1
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Hanevik K, Saghaug C, Aaland M, Morch K, Langeland N. No difference in serum levels of B‐cell activating receptor and antibodies against cytolethal distending toxin B and flagellin in post‐infectious irritable bowel syndrome and chronic fatigue syndrome after
Giardia
infection. JGH Open 2022; 6:185-188. [PMID: 35355666 PMCID: PMC8938750 DOI: 10.1002/jgh3.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
Background and Aim Functional gastrointestinal disorders (FGIDs) and chronic fatigue syndrome (CFS) frequently occur as comorbid conditions to each other. A shared etiology of these syndromes has been proposed because of their shared symptomatology and triggering by infections. Antibodies against the bacterial antigens cytolethal distending toxin B (CdtB) and flagellin have been proposed to be biomarkers of irritable bowel syndrome (IBS), especially diarrhea‐predominant IBS (IBS‐D). It is unknown if they may also be associated with comorbid conditions such as CFS. On the other hand, elevated level of B‐cell activating factor (BAFF) has been associated with CFS and inflammatory bowel disease (IBD) and subjective food intolerance. Methods We evaluated serum levels of anti‐flagellin and anti‐CdtB using an in‐house enzyme‐linked immunosorbent assay (ELISA) and BAFF with a commercially available ELISA kit in a cohort of patients who developed fatigue syndromes and/or FGIDs after Giardia infection, by comparing them with healthy controls without these conditions. Results We did not find significant differences in circulating BAFF, anti‐CdtB, or anti‐flagellin antibody levels in these patient groups compared to healthy controls. Therefore, our results do not support a role for BAFF, anti‐CdtB, or anti‐flagellin antibodies as universal biomarkers for IBS or CFS. Conclusion BAFF, anti‐CdtB, or anti‐flagellin antibodies cannot be considered as universal biomarkers for IBS or CFS.
Collapse
Affiliation(s)
- Kurt Hanevik
- Department of Clinical Science University of Bergen Bergen Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine Haukeland University Hospital Bergen Norway
| | - Christina Saghaug
- Department of Clinical Science University of Bergen Bergen Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine Haukeland University Hospital Bergen Norway
| | - Maren Aaland
- Department of Clinical Science University of Bergen Bergen Norway
| | - Kristine Morch
- Department of Clinical Science University of Bergen Bergen Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine Haukeland University Hospital Bergen Norway
| | - Nina Langeland
- Department of Clinical Science University of Bergen Bergen Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine Haukeland University Hospital Bergen Norway
| |
Collapse
|
3
|
Boldison J, Da Rosa LC, Buckingham L, Davies J, Wen L, Wong FS. Phenotypically distinct anti-insulin B cells repopulate pancreatic islets after anti-CD20 treatment in NOD mice. Diabetologia 2019; 62:2052-2065. [PMID: 31444529 PMCID: PMC6805803 DOI: 10.1007/s00125-019-04974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Autoreactive B cells escape immune tolerance and contribute to the pathogenesis of type 1 diabetes. While global B cell depletion is a successful therapy for autoimmune disease, the fate of autoreactive cells during this treatment in autoimmune diabetes is unknown. We aimed to identify and track anti-insulin B cells in pancreatic islets and understand their repopulation after anti-CD20 treatment. METHODS We generated a double transgenic system, the VH125.hCD20/NOD mouse. The VH125 transgenic mouse, expressing an increased frequency of anti-insulin B cells, was crossed with a human CD20 (hCD20) transgenic mouse, to facilitate B cell depletion using anti-CD20. B cells were analysed using multiparameter and ImageStream flow cytometry. RESULTS We demonstrated that anti-insulin B cells were recruited to the pancreas during disease progression in VH125.hCD20/NOD mice. We identified two distinct populations of anti-insulin B cells in pancreatic islets, based on CD19 expression, with both populations enriched in the CD138int fraction. Anti-insulin B cells were not identified in the plasma-cell CD138hi fraction, which also expressed the transcription factor Blimp-1. After anti-CD20 treatment, anti-insulin B cells repopulated the pancreatic islets earlier than non-specific B cells. Importantly, we observed that a CD138intinsulin+CD19- population was particularly enriched after B cell depletion, possibly contributing to the persistence of disease still observed in some mice after anti-CD20 treatment. CONCLUSIONS/INTERPRETATION Our observations may indicate why the loss of C-peptide is only temporarily delayed following anti-CD20 treatment in human type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Larissa C Da Rosa
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Lucy Buckingham
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK.
