1
|
Zhang Q, Jiao J, Wang X, Zhang L. The role of fibroblast in chronic rhinosinusitis with nasal polyps: a key player in the inflammatory process. Expert Rev Clin Immunol 2024:1-11. [PMID: 39378160 DOI: 10.1080/1744666x.2024.2414774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Fibroblasts are the primary supporting cells in connective tissue and have long been thought to contribute to chronic rhinosinusitis with nasal polyps (CRSwNP) by producing extracellular matrix (ECM), leading to fibrosis and tissue remodeling. However, recent studies have highlighted the critical role of nasal polyp-derived fibroblasts (NPDFs) in triggering and intensifying the inflammatory response in CRSwNP. AREAS COVERED This review undertook a comprehensive literature search across the PubMed database, Web of Science since 2000, offering an in-depth summary of the pivotal role of NPDFs in tissue remodeling and inflammatory responses in CRSwNP. Additionally, single-cell RNA sequencing data provides a deeper exploration of the heterogeneity and functional mechanisms of fibroblasts in CRSwNP. Consequently, these insights point to fibroblasts as promising therapeutic targets for effectively treating CRSwNP. EXPERT OPINION Current data underscore the essential role of fibroblasts in the pathogenesis of CRSwNP. Fully elucidating the specific mechanisms by which fibroblasts contribute to the disease process is crucial for developing targeted therapies. Furthermore, advancements in single-cell RNA sequencing pave the way for selectively targeting and depleting pathological fibroblast subpopulations. Despite these advancements, the clinical development of fibroblast-targeted therapies in CRSwNP remains challenging.
Collapse
Affiliation(s)
- Qinqin Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Monk AS, Worden CP, Benaim EH, Klatt-Cromwell C, Thorp BD, Ebert CS, Senior BA, Kimple AJ. The Impact of Occupational Exposures on Chronic Rhinosinusitis: A Scoping Review. EXPLORATION OF ASTHMA & ALLERGY 2024; 2:301-318. [PMID: 39184021 PMCID: PMC11344210 DOI: 10.37349/eaa.2024.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 08/27/2024]
Abstract
Chronic rhinosinusitis (CRS) is a prevalent and burdensome condition worldwide, characterized by inflammation of the paranasal sinuses. Ideally, instead of treating CRS, we would identify ways to prevent the development of this chronic condition. Occupational exposures may be an excellent target for prevention. Occupational exposures have been shown to play a critical role in the pathogenesis of multiple lower airway diseases, such as asthma, silicosis, asbestosis, and hypersensitivity pneumonitis. However, evidence for the association between occupational exposures and the development of upper airway disease, like CRS, is less well-defined. This manuscript examines the association between occupational exposures and CRS. A scoping review of the literature following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines identified 19 relevant studies. The populations examined and the methods and criteria used for defining CRS diagnosis and occupational variables significantly varied between the studies. Diagnosis of CRS was most often determined by self-reported symptoms or medical record review. Occupational variables ranged from employment status to occupation type to specific exogenous compounds encountered. Overall, substantial evidence demonstrates a general association between occupational exposures and CRS diagnosis; however, limitations in study methodologies, including variations in CRS diagnostic criteria, occupational exposures, assessment methods, and populations, hinder drawing more specific conclusions. Moving forward, rigorous research methodologies and standardized criteria are essential to draw conclusions supported by multiple studies. Critical components of future studies should include large, diverse populations, use of consensus CRS diagnostic criteria, and inclusion of many specific and quantitatively defined exposures. Ultimately, such efforts can help inform preventative measures and interventions for CRS, thus mitigating the burden of CRS on individuals and populations worldwide.
Collapse
Affiliation(s)
- Aurelia S. Monk
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cameron P. Worden
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ezer H. Benaim
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cristine Klatt-Cromwell
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brian D. Thorp
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Charles S. Ebert
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brent A. Senior
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam J. Kimple
- Department of Otolaryngology and Head & Neck Surgery,
University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Choi DY, Shin N, Park S, Han DH, Park K, Park MK. Effect of diesel exhaust particles on RANK/RANKL expression in in vivo and in vitro models of middle ear inflammation. Int J Pediatr Otorhinolaryngol 2024; 179:111929. [PMID: 38555812 DOI: 10.1016/j.ijporl.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Increasing evidence suggests a link between middle ear inflammation and the development of diesel exhaust particles (DEPs). Chronic middle ear inflammation can lead to bone damage and remodeling. This study aimed to explore the impact of DEPs on the expression of interleukin (IL)-6 and RANKL under conditions of middle ear inflammation. METHODS DEPs were collected by burning fuel in a diesel engine at the Gwangju Institute of Science and Technology. Human middle ear epithelial cells were cultured to 70-80% confluence in culture plates and then treated with DEPs at concentrations of 0, 5, 10, 20, 40, and 80 μg/mL for 24 h. Cell viability was assessed manually. B6.SJL mice, aged 9 weeks, were exposed to DEPs at a concentration of 200 μg/m3 for 1 h daily over a period of 28 days. The expression levels of IL-6, tumor necrosis factor α, RANKL, and RANK were evaluated using hematoxylin and eosin staining and western blot analysis of the harvested middle ear samples. RESULTS The viability of human middle ear epithelial cells was found to decrease in a dose-dependent manner after 24 h. The mRNA expression level of IL-6 exhibited the most significant increase at the 48-h mark. In contrast, the mRNA expression levels of RANKL and RANK showed a marked increase as early as 6 h post-exposure, with both genes subsequently displaying a time-dependent decrease. Histological analysis revealed that the middle ear mucosa was thicker in the group exposed to DEPs compared to the control group. Additionally, the protein expression levels of IL-6 and RANKL were elevated in the DEP-exposed group relative to the normal control group. CONCLUSIONS We confirmed the expression of osteoclast-related proteins in the mouse middle ear. These results imply that air pollutants might affect RANKL/RANK signaling, which is associated with bone remodeling.
Collapse
Affiliation(s)
- Da Yeon Choi
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Nayeon Shin
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Sohyeon Park
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
4
|
Alenezi A, Qureshi H, Ahmed OG, Ramanathan M. Air Quality, Allergic Rhinitis, and Asthma. Otolaryngol Clin North Am 2024; 57:293-307. [PMID: 37985273 DOI: 10.1016/j.otc.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This review article highlights air pollution as a critical global health concern with emphasis on its effects and role in the development and exacerbation of upper airway and lower airway disease with a focus on allergic rhinitis and asthma. This review underscores the World Health Organization's recognition of air pollution as the biggest environmental threat to human health. It discusses the various components and categories of air pollutants and the evidence-based effects they have on asthma and allergic rhinitis, ranging from pathogenesis to exacerbation of these conditions across various age groups in different geographic locations.
