1
|
Passari M, Scutera S, Schioppa T, Tiberio L, Piantoni S, Tamassia N, Bugatti M, Vermi W, Angeli F, Caproli A, Salvi V, Sozio F, Gismondi A, Stabile H, Franceschini F, Bosisio D, Acquati F, Vermeren S, Sozzani S, Andreoli L, Del Prete A, Musso T. Regulation of neutrophil associated RNASET2 expression in rheumatoid arthritis. Sci Rep 2024; 14:26820. [PMID: 39500942 PMCID: PMC11538310 DOI: 10.1038/s41598-024-77694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Neutrophils (PMNs) are key players of innate immune responses through the release of cytoplasmic granule content and the formation of neutrophil extracellular traps (NETs). RNASET2 is an acidic ribonuclease, recently proposed as an alarmin signal associated with inflammatory responses. Here we show that, along the neutrophil maturation cascade, RNASET2 is expressed in segmented and mature PMNs. In human PMNs, RNASET2 colocalized with primary and tertiary granules and was found to be associated with NETs following PMA or Nigericin stimulation. Similarly, activation of PMNs by soluble immune complexes, a hallmark of several autoimmune diseases, also induced RNASET2-associated NETs. Genome-wide association studies recently identified RNASET2 among a cluster of genes associated with increased susceptibility to develop autoimmune diseases, including rheumatoid arthritis (RA). RNASET2 was found expressed by PMNs and macrophages infiltrating inflamed joints in a murine model of RA (K/BxN Serum-Transfer-Induced Arthritis, STIA), by immunostaining. Similar results were found in synovial biopsies of RA patients with active disease. In addition, we demonstrate that RNASET2 circulating levels correlated with the onset and the severity of disease in two mouse models of inflammatory arthritis, STIA and CIA (Collagen-Induced Arthritis) and in serum of RA patients. These results show that PMNs are an important source of RNASET2 and that its circulating levels are associated with RA development suggesting a role for RNASET2 in the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvia Piantoni
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Fabrizio Angeli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Alessia Caproli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Francesca Sozio
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Franco Franceschini
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Francesco Acquati
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Laura Andreoli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy.
| | - Tiziana Musso
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Ji Y, Chen W, Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J Pharmacol Exp Ther 2024; 389:277-288. [PMID: 38565308 DOI: 10.1124/jpet.123.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Bromodomain and extraterminal domain protein 2 (BRD2), a member of the bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumors, neurologic disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. Although pan inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. SIGNIFICANCE STATEMENT: BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through protein degradation-targeting complexes technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| |
Collapse
|
3
|
Sun L, Hu L, Chen P, Li Y, Tu J, Chen J. Long Non-Coding RNA AL928768.3 Promotes Rheumatoid Arthritis Fibroblast-Like Synoviocytes Proliferation, Invasion and Inflammation, While Inhibits Apoptosis Via Activating Lymphotoxin Beta Mediated NF-κB Signaling Pathway. Inflammation 2024; 47:543-556. [PMID: 37919527 DOI: 10.1007/s10753-023-01927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Our previous study using RNA sequencing and reverse transcription quantitative polymerase chain reaction (RT-qPCR) validation identified a long non-coding RNA (lnc), lnc-AL928768.3, correlating with risk and disease activity of rheumatoid arthritis (RA), then the present study was conducted to further investigate the interaction of lnc-AL928768.3 with lymphotoxin beta (LTB) and their impact on proliferation, migration, invasion, and inflammation in RA-fibroblast-like synoviocytes (RA-FLS). Human RA-FLS was obtained and transfected with lnc-AL928768.3 overexpression, negative control overexpression, lnc-AL928768.3 short hairpin RNA (shRNA) and negative control shRNA plasmids. Then cell functions and inflammatory cytokine expressions were detected. Afterward, rescue experiments were conducted via transfecting lnc-AL928768.3 shRNA with or without LTB overexpression plasmids in RA-FLS. Lnc-AL928768.3 enhanced proliferation and invasion, inhibited apoptosis, while had little impact on migration in RA-FLS. In addition, lnc-AL928768.3 positively modulated interleukin-1β (IL-1β), IL-6 and IL-8 expressions in RA-FLS supernatant; moreover, it also positively regulated LTB mRNA expression, LTB protein expression, p-NF-κB protein expression, and p-IKB-α protein expression in RA-FLS. Furthermore, following experiment showed that lnc-AL928768.3 positively regulated LTB expression while LTB did not impact on lnc-AL928768.3 expression in RA-FLS. Furthermore, in rescue experiments, LTB overexpression curtailed the effect of lnc-AL928768.3 knock-down on regulating proliferation, invasion, apoptosis and inflammatory cytokine expressions in RA-FLS. Lnc-AL928768.3 promotes proliferation, invasion, and inflammation while inhibits apoptosis of RA-FLS via activating LTB mediated NF-κB signaling.