| |
Collapse
|
4
|
Morris MC, Cooney KE, Sedghamiz H, Abreu M, Collado F, Balbin EG, Craddock TJA, Klimas NG, Broderick G, Fletcher MA. Leveraging Prior Knowledge of Endocrine Immune Regulation in the Therapeutically Relevant Phenotyping of Women With Chronic Fatigue Syndrome. Clin Ther 2019; 41:656-674.e4. [PMID: 30929860 PMCID: PMC6478538 DOI: 10.1016/j.clinthera.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The complex and varied presentation of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has made it difficult to diagnose, study, and treat. Its symptoms and likely etiology involve multiple components of endocrine and immune regulation, including the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, and their interactive oversight of immune function. We propose that the persistence of ME/CFS may involve changes in the regulatory interactions across these physiological axes. We also propose that the robustness of this new pathogenic equilibrium may at least in part explain the limited success of conventional single-target therapies. METHODS A comprehensive model was constructed of female endocrine-immune signaling consisting of 28 markers linked by 214 documented regulatory interactions. This detailed model was then constrained to adhere to experimental measurements in a subset of 17 candidate immune markers measured in peripheral blood of patients with ME/CFS and healthy control subjects before, during, and after a maximal exercise challenge. A set of 26 competing numerical models satisfied these data to within 5% error. FINDINGS Mechanistically informed predictions of endocrine and immune markers that were either unmeasured or exhibited high subject-to-subject variability pointed to possible context-specific overexpression in ME/CFS at rest of corticotropin-releasing hormone, chemokine (C-X-C motif) ligand 8, estrogen, follicle-stimulating hormone (FSH), gonadotropin-releasing hormone 1, interleukin (IL)-23, and luteinizing hormone, and underexpression of adrenocorticotropic hormone, cortisol, interferon-γ, IL-10, IL-17, and IL-1α. Simulations of rintatolimod and rituximab treatment predicted a shift in the repertoire of available endocrine-immune regulatory regimens. Rintatolimod was predicted to make available substantial remission in a significant subset of subjects, in particular those with low levels of IL-1α, IL-17, and cortisol; intermediate levels of progesterone and FSH; and high estrogen levels. Rituximab treatment was predicted to support partial remission in a smaller subset of patients with ME/CFS, specifically those with low norepinephrine, IL-1α, chemokine (C-X-C motif) ligand 8, and cortisol levels; intermediate FSH and gonadotropin-releasing hormone 1 levels; and elevated expression of tumor necrosis factor-α, luteinizing hormone, IL-12, and B-cell activation. IMPLICATIONS Applying a rigorous filter of known signaling mechanisms to experimentally measured immune marker expression in ME/CFS has highlighted potential new context-specific markers of illness. These novel endocrine and immune markers may offer useful candidates in delineating new subtypes of ME/CFS and may inform on refinements to the inclusion criteria and instrumentation of new and ongoing trials involving rintatolimod and rituximab treatment protocols.
Collapse
Affiliation(s)
- Matthew C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Katherine E Cooney
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Hooman Sedghamiz
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Maria Abreu
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Fanny Collado
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Elizabeth G Balbin
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Travis J A Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
5
|
Richman S, Morris MC, Broderick G, Craddock TJA, Klimas NG, Fletcher MA. Pharmaceutical Interventions in Chronic Fatigue Syndrome: A Literature-based Commentary. Clin Ther 2019; 41:798-805. [PMID: 30871727 DOI: 10.1016/j.clinthera.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by prolonged periods of fatigue, chronic pain, depression, and a complex constellation of other symptoms. Currently, ME/CFS has no known cause, nor are the mechanisms of illness well understood. Therefore, with few exceptions, attempts to treat ME/CFS have been directed mainly toward symptom management. These treatments include antivirals, pain relievers, antidepressants, and oncologic agents as well as other single-intervention treatments. Results of these trials have been largely inconclusive and, in some cases, contradictory. Contributing factors include a lack of well-designed and -executed studies and the highly heterogeneous nature of ME/CFS, which has made a single etiology difficult to define. Because the majority of single-intervention treatments have shown little efficacy, it may instead be beneficial to explore broader-acting combination therapies in which a more focused precision-medicine approach is supported by a systems-level analysis of endocrine and immune co-regulation.