Collapse
Affiliation(s)
- Abdulrahman Alenezi
- Department of Otolaryngology- Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins Outpatient Center, 6th Floor, 601 North Caroline Street, Baltimore, MD 21287-0910, USA
| | - Hannan Qureshi
- Department of Otolaryngology- Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins Outpatient Center, 6th Floor, 601 North Caroline Street, Baltimore, MD 21287-0910, USA
| | - Omar G Ahmed
- Academic Institute, Houston, TX 77030, USA; Research Institute, Otolaryngology-Head and Neck Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology- Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins Outpatient Center, 6th Floor, 601 North Caroline Street, Baltimore, MD 21287-0910, USA.
| |
Collapse
|
5
|
Zeng X, Li J, Liu J, Mo L, Liu Y, Zhang A, Yang P, Kong H. Nasal mucosal fibroblasts produce IL-4 to induce Th2 response. Innate Immun 2024; 30:55-65. [PMID: 38725177 PMCID: PMC11165659 DOI: 10.1177/17534259241254623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Th2 polarization is essential for the pathogenesis of allergic rhinitis (AR). Th2 polarization's mechanism requires further understanding. IL-4 is the primary cytokine involved in Th2 response. Fibroblasts play a role in immune regulation. This study aims to elucidate the role of nasal mucosal fibroblast-derived IL-4 in the induction of Th2 responses. Nasal mucosal tissues were obtained from surgically removed samples from patients with nasal polyps, whether with or without AR. Fibroblasts were isolated from the tissues by flow cytometry cell sorting, and analyzed by RNA sequencing (RNAseq). The data from RNAseq showed that nasal fibroblasts expressed genes of GATA3, CD80, CD83, CD86, STAT6, IL2, IL4, IL5, IL6, IL13 and costimulatory factor. The data were verified by RT-qPCR. The level of gene activity was positively correlated with those of AR-related cytokines present in nasal secretions. Nasal fibroblasts release IL-4 upon activation. Nasal fibroblasts had the ability to transform naive CD4+ T cells into Th2 cells, which can be eliminated by inhibiting IL-4 receptor or CD28 in CD4+ T cells. To sum up, nasal mucosal fibroblasts produce IL-4, which can induce Th2 cell development. The data implicate that nasal fibroblasts are involved in the pathogenesis of nasal allergy.
Collapse
Affiliation(s)
- Xianhai Zeng
- Department of Otorhinolaryngology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Juanjuan Li
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Lihua Mo
- Institute of Allergy & Immunology and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Shenzhen, China
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aizhi Zhang
- Department of Critical Care Medicine, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
- Institute of Allergy & Immunology and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Shenzhen, China
| | - Hui Kong
- Department of Otorhinolaryngology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Li RL, Wu CT, Chen SM, Lue KH, Lee SS, Tsao CY, Ku MS. Allergic rhinitis children with obesity are more vulnerable to air pollution: a cross sectional study. Sci Rep 2023; 13:3658. [PMID: 36871098 PMCID: PMC9985634 DOI: 10.1038/s41598-023-30388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The association between air pollution, allergic rhinitis (AR), and obesity has not been studied. From 2007 to 2011, 52 obese and 152 non-obese children (7-17 years old) with AR were recruited. Pediatric-Rhinoconjunctivitis-Quality-of-Life Questionnaire (PRQLQ) and nasal peak expiratory flow (NPEF) were tested. Association between the scores and rates of the two tests and mean air pollutant concentrations within 7 days before the tests were compared. When exposed to higher concentrations of CO, PM10, and PM2.5, the rates of worse nasal discomfort were 39.4%, 44.4% and 39.3% in obese children; and 18.0%, 21.9% and 19.7% in non-obese children, respectively. Compare to non-obese children, the rates in obese children were higher for CO (odds ratio (OR) 3.54, 95% confidence interval (CI) 1.15 ~ 10.92); PM10 (OR 3.26, 95% CI 1.01 ~ 10.57) and PM2.5 (OR 3.30; 95% CI 1.03 ~ 10.54). In obese children, correlations between higher concentrations of CO, PM10, PM2.5 and higher nasal discomfort (higher PRQLQ); and correlations between higher concentrations of CO, PM10, PM2.5, NMHC (non-methane hydrocarbon) and higher nasal mucosa inflammation (lower NPEF) were noted. Obesity negatively affected AR severity when AR children experienced higher concentrations of CO, PM10, and PM2.5. Increased nasal inflammation induced by air pollutants might be the underlying mechanism.
Collapse
Affiliation(s)
- Ruo-Ling Li
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Management, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ta Wu
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shan-Ming Chen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Huang Lue
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Yao Tsao
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Sho Ku
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
7
|
Chen SW, Lin HJ, Tsai SCS, Lin CL, Hsu CY, Hsieh TL, Chen CM, Chang KH. Exposure to Air Pollutants Increases the Risk of Chronic Rhinosinusitis in Taiwan Residents. TOXICS 2022; 10:toxics10040173. [PMID: 35448434 PMCID: PMC9031629 DOI: 10.3390/toxics10040173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Air pollution triggers a tissue-specific inflammatory response. However, studies on the association between exposure to air pollutants and chronic rhinosinusitis (CRS) risk remain limited. Thus, we conducted this nationwide study to define the association between air pollution and CRS. We used the Longitudinal Health Insurance Database (LHID) and Taiwan Air Quality-Monitoring Database (TAQMD) to conduct a population-based cohort study. Study participants were recruited from the LHID, a data subset of the National Health Insurance Research Database that randomly sampled one million individuals. TAQMD has been an air pollutant database since 1998. In univariate and multivariate Cox proportional hazards regression models, adjusted hazard ratios (aHRs) and 95% CIs of CRS in five air pollutants were accounted. We adjusted for age, sex, urbanization level, insurance fee, comorbidities, and pollutant levels in the multivariate model. The total number of participants enrolled in this study was 160,504. The average age was 40.46 ± 14.62 years; males constituted 43.8% of the total participants. The percentages of alcoholism, tobacco dependence, and COPD were 1.5%, 2.8%, and 28.3%, respectively. After adjustment for age, sex, urbanization level, insurance fee, and comorbidities, the highest levels of air pollutants, including PM2.5 (aHR = 1.14, 95% CI = 1.06–1.22), NO2 (aHR = 1.07, 95% CI = 1.00–1.15), and PM10 (aHR = 1.13, 95% CI = 1.05–1.21) had a significantly greater CRS risk; we selected the lower concentration as the reference but did not correlate with CO. We found a significantly increased risk of CRS in residents with air pollutant exposure.
Collapse
Affiliation(s)
- Shih-Wei Chen
- Department of Life Sciences and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (H.-J.L.); (S.C.-S.T.); (T.-L.H.)
| | - Han-Jie Lin
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (H.-J.L.); (S.C.-S.T.); (T.-L.H.)
| | - Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (H.-J.L.); (S.C.-S.T.); (T.-L.H.)
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chung Y. Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan;
| | - Tsai-Ling Hsieh
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; (H.-J.L.); (S.C.-S.T.); (T.-L.H.)
