1
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. Biomark Res 2024; 12:67. [PMID: 39030653 PMCID: PMC11264923 DOI: 10.1186/s40364-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. METHODS To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing (n = 8) and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids (n = 4) using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. RESULTS Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. CONCLUSION These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Christopher D Klocke
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Amara Pang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hannah C Farley
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Abigail R Gillingham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aubrey D Dawson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Yichen Fan
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alison H Skalet
- Casey Eye Institute, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA.
- Knight Cancer Institute, OHSU, Portland, OR, USA.
| |
Collapse
|
2
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Jia X, Li Z, Zhou R, Feng W, Yi L, Zhang H, Chen B, Li Q, Huang S, Zhu X. Single cell and bulk RNA sequencing identifies tumor microenvironment subtypes and chemoresistance-related IGF1 + cancer-associated fibroblast in gastric cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167123. [PMID: 38484940 DOI: 10.1016/j.bbadis.2024.167123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) significantly influences prognosis and drug resistance in various tumors, yet its heterogeneity and the mechanisms affecting therapeutic response remain unclear in gastric cancer (GC). METHODS The heterogenous TME were explored with single-cell RNA-sequencing (scRNA-seq) data of 50 primary GC samples. We then identified four GC TME subtypes with nonnegative matrix factorization (NMF) and constructed a pearson nearest-centroid classifier based on subtype-specific upregulated genes. Genomic features and clinical significance of four subtypes were comprehensively evaluated. We reclustered fibroblasts to identify cancer-associated fibroblast (CAF) subtype associated with poor clinical outcomes. RT-qPCR and double immunofluorescence staining were applied to validate the findings. Cellchat analysis elucidated potential molecular mechanisms of the CAF subtype in GC disease progression and chemotherapy resistance. FINDINGS The GC TME exhibited high heterogeneity, influencing chemo-sensitivity. Four TME-based subtypes predicting response to immunotherapy and chemotherapy were identified and validated in 1406 GC patients. Among which, ISG1 subtype displayed higher fibroblasts infiltration and heightened oncogenic pathways, and inferior response to chemotherapy with unfavorable prognosis. Microsatellite instability-high (MSI-H) GCs within four TME subtypes showed immunological heterogeneity. We then reported an IGF1-overexpressing CAF was associated with chemo-resistance and GC recurrence. Cell communication analysis revealed IGF1+ CAF may induce drug-resistant phenotypes in tumor cells through IGF1-α6β4 integrin ligand-receptor binding and activation of EMT biological process. INTERPRETATION We identified four TME-based subtypes with different clinical outcomes and IGF1+ CAFs contributing to poor clinical outcomes in GC, which might provide guidance for individualized treatment and facilitate the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lixia Yi
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Khodashahi R, Beiraghdar F, Ferns GA, Ashrafzadeh K, Aliakbarian M, Arjmand MH. The Role of Local Angiotensin II/Angiotensin Type 1-receptor Mechanisms in Adipose Tissue Dysfunction to Promote Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:1187-1194. [PMID: 38347780 DOI: 10.2174/0115680096281059240103154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 09/25/2024]
Abstract
Obesity and adipose tissue dysfunction are important risk factors for pancreatic cancer. Pancreatic cancer is one of the most lethal cancers globally. The renin-angiotensin system (RAS) is expressed in many tissues, including adipose tissue. Dysregulation of angiotensin II and angiotensin II receptors in adipose tissue through the activation of different signaling pathways leads to adipose tissue dysfunction, including insulin resistance, adipose tissue inflammation, adipocytokines secretion, and metabolic alterations. The pathogenesis of pancreatic cancer remains uncertain. However, there is evidence that dysregulation of local angiotensin II in adipose tissue that occurs in association with obesity is, in part, responsible for the initiation and progression of pancreatic cancer. Due to the role of local angiotensin II in the dysfunction of adipose tissue, angiotensin receptor blockers may be considered a new therapeutic strategy in the amelioration of the complications related to adipose tissue dysfunction and prevention of pancreatic cancer. This review aims to consider the biological roles of local angiotensin II and angiotensin II receptors in adipose tissue dysfunction to promote pancreatic cancer progression with a focus on adipose tissue inflammation and metabolic reprogramming.
Collapse
Affiliation(s)
- Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gorgon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Kiayash Ashrafzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. RESEARCH SQUARE 2023:rs.3.rs-3694879. [PMID: 38106024 PMCID: PMC10723549 DOI: 10.21203/rs.3.rs-3694879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. Methods To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. Results Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. Conclusion These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
|
7
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Robinson TL, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Analysis of uveal melanoma scRNA sequencing data identifies neoplastic-immune hybrid cells that exhibit metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563815. [PMID: 37961378 PMCID: PMC10634980 DOI: 10.1101/2023.10.24.563815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis. Our group has identified a disseminated tumor cell population characterized by co-expression of immune and melanoma proteins, (circulating hybrid cells (CHCs), in patients with UM. Compared to circulating tumor cells, CHCs are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. To identify mechanisms underlying enhanced hybrid cell dissemination we sought to identify hybrid cells within a primary UM single cell RNA-seq dataset. Using rigorous doublet discrimination approaches, we identified UM hybrids and evaluated their gene expression, predicted ligand-receptor status, and cell-cell communication state in relation to other melanoma and immune cells within the primary tumor. We identified several genes and pathways upregulated in hybrid cells, including those involved in enhancing cell motility and cytoskeleton rearrangement, evading immune detection, and altering cellular metabolism. In addition, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting cancer metastasis including IGF1-IGFR1, GAS6-AXL, LGALS9-P4HB, APP-CD74 and CXCL12-CXCR4. These results contribute to our understanding of tumor progression and interactions between tumor cells and immune cells in the UM microenvironment that may promote metastasis.
Collapse
|
8
|
Zhou X, Wang S, Li Y, Zhao H, Han X, Yu Y, Chen Y, Yang Y, Ma X, Huo H, Zhang M, Zhao Y, Ma N. Monocarboxylate transporter 4 promotes the migration of non‑cancerous L929 fibroblast cells by activating the IGF1/IGF1R/PIK3R3/SGK1 axis. Oncol Lett 2023; 26:460. [PMID: 37745980 PMCID: PMC10512108 DOI: 10.3892/ol.2023.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) and Warburg effect are critical for the regulation of tumor metastasis. The monocarboxylate transporter (MCT) family members, particularly MCT4, which is encoded by the solute carrier family 16 member 3 gene, play an important role in the regulation of the TME and mediation of the Warburg effect by transporting lactate out of cancer cells. Migration and invasion are two key features of metastasis. Few studies have investigated the mechanism by which MCT4 promotes cell migration, and the suggested mechanisms by which MCT4 promotes migration vary in different tumor cell models. The purpose of the present study was to use non-cancerous cells as a research model to investigate the specific mechanism underlying the promotion of migration by MCT4. In a previous study, murine L929 cells overexpressing human MCT4 (MCT4-L929 cells) were generated and MCT4 was demonstrated to promote the migration and invasion of these non-cancerous cells. In the present study, MCT4-L929 cells and control-L929 cells were used to investigate the potential pathways and mechanisms through which MCT4 promotes cell migration. RNA sequencing analysis revealed 872 differentially expressed genes, comprising 337 and 535 upregulated and downregulated genes, respectively, in the MCT4-L929 cells. Reverse transcription-quantitative analysis and western blotting revealed that MCT4 overexpression increased the transcription and protein levels of insulin-like growth factor 1 (IGF1). In a wound healing assay, the migration of exogenous mouse IGF1-treated control-L929 cells was similar to that of MCT4-L929 cells. Additionally, the inhibition of IGF1 receptor (IGF1R) or serum/glucocorticoid regulated kinase 1 (SGK1), a downstream protein in the IGF1 and phosphoinositide 3-kinase PI3K regulatory subunit 3 (PIK3R3) pathways, in MCT4-L929 cells mitigated the cell migration-promoting effect of MCT4. These novel findings suggest that MCT4 may promote the migration of L929 fibroblast cells via activation of the IGF1/IGF1R/PIK3R3/SGK1 axis.