Collapse
Affiliation(s)
- Li Sun
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang Province, China
| | - Lingzhen Hu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peirong Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongji Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianxin Tu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Lafontaine N, Shore CJ, Campbell PJ, Mullin BH, Brown SJ, Panicker V, Dudbridge F, Brix TH, Hegedüs L, Wilson SG, Bell JT, Walsh JP. Epigenome-wide Association Study Shows Differential DNA Methylation of MDC1, KLF9, and CUTA in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2024; 109:992-999. [PMID: 37962983 PMCID: PMC10940258 DOI: 10.1210/clinem/dgad659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
CONTEXT Autoimmune thyroid disease (AITD) includes Graves disease (GD) and Hashimoto disease (HD), which often run in the same family. AITD etiology is incompletely understood: Genetic factors may account for up to 75% of phenotypic variance, whereas epigenetic effects (including DNA methylation [DNAm]) may contribute to the remaining variance (eg, why some individuals develop GD and others HD). OBJECTIVE This work aimed to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) comparing GD to HD. METHODS Whole-blood DNAm was measured across the genome using the Infinium MethylationEPIC array in 32 Australian patients with GD and 30 with HD (discovery cohort) and 32 Danish patients with GD and 32 with HD (replication cohort). Linear mixed models were used to test for differences in quantile-normalized β values of DNAm between GD and HD and data were later meta-analyzed. Comb-p software was used to identify DMRs. RESULTS We identified epigenome-wide significant differences (P < 9E-8) and replicated (P < .05) 2 DMPs between GD and HD (cg06315208 within MDC1 and cg00049440 within KLF9). We identified and replicated a DMR within CUTA (5 CpGs at 6p21.32). We also identified 64 DMPs and 137 DMRs in the meta-analysis. CONCLUSION Our study reveals differences in DNAm between GD and HD, which may help explain why some people develop GD and others HD and provide a link to environmental risk factors. Additional research is needed to advance understanding of the role of DNAm in AITD and investigate its prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| | - Christopher J Shore
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Vijay Panicker
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| | - Frank Dudbridge
- Population Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas H Brix
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, 5000, Denmark
| | - Laszlo Hegedüs
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, 5000, Denmark
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
5
|
Zhan Z, Ye M, Jin X. The roles of FLOT1 in human diseases (Review). Mol Med Rep 2023; 28:212. [PMID: 37772385 PMCID: PMC10552069 DOI: 10.3892/mmr.2023.13099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 09/30/2023] Open
Abstract
FLOT1, a scaffold protein of lipid rafts, is involved in several biological processes, including lipid raft protein‑-dependent or clathrin‑independent endocytosis, and the formation of hippocampal synapses, amongst others. Increasing evidence has shown that FLOT1 can function as both a cancer promoter and cancer suppressor dependent on the type of cancer. FLOT1 can affect the occurrence and development of several types of cancer by affecting epithelial‑mesenchymal transition, proliferation of cancer cells, and relevant signaling pathways, and is regulated by long intergenic non‑coding RNAs or microRNAs. In the nervous system, overexpression or abnormally low expression of FLOT1 may lead to the occurrence of neurological diseases, such as Alzheimer's disease, Parkinson's disease, major depressive disorder and other diseases. Additionally, it is also associated with dilated cardiomyopathy, pathogenic microbial infection, diabetes‑related diseases, and gynecological diseases, amongst other diseases. In the present review, the structure and localization of FLOT1, as well as the physiological processes it is involved in are reviewed, and then the upstream and downstream regulation of FLOT1 in human disease, particularly in different types of cancer and neurological diseases are discussed, with a focus on potentially targeting FLOT1 for the clinical treatment of several diseases.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Science Health Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Frech M, Danzer H, Uchil P, Azizov V, Schmid E, Schälter F, Dürholz K, Mauro D, Rauber S, Muñoz L, Taher L, Ciccia F, Schober K, Irla M, Sarter K, Schett G, Zaiss MM. Butyrophilin 2a2 (Btn2a2) expression on thymic epithelial cells promotes central T cell tolerance and prevents autoimmune disease. J Autoimmun 2023; 139:103071. [PMID: 37356345 DOI: 10.1016/j.jaut.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Butyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC). Absence of Btn2a2 alters thymic T cell maturation and bypasses central tolerance mechanisms. Furthermore, Btn2a2-/- mice develop spontaneous autoimmunity resembling human primary Sjögren's Syndrome (pSS), including formation of tertiary lymphoid structures (TLS) in target organs. Ligation of Btn2a2 on developing thymocytes is associated with reduced TCR signaling and CD5 levels, while absence of Btn2a2 results in increased TCR signaling and CD5 levels. These results define a novel role for Btn2a2 in promoting central tolerance by modulating TCR signaling strength and indicate a potential mechanism of pSS development.