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-M.C.); (K.-H.C.); Tel.: +886-932-971-386 (K.-H.C.)
| | - Kuang-Hsi Chang
- Department of Life Sciences and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Correspondence: (C.-M.C.); (K.-H.C.); Tel.: +886-932-971-386 (K.-H.C.)
| |
Collapse
|
8
|
Li Z, Zou W, Sun J, Zhou S, Zhou Y, Cai X, Zhang J. A comprehensive gene expression profile of allergic rhinitis-derived nasal fibroblasts and the potential mechanism for its phenotype. Hum Exp Toxicol 2022; 41:9603271211069038. [PMID: 35133179 DOI: 10.1177/09603271211069038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common immunoglobulin E-mediated immune response involved various cell types, while the role of nasal fibroblasts (NFs) in the pathogenesis of AR is less understood. PURPOSE The study aimed to uncover the gene expression profile of AR-derived NFs and the potential mechanism for the changed phenotype of AR-NFs. RESEARCH DESIGN The primary NFs were isolated from 3 AR patients (AR-NFs) and 3 controls (Ctrl-NFs), and the proliferation, migration and interleukins production abilities of NFs were detected respectively. RNA-sequence was used to identify differentially expressed genes (DEGs) in AR-NFs. Transcription factor (TF) regulatory network and bioinformatic analyses were both conducted to clarify the biological roles of DEGs including the TFs. The DEG with the highest validated |fold change (FC)| value, detected by qPCR, was selected for further confirmation. RESULTS AR-NFs showed a higher proliferation and migration abilities as well as released higher levels of IL-33 and IL-6, compared to Ctrl-NFs. A total of 729 DEGs were screened out in AR-NFs. TF regulatory network indicated that BARX homeobox 1 (BARX1) and forkhead box L1 were the major node TFs. Bioinformatic analyses showed that a large number of DEGs including several target genes of BARX1 were both enriched cytokine-related GO terms, and immune- or inflammation-related pathways. BARX1 had the highest |FC| value, and silencing BARX1 in AR-NFs resulted in the significant downregulation of proliferation and migration abilities, and the production of interleukins. CONCLUSIONS Our study for the first time provided the gene expression profile of AR-derived NFs, and BARX1 could be developed as a potent target to alleviate the pathogenesis of AR.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Wentao Zou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Jingwen Sun
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Shuang Zhou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Yue Zhou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Xiaojing Cai
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Jiaxiong Zhang
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Effect of Airborne Particulate Matter on the Immunologic Characteristics of Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2022; 23:ijms23031018. [PMID: 35162939 PMCID: PMC8835188 DOI: 10.3390/ijms23031018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
The inflammatory mechanisms of environmental pollutants in chronic rhinosinusitis (CRS) have recently been proposed. However, the mechanisms underlying the inflammatory effects of particulate matter (PM) on nasal polyp (NP) tissues remain unknown. Here we investigated the mechanism underlying the inflammatory effects of PM10 on human nasal polyp-derived fibroblasts (NPDFs). We isolated NPDFs from human NP tissues obtained from patients with CRS with NPs (CRSwNP). The NPDFs were exposed to PM10 in vitro. Immunologic characteristics were assessed using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot, and flow cytometry. Additionally, we investigated the effect of NPDF-conditioned media (CM) on the expression of CD4+ T cell inflammatory mediators. PM10-treated NPDFs significantly upregulated interleukin (IL)-6, IL-4, and IL-33 expression and CXCL1 protein levels than PM10-treated normal tissues. MAP kinase, AP-1, and NF-kB were the primary cell signaling proteins. Immune cells in NPDF-CM had elevated IL-13, IL-17A, and IL-10 expression, but no significant difference in IFN-γ, TNF-α, and IL-4 expression. Moreover, under a Th2 inducing condition, NPDF-CM-treated CD4+ T cells had increased expression of IL-13, IL-10, and IL-17, which was reversed on ST2 inhibitor addition. Our study suggests that PM10 exposure could significantly increase the Th2 inflammatory pathway in NP tissues, specifically the IL-33/ST2 pathway-mediated immune response.
Collapse
|
10
|
Bedford R, Perkins E, Clements J, Hollings M. Recent advancements and application of in vitro models for predicting inhalation toxicity in humans. Toxicol In Vitro 2021; 79:105299. [PMID: 34920082 DOI: 10.1016/j.tiv.2021.105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
Animals have been indispensable in testing chemicals that can pose a risk to human health, including those delivered by inhalation. In recent years, the combination of societal debate on the use of animals in research and testing, the drive to continually enhance testing methodologies, and technology advancements have prompted a range of initiatives to develop non-animal alternative approaches for toxicity testing. In this review, we discuss emerging in vitro techniques being developed for the testing of inhaled compounds. Advanced tissue models that are able to recreate the human response to toxic exposures alongside examples of their ability to complement in vivo techniques are described. Furthermore, technology being developed that can provide multi-organ toxicity assessments are discussed.
Collapse
Affiliation(s)
- R Bedford
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - E Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - J Clements
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - M Hollings
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| |
Collapse
|
11
|
Jung HJ, Ko YK, Shim WS, Kim HJ, Kim DY, Rhee CS, Park MK, Han DH. Diesel exhaust particles increase nasal symptoms and IL-17A in house dust mite-induced allergic mice. Sci Rep 2021; 11:16300. [PMID: 34381060 PMCID: PMC8357916 DOI: 10.1038/s41598-021-94673-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs), traffic-related air pollutants, are considered environmental factors adversely affecting allergic diseases. However, the immunological basis for the adjuvant effects of DEP in allergic rhinitis (AR) remains unclear. Therefore, this study aimed to investigate the effect of DEP exposure on AR using a mouse model. BALB/c mice sensitized to house dust mite (HDM) were intranasally challenged with HDM in the presence and absence of DEP. Allergic symptom scores, serum total and HDM-specific immunoglobulins (Igs), eosinophil infiltration in the nasal mucosa, cytological profiles in bronchoalveolar lavage fluid (BALF), and cytokine levels in the nasal mucosa and spleen cell culture were analyzed. Mice co-exposed to HDM and DEP showed increased allergic symptom scores compared with mice exposed to HDM alone. Reduced total IgE and HDM-specific IgE and IgG1 levels, decreased eosinophil infiltration in the nasal mucosa, and increased proportion of neutrophils in BALF were found in mice co-exposed to HDM and DEP. Interleukin (IL)-17A level was found to be increased in the nasal mucosa of the co-exposure group compared with that in the HDM-exposed group. The levels of IL-4, IL-13, interferon-γ, IL-25, IL-33, and TSLP expression showed no difference between the groups with and without DEP treatment. Increased expression of IL-17A in the nasal mucosa may contribute to DEP-mediated exacerbation of AR in HDM-sensitized murine AR model.