Collapse
Affiliation(s)
- Xiaoju Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yanyan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - He Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xue Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yue Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yu Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaonan Ma
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Hongjing Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Manting Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
9
|
de Barros NR, Gomez A, Ermis M, Falcone N, Haghniaz R, Young P, Gao Y, Aquino AF, Li S, Niu S, Chen R, Huang S, Zhu Y, Eliahoo P, Sun A, Khorsandi D, Kim J, Kelber J, Khademhosseini A, Kim HJ, Li B. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. Biofabrication 2023; 15:10.1088/1758-5090/ace0db. [PMID: 37348491 PMCID: PMC10683563 DOI: 10.1088/1758-5090/ace0db] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Department of Biology, Baylor University, 101 Bagby Ave, TX 76706, United Ustates of America
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Patric Young
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Yaqi Gao
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Albert-Fred Aquino
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Siyuan Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- METU Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Siyi Niu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biomedical Engineering, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, United States of America
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Payam Eliahoo
- Department of Biology, University of California, Irvine, CA 92697, United States of America
| | - Arthur Sun
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jonathan Kelber
- Department of Biology, California State University, Northridge, CA 91330, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| |
Collapse
|
10
|
Wlodarczyk B, Durko L, Wlodarczyk P, Talar-Wojnarowska R, Malecka-Wojciesko E. CA 19-9 but Not IGF-1/IGFBP-2 Is a Useful Biomarker for Pancreatic Ductal Adenocarcinoma (PDAC) and Chronic Pancreatitis (CP) Differentiation. J Clin Med 2023; 12:4050. [PMID: 37373743 DOI: 10.3390/jcm12124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION There are still no effective diagnostic and prognostic biomarkers in pancreatic ductal adenocarcinoma (PDAC). The differentiation between PDAC and chronic pancreatitis (CP) is often challenging. The inflammatory mass in the course of CP causes diagnostic difficulties in differentiating them from neoplastic lesions and, thus, delays the initiation of radical treatment. Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor-binding protein 2 (IGFBP-2) form a network involved in PDAC development. The role of IGFs in promoting pancreatic cancer cell proliferation, survival, and migration is well established, and their ability to stimulate tumor growth and metastasis is well documented. The aim of the study was to evaluate the usability of IGF-1, IGFBP-2, and IGF-1/IGFBP-2 ratio in PDAC and CP differentiation. MATERIAL AND METHODS The study included 137 patients: 89 patients with PDAC and 48 patients with CP. All subjects were tested for the levels of IGF-1 and IGFBP-2 using the ELISA method (Corgenix UK Ltd. R&D Systems), along with the level of CA 19-9 in serum. Additionally, the IGF-1/IGFBP-2 ratio was calculated. Further analyses used logit and probit models with varying determinants in order to discern between PDAC and CP patients. The models served as a basis for AUROC calculation. RESULTS The mean IGF-1 serum level was equal to 52.12 ± 33.13 ng/mL in PDAC vs. 74.23 ± 48.98 ng/mL in CP (p = 0.0053). The mean level of IGFBP-2 was equal to 305.95 ± 194.58 ng/mL in PDAC vs. 485.43 ± 299 ng/mL in CP (p = 0.0002). The mean CA 19-9 serum concentration was 434.95 ± 419.98 U/mL in PDAC vs. 78.07 ± 182.36 U/mL in CP (p = 0.0000). The mean IGF-1/IGFBP-2 ratio was 0.213 ± 0.14 in PDAC vs. 0.277 ± 0.33 in CP (p = 0.1914). The diagnostic usefulness of indicators for the purpose of PDAC and CP differentiation was assessed by means of AUROC comparison. The AUROCs of IGF-1, IGFBP-2, and IGF-1/IGFBP-2 ratio ranged below 0.7, being lower than the AUROC of CA 19-9 (0.7953; 0.719 within 95% CI). Together, the CA 19-9 and IGFBP-2 AUROCs also ranged below 0.8. When age was included, the AUROC increased to 0.8632, and its 95% confidence interval held above the 0.8 limit. The sensitivity of the used markers was not correlated to the stage of pancreatic PDAC. CONCLUSIONS The presented results indicate that CA 19-9 is a marker demonstrating high potential for PDAC and CP differentiation. The inclusion of additional variables into the model, such as the serum level of IGF-1 or IGFBP-2, slightly increased the sensitivity in differentiating CP from PDAC. The IGF-1/IGFBP-2 ratio turned out to be a good marker of pancreatic diseases, but insufficient for the purpose of CP and PDAC differentiation.
Collapse
Affiliation(s)
- Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| | - Lukasz Durko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
11
|
Takumi Y, Arai S, Suzuki C, Fukuda K, Nishiyama A, Takeuchi S, Sato H, Matsumoto K, Sugio K, Yano S. MET kinase inhibitor reverses resistance to entrectinib induced by hepatocyte growth factor in tumors with NTRK1 or ROS1 rearrangements. Cancer Med 2023; 12:5809-5820. [PMID: 36416133 PMCID: PMC10028024 DOI: 10.1002/cam4.5342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Entrectinib is an effective drug for treating solid tumors with NTRK gene rearrangement and non-small cell lung cancer (NSCLC) with ROS1 gene rearrangement. However, its efficacy is limited by tolerance and acquired resistance, the mechanisms of which are not fully understood. The growth factors produced by the tumor microenvironment, including hepatocyte growth factor (HGF) produced by tumor-associated fibroblasts, critically affect the sensitivity to targeted drugs. METHODS We investigated whether growth factors that can be produced by the microenvironment affect sensitivity of NTRK1-rearranged colon cancer KM12SM cells and ROS1-rearranged NSCLC HCC78 cells to entrectinib both in vitro and in vivo. RESULTS Among the growth factors assessed, HGF most potently induced entrectinib resistance in KM12SM and HCC78 cells by activating its receptor MET. HGF-induced entrectinib resistance was reversed by the active-HGF-specific macrocyclic peptide HiP-8 and the MET kinase inhibitor capmatinib in vitro. In addition, HGF-producing fibroblasts promoted entrectinib resistance in vitro (culture model) and in vivo (subcutaneous tumor model). The use of capmatinib circumvented entrectinib resistance in a subcutaneous tumor model inoculated with KM12SM and HGF-producing fibroblasts. CONCLUSION Our findings suggest that growth factors in the tumor microenvironment, such as HGF, may induce resistance to entrectinib in tumors with NTRK1 or ROS1 rearrangements. Our results further suggest that optimally co-administering inhibitors of resistance-inducing growth factors may maximize the therapeutic efficacy of entrectinib.