Collapse
Affiliation(s)
- Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heike Danzer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pooja Uchil
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Schmid
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Schälter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Dürholz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniele Mauro
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Simon Rauber
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, University Della Campania L. Vanvitelli, Naples, Italy
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Magali Irla
- CNRS, INSERM, Centre D'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
7
|
Sardana Y, Bhatti GK, Singh C, Sharma PK, Reddy PH, Bhatti JS. Progression of pre-rheumatoid arthritis to clinical disease of joints: Potential role of mesenchymal stem cells. Life Sci 2023; 321:121641. [PMID: 36997059 DOI: 10.1016/j.lfs.2023.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Rheumatoid arthritis (RA) related autoimmunity is developed at mucosal sites due to the interplay between genetic risk factors and environmental triggers. The pre-RA phase that leads to anti-citrullinated protein antibodies, rheumatoid factor, and other autoantibodies spread in the systemic circulation may not affect articular tissue for years until a mysterious second hit triggers the localization of RA-related autoimmunity in joints. Several players in the joint microenvironment mediate the synovial innate and adaptive immunological processes, eventually leading to clinical synovitis. There still exists a gap in the early phase of RA pathogenesis, i.e., the progression of diseases from the systemic circulation to joints. The lack of better understanding of these events results in the inability to answer questions about why only after a certain point of time the disease appears in joints and why in some cases, it simply remains latent and doesn't affect joints at all. In the current review, we focused on the immunomodulatory and regenerative role of mesenchymal stem cells and associated exosomes in RA pathology. We also highlighted the age-related dysregulations in activities of mesenchymal stem cells and how that might trigger homing of systemic autoimmunity to joints.
Collapse
Affiliation(s)
- Yogesh Sardana
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
8
|
Pasha U, Nisar H, Nisar H, Abid R, Ashraf NM, Sadaf S. Molecular Dynamic Simulations Unravel the Underlying Impact of Missense Mutation in Autoimmunity Gene PTPN22 on Predisposition to Rheumatoid Arthritis. J Interferon Cytokine Res 2023; 43:121-132. [PMID: 36811459 DOI: 10.1089/jir.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Genetic mutations in various proteins have been implicated with increased risk or severity of rheumatoid arthritis (RA) in different population groups. In the present case-control study, we have investigated the risk association of single nucleotide mutations present in some of the highly reported anti-inflammatory proteins and/or cytokines, with RA susceptibility in the Pakistani subjects. The study involves 310 ethnically and demographically similar participants from whom blood samples were taken and processed for DNA extraction. Through extensive data mining, 5 hotspot mutations reported in 4 genes, that is, interleukin (IL)-4 (-590; rs2243250), IL-10 (-592; rs1800872), IL-10 (-1082; rs1800896), PTPN22 (C1858T; rs2476601), and TNFAIP3 (T380G; rs2230926), were selected for RA susceptibility analyses using genotyping assays. The results demonstrated the association of only 2 DNA variants [rs2243250 (odds ratio, OR = 2.025, 95% confidence interval, CI = 1.357-3.002, P = 0.0005 Allelic) and rs2476601 (OR = 4.25, 95% CI = 1.569-11.55, P = 0.004 Allelic)] with RA susceptibility in the local population. The former single nucleotide mutation was nonfunctional, whereas the latter, residing in the exonic region of a linkage-proven autoimmunity gene PTPN22, was involved in R620→W620 substitution. Comparative molecular dynamic simulations and free-energy calculations revealed a radical impact on the geometry/confirmation of key functional moieties in the mutant protein leading to a rather weak binding of W620 variant with the interacting receptor (SRC kinase). The interaction imbalance and binding instabilities provide convincing clues about the insufficient inhibition of T cell activation and/or ineffective clearance of autoimmune clones-a hallmark of several autoimmune disorders. In conclusion, the present research describes the association of 2 hotspot mutations in IL-4 promoter and PTPN22 gene with RA susceptibility in the Pakistani study cohort. It also details how a functional mutation in PTPN22 impacts the overall protein geometry, charge, and/or receptor interactions to contribute to RA susceptibility.