Collapse
Affiliation(s)
- Hahn Jin Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Young-Kyung Ko
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sub Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
12
|
Lai A, Chang ML, O'Donnell RP, Zhou C, Sumner JA, Hsiai TK. Association of COVID-19 transmission with high levels of ambient pollutants: Initiation and impact of the inflammatory response on cardiopulmonary disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146464. [PMID: 33961545 PMCID: PMC7960028 DOI: 10.1016/j.scitotenv.2021.146464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/14/2023]
Abstract
Ambient air pollution contributes to 7 million premature deaths annually. Concurrently, the ongoing coronavirus disease 2019 (COVID-19) pandemic, complicated with S-protein mutations and other variants, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 2.5 million deaths globally. Chronic air pollution-mediated cardiopulmonary diseases have been associated with an increased incidence of hospitalization and mechanical ventilation following COVID-19 transmission. While the underlying mechanisms responsible for this association remain elusive, air pollutant-induced vascular oxidative stress and inflammatory responses have been implicated in amplifying COVID-19-mediated cytokine release and vascular thrombosis. In addition, prolonged exposure to certain types of particulate matter (PM2.5, d < 2.5 μm) has also been correlated with increased lung epithelial and vascular endothelial expression of the angiotensin-converting enzyme-2 (ACE2) receptors to which the SARS-CoV-2 spike glycoproteins (S) bind for fusion and internalization into host cells. Emerging literature has linked high rates of SARS-CoV-2 infection to regions with elevated levels of PM2.5, suggesting that COVID-19 lockdowns have been implicated in regional reductions in air pollutant-mediated cardiopulmonary effects. Taken together, an increased incidence of SARS-CoV-2-mediated cardiopulmonary diseases seems to overlap with highly polluted regions. To this end, we will review the redox-active components of air pollutants, the pathophysiology of SARS-CoV-2 transmission, and the key oxidative mechanisms and ACE2 overexpression underlying air pollution-exacerbated SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America
| | - Megan L Chang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America
| | - Ryan P O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jennifer A Sumner
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, United States of America
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, United States of America; Department of Bioengineering, Henry Samueli School of Engineering & Applied Science, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
13
|
Lino WVS, Bachi ALL, Neto JAM, Caetani G, Amaral JBD, Pezato R. CD133, a Progenitor Cell Marker, is Reduced in Nasal Polyposis and Showed Significant Correlations with TGF-β1 and IL-8. Int Arch Otorhinolaryngol 2021; 26:e091-e096. [PMID: 35096164 PMCID: PMC8789493 DOI: 10.1055/s-0041-1726043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction
Combination of chronic inflammation and an altered tissue remodeling process are involved in the development of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP). Studies demonstrated that mesenchymal stem cells expressing the progenitor gene
CD133
were involved in a significant reduction of the chronic inflammatory process in the polypoid tissue.
Objective
To evaluate the levels of CD133 (Prominin-1) in nasal polypoid tissue and its correlation with interleukin-8 (IL-8) and transforming growth factor β1 (TGF-β1).
Methods
A total of 74 subjects were divided in the following groups: control group (
n
= 35); chronic rhinosinusitis with nasal polyps nonpresenting comorbid asthma and aspirin intolerance (CRSwNPnonAI) group (
n
= 27); and chronic rhinosinusitis with nasal polyps presenting comorbid asthma and aspirin intolerance (CRSwNPAI) group (
n
= 12). Histologic analysis and also evaluation of the concentration of CD133, IL-8, and TGF-β1 by enzyme-linked immunosorbent assay (ELISA) kits were performed in nasal tissue obtained from nasal polypectomy or from middle turbinate tissue.
Results
Higher eosinophilic infiltration was found in both CRSwNP groups by histologic analysis. Lower levels of TGF-β1 and IL-8 were observed in both CRSwNP groups when compared with the control group, whereas the CD133 levels were significantly reduced only in the CRSwNPnonAI group compared with the control group.
Conclusion
It was demonstrated that the nasal mucosa presenting polyposis showed a significant reduction of CD133 levels, and also that this reduction was significantly correlated with the reduction of TGF-β1 levels, but not with IL-8 levels. Therefore, these findings may be involved in the altered inflammatory and remodeling processes observed in the nasal polyposis.
Collapse
Affiliation(s)
- Wagner Vargas Souza Lino
- Department of Otorhinolaryngology – Head and Neck Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - André Luis Lacerda Bachi
- Department of Otorhinolaryngology – Head and Neck Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto Brasileiro Ensino/Pesquisa em Imunologia Pulmonar, São Paulo, SP, Brazil
- Postgraduation Program in Health Science, Universidade Santo Amaro), Sao Paulo, SP, Brazil
| | - José Arruda Mendes Neto
- Department of Otorhinolaryngology – Head and Neck Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gabriel Caetani
- Hospital Universitário Gafree e Guinle, Universidade Federal do Estado do Rio de Janeiro,, Rio de Janeiro, RJ, Brazil
| | - Jônatas Bussador do Amaral
- Department of Otorhinolaryngology – Head and Neck Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rogério Pezato
- Department of Otorhinolaryngology – Head and Neck Surgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Hospital Universitário Gafree e Guinle, Universidade Federal do Estado do Rio de Janeiro,, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Ain NU, Qamar SUR. Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight. Cardiovasc Toxicol 2021; 21:505-516. [PMID: 33886046 DOI: 10.1007/s12012-021-09652-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.
Collapse
Affiliation(s)
- Noor Ul Ain
- Departmetnt of Environmental Sciences, Fatima Jinnah Women University, The Mall Road, Kachari Chowk, Rawalpindi, 46000, Pakistan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Safi Ur Rehman Qamar
- Integrated Genomics, Cellular, Developmental, and Biotechnology Laboratory (IGCDBL), University of Agriculture, Faisalabad, Punjab, 38000, Pakistan.
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
15
|
Effect of Xingbi Gel Nasal Drops on Fyn-STAT5 Pathway in Nasal Mucosa Fibroblasts of Guinea Pigs with Allergic Rhinitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6686815. [PMID: 33824677 PMCID: PMC8007362 DOI: 10.1155/2021/6686815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Fyn-STAT5 is considered to be the frontier signaling pathway of IgE-mediated allergic reactions related to mast cell activation, but research on allergic rhinitis (AR) has been rarely reported. Xingbi gel nasal drops (XGND) are a compound preparation of traditional Chinese medicine, which has the exact therapeutic efficacy on AR. The current study aimed to observe the effects of XGND on Fyn-STAT5 pathway in AR guinea pig nasal mucosal fibroblasts in vitro and further illuminate the possible therapeutic mechanism of XGND on AR. The isolated and cultured nasal mucosa fibroblasts from AR guinea pigs were identified by immunocytochemical staining. Real-time PCR and western blot were performed to detect the mRNA and protein levels of the Fyn-STAT5 pathway and related cytokines in AR guinea pig nasal mucosal fibroblasts. The results indicated that XGND may interfere with the Fyn-STAT5 pathway by reducing the expression of Fyn and SCF and upregulating STAT5 and IL-10, thereby inhibiting proliferation and degranulation of mast cells, correcting Th1/Th2 immune imbalance, and then alleviating the immune response of AR fibroblasts. Our study revealed the possible regulatory mechanism of XGND in AR and laid an experimental foundation for improving the clinical efficacy of AR and enriching the clinical medication for AR.