Collapse
Affiliation(s)
- Yohei Takumi
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
- Department of Thoracic and Breast SurgeryFaculty of MedicineOita UniversityYufuJapan
| | - Sachiko Arai
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Chiaki Suzuki
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Koji Fukuda
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Akihiro Nishiyama
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Shinji Takeuchi
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Hiroki Sato
- Division of Tumor Dynamics and RegulationCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and RegulationCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Kenji Sugio
- Department of Thoracic and Breast SurgeryFaculty of MedicineOita UniversityYufuJapan
| | - Seiji Yano
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
- Department of Respiratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical, and Health SciencesKanazawaJapan
- WPI‐Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaJapan
| |
Collapse
|
12
|
Zhang J, Chen M, Fang C, Luo P. A cancer-associated fibroblast gene signature predicts prognosis and therapy response in patients with pancreatic cancer. Front Oncol 2022; 12:1052132. [PMID: 36465388 PMCID: PMC9716208 DOI: 10.3389/fonc.2022.1052132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 11/03/2023] Open
Abstract
Pancreatic cancer is a lethal malignancy with a 5-year survival rate of about 10% in the United States, and it is becoming an increasingly prominent cause of cancer death. Among pancreatic cancer patients, pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all cases and has a very poor prognosis with an average survival of only 1 year in about 18% of all tumor stages. In the past years, there has been an increasing interest in cancer-associated fibroblasts (CAFs) and their roles in PDAC. Recent data reveals that CAFs in PDAC are heterogeneous and various CAF subtypes have been demonstrated to promote tumor development while others hinder cancer proliferation. Furthermore, CAFs and other stromal populations can be potentially used as novel prognostic markers in cancer. In the present study, in order to evaluate the prognostic value of CAFs in PDAC, CAF infiltration rate was evaluated in 4 PDAC datasets of TCGA, GEO, and ArrayExpress databases and differentially expressed genes (DEGs) between CAF-high and CAF-low patients were identified. Subsequently, a CAF-based gene expression signature was developed and studied for its association with overall survival (OS). Additionally, functional enrichment analysis, somatic alteration analysis, and prognostic risk model construction was conducted on the identified DEGs. Finally, oncoPredict algorithm was implemented to assess drug sensitivity prediction between high- and low-risk cohorts. Our results revealed that CAF risk-high patients have a worse survival rate and increased CAF infiltration is a poor prognostic indicator in pancreatic cancer. Functional enrichment analysis also revealed that "extracellular matrix organization" and "vasculature development" were the top enriched pathways among the identified DEGs. We also developed a panel of 12 genes, which in additional to its prognostic value, could predict higher chemotherapy resistance rate. This CAF-based panel can be potentially utilized alone or in conjunction with other clinical parameters to make early predictions and prognosticate responsiveness to treatment in PDAC patients. Indeed, it is necessary to conduct extensive prospective investigations to confirm the clinical utility of these findings.
Collapse
Affiliation(s)
- Jinbao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meiling Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chuanfa Fang
- Department of Gastroenteric Hernia Surgery, Ganzhou Hospital Affiliated to Nanchang University, Jiangxi, Ganzhou, China
| | - Peng Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
14
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
15
|
Liu S, Suhail Y, Novin A, Perpetua L, Kshitiz. Metastatic Transition of Pancreatic Ductal Cell Adenocarcinoma Is Accompanied by the Emergence of Pro-Invasive Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:2197. [PMID: 35565326 PMCID: PMC9104173 DOI: 10.3390/cancers14092197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are now appreciated as key regulators of cancer metastasis, particularly in cancers with high stromal content, e.g., pancreatic ductal cell carcinoma (PDAC). However, it is not yet well understood if fibroblasts are always primed to be cooperative in PDAC transition to metastasis, if they undergo transformation which ensures their cooperativity, and if such transformations are cancer-driven or intrinsic to fibroblasts. We performed a fibroblast-centric analysis of PDAC cancer, as it transitioned from the primary site to trespass stromal compartment reaching the lymph node using published single-cell RNA sequencing data by Peng et al. We have characterized the change in fibroblast response to cancer from a normal wound healing response in the initial stages to the emergence of subclasses with myofibroblast and inflammatory fibroblasts such as signatures. We have previously posited "Evolved Levels of Invasibility (ELI)", a framework describing the evolution of stromal invasability as a selected phenotype, which explains the large and correlated reduction in stromal invasion by placental trophoblasts and cancer cells in certain mammals. Within PDAC samples, we found large changes in fibroblast subclasses at succeeding stages of PDAC progression, with the emergence of specific subclasses when cancer trespasses stroma to metastasize to proximal lymph nodes (stage IIA to IIB). Surprisingly, we found that the initial metastatic transition is accompanied by downregulation of ELI-predicted pro-resistive genes, and the emergence of a subclass of fibroblasts with ELI-predicted increased invasibility. Interestingly, this trend was also observed in stellate cells. Using a larger cohort of bulk RNAseq data from The Cancer Genome Atlas for PDAC cancers, we confirmed that genes describing this emergent fibroblast subclass are also correlated with lymph node metastasis of cancer cells. Experimental testing of selected genes characterizing pro-resistive and pro-invasive fibroblast clusters confirmed their contribution in regulating stromal invasability as a phenotype. Our data confirm that the complexity of stromal response to cancer is really a function of stage-wise emergence of distinct fibroblast clusters, characterized by distinct gene sets which confer initially a predominantly pro-resistive and then a pro-invasive property to the stroma. Stromal response therefore transitions from being tumor-limiting to a pro-metastatic state, facilitating stromal trespass and the onset of metastasis.
Collapse
Affiliation(s)
- Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
| | - Lorrie Perpetua
- Research Tissue Repository, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
16
|
Xie Z, Gao Y, Ho C, Li L, Jin C, Wang X, Zou C, Mao Y, Wang X, Li Q, Fu D, Zhang YF. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut 2022; 71:568-579. [PMID: 33827783 DOI: 10.1136/gutjnl-2020-323014] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) shows a remarkable predilection for liver metastasis. Pro-oncogenic secretome delivery and trafficking via exosomes are crucial for pre-metastatic microenvironment formation and metastasis. This study aimed to explore the underlying mechanisms of how PDAC-derived exosomes (Pex) modulate the liver microenvironment and promote metastasis. DESIGN C57BL/6 mice were 'educated' by tail vein Pex injection. The intrasplenic injection liver metastasis and PDAC orthotopic transplantation models were used to evaluate liver metastasis. Stable cell lines CD44v6 (CD44 variant isoform 6) or C1QBP (complement C1q binding protein) knockdown or overexpression was established using lentivirus transfection or gateway systems. A total of 142 patients with PDAC in Huashan Hospital were retrospectively enrolled. Prognosis and liver metastasis were predicted using Kaplan-Meier survival curves and logistic regression models. RESULTS Pex tail vein injection induced the deposition of liver fibrotic extracellular matrix, which promoted PDAC liver metastasis. Specifically, the exosomal CD44v6/C1QBP complex was delivered to the plasma membrane of hepatic satellite cells (HSCs), leading to phosphorylation of insulin-like growth factor 1 signalling molecules, which resulted in HSC activation and liver fibrosis. Expression of Pex CD44v6 and C1QBP in PDAC patients with liver metastasis was significantly higher than in PDAC patients without liver metastasis, and simultaneous high expression of exosomal CD44v6 and C1QBP correlated with a worse prognosis and a higher risk of postoperative PDAC liver metastasis. CONCLUSION The Pex-derived CD44v6/C1QBP complex is essential for the formation of a fibrotic liver microenvironment and PDAC liver metastasis. Highly expressed exosomal CD44v6 and C1QBP are promising biomarkers for predicting prognosis and liver metastasis in patients with PDAC.
Collapse
Affiliation(s)
- Zhibo Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai, China.,Department of Pancreatic Surgery, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Chiakang Ho
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Lequn Li
- Department of Hepatobiliary and Pancreas Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi, China
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Xiaoyi Wang
- Department of Pancreatic Surgery, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Caifeng Zou
- Department of Pancreatic Surgery, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Yishen Mao
- Department of Pancreatic Surgery, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Xiaobo Wang
- Department of Hepatobiliary and Pancreas Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Yi-Fan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| |
Collapse
|
17
|
Kpeglo D, Hughes MD, Dougan L, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biol Plus 2022; 14:100109. [PMID: 35399702 PMCID: PMC8990173 DOI: 10.1016/j.mbplus.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
The PDAC stroma stiffness underlines its malignant behavior and drug resistance. 3D in vitro cultures must model the PDAC stroma to effectively drug efficacy. PSCs are responsible for the stroma, and its activity is increased with TGF-β. Develop a 3D culture model of PDAC, which includes PSCs and TGF-β. Assess the mechanical stiffness, stain for collagen, and investigate gemcitabine efficacy.