Collapse
Affiliation(s)
- Spencer Richman
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Matthew C Morris
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Gordon Broderick
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | - Travis J A Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Departments of Psychology and Neuroscience, Computer Science, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
6
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
7
|
Applbaum E, Lichtbroun A. Novel Sjögren's autoantibodies found in fibromyalgia patients with sicca and/or xerostomia. Autoimmun Rev 2018; 18:199-202. [PMID: 30572137 DOI: 10.1016/j.autrev.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION A significant proportion of patients with fibromyalgia (FM) complain of dry eyes and mouth. Many Sjögren's syndrome (SS) patients also complain of FM symptoms, and there is literature that suggests that there is interplay between these two disorders. Recently, the presence of novel tissue specific autoantibodies (TSAs), SP-1, CA6, and PSP, has been observed in the early stages of SS. These early markers present themselves before the classic autoantibodies, such as SS-A/Ro, SS-B/La, ANA, and RF. OBJECTIVE This study aims to examine the relationship between SS and FM by testing patients with FM who also complain of xerostomia and sicca symptoms, for SS- related biomarkers. METHODS A cohort of 185 patients who met both the 1990 and 2010 preliminary diagnostic criteria for FM and who admitted to symptoms of sicca and/or xerostomia were selected for this study. Serum from 151 study patients was sent to a tertiary lab, Immco Diagnostics, for testing of the classic autoantibodies (SS-A/Ro, SS-B/La, ANA and RF) and TSAs (SP-1, CA6, PSP), while the rest (34 patients) were tested for TSAs only. RESULTS Of the 151 patients who were evaluated for both the early and classic SS markers, 49 (32%) tested positive for SS autoantibodies. Of those, 4 (3%) tested positive for the classic SS markers only, 40 (26%) of the patients tested positive for the early SS markers only, and 5 (3%) tested positive for both the early and classic SS markers. Of the 34 patients who were tested for early SS markers only, 10 (29%) tested positive and 24 (71%) tested negative. Further analysis of all the patients that tested positive for the TSAs (n = 55), found 83.6% (46) were positive for SP-1, 12.7% (7) were positive for CA6 and 20.0% (11) were positive for PSP. 85.5% (47) of these patients were positive for only one of the TSAs and 14.5% (8) were positive for more than one TSA. CONCLUSION Approximately 1/3 of FM patients that were tested for both the TSAs and classic Sjögren's markers tested positive for a SS biomarker, and the majority of those patients tested positive for one or more of the TSAs. This suggests that autoimmunity, specifically early- stage Sjögren's syndrome, may be involved in the pathophysiology of fibromyalgia.
