studies are necessary for a better understanding of the potential protective role of sevelamer on uremic serum and AGEs-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Paulo C Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Giane Favretto
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Guilherme L Sassaki
- Biochemistry Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Regiane S Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Alessandra Becker-Finco
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Wesley M Souza
- Pharmacy Departament, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fellype C Barreto
- Department of Internal Medicine, Division of Nephrology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Andréa E M Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
42
|
Coutinho JVS, Freitas-Lima LC, Freitas FFCT, Freitas FPS, Podratz PL, Magnago RPL, Porto ML, Meyrelles SS, Vasquez EC, Brandão PAA, Carneiro MTWD, Paiva-Melo FD, Miranda-Alves L, Silva IV, Gava AL, Graceli JB. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats. Toxicol Lett 2016; 260:52-69. [PMID: 27521499 DOI: 10.1016/j.toxlet.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/09/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
Abstract
Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis.
Collapse
Affiliation(s)
- João V S Coutinho
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | | | - Flávia P S Freitas
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | | | | | - Marcella L Porto
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | - Silvana S Meyrelles
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | - Elisardo C Vasquez
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | | | | | - Francisca D Paiva-Melo
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ian V Silva
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | - Agata L Gava
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil.
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
43
|
Gu C, Zhang J, Noble NA, Peng XR, Huang Y. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease. Am J Physiol Renal Physiol 2016; 311:F852-F863. [PMID: 27511457 DOI: 10.1152/ajprenal.00564.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/05/2016] [Indexed: 02/03/2023] Open
Abstract
While angiotensin II blockade slows the progression of diabetic nephropathy, current data suggest that it alone cannot stop the disease process. New therapies or drug combinations will be required to further slow or halt disease progression. Inhibition of plasminogen activator inhibitor type 1 (PAI-1) aimed at enhancing ECM degradation has shown therapeutic potential in diabetic nephropathy. Here, using a mouse model of type diabetes, the maximally therapeutic dose of the PAI-1-neutralizing mouse monoclonal antibody (MEDI-579) was determined and compared with the maximally effective dose of enalapril. We then examined whether addition of MEDI-579 to enalapril would enhance the efficacy in slowing the progression of diabetic nephropathy. Untreated uninephrectomized diabetic db/db mice developed progressive albuminuria and glomerulosclerosis associated with increased expression of transforming growth factor (TGF)-β1, PAI-1, type IV collagen, and fibronectin from weeks 18 to 22, which were reduced by MEDI-579 at 3 mg/kg body wt, similar to enalapril given alone from weeks 12 to 22 Adding MEDI-579 to enalapril from weeks 18 to 22 resulted in further reduction in albuminuria and markers of renal fibrosis. Renal plasmin generation was dramatically reduced by 57% in diabetic mice, a decrease that was partially reversed by MEDI-579 or enalapril given alone but was further restored by these two treatments given in combination. Our results suggest that MEDI-579 is effective in slowing the progression of diabetic nephropathy in db/db mice and that the effect is additive to ACEI. While enalapril is renal protective, the add-on PAI-1 antibody may offer additional renoprotection in progressive diabetic nephropathy via enhancing ECM turnover.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Pathology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China.,Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Jiandong Zhang
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Nancy A Noble
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Xiao-Rong Peng
- Bioscience, AstraZeneca R&D, Pepparredsleden 1, Molndal SE-43183, Sweden
| | - Yufeng Huang
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|