Despite improvements in the understanding of disease biology, pancreatic ductal adenocarcinoma (PDAC) remains the most malignant cancer of the pancreas. PDAC constitutes ∼95% of all pancreatic cancers, and it is highly resistant to therapeutics. The increased tissue rigidity, which stems from the rich fibrotic stroma in the tumor microenvironment, is central to disease development, physiology, and resistance to drug perfusion. Pancreatic stellate cells (PSCs) are responsible for overproduction of extracellular matrix in the fibrotic stroma, and this is exacerbated by the overexpression of transforming growth factor-β (TGF-β). However, there are few in vitro PDAC models, which include both PSCs and TGF-β or mimic in vivo-like tumor stiffness. In this study, we present a three-dimensional in vitro PDAC model, which includes PSCs and TGF-β, and recapitulates PDAC tissue mechanical stiffness. Using oscillatory shear rheology, we show the mechanical stiffness of the model is within range of the PDAC tissue stiffness by day 21 of culture and highlight that the matrix environment is essential to adequately capture PDAC disease. PDAC is a complex, aggressive disease with poor prognosis, and biophysically relevant in vitro PDAC models, which take into account tissue mechanics, will provide improved tumor models for effective therapeutic assessment.
Collapse
Affiliation(s)
- Delanyo Kpeglo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
| | - Matthew D.G. Hughes
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Block 35, Mereside Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Margaret A. Knowles
- Leeds Institute of Medical Research at St James’s (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| | - Stephen D. Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Leeds Institute of Medical Research at St James’s (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
- Corresponding author at: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| |
Collapse
|
18
|
Deng J, Guo Y, Du J, Gu J, Kong L, Tao B, Li J, Fu D. The Intricate Crosstalk Between Insulin and Pancreatic Ductal Adenocarcinoma: A Review From Clinical to Molecular. Front Cell Dev Biol 2022; 10:844028. [PMID: 35252207 PMCID: PMC8891560 DOI: 10.3389/fcell.2022.844028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increased insulin level (or "hyperinsulinemia") is a common phenomenon in pancreatic ductal adenocarcinoma (PDA) patients and signals poor clinical outcomes. Insulin is safe in low PDA risk population, while insulin significantly promotes PDA risk in high PDA risk population. The correlation between insulin and PDA is a reciprocal self-reinforcing relationship. On the one hand, pancreatic cancer cells synthesize multiple molecules to cause elevated peripheral insulin resistance, thus enhancing hyperinsulinemia. On the other hand, insulin promotes pancreatic cancer initiation and sustains PDA development by eliciting tumorigenic inflammation, regulating lipid and glucose metabolic reprogram, overcoming apoptosis through the crosstalk with IGF-1, stimulating cancer metastasis, and activating tumor microenvironment formation (inflammation, fibrosis, and angiogenesis). Currently, taking glucose sensitizing agents, including metformin, SGLT-2 inhibitor, and GLP-1 agonist, is an effective way of lowering insulin levels and controlling PDA development at the same time. In the future, new drugs targeting insulin-related signal pathways may pave a novel way for suppressing PDA initiation and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
19
|
Geleta B, Park KC, Jansson PJ, Sahni S, Maleki S, Xu Z, Murakami T, Pajic M, Apte MV, Richardson DR, Kovacevic Z. Breaking the cycle: Targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J 2021; 35:e21347. [PMID: 33484481 DOI: 10.1096/fj.202002279r] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PaCa) is characterized by dense stroma that hinders treatment efficacy, with pancreatic stellate cells (PSCs) being a major contributor to this stromal barrier and PaCa progression. Activated PSCs release hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1) that induce PaCa proliferation, metastasis and resistance to chemotherapy. We demonstrate for the first time that the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is a potent inhibitor of the PaCa-PSC cross-talk, leading to inhibition of HGF and IGF-1 signaling. NDRG1 also potently reduced the key driver of PaCa metastasis, namely GLI1, leading to reduced PSC-mediated cell migration. The novel clinically trialed anticancer agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which upregulates NDRG1, potently de-sensitized PaCa cells to ligands secreted by activated PSCs. DpC and NDRG1 also inhibited the PaCa-mediated activation of PSCs via inhibition of sonic hedgehog (SHH) signaling. In vivo, DpC markedly reduced PaCa tumor growth and metastasis more avidly than the standard chemotherapy for this disease, gemcitabine. Uniquely, DpC was selectively cytotoxic against PaCa cells, while "re-programming" PSCs to an inactive state, decreasing collagen deposition and desmoplasia. Thus, targeting NDRG1 can effectively break the oncogenic cycle of PaCa-PSC bi-directional cross-talk to overcome PaCa desmoplasia and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Cancer Drug Resistance Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
21
|
Pang TCY, Xu Z, Mekapogu AR, Pothula S, Becker T, Corley S, Wilkins MR, Goldstein D, Pirola R, Wilson J, Apte M. HGF/c-Met Inhibition as Adjuvant Therapy Improves Outcomes in an Orthotopic Mouse Model of Pancreatic Cancer. Cancers (Basel) 2021; 13:2763. [PMID: 34199452 PMCID: PMC8199621 DOI: 10.3390/cancers13112763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Inhibition of hepatocyte growth factor (HGF)/c-MET pathway, a major mediator of pancreatic stellate cell (PSC)-PC cell interactions, retards local and distant cancer progression. This study examines the use of this treatment in preventing PC progression after resection. We further investigate the postulated existence of circulating PSCs (cPSCs) as a mediator of metastatic PC. METHODS Two orthotopic PC mouse models, produced by implantation of a mixture of luciferase-tagged human pancreatic cancer cells (AsPC-1), and human PSCs were used. Model 1 mice underwent distal pancreatectomy 3-weeks post-implantation (n = 62). One-week post-resection, mice were randomised to four treatments of 8 weeks: (i) IgG, (ii) gemcitabine (G), (iii) HGF/c-MET inhibition (HiCi) and (iv) HiCi + G. Tumour burden was assessed longitudinally by bioluminescence. Circulating tumour cells and cPSCs were enriched by filtration. Tumours of Model 2 mice progressed for 8 weeks prior to the collection of primary tumour, metastases and blood for single-cell RNA-sequencing (scRNA-seq). RESULTS HiCi treatments: (1) reduced both the risk and rate of disease progression after resection; (2) demonstrated an anti-angiogenic effect on immunohistochemistry; (3) reduced cPSC counts. cPSCs were identified using immunocytochemistry (α-smooth muscle actin+, pan-cytokeratin-, CD45-), and by specific PSC markers. scRNA-seq confirmed the existence of cPSCs and identified potential genes associated with development into cPSCs. CONCLUSIONS This study is the first to demonstrate the efficacy of adjuvant HGF/c-Met inhibition for PC and provides the first confirmation of the existence of circulating PSCs.
Collapse
Affiliation(s)
- Tony C. Y. Pang
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
- Surgical Innovations Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Srinivasa Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Therese Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia;
| | - Susan Corley
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; (S.C.); (M.R.W.)
| | - Marc R. Wilkins
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; (S.C.); (M.R.W.)
| | - David Goldstein
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Romano Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Jeremy Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| |
Collapse
|
22
|
Chen PC, Kuo YC, Chuong CM, Huang YH. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front Cell Dev Biol 2021; 8:625943. [PMID: 33511137 PMCID: PMC7835526 DOI: 10.3389/fcell.2020.625943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells work with their niches harmoniously during development. This concept has been extended to cancer pathology for cancer stem cells (CSCs) or cancer reprogramming. IGF-1R, a classical survival signaling, has been shown to regulate stem cell pluripotency, CSCs, or cancer reprogramming. The mechanism underlying such cell fate determination is unclear. We propose the determination is due to different niches in embryo development and tumor malignancy which modulate the consequences of IGF-1R signaling. Here we highlight the modulations of these niche parameters (hypoxia, inflammation, extracellular matrix), and the targeted stem cells (embryonic stem cells, germline stem cells, and mesenchymal stem cells) and CSCs, with relevance to cancer reprogramming. We organize known interaction between IGF-1R signaling and distinct niches in the double-sided cell fate with emerging trends highlighted. Based on these new insights, we propose that, through targeting IGF-1R signaling modulation, stem cell therapy and cancer stemness treatment can be further explored.