Collapse
Affiliation(s)
- Eliana Applbaum
- Rutgers- Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | - Alan Lichtbroun
- Department of Medicine, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Bjørklund G, Dadar M, Pen JJ, Chirumbolo S, Aaseth J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed Pharmacother 2018; 109:1000-1007. [PMID: 30551349 DOI: 10.1016/j.biopha.2018.10.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is known as a multi-systemic and complex illness, which induces fatigue and long-term disability in educational, occupational, social, or personal activities. The diagnosis of this disease is difficult, due to lacking a proper and suited diagnostic laboratory test, besides to its multifaceted symptoms. Numerous factors, including environmental and immunological issues, and a large spectrum of CFS symptoms, have recently been reported. In this review, we focus on the nutritional intervention in CFS, discussing the many immunological, environmental, and nutritional aspects currently investigated about this disease. Changes in immunoglobulin levels, cytokine profiles and B- and T- cell phenotype and declined cytotoxicity of natural killer cells, are commonly reported features of immune dysregulation in CFS. Also, some nutrient deficiencies (vitamin C, vitamin B complex, sodium, magnesium, zinc, folic acid, l-carnitine, l-tryptophan, essential fatty acids, and coenzyme Q10) appear to be important in the severity and exacerbation of CFS symptoms. This review highlights a far-driven analysis of mineral and vitamin deficiencies among CFS patients.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
9
|
Vara EJ, Brokstad KA, Hausken T, Lied GA. Altered levels of cytokines in patients with irritable bowel syndrome are not correlated with fatigue. Int J Gen Med 2018; 11:285-291. [PMID: 30013383 PMCID: PMC6038856 DOI: 10.2147/ijgm.s166600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction A considerable number of patients with gastrointestinal complaints attributable to irritable bowel syndrome (IBS) have shown evidence of immune activation. Fatigue is also frequently reported by IBS patients and the condition is considered as a common comorbidity of IBS. Therefore, it is interesting to see whether these two conditions share the same pathophysiological mechanism. Aims To investigate the potential role of cytokine profiles in patients with IBS and the relationship between cytokine profiles and fatigue. Materials and methods Thirty-eight patients with IBS (32 females, 6 males, age range 18-70 years) and 22 healthy individuals (control group) (17 females, 5 males, age range 24-42 years) were included. IBS was diagnosed according to Rome III criteria, and severity of IBS symptoms and fatigue were evaluated using the Irritable Bowel Syndrome-Severity Scoring System (IBS-SSS) and Fatigue Impact Scale (FIS), respectively. FIS scores of 25 or higher were defined as fatigue. Blood samples were also taken, and the Luminex® platform (Cytokine Human Ultrasensitive Magnetic 10-Plex Panel) was used for quantifying human cytokines' profile (granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin [IL]-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and tumor necrosis factor [TNF]-α) in serum. Results The serum levels of IL-5, IL-6, IL-10, and TNF-α were significantly higher in patients with IBS compared to healthy controls (p=0.003, p=0.011, p=0.007, and p=0.02, respectively). Conversely, serum levels of cytokine IL-1β were significantly higher in the control group (p=0.03). The findings were consistent when comparing nonatopic patients with controls. Fatigue was demonstrated in 84.2% of the IBS patients. Scores of IBS-SSS were not significantly correlated with FIS scores (r=0.2, p=0.19), and they were not significantly different in patients with FIS scores >25 compared to patients with FIS scores <25 (p=0.11). None of the cytokine levels were significantly different in IBS patients with FIS scores >25 compared to IBS patients with FIS scores <25. Moreover, the cytokine levels in participants did not vary significantly between patients with diarrhea, constipation, or mixed bowel habits in multiple comparisons of patients. Conclusions The cytokines IL-5, IL-6, IL-10, and TNF-α may contribute to the development of IBS. However, serum levels of cytokines were not significantly different in IBS patients with fatigue compared with IBS patients without fatigue. Thus, the significance of cytokine levels may be less important than anticipated in search of common underlying mechanisms, and other factors should be explored in future studies.
Collapse
Affiliation(s)
- Ellen Johanne Vara
- Centre of Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway,
| | - Karl A Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trygve Hausken
- Centre of Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway, .,Section of Gastroenterology, Haukeland University Hospital, Bergen, Norway, .,National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway,
| | - Gülen Arslan Lied
- Centre of Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway, .,Section of Gastroenterology, Haukeland University Hospital, Bergen, Norway, .,National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway,
| |
Collapse
|
10
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - Evidence for an autoimmune disease. Autoimmun Rev 2018; 17:601-609. [PMID: 29635081 DOI: 10.1016/j.autrev.2018.01.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/07/2018] [Indexed: 12/13/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent and severe chronic disease drastically impairing life quality. The underlying pathomechanism is incompletely understood yet but there is convincing evidence that in at least a subset of patients ME/CFS has an autoimmune etiology. In this review, we will discuss current autoimmune aspects for ME/CFS. Immune dysregulation in ME/CFS has been frequently described including changes in cytokine profiles and immunoglobulin levels, T- and B-cell phenotype and a decrease of natural killer cell cytotoxicity. Moreover, autoantibodies against various antigens including neurotransmitter receptors have been recently identified in ME/CFS individuals by several groups. Consistently, clinical trials from Norway have shown that B-cell depletion with rituximab results in clinical benefits in about half of ME/CFS patients. Furthermore, recent studies have provided evidence for severe metabolic disturbances presumably mediated by serum autoantibodies in ME/CFS. Therefore, further efforts are required to delineate the role of autoantibodies in the onset and pathomechanisms of ME/CFS in order to better understand and properly treat this disease.