Collapse
|
16
|
Lee SH, Cho JH, Park JH, Cho JS, Lee HM. High Mobility Group Box Chromosomal Protein-1 Induces Myofibroblast Differentiation and Extracellular Matrix Production via RAGE, p38, JNK and AP-1 Signaling Pathways in Nasal Fibroblasts. Am J Rhinol Allergy 2021; 35:774-780. [PMID: 33626879 DOI: 10.1177/1945892421998142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic rhinosinusitis is involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. High mobility group box chromosomal protein 1 (HMGB-1) is known to stimulate lung fibroblast to produce ECM in lung fibrosis. The aim of this study was to investigate whether HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblasts and to identify the signal pathway. METHODS Human nasal fibroblasts were cultured. After stimulation with HMGB-1, expressions of α-smooth muscle actin (α-SMA) and fibronectin were determined by real-time PCR and western blot. Total collagen was measured by Sircol assay. To investigate signal pathway, various signal inhibitors and RAGE siRNA were used. RESULTS HMGB-1 increased α-SMA and fibronectin in mRNA and protein levels. It also increased collagen production. RAGE siRNA inhibited HMGB-1-induced α-SMA and fibronectin, and production of collagen. Furthermore, the inhibitors of RAGE downstream molecules such as p38, JNK and AP-1 also blocked the HMGB-1-induced effects. CONCLUSIONS HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblast, which is mediated by RAGE, p38, JNK and AP-1 signal pathway. These results suggest that HMGB-1 may play an important role in tissue remodeling during chronic rhinosinusitis progression.
Collapse
Affiliation(s)
- Soo-Hyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae Hoon Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Hospital, College of Medicine, Konkuk University, Seoul, South Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jung-Sun Cho
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Heung-Man Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Lu M, Yang H, Wang J, An Z, Li J, Wu Z, Zhao Q, Li H, Zhai D, Liu Y, Wu W, Song J. Acute effects of ambient air pollution on outpatients with chronic rhinitis in Xinxiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9889-9897. [PMID: 33159228 DOI: 10.1007/s11356-020-11534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Air pollution exposure leads to increased mortality and morbidity rates of respiratory diseases. Most of the evidence was founded on acute diseases such as acute lower respiratory diseases. However, limited studies have been conducted to evaluate the effects of air pollution on chronic respiratory diseases. This time-series study was conducted to examine the acute effects of 6 criteria ambient air pollutants on hospital outpatients with chronic rhinitis (CR) in Xinxiang, China. We retrieved 223,826 outpatient records of patients with respiratory diseases, of which 62,901 were those of patients with CR. Results showed that the current 10-μg/m3 increase in fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) corresponds to 0.67% (95% confidence interval [CI]: 0.15-1.18%), 0.58% (95% CI: 0.24-0.92%), 1.89% (95% CI: 0.52-3.27%), 3.01% (95% CI: 1.66-4.35%), and 0.06% (95% CI: 0.03-0.10%) increments in outpatients with CR, respectively. In addition, the effects in the male were stronger than those in the female. Higher effect estimates were observed in the old (≥ 65 years of age) and younger (< 15 years of age) groups. Our study confirmed the association between air pollution and outpatients with CR in Xinxiang, China. More stringent air pollution control measures must be implemented.
Collapse
Affiliation(s)
- Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijuan Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jingyao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhineng Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qian Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Desheng Zhai
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- Chinese Center for Disease Control and Prevention, National Institute of Environmental Health, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
18
|
Allergic Rhinitis: Association with Air Pollution and Weather Changes, and Comparison with That of Allergic Conjunctivitis in Taiwan. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allergic conjunctivitis (AC) and rhinitis (AR) are common allergic diseases that may be environmentally related. We used a systematic sampling cohort database, which was applied in an AC study previously, to examine the association of AR with air pollution and weather changes. A case-crossover design coupled with conditional logistic analysis was implemented in the analysis; we identified 140,365 eligible AR subjects, and matched their diagnoses with environmental monitoring data. Unlike AC, the descriptive statistics indicated that AR occurred the most in adults under 50 years old by age (44.7%), and in winter by season (28.7%) (p < 0.001); similar to AC, AR occurred more in women than to men. Nitrogen dioxide (NO2) was found to be positively associated with AR (p < 0.001), whereas relative humidity and temperature were negatively related (p < 0.001). We found that the risk of AR increased with descending NO2 levels relative to AC (OR = 0.984, p = 0.003) after adjustment for covariates. It is suggested that AR could be triggered or exacerbated by lower levels of NO2 than is AC. We recommend that AR patients pay extra attention to air pollution and mitigate their allergic problem accordingly.
Collapse
|
19
|
Li CH, Sayeau K, Ellis AK. Air Pollution and Allergic Rhinitis: Role in Symptom Exacerbation and Strategies for Management. J Asthma Allergy 2020; 13:285-292. [PMID: 32922045 PMCID: PMC7457822 DOI: 10.2147/jaa.s237758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/12/2020] [Indexed: 01/24/2023] Open
Abstract
This article reviews the current understanding of the role of air pollution in both the symptom exacerbation and rising prevalence of allergic rhinitis (AR) for the development of future AR therapeutics and management strategies. We discuss the epidemiological evidence for this relationship through birth cohort studies, the economic impact of AR, and the influence of air pollution through the lens of the exposome framework of allergic disease development. This is followed by a discussion on the influence of diesel exhaust and diesel exhaust particles (DEP) from motor vehicle emissions and their implication in the rising prevalence of allergic disease and allergic sensitization through triggering inflammatory signalling pathways that exacerbate AR symptoms. Finally, a summary is provided of clinical trials assessing the influence of air pollution on AR with a depiction of currently available therapies and management strategies. Future directions in the development of AR modalities given the air pollution-mediated symptom exacerbation are challenged with unfolding the complex gene–environment interaction product of heterogenous AR presentation.
Collapse
Affiliation(s)
- Carmen H Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Kyle Sayeau
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
20
|
Wang WW, Yu HW, Zhang B, Pan YL, Shao SW. Interleukin-17A up-regulates thymic stromal lymphopoietin production by nasal fibroblasts from patients with allergic rhinitis. Eur Arch Otorhinolaryngol 2020; 278:127-133. [PMID: 32783069 DOI: 10.1007/s00405-020-06274-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Emerging evidence has shown that interleukin (IL)-17A is implicated in the pathogenesis of allergic rhinitis (AR). Thymic stromal lymphopoietin (TSLP) orchestrates the immune response toward a Th2 phenotype. Although increased TSLP is found in AR, the contribution of IL-17A in TSLP production by nasal fibroblasts is not well understood. We aimed to investigate the effect and mechanism of IL-17A on TSLP production by human nasal fibroblasts (HNFs) from AR patients. METHODS HNFs from AR patients were cultured and stimulated with IL-17A in the absence or presence of a Janus kinase (JAK) 2 or JAK1/3 inhibitor. Western blotting was used to assay phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and nuclear factor-kappa B (NF-κB) p65 in HNFs. The TSLP expression in the cells and culture supernatants was evaluated by real-time polymerase chain reaction and enzyme-linked immunoassay. RESULTS Stimulation with IL-17A induced STAT3 phosphorylation, which was inhibited by the pretreatment with JAK2 inhibitor AZD1480 or JAK1/3 inhibitor tofacitinib. IL-17A promoted the nuclear translocation of NF-κBp65 protein, leading to increased TSLP production, while the pre-incubation with AZD1480 prior to IL-17A attenuated these effects. However, the pre-incubation with tofacitinib before IL-17A stimulation had no impact on the expression of NF-κBp65 and TSLP. CONCLUSIONS IL-17A up-regulated TSLP production by HNFs through JAK2/NF-κB pathway. Although IL-17A induced STAT3 activation through JAK1/2/3, IL-17A-mediated TSLP expression was not dependent on STAT3 signaling. These observations would provide mechanistic insight into therapeutic strategies to improve the immune and inflammation associated with Th17A in the management of AR.