Collapse
Affiliation(s)
- Pei-Chin Chen
- Department of Education, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Yashiro M, Kinoshita H, Tsujio G, Fukuoka T, Yamamoto Y, Sera T, Sugimoto A, Nishimura S, Kushiyama S, Togano S, Kuroda K, Toyokawa T, Ohira M. SDF1α/CXCR4 axis may be associated with the malignant progression of gastric cancer in the hypoxic tumor microenvironment. Oncol Lett 2020; 21:38. [PMID: 33262830 PMCID: PMC7693388 DOI: 10.3892/ol.2020.12299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Stromal cell-derived factor 1α (SDF1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) have been reported to form an important chemokine signaling pathway. Our previous study reported that SDF1α from tumor stromal cells may stimulate the proliferation of gastric cancer (GC) cells through the CXCR4 axis in a hypoxic microenvironment. However, a limited number of studies have addressed the clinicopathological significance of the expression of SDF1α and CXCR4 in GC, particularly at hypoxic regions. Immunohistochemistry was used to investigate the expression levels of SDF1α, CXCR4 and the hypoxic marker carbonic anhydrase 9 (CA9) in 185 patients with stage II and III GC. The results demonstrated that CA9 was expressed on cancer and stromal cells in hypoxic lesions, CXCR4 was mainly expressed in cancer cells, and SDFα was mainly expressed in stromal cells. CXCR4 expression in cancer cells and SDFα expression in stromal cells were associated with the hypoxic regions with CA9 expression. The CA9 and CXCR4 expression in the cancer cells, and the SDF1α expression in the stromal cells (CA9/CXCR4/SDF1α) was significantly associated with macroscopic type 4 tumor (P=0.012) and the pattern of tumor infiltration into the surrounding tissue (P<0.001). The prognosis of the all CA9/CXCR4/SDF1α-positive patients was significantly poorer compared with that of patients with CA9-, CXCR4- or SDF1α-negative GC at Stage III (P=0.041). These results indicated that hypoxia may upregulate SDFα production in stromal cells and CXCR4 expression in cancer cells. The SDF1α/CXCR4 axis may serve an important role in the progression of GC.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Haruhito Kinoshita
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yurie Yamamoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
25
|
Shah VM, Sheppard BC, Sears RC, Alani AW. Hypoxia: Friend or Foe for drug delivery in Pancreatic Cancer. Cancer Lett 2020; 492:63-70. [PMID: 32822815 DOI: 10.1016/j.canlet.2020.07.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal solid tumors with an overall five-year survival rate of that has only just reached 10%. The tumor microenvironment of PDAC is characterized by desmoplasia, which consist of dense stroma of fibroblasts and inflammatory cells, resulting in a hypoxic environment due to limited oxygen diffusion through the tumor. Hypoxia contributes to the aggressive tumor biology by promoting tumor progression, malignancy, and promoting resistance to conventional and targeted therapeutic agents. In depth research in the area has identified that hypoxia modulates the tumor biology through hypoxia inducible factors (HIFs), which not only are the key determinant of pancreatic malignancy but also an important target for therapy. In this review, we summarize the recent advances in understanding hypoxia driven phenotypes, which are responsible for the highly aggressive and metastatic characteristics of pancreatic cancer, and how hypoxia can be exploited as a target for drug delivery.
Collapse
Affiliation(s)
- Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, 2730 SW Moody Ave., Portland, OR, 97201, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Brett C Sheppard
- Department of Surgery, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA; OHSU Knight Cancer Institute at Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Rd., Portland, OR, 97239, USA; OHSU Knight Cancer Institute at Oregon Health & Science University, Portland, OR, 97239, USA
| | - Adam Wg Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, 2730 SW Moody Ave., Portland, OR, 97201, USA; OHSU Knight Cancer Institute at Oregon Health & Science University, Portland, OR, 97239, USA; Department of Biomedical Engineering, School of Medicine at Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
26
|
Turaga RC, Sharma M, Mishra F, Krasinskas A, Yuan Y, Yang JJ, Wang S, Liu C, Li S, Liu ZR. Modulation of Cancer-Associated Fibrotic Stroma by An Integrin α vβ 3 Targeting Protein for Pancreatic Cancer Treatment. Cell Mol Gastroenterol Hepatol 2020; 11:161-179. [PMID: 32810598 PMCID: PMC7674520 DOI: 10.1016/j.jcmgh.2020.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapeutics owing to dense fibrotic stroma orchestrated by cancer-associated pancreatic stellate cells (CAPaSC). CAPaSC also support cancer cell growth, metastasis, and resistance to apoptosis. Currently, there is no effective therapy for PDAC that specifically targets CAPaSC. We previously reported a rationally designed protein, ProAgio, that targets integrin αvβ3 at a novel site and induces apoptosis in integrin αvβ3-expressing cells. Because both CAPaSC and angiogenic endothelial cells express high levels of integrin αvβ3, we aimed to analyze the effects of ProAgio in PDAC tumor. METHODS Expression of integrin αvβ3 was examined in both patient tissue and cultured cells. The effects of ProAgio on CAPaSC were analyzed using an apoptosis assay kit. The effects of ProAgio in PDAC tumor were studied in 3 murine tumor models: subcutaneous xenograft, genetic engineered (KrasG12D; p53R172H; Pdx1-Cre, GEM-KPC) mice, and an orthotopic KrasG12D; p53R172H; Pdx1-Cre (KPC) model. RESULTS ProAgio induces apoptosis in CAPaSC. ProAgio treatment significantly prolonged survival of a genetically engineered mouse-KPC and orthotopic KPC mice alone or in combination with gemcitabine (Gem). ProAgio specifically induced apoptosis in CAPaSC, resorbed collagen, and opened collapsed tumor vessels without an increase in angiogenesis in PDAC tumor, enabling drug delivery into the tumor. ProAgio decreased intratumoral insulin-like growth factor 1 levels as a result of depletion of CAPaSC and consequently decreased cytidine deaminase, a Gem metabolism enzyme in cancer cells, and thereby reduced resistance to Gem-induced apoptosis. CONCLUSIONS Our study suggests that ProAgio is an effective PDAC treatment agent because it specifically depletes CAPaSC and eliminates tumor angiogenesis, thereby enhancing drug delivery and Gem efficacy in PDAC tumors.
Collapse
Affiliation(s)
| | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Shiyuan Wang
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Chunfeng Liu
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Sun Li
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
27
|
Actively Targeted Nanodelivery of Echinomycin Induces Autophagy-Mediated Death in Chemoresistant Pancreatic Cancer In Vivo. Cancers (Basel) 2020; 12:cancers12082279. [PMID: 32823919 PMCID: PMC7464900 DOI: 10.3390/cancers12082279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains a recalcitrant neoplasm associated with chemoresistance and high fatality. Because it is frequently resistant to apoptosis, exploiting autophagic cell death could offer a new treatment approach. We repurpose echinomycin, an antibiotic encapsulated within a syndecan-1 actively targeted nanoparticle, for treatment of pancreatic cancer. Tumor-specific uptake, biodistribution, efficacy of nanodelivered echinomycin, and mechanism of cell death were assessed in aggressive, metastatic models of pancreatic cancer. In these autophagic-dependent pancreatic cancer models, echinomycin treatment resulted in autophagic cell death noted by high levels of LC3 among other autophagy markers, but without hallmarks of apoptosis, e.g., caspase activation and chromatin fragmentation, or necrosis, e.g., plasma membrane degradation and chromatin condensation/degrading. In vivo, biodistribution of syndecan-1-targeted nanoparticles indicated preferential S2VP10 or S2CP9 tumor uptake compared to the liver and kidney (S2VP10 p = 0.0016, p = 0.00004 and S2CP9 p = 0.0009, p = 0.0001). Actively targeted nanodelivered echinomycin resulted in significant survival increases compared to Gemzar (S2VP10 p = 0.0003, S2CP9 p = 0.0017) or echinomycin only (S2VP10 p = 0.0096, S2CP9 p = 0.0073). We demonstrate that actively targeted nanodelivery of echinomycin results in autophagic cell death in pancreatic and potentially other high-autophagy, apoptosis-resistant tumors. Collectively, these findings support syndecan-1-targeted delivery of echinomycin and dysregulation of autophagy to induce cell death in pancreatic cancer.