Collapse
|
11
|
Rituximab impedes natural killer cell function in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients: A pilot in vitro investigation. BMC Pharmacol Toxicol 2018; 19:12. [PMID: 29587879 PMCID: PMC5870391 DOI: 10.1186/s40360-018-0203-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A recent in vitro pilot investigation reported Rituximab significantly reduced natural killer (NK) cell cytotoxicity in healthy donors. Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown etiology. A consistent finding is a significant reduction in NK cell cytotoxicity. Rituximab has been reported having questionable potential therapeutic benefits for the treatment of CFS/ME, however, the potential effects of Rituximab on NK cell cytotoxicity in CFS/ME patients are yet to be determined. METHODS A total of eight CFS/ME patients (48.63 ± 15.69 years) and nine non-fatigued controls (NFC) (37.56 ± 11.06 years) were included using the Fukuda case definition. Apoptotic function, lytic proteins and degranulation markers were measured on isolated NK cells using flow cytometry following overnight incubation with Rituximab at 10 μg/ml and 100 μg/ml. RESULTS There was a significant reduction in NK cell lysis between CFS/ME patients and NFC following incubation with Rituximab at 100 μg/ml at 12.5:1 and 6.25:1 effecter-target (E:T) ratios (p < 0.05). However, there was no significant difference for NFC following incubation with Rituximab at 10 μg/ml and 100 μg/ml. There was no significant difference between CFS/ME patients and NFC for granzyme A and granzyme B prior to incubation with Rituximab and following overnight incubation with Rituximab at 10 μg/ml. There was a significant decrease in granzyme B in CFS/ME patients compared to NFC with 100 μg/ml of Rituximab prior to K562 cells stimulation (p < 0.05). There was a significant increase in CD107a (p < 0.05) and CD107b expression (p < 0.01) in NFC after stimulation with K562 cells prior to incubation with Rituximab. There was a significant increase in CD107b expression between CFS/ME patients and NFC prior to incubation with Rituximab and without stimulation of K562 cells (p < 0.01). Importantly, there was a significant increase in CD107b following overnight incubation with 100 μg/ml of Rituximab in NFC prior to K562 cells stimulation (p < 0.01). CONCLUSION This study reports significant decreases in NK cell lysis and a significant increase in NK cell degranulation following Rituximab incubation in vitro in CFS/ME patients, suggesting Rituximab may be toxic for NK cells. Caution should be observed in clinical trials until further investigations in a safe and controlled in vitro setting are completed.
Collapse
|
12
|
Monro JA, Puri BK. A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications. Mol Neurobiol 2018; 55:7377-7388. [PMID: 29411266 PMCID: PMC6096969 DOI: 10.1007/s12035-018-0928-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Currently, a psychologically based model is widely held to be the basis for the aetiology and treatment of chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME)/systemic exertion intolerance disease (SEID). However, an alternative, molecular neurobiological approach is possible and in this paper evidence demonstrating a biological aetiology for CFS/ME/SEID is adduced from a study of the history of the disease and a consideration of the role of the following in this disease: nitric oxide and peroxynitrite, oxidative and nitrosative stress, the blood–brain barrier and intestinal permeability, cytokines and infections, metabolism, structural and chemical brain changes, neurophysiological changes and calcium ion mobilisation. Evidence is also detailed for biologically based potential therapeutic options, including: nutritional supplementation, for example in order to downregulate the nitric oxide-peroxynitrite cycle to prevent its perpetuation; antiviral therapy; and monoclonal antibody treatment. It is concluded that there is strong evidence of a molecular neurobiological aetiology, and so it is suggested that biologically based therapeutic interventions should constitute a focus for future research into CFS/ME/SEID.