Collapse
Affiliation(s)
- Wei Wei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Hong Wei Yu
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Bo Zhang
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Yong Liang Pan
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China
| | - Sheng Wen Shao
- School of Medicine, Huzhou University, No. 759, East Second Ring Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
21
|
Kang JH, Yang HW, Park JH, Shin JM, Kim TH, Lee SH, Lee HM, Park IH. Lipopolysaccharide regulates thymic stromal lymphopoietin expression via TLR4/MAPK/Akt/NF-κB-signaling pathways in nasal fibroblasts: differential inhibitory effects of macrolide and corticosteroid. Int Forum Allergy Rhinol 2020; 11:144-152. [PMID: 32623837 DOI: 10.1002/alr.22641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an inflammatory disease of the sinonasal mucosa. Thymic stromal lymphopoietin (TSLP) is associated with T-helper 2 (Th2) response and induced by pathogen, allergen, toll-like receptor (TLR) ligands, and cytokines. Fibroblasts are known to be modulators of wound-healing, from inflammation to tissue remodeling. We examined effect of lipopolysaccharide (LPS) on TSLP production and the underlying mechanisms. We aimed to determine whether the effects of commonly used medications in CRS, namely corticosteroids, and macrolides, are related to LPS-induced TSLP in nasal fibroblasts. METHODS Fibroblasts were isolated from inferior turbinate tissues of CRS patients. TSLP and TLR4 expressions were determined by reverse transcript-polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunoassay, and immunofluorescence staining. Mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor-kappaB (NF-κB) phosphorylation was determined by Western blot and/or luciferase assay. RESULTS LPS increased TSLP expression in a dose- and time-dependent manner. LPS antagonist and corticosteroids inhibited TLR4 expression in LPS-stimulated fibroblasts. LPS-RS, macrolides, corticosteroids, and specific inhibitors suppressed LPS-induced alterations. Ex vivo culture showed similar results. CONCLUSION LPS induces TSLP production via the TLR4, MAPK, Akt, and NF-κB pathways. The effects of corticosteroids and macrolides are related to LPS-induced TSLP expression. We explored new treatment modalities targeting LPS-induced TSLP production that could replace the currently used corticosteroid and macrolides for treatment of CRS.
Collapse
Affiliation(s)
- Ju-Hyung Kang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Min Shin
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea.,IVD Support Center, Korea University Guro Hospital, Seoul, South Korea
| | - Tae-Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Heung-Man Lee
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University College of Medicine, Seoul, South Korea.,IVD Support Center, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
22
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
23
|
Chew S, Lampinen R, Saveleva L, Korhonen P, Mikhailov N, Grubman A, Polo JM, Wilson T, Komppula M, Rönkkö T, Gu C, Mackay-Sim A, Malm T, White AR, Jalava P, Kanninen KM. Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Part Fibre Toxicol 2020; 17:18. [PMID: 32487172 PMCID: PMC7268298 DOI: 10.1186/s12989-020-00352-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adverse effects of air pollutants including particulate matter (PM) on the central nervous system is increasingly reported by epidemiological, animal and post-mortem studies in the last decade. Oxidative stress and inflammation are key consequences of exposure to PM although little is known of the exact mechanism. The association of PM exposure with deteriorating brain health is speculated to be driven by PM entry via the olfactory system. How air pollutants affect this key entry site remains elusive. In this study, we investigated effects of urban size-segregated PM on a novel cellular model: primary human olfactory mucosal (hOM) cells. RESULTS Metabolic activity was reduced following 24-h exposure to PM without evident signs of toxicity. Results from cytometric bead array suggested a mild inflammatory response to PM exposure. We observed increased oxidative stress and caspase-3/7 activity as well as perturbed mitochondrial membrane potential in PM-exposed cells. Mitochondrial dysfunction was further verified by a decrease in mitochondria-dependent respiration. Transient suppression of the mitochondria-targeted gene, neuronal pentraxin 1 (NPTX1), was carried out, after being identified to be up-regulated in PM2.5-1 treated cells via RNA sequencing. Suppression of NPTX1 in cells exposed to PM did not restore mitochondrial defects resulting from PM exposure. In contrast, PM-induced adverse effects were magnified in the absence of NPTX1, indicating a critical role of this protein in protection against PM effects in hOM cells. CONCLUSION Key mitochondrial functions were perturbed by urban PM exposure in a physiologically relevant cellular model via a mechanism involving NPTX1. In addition, inflammatory response and early signs of apoptosis accompanied mitochondrial dysfunction during exposure to PM. Findings from this study contribute to increased understanding of harmful PM effects on human health and may provide information to support mitigation strategies targeted at air pollution.
Collapse
Affiliation(s)
- Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | | | - Teemu Rönkkö
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Cheng Gu
- School of the Environment, Nanjing University, Nanjing, China
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anthony R White
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
24
|
Schwarzbach HL, Mady LJ, Lee SE. What is the Role of Air Pollution in Chronic Rhinosinusitis? Immunol Allergy Clin North Am 2020; 40:215-222. [DOI: 10.1016/j.iac.2019.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Kanninen KM, Lampinen R, Rantanen LM, Odendaal L, Jalava P, Chew S, White AR. Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration. Neurochem Int 2020; 136:104729. [PMID: 32201281 DOI: 10.1016/j.neuint.2020.104729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
Air pollution is a major, global public health concern. A growing body of evidence shows that exposure to air pollutants may impair the brain. Living in highly polluted areas has been linked to several neurodegenerative diseases, where exposure to complex mixtures of air pollutants in urban environments may have harmful effects on brain function. These harmful effects are thought to originate from elevated inflammation and oxidative stress. The olfactory epithelium is a key entry site of air pollutants into the brain as the particles are deposited in the upper airways and the nasal region. A potential source of patient-derived cells for study of air pollutant effects is the olfactory mucosa, which constitutes a central part of the olfactory epithelium. This review first summarizes the current literature on the available in vitro models of the olfactory epithelium. It then describes how alterations of the olfactory mucosa are linked to neurodegeneration and discusses potential therapeutic applications of these cells for neurodegenerative diseases. Finally, it reviews the research performed on the effects of air pollutant exposure in cells of the olfactory epithelium. Patient-derived olfactory epithelial models hold great promise for not only elucidating the molecular and cellular pathophysiology of neurodegenerative disorders, but for providing key understanding about air pollutant particle entry and effects at this key brain entry site.