Collapse
|
28
|
Bolm L, Zghurskyi P, Lapshyn H, Petrova E, Zemskov S, Vashist YK, Deichmann S, Honselmann KC, Bronsert P, Keck T, Wellner UF. Alignment of stroma fibers, microvessel density and immune cell populations determine overall survival in pancreatic cancer-An analysis of stromal morphology. PLoS One 2020; 15:e0234568. [PMID: 32658932 PMCID: PMC7357746 DOI: 10.1371/journal.pone.0234568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this study was to define histo-morphological stroma characteristics by analyzing stromal components, and to evaluate their impact on local and systemic tumor spread and overall survival in pancreatic ductal adenocarcinoma (PDAC). Methods and materials Patients who underwent oncologic resections with curative intent for PDAC were identified from a prospectively maintained database. Histological specimens were re-evaluated for morphological stroma features as stromal fibers, fibroblast morphology, stroma matrix density, microvessel density and distribution of immune cell populations. Results A total of 108 patients were identified undergoing curative resection for PDAC in the period from 2011–2016. 33 (30.6%) patients showed parallel alignment of stroma fibers while 75 (69.4%) had randomly oriented stroma fibers. As compared to parallel alignment, random orientation of stroma fibers was associated with larger tumor size (median 3.62 cm vs. median 2.87cm, p = 0.037), nodal positive disease (76.0% vs. 54.5%, p = 0.040), higher margin positive resection rates (41.9% vs. 15.2%, p = 0.008) and a trend for higher rates of T3/4 tumors (33.3% vs. 15.2%, p = 0.064). In univariate analysis, patients with parallel alignment of stroma fibers had improved overall survival rates as compared to patients with random orientation of stroma fibers (42 months vs. 22 months, p = 0.046). The combination of random orientation of stroma fibers and low microvessel density was associated with impaired overall survival rates (16 months vs. 36 months, p = 0.019). A high CD4/CD3 ratio (16 months vs. 33 months, p = 0.040) and high stromal density of CD163 positive cells were associated with reduced overall survival (27 months vs. 34 months, p = 0.039). In multivariable analysis, the combination of random orientation of stroma fibers and low microvessel density (HR 1.592, 95%CI 1.098–2.733, p = 0.029), high CD4/CD3 ratio (HR 2.044, 95%CI 1.203–3.508, p = 0.028) and high density of CD163 positive cells (HR 1.596, 95%CI 1.367–1.968, p = 0.036) remained independent prognostic factors. Conclusion Alignment of stroma fibers and microvessel density are simple histomorphological features serving as surrogate markers of local tumor progression dissemination and surgical resectability and determine prognosis in PDAC patients. High CD4/CD3 ratio and CD163 positive cell counts determine poor prognosis.
Collapse
Affiliation(s)
- Louisa Bolm
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Petro Zghurskyi
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Hryhoriy Lapshyn
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Ekaterina Petrova
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Sergiy Zemskov
- Department of General Surgery #1, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yogesh K. Vashist
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Kim C. Honselmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Peter Bronsert
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Keck
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
- * E-mail:
| | - Ulrich F. Wellner
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| |
Collapse
|
29
|
Wang W, Han Y, Jo HA, Lee J, Song YS. Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment. J Hematol Oncol 2020; 13:67. [PMID: 32503591 PMCID: PMC7275461 DOI: 10.1186/s13045-020-00893-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small extracellular vesicles secreted by almost all the cells. Molecular cargos of exosomes can partially reflect the characteristics of originating cells. Exosome-mediated cell-to-cell interactions in the microenvironment are critical in cancer progression. Hypoxia, a key pro-cancerous feature of the tumor microenvironment, alters the releasing and contents of exosomes. A growing body of evidence shows that hypoxia induces more aggressive phenotypes in cancer. Of note, non-coding RNAs shuttled in hypoxic tumor-derived exosomes have been demonstrated as fundamental molecules in regulating cancer biology and remodeling tumor microenvironment. Furthermore, these hypoxic tumor-derived exosomal non-coding RNAs can be detected in the body fluids, serving as promising diagnostic and prognostic biomarkers. The current review discusses changes in cancer behaviors regulated by exosomes-secreted non-coding RNAs under hypoxic conditions.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun A Jo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
30
|
Du C, da Silva A, Morales-Oyarvide V, Dias Costa A, Kozak MM, Dunne RF, Rubinson DA, Perez K, Masugi Y, Hamada T, Brais LK, Yuan C, Babic A, Ducar MD, Thorner AR, Aguirre A, Kulke MH, Ng K, Clancy TE, Findeis-Hosey JJ, Chang DT, Hornick JL, Fuchs CS, Ogino S, Koong AC, Hezel AF, Wolpin BM, Nowak JA. Insulin-Like Growth Factor-1 Receptor Expression and Disease Recurrence and Survival in Patients with Resected Pancreatic Ductal Adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2020; 29:1586-1595. [PMID: 32467349 DOI: 10.1158/1055-9965.epi-19-1315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/17/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Insulin-like growth factor-1 receptor (IGF1R) signaling is important in pancreatic ductal adenocarcinoma (PDAC) biology, but little is known regarding IGF1R expression and patient characteristics and outcomes. METHODS In 365 patients with resected PDAC, we evaluated IGF1R protein expression using IHC on whole-slide sections and IGF1R genomic status using next-generation sequencing. Associations of IGF1R expression, measured by H-scores incorporating staining intensity and proportion of positive tumor cells, with disease-free survival (DFS) and overall survival (OS) were evaluated in 317 and 321 patients, respectively, using Cox regression adjusting for known prognostic factors. RESULTS Higher IGF1R expression in tumor cells was associated with worse DFS comparing highest versus lowest expression tertiles [median DFS, 10.8 vs. 16.1 months; adjusted hazard ratio (HR), 1.73; 95% confidence interval (CI), 1.24-2.44; P trend = 0.002] and worse OS (median OS, 17.4 vs. 25.8 months; HR, 1.39; 95% CI, 1.00-1.92; P trend = 0.046). The association between high IGF1R expression and reduced DFS was identified primarily among patients with a preoperative body mass index ≥25 kg/m2 (HR, 4.27; 95% CI, 2.03-8.96, comparing extreme tertiles; P interaction = 0.032). KRAS-mutant tumors had greater IGF1R expression, and IGF1R expression in tumor epithelium was inversely correlated with that in stromal cells. Mutations in IGF1R were infrequent, and no overt loss-of-function alterations were identified. Higher IGF1R expression was modestly associated with higher gene copy number (Pearson correlation coefficient = 0.26, P < 0.001). CONCLUSIONS Higher IGF1R protein expression was associated with worse patient outcomes in resected PDAC. IMPACT IGF1R expression in PDAC represents a potential biomarker to guide patient selection for more aggressive, multidrug regimens in the adjuvant setting.