Collapse
Affiliation(s)
- Jean A Monro
- Breakspear Medical Group, Hemel Hempstead, England, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
13
|
Roerink ME, Knoop H, Bronkhorst EM, Mouthaan HA, Hawinkels LJAC, Joosten LAB, van der Meer JWM. Cytokine signatures in chronic fatigue syndrome patients: a Case Control Study and the effect of anakinra treatment. J Transl Med 2017; 15:267. [PMID: 29284500 PMCID: PMC5747240 DOI: 10.1186/s12967-017-1371-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cytokine disturbances have been suggested to be associated with the Chronic Fatigue Syndrome/Myalgic encephalomyelitis (CFS/ME) for decades. METHODS Fifty female CFS patients were included in a study on the effect of the interleukin-1-receptor antagonist anakinra or placebo during 4 weeks. EDTA plasma was collected from patients before and directly after treatment. At baseline, plasma samples were collected at the same time from 48 healthy, age-matched female neighborhood controls. A panel of 92 inflammatory markers was determined in parallel in 1 μL samples using a 'proximity extension assay' (PEA) based immunoassay. Since Transforming growth factor beta (TGF-β) and interleukin-1 receptor antagonist (IL-1Ra) were not included in this platform, these cytokines were measured with ELISA. RESULTS In CFS/ME patients, the 'normalized protein expression' value of IL-12p40 and CSF-1 was significantly higher (p value 0.0042 and 0.049, respectively). Furthermore, using LASSO regression, a combination of 47 markers yielded a prediction model with a corrected AUC of 0.73. After correction for multiple testing, anakinra had no effect on circulating cytokines. TGF-β did not differ between patients and controls. CONCLUSIONS In conclusion, this study demonstrated increased IL-12p40 and CSF-1 concentrations in CFS/ME patients in addition to a set of predictive biomarkers. There was no effect of anakinra on circulating cytokines other than IL-1Ra. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02108210 , Registered April 2014.
Collapse
Affiliation(s)
- Megan E Roerink
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Hans Knoop
- Department of Medical Psychology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ewald M Bronkhorst
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Luuk J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Gomes LC, Ferrão ALM, Evangelista FCG, de Almeida TD, Barbosa RC, Carvalho MDG, de Paula Sabino A. Advances in chronic lymphocytic leukemia pharmacotherapy. Biomed Pharmacother 2017; 97:349-358. [PMID: 29091884 DOI: 10.1016/j.biopha.2017.10.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease that affects B lymphocytes in most cases. Leukemic lymphocytes have prolonged longevity, defined by resistance to apoptosis. These cells can accumulate in peripheral blood, bone marrow, and solid lymphoid organs. CLL may be indolent or aggressive and has a range of prognostic factors such as expression of CD38 and ZAP-70, immunophenotypic and cytogenetic changes, imbalanced apoptosis proteins, and others. Although CLL has a low mortality rate, this disease is generally not considered curable until today. CLL treatment involves alkylating agents and glucocorticoids, purine analogs, monoclonal antibody therapies, and bone marrow transplantation. In recent decades, new drugs have appeared focusing on new targets and specific molecules, such as the BCR receptor, Bruton's tyrosine kinase, phosphatidylinositol 3-kinase, spleen tyrosine kinase, apoptosis proteins and microRNAs. The most appropriate treatment for CLL is one that involves in its protocol a combination of drugs according to the prognostic factors presented by each patient. In this sense, treatment individualization is essential. This article examines standard treatments for CLL and explores new treatments and potential new targets, as well as schematic protocols to understand where we are, how the treatment has evolved, and the advantages and disadvantages of new targets for CLL therapy.