Collapse
Affiliation(s)
- K M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - R Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - L M Rantanen
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - L Odendaal
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - P Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - A R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| |
Collapse
|
26
|
Yang HW, Park JH, Shin JM, Lee HM, Park IH. Asian Sand Dust Upregulates IL-6 and IL-8 via ROS, JNK, ERK, and CREB Signaling in Human Nasal Fibroblasts. Am J Rhinol Allergy 2019; 34:249-261. [PMID: 31771336 DOI: 10.1177/1945892419890267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Asian sand dust (ASD) profoundly affects respiratory health by inducing inflammation and causing upper airway inflammatory diseases. Interleukin (IL)-6 and IL-8 are pro-inflammatory mediators that are involved in upper airway inflammatory diseases. However, the effect of ASD on the production of IL-6 and IL-8 in nasal fibroblasts has not been adequately studied. We investigated the effect of ASD on the induction of pro-inflammatory mediators and its underlying mechanisms in nasal fibroblasts. Methods Real-time cytotoxicity assays were used to determine the effect of ASD on the viability of fibroblasts. Enzyme-linked immunosorbent assays and real-time polymerase chain reactions were performed to determine whether ASD induced the expression of IL-6 and IL-8. Reactive oxygen species (ROS) were quantified using 2, 7-dichlorofluorescein-diacetate and MitoSOX Red. Induction of IL-6 and IL-8 signal transduction pathways by ASD was confirmed by Western blotting. Ex vivo culture of the inferior turbinate tissue was performed to confirm the effects of ASD. Results ASD upregulated ROS levels, and this in turn promoted IL-6 and IL-8 expression through the MAPK (JNK and ERK) and CREB signaling pathways in nasal fibroblasts. However, ASD did not induce phosphorylation of p38. Specific inhibitors of each pathway (ROS, JNK, ERK, and CREB inhibitors) suppressed ASD-induced IL-6 and IL-8 upregulation. Conclusions ASD induces pro-inflammatory mediators, and the increased levels of IL-6 and IL-8 might be associated with the pathogenesis of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea
| | - Jae-Min Shin
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Heung-Man Lee
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Shin JM, Kim HJ, Park JH, Hwang YJ, Lee HM. Asian Sand Dust Regulates IL-32 Production in Airway Epithelial Cells: Inhibitory Effect of Glucocorticoids. Am J Rhinol Allergy 2019; 33:403-412. [PMID: 30919652 DOI: 10.1177/1945892419839538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Epidemiologic studies have reported that Asian sand dust (ASD) is associated with chronic inflammatory diseases of the respiratory system. Glucocorticoids (GCs) have potent anti-inflammatory properties. The aims of this study were to evaluate the effects of GCs on ASD-induced interleukin-32 (IL-32) expression and to identify the underlying signaling pathways in airway epithelial cells. Methods A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cytotoxicity in A549 and human primary nasal epithelial cells. Expression levels of IL-32 messenger RNA and protein were measured by Western blot, real-time polymerase chain reaction, ELISA, and immunofluorescence staining. Signaling pathways were analyzed using specific inhibitors of Akt, MAPK, or NF- κB. The effects of GCs on the expression of ASD-induced IL-32 were confirmed with ex vivo organ cultures of the nasal interior turbinate. Results ASD (0–400 ng/mL) had no significant cytotoxic effects in A549 cells and human primary nasal epithelial cells. Expression levels of IL-32 were dose-dependently upregulated by ASD treatment in A549 cells. ASD induced phosphorylation of Akt, MAPK, and NF-κB, whereas GCs and specific inhibitors of Akt, MAPK, and NF-κB downregulated these activations and the expression of IL-32. These findings were further confirmed in human primary nasal epithelial cells and ex vivo organ cultures of the nasal interior turbinate. Conclusions GCs have an inhibitory effect on ASD-induced IL-32 expression via the Akt, MAPK, and NF- κB signaling pathways in airway epithelial cells.
Collapse
Affiliation(s)
- Jae-Min Shin
- 1 Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hwee-Jin Kim
- 2 Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hoo Park
- 2 Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - You Jin Hwang
- 3 Department of Life Science, College of BioNano, Gachon University, Incheon, Republic of Korea
| | - Heung-Man Lee
- 1 Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.,2 Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea.,4 Institute for Korea University IVD Support Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Na HG, Kim YD, Choi YS, Bae CH, Song SY. Diesel exhaust particles elevate MUC5AC and MUC5B expression via the TLR4-mediated activation of ERK1/2, p38 MAPK, and NF-κB signaling pathways in human airway epithelial cells. Biochem Biophys Res Commun 2019; 512:53-59. [PMID: 30857636 DOI: 10.1016/j.bbrc.2019.02.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/27/2019] [Indexed: 12/31/2022]
Abstract
Exposure to diesel exhaust particles (DEPs) is known to cause serious health problems, owing to a steady increase in the number of diesel vehicles worldwide. DEPs comprise approximately 90% particle mass existing in the fine size range (≤2.5 μm) and are mainly absorbed in the respiratory tract. However, limited information is available on the effects of DEP exposure on the respiratory tract in humans. Here, we investigated the effect and signaling pathways of DEPs on the expression of mucin, especially MUC5AC and MUC5B, in human airway epithelial cells by reverse-transcriptase polymerase chain reaction (PCR), real-time PCR, enzyme-linked immunosorbent assay, western blotting, and immunofluorescence staining. The signaling pathways activated following DEP-induced expression of MUC5AC and MUC5B in airway epithelial cells were analyzed by evaluating Toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2 [ERK1/2] and p38), and nuclear factor kappa B (NF-κB) phosphorylation with western blot and small-interfering RNA (siRNA) analyses. DEPs significantly increased MUC5AC and MUC5B expression in human airway epithelial cells that was closely related to TLR4, MAPK (ERK 1/2 and p38), and NF-κB pathway activation. This is the first report to demonstrate the DEP-mediated increase in MUC5AC and MUC5B expression via the TLR4-mediated activation of ERK1/2, p38 MAPK, and NF-κB signaling pathways in human airway epithelial cells.
Collapse
Affiliation(s)
- Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
29
|
London NR, Lina I, Ramanathan M. Aeroallergens, air pollutants, and chronic rhinitis and rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:209-215. [PMID: 30506053 PMCID: PMC6251962 DOI: 10.1016/j.wjorl.2018.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic rhinitis and rhinosinusitis are among the most common conditions worldwide with significant morbidity and decreased quality of life. Although the pathogenesis of these conditions is multifactorial, there has been increasing evidence for the role of environmental factors such as aeroallergens and air pollutants as initiating or exacerbating factors. This review will outline the current literature focusing on the role of aeroallergens and air pollution in the pathogenesis of chronic sinonasal inflammatory conditions.