Collapse
Affiliation(s)
- Chunxia Du
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andressa Dias Costa
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Richard F Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Matthew D Ducar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Matthew H Kulke
- Section of Hematology/Oncology, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Thomas E Clancy
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, Smilow Cancer Hospital and Yale School of Medicine, New Haven, Connecticut
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aram F Hezel
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers (Basel) 2020; 12:cancers12051347. [PMID: 32466266 PMCID: PMC7281461 DOI: 10.3390/cancers12051347] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the 4th leading cause of cancer deaths in the United States. The pancreatic cancer phenotype is primarily a consequence of oncogenes disturbing the resident pancreas parenchymal cell repair program. Many solid tumor types including pancreatic cancer have severe tumor fibrosis called desmoplasia. Desmoplastic stroma is coopted by the tumor as a support structure and CAFs aid in tumor growth, invasion, and metastases. This stroma is caused by cancer associated fibroblasts (CAFs), which lay down extensive connective tissue in and around the tumor cells. CAFs represent a heterogeneous population of cells that produce various paracrine molecules such as transforming growth factor-beta (TGF-beta) and platelet derived growth factors (PDGFs) that aid tumor growth, local invasion, and development of metastases. The hard, fibrotic shell of desmoplasia serves as a barrier to the infiltration of both chemo- and immunotherapy drugs and host immune cells to the tumor. Although there have been recent improvements in chemotherapy and surgical techniques for management of pancreatic cancer, the majority of patients will die from this disease. Therefore, new treatment strategies are clearly needed. CAFs represent an under-explored potential therapeutic target. This paper discusses what we know about the role of CAFs in pancreatic cancer cell growth, invasion, and metastases. Additionally, we present different strategies that are being and could be explored as anti-CAF treatments for pancreatic cancer.
Collapse
|
32
|
Thomas D, Radhakrishnan P. Role of Tumor and Stroma-Derived IGF/IGFBPs in Pancreatic Cancer. Cancers (Basel) 2020; 12:E1228. [PMID: 32414222 PMCID: PMC7281733 DOI: 10.3390/cancers12051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is the utmost stroma-rich cancer, which is accompanied by fibrotic reactions that stimulate interactions between tumor cells and stroma to promote tumor progression. Considerable research evidence denotes that insulin-like growth factor (IGF)/IGF binding proteins (IGFBP) signaling axis facilitate tumor growth, metastasis, drug resistance, and thereby facilitate PC into an advanced stage. The six members of IGFBPs were initially considered as passive carriers of free IGFs; however, current evidence revealed their functions beyond the endocrine role in IGF transport. Though numerous efforts have been made in blocking IGF/IGFBPs, the targeted therapies remain unsuccessful due to the complexity of tumor-stromal interactions in the pancreas. In this review, we explore the emerging evidence of the various roles of the tumor as well as stroma derived IGF/IGFBPs and highlight as a novel therapeutic target against PC progression.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Yamasaki A, Yanai K, Onishi H. Hypoxia and pancreatic ductal adenocarcinoma. Cancer Lett 2020; 484:9-15. [PMID: 32380129 DOI: 10.1016/j.canlet.2020.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Chemotherapy and immunotherapy for pancreatic ductal adenocarcinoma (PDAC) have limited success. One reason for this is thought to be the cancer microenvironment surrounding PDAC. Hypoxia is a feature of the cancer microenvironment. Under hypoxia, different various molecules and signaling pathways are activated compared with normoxia. To develop a new effective therapeutic strategy for PDAC, we need to target these hypoxic conditions to overcome PDAC. To inhibit the malignant phenotype, the cellular changes that occur under hypoxia should be elucidated. Various molecules and signaling that are activated by hypoxia may contribute to the induction of malignant phenotypes of PDAC such as proliferation, invasion, tumorigenesis, chemosensitivity, and autophagy. If we can develop therapeutic approaches to target one of these molecules or signaling pathways, we may proceed to the next therapeutic step of successfully treating refractory PDAC.
Collapse
Affiliation(s)
- Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Yanai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
34
|
Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol 2019; 35:407-421. [PMID: 30680600 PMCID: PMC6881418 DOI: 10.1007/s10565-019-09461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
The goal of cancer eradication has been overshadowed despite the continuous improvement in research and generation of novel cancer therapeutic drugs. One of the undeniable existing problems is drug resistance due to which the paradigm of killing all cancer cells is ineffective. Tumor microenvironment plays a crucial role in inducing drug resistance besides cancer development and progression. Recently, many efforts have been devoted to understand the role of tumor microenvironment in cancer drug resistance as it provides the shelter, nutrition, and paracrine niche for cancer cells. Cancer-associated fibroblasts (CAFs), one major component of tumor microenvironment, reside in symbiotic relationship with cancer cells, supporting them to survive from cancer drugs. The present review summarizes the recent understandings in the role of CAFs in drug resistance in various tumors. Acknowledging the fact that drug resistance depends not only upon cancer cells but also upon the microenvironment niche could guide us to formulate novel cancer drugs and provide the optimal cancer treatment.
Collapse
Affiliation(s)
- Dhruba Kadel
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Hao-Ran Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yue Zhao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
35
|
Meier-Hubberten JC, Sanderson MP. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery. Methods Mol Biol 2019; 1953:163-179. [PMID: 30912022 DOI: 10.1007/978-1-4939-9145-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high attrition rate of oncology drug candidates can be in part explained by the disconnect between the standard preclinical models (e.g., 2D culture, xenograft tumors) commonly employed for drug discovery and the complex multicellular microenvironment of human cancers. As such, significant focus has recently shifted to the establishment of preclinical models that more closely recapitulate human tumors, such as patient-derived xenografts, 3D spheroids, humanized mice, and mixed-culture models. For these models to be suited to drug discovery, they should optimally exhibit reproducibility, high-throughput, and robust and simple assay readouts. In this article, we describe a protocol for the generation of an in vitro 3D co-culture spheroid model that recapitulates the interaction of tumor cells with stromal fibroblasts in pancreatic adenocarcinoma. We additionally describe protocols relevant to the analysis of these spheroids in high-throughput drug discovery campaigns such as the assessment of spheroid proliferation, immunofluorescence and immunohistochemistry staining of spheroids, live-cell and confocal imaging and analysis of cell surface markers.
Collapse
|
36
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
37
|
Begum A, McMillan RH, Chang YT, Penchev VR, N.V. R, Maitra A, Goggins MG, Eshelman JR, Wolfgang CL, Rasheed ZA, Matsui W. Direct Interactions With Cancer-Associated Fibroblasts Lead to Enhanced Pancreatic Cancer Stem Cell Function. Pancreas 2019; 48:329-334. [PMID: 30747824 PMCID: PMC6411432 DOI: 10.1097/mpa.0000000000001249] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs) play an important role in the progression of pancreatic ductal adenocarcinoma (PDAC) by promoting tumor cell migration and drug resistance. We determined the impact of CAFs on PDAC cancer stem cells (CSCs). METHODS Fibroblast cell lines from patients' tumors were cocultured with PDAC cells and examined for clonogenic growth and self-renewal using colony-forming assays and migration in vitro. Changes in the frequency of CSCs was determined by flow cytometry. The effect of integrin-focal adhesion kinase (FAK) signaling on CAF-mediated clonogenic growth was evaluated using short hairpin RNAs against β1 integrin and FAK as well as a small-molecule FAK inhibitor. RESULTS Cancer-associated fibroblasts enhanced PDAC clonogenic growth, self-renewal, and migration that was associated with an increase in the frequency of CSCs. These fibroblast cells were activated by PDAC cells and increased collagen synthesis resulting in FAK activation in PDAC cells. Knockdown of β1-integrin and FAK or the inhibition of FAK kinase activity in PDAC cells abrogated the impact of CAFs on clonogenic growth. CONCLUSION Therefore, CAFs enhance PDAC clonogenic growth, self-renewal, and the frequency of CSCs through type I collagen production that enhances integrin-FAK signaling in PDAC cells.