Collapse
Affiliation(s)
- Lorena Caixeta Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil
| | - Aline Lúcia Menezes Ferrão
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil
| | - Fernanda Cristina Gontijo Evangelista
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil
| | - Tâmara Dauare de Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil
| | - Rayson Carvalho Barbosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Address: 6627, Presidente Antônio Carlos Ave, Pampulha, Zip Code 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Cassia M, Alberici F, Gallieni M, Jayne D. Lupus nephritis and B-cell targeting therapy. Expert Rev Clin Immunol 2017; 13:951-962. [PMID: 28800401 DOI: 10.1080/1744666x.2017.1366855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Lupus Nephritis (LN) is a severe manifestation of Systemic Lupus Erythematosus (SLE) with a significant prognostic impact. Over a prolonged course, an exhaustion of treatment alternatives may occur and further therapeutic options are needed. B cells play a pivotal role in disease pathogenesis and represent an attractive therapeutic target. Areas covered: This review provides an update regarding targeting B cells in LN. The rational for this approach, as well as currently available and future targets are discussed. Expert commentary: Despite its wide clinical use and the encouraging results from retrospective studies, a role of rituximab in LN has not been prospectively confirmed. Trial design methodologies as well as intrinsic limitations of this approach may be responsible and rituximab use is currently limited as a rescue treatment or in settings where a strong steroid sparing effect is warranted. Despite belimumab now being licensed for use in SLE, the evidence in LN is weak although prospective trials are on-going. The combination of different targeted approaches as well as a focus on new clinical end-points may be strategies to identify new therapeutic options.
Collapse
Affiliation(s)
- Matthias Cassia
- a Nephrology and Immunology Unit, ASST Santi Paolo e Carlo , San Carlo Borromeo Hospital , Milano , Italy.,b Department of Biomedical and Clinical Sciences "L.Sacco" , University of Milan , Milano , Italy
| | - Federico Alberici
- a Nephrology and Immunology Unit, ASST Santi Paolo e Carlo , San Carlo Borromeo Hospital , Milano , Italy
| | - Maurizio Gallieni
- a Nephrology and Immunology Unit, ASST Santi Paolo e Carlo , San Carlo Borromeo Hospital , Milano , Italy.,b Department of Biomedical and Clinical Sciences "L.Sacco" , University of Milan , Milano , Italy
| | - David Jayne
- c Department of Medicine , University of Cambridge , Cambridge , UK
| |
Collapse
|
16
|
Scheibenbogen C, Freitag H, Blanco J, Capelli E, Lacerda E, Authier J, Meeus M, Castro Marrero J, Nora-Krukle Z, Oltra E, Strand EB, Shikova E, Sekulic S, Murovska M. The European ME/CFS Biomarker Landscape project: an initiative of the European network EUROMENE. J Transl Med 2017; 15:162. [PMID: 28747192 PMCID: PMC5530475 DOI: 10.1186/s12967-017-1263-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a common and severe disease with a considerable social and economic impact. So far, the etiology is not known, and neither a diagnostic marker nor licensed treatments are available yet. The EUROMENE network of European researchers and clinicians aims to promote cooperation and advance research on ME/CFS. To improve diagnosis and facilitate the analysis of clinical trials surrogate markers are urgently needed. As a first step for developing such biomarkers for clinical use a database of active biomarker research in Europe was established called the ME/CFS EUROMENE Biomarker Landscape project and the results are presented in this review. Further we suggest strategies to improve biomarker development and encourage researchers to take these into consideration for designing and reporting biomarker studies.