Collapse
Affiliation(s)
| | | | - Murugappan Ramanathan
- Johns Hopkins Department of Otolaryngology – Head and Neck Surgery, Baltimore, MD 21287, USA
| |
Collapse
|
30
|
Kennedy DW. Science and policy collide in air quality regulations. Int Forum Allergy Rhinol 2018; 8:975-976. [PMID: 30129987 DOI: 10.1002/alr.22201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Lee DC, Choi H, Oh JM, Hong Y, Jeong SH, Kim CS, Kim DK, Cho WK, Kim SW, Kim SW, Cho JH, Lee J. The effect of urban particulate matter on cultured human nasal fibroblasts. Int Forum Allergy Rhinol 2018; 8:993-1000. [PMID: 29979839 DOI: 10.1002/alr.22167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exposure to urban particulate matter (UPM) has been linked to aggravation of various health problems. Although the effects of UPM on the lower respiratory tract have been extensively studied, more research is required on the impact of UPM on the upper respiratory tract and the underlying mechanisms. Thus, we investigated the cytotoxic effects of UPM on cultured human nasal fibroblasts, the underlying signaling pathways involved, and changes in cytokine levels. METHODS Human turbinate tissue specimens were collected during partial turbinectomies performed on 6 patients, and then cultured. The effect of UPM on nasal fibroblast viability was explored. Real-time reverse transcription-polymerase chain reaction was used to measure the mRNA levels of genes encoding cytokines and chemokines (interleukin [IL]-4, IL-6, IL-8, and tumor necrosis factor-α) before and after 24 hours of UPM treatment. Enzyme-linked immunosorbent assays were employed to measure IL-6 and IL-8 levels. The status of the p38 and nuclear factor (NF)-κB signaling pathways was analyzed by Western blotting. RESULTS UPM reduced cell viability in a dose-dependent manner and increased IL-6 and IL-8 expression at both the mRNA and protein levels. UPM induced the phosphorylation of p38 and NF-κB p65; inhibitors of the actions of these proteins repressed phosphorylation and the expression of IL-6 and IL-8. CONCLUSION UPM induced IL-6 and IL-8 expression by fibroblasts via p38 and NF-κB classical signaling, suggesting that UPM can induce or aggravate allergic and/or chronic rhinitis.
Collapse
Affiliation(s)
- Dong Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Yupyo Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Hee Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Choung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Kee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Kyung Cho
- Department of Ophthalmology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Whan Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Hee Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joohyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
32
|
Lee DS, Lee CM, Park SK, Yim MJ, Lee JM, Choi G, Yoo JS, Jung WK, Park S, Seo SK, Park WS, Choi IW. Anti-inhibitory potential of an ethanolic extract of Distromium decumbens on pro-inflammatory cytokine production in Pseudomonas aeruginosa lipopolysaccharide-stimulated nasal polyp-derived fibroblasts. Int J Mol Med 2017; 40:1950-1956. [PMID: 29039451 DOI: 10.3892/ijmm.2017.3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/31/2017] [Indexed: 11/05/2022] Open
Abstract
Marine algae are rich sources of biologically active compounds that may present useful leads in the development of pharmaceuticals, nutraceuticals, and functional foods. The main aim of this study was to identify the possible anti-inflammatory effects of Distromium decumbens in nasal polyp-derived fibroblasts (NPDFs) and its associated mechanism of action. NPDFs were stimulated by Pseudomonas aeruginosa lipopolysaccharide (PA-LPS) and treated with an ethanolic extract of Distromium decumbens (DDE). The production of interleukin-6 (IL-6) and IL-8 in the supernatant, the phosphorylation of mitogen-activated protein kinase (MAPK) molecules [extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase and p38 MAPK] and Akt, and the activation of nuclear factor-κB (NF-κB) were assayed in the PA-LPS-stimulated NPDFs untreated or treated with DDE. The expression levels of IL-6 and IL-8 in PA-LPS-exposed NPDFs were detected using enzyme-linked immunosorbent assays. The mechanisms by which DDE regulates cellular signaling cascades were investigated using electrophoretic mobility shift assays and western blot analysis. Functional validation was performed by measuring the inhibitory effects of DDE on neutrophil migration in vitro. DDE reduced the expression of IL-6 and IL-8 stimulated by PA-LPS in NPDFs. The activation of ERK1/2, Akt and NF-κB by PA-LPS was inhibited by DDE. Inhibitors of ERK1/2, Akt and NF-κB inhibited the expression of IL-6 and IL-8. In addition, DDE significantly attenuated PA-LPS-induced migration of differentiated HL-60 cells. The present findings suggest that DDE potently inhibits inflammation through the ERK1/2, Akt and NF-κB signaling pathways in NPDFs.
Collapse
Affiliation(s)
- Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Providence, RI 02912, USA
| | - Seong Kook Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Inje University College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Mi-Jin Yim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Grace Choi
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jong Su Yoo
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Saegwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
33
|
Sayapina NV, Batalova TA, Sergievich AA, Shtarberg MA, Borodin EA, Khoroshikh PP, Chaika VV, Kodintsev VV, Vedyagin AA, Mishakov IV, Vakis A, Henrich-Noack P, Tsatsakis AM, Engin AB, Golokhvast K. Oral application of carbon nanofibers in rats increases blood concentration of IL6 and IL10 and decreases locomotor activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:183-191. [PMID: 28189064 DOI: 10.1016/j.etap.2017.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Carbon nanofibers (CNF) are versatile nanomaterials that are widely used in various fields of science and technology. As a consequence, animals as well as humans may be exposed to such compounds via different routes. We hypothesized that oral intake of CNF will lead to an inflammatory reaction and consequently induce behavioral impairments. To address this issue, rats were fed with 500mg/kgCNF for 14days and their locomotor activity, emotional status and cognition were quantified by testing the animals in an open field set-up, elevated plus maze and in the universal problem solving box which provides information about motivation and cognition. The behavioral tests were performed 3 times within 10days. At the end of the experiment, blood samples were collected and the plasma concentrations of IL-6, IL-8, IL-1β, IL-10 and IL-18 were measured. Our results demonstrated an inflammatory reaction determined by a significantly elevated IL-6 concentration. This, however, was counteracted by an even more pronounced increase in IL-10. The behavioral effects were restricted mainly to a decrease in locomotor activity which was significant in the open field test, as well as the elevated plus maze. Other parameters indicative of cognitive performance were not influenced and also the emotional status was largely unaffected. In conclusion, our results revealed that oral intake of 500mg/kgCNF induced some adverse effects, which, however, can be still partially compensated by the organism.
Collapse
Affiliation(s)
- Nina Vitalievna Sayapina
- Far Eastern Federal University, Vladivostok, Russian Federation; Amur State Medical Academy, Blagoveshchensk, Russian Federation
| | | | | | | | | | | | | | | | | | | | - Antonis Vakis
- Department of Neurosurgery, University of Crete, Medical School, Heraklion University Hospital, Voutes, 71 021 Heraklion, Crete, Greece
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion, Greece.
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | | |
Collapse
|