Collapse
Affiliation(s)
- Asma Begum
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ross H. McMillan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yu-Tai Chang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vesselin R. Penchev
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajeshkumar N.V.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anirban Maitra
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Michael G. Goggins
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Eshelman
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher L. Wolfgang
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zeshaan A. Rasheed
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - William Matsui
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
38
|
Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int J Mol Sci 2018; 19:ijms19113331. [PMID: 30366466 PMCID: PMC6274743 DOI: 10.3390/ijms19113331] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer and obesity are the two major epidemics of the 21st century. Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of death, with a five-year overall survival rate of only 8%. Its incidence and mortality have increased in recent years, and this cancer type is expected to be among the top five leading causes of cancer-related death by 2030 in the United States (US). In the last three decades, the prevalence of overweight people has boosted with a consequent increase in obesity-related diseases. Considerable epidemiologic evidence correlates overweight and obese conditions to an increased risk of several types of cancer, including PDAC. Besides being a risk factor for multiple metabolic disorders, the tumor-promoting effects of obesity occur at the local level via inflammatory mediators that are associated with adipose inflammation and metabolic or hormones mediators and microbiota dysbiosis. Although an excess of body mass index (BMI) represents the second most modifiable risk factor for PDAC with an increased cancer related-death of more than 20–40%, still little is known about the molecular mechanisms that underlie this strong association. In this review, we focused on the role of obesity as a preventable risk factor of PDAC, discussing the molecular mechanisms linking obesity to cancer initiation and progression. Moreover, we highlighted the role of obesity in defining chemoresistance, showing how a high BMI can actually reduce response to chemotherapy.
Collapse
|
39
|
Durymanov M, Kroll C, Permyakova A, O'Neill E, Sulaiman R, Person M, Reineke J. Subcutaneous Inoculation of 3D Pancreatic Cancer Spheroids Results in Development of Reproducible Stroma-Rich Tumors. Transl Oncol 2018; 12:180-189. [PMID: 30554606 PMCID: PMC6295361 DOI: 10.1016/j.tranon.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by high expression of extracellular matrix in tumor tissue, which contributes to chemoresistance and poor prognosis. Here, we developed 3D pancreatic cancer spheroids, based on pancreatic cancer cells and fibroblast co-culture, which demonstrate innate desmoplastic properties and stay poorly permeable for model nanoparticles. Our study revealed that establishment of tumors by transplantation of spheroids significantly improved subcutaneous xenograft model of PDAC, which stays the most widely used animal model for testing of new drugs and drug delivery approaches. Spheroid based tumors abundantly produced different extracellular matrix (ECM) components including collagen I, fibronectin, laminin and hyaluronic acid. These tumors were highly reproducible with excellent uniformity in terms of ECM architecture recapitulating clinical PDAC tumors, whereas in more common cell based xenografts a significant intertumor heterogeneity in extracellular matrix production was found. Moreover, spheroid based xenografts demonstrated higher expression of pro-fibrotic and pro-survival PDAC hallmarks in opposite to cell based counterparts. We believe that future development of this model will provide an effective instrument for testing of anti-cancer drugs with improved predictive value.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD
| | - Christian Kroll
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD
| | - Anastasia Permyakova
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD
| | | | - Raed Sulaiman
- Department of Pathology and Laboratory Medicine, Avera McKennan Hospital, Sioux Falls, SD
| | | | - Joshua Reineke
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD.
| |
Collapse
|
40
|
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, Yu X, Xu J. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Am J Cancer Res 2018; 8:5072-5087. [PMID: 30429887 PMCID: PMC6217060 DOI: 10.7150/thno.26546] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most challenging lethal tumors and has a very poor prognosis. In addition to cancer cells, the tumor microenvironment created by a repertoire of resident and recruited cells and the extracellular matrix also contribute to the acquisition of hallmarks of cancer. Among these factors, cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment. CAFs originate from the activation of resident fibroblasts and pancreatic stellate cells, the differentiation of bone marrow-derived mesenchymal stem cells and epithelial-to-mesenchymal transition. CAFs acquire an activated phenotype via various cytokines and promote tumor proliferation and growth, accelerate invasion and metastasis, induce angiogenesis, promote inflammation and immune destruction, regulate tumor metabolism, and induce chemoresistance; these factors contribute to the acquisition of major hallmarks of PDAC. Therefore, an improved understanding of the impact of CAFs on the major hallmarks of PDAC will highlight the diagnostic and therapeutic values of these targeted cells.
Collapse
|
41
|
Mutgan AC, Besikcioglu HE, Wang S, Friess H, Ceyhan GO, Demir IE. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer. Mol Cancer 2018; 17:66. [PMID: 29475434 PMCID: PMC5824531 DOI: 10.1186/s12943-018-0806-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is unrivalled the deadliest gastrointestinal cancer in the western world. There is substantial evidence implying that insulin and insulin-like growth factor (IGF) signaling axis prompt PDAC into an advanced stage by enhancing tumor growth, metastasis and by driving therapy resistance. Numerous efforts have been made to block Insulin/IGF signaling pathway in cancer therapy. However, therapies that target the IGF1 receptor (IGF-1R) and IGF subtypes (IGF-1 and IGF-2) have been repeatedly unsuccessful. This failure may not only be due to the complexity and homology that is shared by Insulin and IGF receptors, but also due to the complex stroma-cancer interactions in the pancreas. Shedding light on the interactions between the endocrine/exocrine pancreas and the stroma in PDAC is likely to steer us toward the development of novel treatments. In this review, we highlight the stroma-derived IGF signaling and IGF-binding proteins as potential novel therapeutic targets in PDAC.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - H Erdinc Besikcioglu
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, München, Germany.,Department of Histology and Embryology, Gazi University Institute of Health Sciences, Ankara, Turkey
| | - Shenghan Wang
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, München, Germany.
| |
Collapse
|
42
|
Jiang Z, Chen K, Cheng L, Yan B, Qian W, Cao J, Li J, Wu E, Ma Q, Yang W. Resveratrol and cancer treatment: updates. Ann N Y Acad Sci 2017; 1403:59-69. [PMID: 28945938 DOI: 10.1111/nyas.13466] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
Cancer, a growing health problem worldwide, affects millions of people every year. The overall survival rates of most cancers have been prolonged owing to the efforts of clinicians and scientists. However, some tumors develop resistance to chemoradiotherapeutic agents, and the cancer research community continues to search for effective sensitizers. Resveratrol, a natural polyphenolic phytoalexin, has shown promising effects in inhibiting proliferation and cancer progression in several tumor models. However, its molecular mechanisms and applications in chemotherapy and radiotherapy have yet to be fully determined. In this concise review, we highlight the role and related molecular mechanisms of resveratrol in cancer treatment. In particular, we focus on the role of resveratrol in the tumor microenvironment and the sensitization of cancer cells for chemotherapy and radiotherapy. Resveratrol shows promising efficacies in cancer treatment and may be applied in clinical therapy, but it requires further clinical study.
Collapse
Affiliation(s)
- Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bin Yan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int 2017; 17:68. [PMID: 28694739 PMCID: PMC5498917 DOI: 10.1186/s12935-017-0437-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an extremely dismal malignance. Chemotherapy has been widely applied to treat this intractable tumor. It has exclusive tumor microenvironment (TME), characterized by dense desmoplasia and profound infiltrations of immunosuppressive cells. Interactions between stromal cells and cancer cells play vital roles to affect the biological behaviors of pancreatic cancer. Targeting the stromal components of pancreatic cancer has shown promising results. In addition to the direct toxic effects of chemotherapeutic drugs on cancer cells, they can also remodel the TME, eventually affecting their efficacy. Herein, we reviewed the following four aspects; (1) clinical landmark advances of chemotherapy in pancreatic cancer, since 2000; (2) interactions and mechanisms between stromal cells and pancreatic cancer cells; (3) remodeling effects and mechanisms of chemotherapy on TME; (4) targeting stromal components in pancreatic cancer.
Collapse
Affiliation(s)
- Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan District, Beijing, 100730 China
| |
Collapse
|
44
|
Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology. Cancer Lett 2017; 392:83-93. [PMID: 28189533 DOI: 10.1016/j.canlet.2017.01.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease.
Collapse
|