Collapse
Affiliation(s)
- Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1/Sudstrasse 2, 13353 Berlin, Germany
| | - Helma Freitag
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1/Sudstrasse 2, 13353 Berlin, Germany
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa-HIVACAT, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, IGTP, UAB, Carretera del Canyet, s/n, 08916 Badalona, Spain
- Universitat de Vic-UCC, Carrer de la Sagrada Família, 7, 08500 Vic Barcelona, Spain
| | - Enrica Capelli
- Deptartment of Earth and Environmental Sciences, University of Pavia, Via Ferrata 7, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Eliana Lacerda
- Clinical Research Department, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT UK
| | - Jerome Authier
- Faculty of Medicine, Paris Est-Creteil University, 8 rue du General Sarrail, 94000 Creteil, France
| | - Mira Meeus
- Pain in Motion International Research Group, Brussels, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St. Pietersnieuwstraat 33, 9000 Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy (MOVANT), Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
| | - Jesus Castro Marrero
- Vall d’Hebron University Hospital, CFS/ME Unit, Universitat Autònoma de Barcelona, 119-129, Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Zaiga Nora-Krukle
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Rīga, 1007 Latvia
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, San Vicente Mártir, Carrer de Quevedo, 2, 46001 Valencia, Spain
- Instituto Valenciano de Patología (IVP) de la Universidad Católica de Valencia San Vicente Mártir, Centro de Investigación Príncipe Felipe (CIPF), Carrer d’Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Elin Bolle Strand
- Division of Medicine, CFS/ME Center, Oslo University Hospital, Aker, Trondheimsveien 235, 0586 Oslo, Norway
- Department of Paediatrics, Norwegian National Advisory Unit on CFS/ME, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Evelina Shikova
- Department of Virology, National Center of Infectious and Parasitic Diseases, 44A General Stoletov blvd., 1233 Sofia, Bulgaria
| | - Slobodan Sekulic
- Department of Neurology, Medical Faculty Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Modra Murovska
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Rīga, 1007 Latvia
| |
Collapse
|
17
|
Nguyen CB, Alsøe L, Lindvall JM, Sulheim D, Fagermoen E, Winger A, Kaarbø M, Nilsen H, Wyller VB. Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survival. J Transl Med 2017; 15:102. [PMID: 28494812 PMCID: PMC5426002 DOI: 10.1186/s12967-017-1201-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) is a prevalent and disabling condition affecting adolescents. The pathophysiology is poorly understood, but immune alterations might be an important component. This study compared whole blood gene expression in adolescent CFS patients and healthy controls, and explored associations between gene expression and neuroendocrine markers, immune markers and clinical markers within the CFS group. METHODS CFS patients (12-18 years old) were recruited nation-wide to a single referral center as part of the NorCAPITAL project. A broad case definition of CFS was applied, requiring 3 months of unexplained, disabling chronic/relapsing fatigue of new onset, whereas no accompanying symptoms were necessary. Healthy controls having comparable distribution of gender and age were recruited from local schools. Whole blood samples were subjected to RNA sequencing. Immune markers were blood leukocyte counts, plasma cytokines, serum C-reactive protein and immunoglobulins. Neuroendocrine markers encompassed plasma and urine levels of catecholamines and cortisol, as well as heart rate variability indices. Clinical markers consisted of questionnaire scores for symptoms of post-exertional malaise, inflammation, fatigue, depression and trait anxiety, as well as activity recordings. RESULTS A total of 29 CFS patients and 18 healthy controls were included. We identified 176 genes as differentially expressed in patients compared to controls, adjusting for age and gender factors. Gene set enrichment analyses suggested impairment of B cell differentiation and survival, as well as enhancement of innate antiviral responses and inflammation in the CFS group. A pattern of co-expression could be identified, and this pattern, as well as single gene transcripts, was significantly associated with indices of autonomic nervous activity, plasma cortisol, and blood monocyte and eosinophil counts. Also, an association with symptoms of post-exertional malaise was demonstrated. CONCLUSION Adolescent CFS is characterized by differential gene expression pattern in whole blood suggestive of impaired B cell differentiation and survival, and enhanced innate antiviral responses and inflammation. This expression pattern is associated with neuroendocrine markers of altered HPA axis and autonomic nervous activity, and with symptoms of post-exertional malaise. Trial registration Clinical Trials NCT01040429.
Collapse
Affiliation(s)
- Chinh Bkrong Nguyen
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, 1478 Lørenskog, Norway
- Division of Medicine and Laboratory Sciences, Medical Faculty, University of Oslo, Oslo, Norway
| | - Lene Alsøe
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, and Akershus University Hospital, Lørenskog, Norway
| | - Jessica M. Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dag Sulheim
- Department of Paediatrics, Lillehammer County Hospital, Lillehammer, Norway
| | - Even Fagermoen
- Department of Anesthesiology and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Anette Winger
- Institute of Nursing Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, and Akershus University Hospital, Lørenskog, Norway
| | - Vegard Bruun Wyller
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, 1478 Lørenskog, Norway
- Division of Medicine and Laboratory Sciences, Medical Faculty, University of Oslo, Oslo, Norway
| |
Collapse
|