Collapse
Affiliation(s)
- Usman Pasha
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Haseeb Nisar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hajira Nisar
- Emergency and Out Patient Department, Ali Fatima Hospital, Lahore, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Li J, Wang G, Xv X, Li Z, Shen Y, Zhang C, Zhang X. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol 2023; 14:1134412. [PMID: 37138862 PMCID: PMC10150333 DOI: 10.3389/fimmu.2023.1134412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background In the pathogenesis of osteoarthritis (OA) and metabolic syndrome (MetS), the immune system plays a particularly important role. The purpose of this study was to find key diagnostic candidate genes in OA patients who also had metabolic syndrome. Methods We searched the Gene Expression Omnibus (GEO) database for three OA and one MetS dataset. Limma, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were used to identify and analyze the immune genes associated with OA and MetS. They were evaluated using nomograms and receiver operating characteristic (ROC) curves, and finally, immune cells dysregulated in OA were investigated using immune infiltration analysis. Results After Limma analysis, the integrated OA dataset yielded 2263 DEGs, and the MetS dataset yielded the most relevant module containing 691 genes after WGCNA, with a total of 82 intersections between the two. The immune-related genes were mostly enriched in the enrichment analysis, and the immune infiltration analysis revealed an imbalance in multiple immune cells. Further machine learning screening yielded eight core genes that were evaluated by nomogram and diagnostic value and found to have a high diagnostic value (area under the curve from 0.82 to 0.96). Conclusion Eight immune-related core genes were identified (FZD7, IRAK3, KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4), and a nomogram for the diagnosis of OA and MetS was established. This research could lead to the identification of potential peripheral blood diagnostic candidate genes for MetS patients who also suffer from OA.
Collapse
Affiliation(s)
- Junchen Li
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Genghong Wang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xilin Xv
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhigang Li
- The Second Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiwei Shen
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cheng Zhang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
- The Bone Injury Teaching Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Xiaofeng Zhang,
| |
Collapse
|
10
|
Zhang GN, Xu YJ, Jin L. Peptidomics analysis of plasma in patients with ankylosing spondylitis. Front Immunol 2023; 14:1104351. [PMID: 36798127 PMCID: PMC9927206 DOI: 10.3389/fimmu.2023.1104351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Background This study aimed to explore the differential expression of peptides associated with ankylosing spondylitis (AS) patients, enabling identification of potential functional peptides to provide the basis for the novel intervention targets for AS. Material and Methods 3 AS patients and 3 healthy volunteers were enrolled in this study. The expression profiles for peptides present in the plasma of AS patients and the healthy individual were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The physicochemical properties and biological functions of identified peptides were further analyzed by bioinformatics. The results of peptide identification were verified by cell viability analysis, using CCK8 and Edu staining assay, and the differential peptides relevant to the disease were screened. Results 52 differential peptides were successfully identified using mass spectrometry. 44 peptides were up-regulated, while eight were down-regulated. FGA-peptide (sequences: DSGEGDFLAEGGGVRGPR), C4A-peptide (sequences: NGFKSHAL), and TUBB-peptide (sequences: ISEQFTAMFR) were screened out that could significantly promote the proliferation of fibroblasts in AS patients. Bioinformatics analysis showed these differentially expressed peptides might be associated with "MHC class I protein binding" and "pathogenic Escherichia coli infection" pathways, which might further affect the progression of AS. Conclusion This pilot study shows 3 differentially expressed peptides may have the potential function for the occurrence and development of AS, may provide novel insights into the underlying molecular mechanisms of AS based on peptide omics.
Collapse
Affiliation(s)
- Guo-Ning Zhang
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Jia Xu
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jin
- Department of Rheumatology and Immunology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Biener-Ramanujan E, Rosier F, Coetzee SG, McGovern DDP, Hazelett D, Targan SR, Gonsky R. Diagnostic and therapeutic potential of RNASET2 in Crohn's disease: Disease-risk polymorphism modulates allelic-imbalance in expression and circulating protein levels and recombinant-RNASET2 attenuates pro-inflammatory cytokine secretion. Front Immunol 2022; 13:999155. [PMID: 36466822 PMCID: PMC9709281 DOI: 10.3389/fimmu.2022.999155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 08/28/2023] Open
Abstract
Ribonuclease T2 gene (RNASET2) variants are associated in genome wide association studies (GWAS) with risk for several autoimmune diseases, including Crohn's disease (CD). In T cells, a functional and biological relationship exists between TNFSF15-mediated enhancement of IFN-γ production, mucosal inflammation and RNASET2. Disease risk variants are associated with decreased mRNA expression and clinical characteristics of severe CD; however, functional classifications of variants and underlying molecular mechanisms contributing to pathogenesis remain largely unknown. In this study we demonstrate that allelic imbalance of RNASET2 disease risk variant rs2149092 is associated with transcriptional and post-transcriptional mechanisms regulating transcription factor binding, promoter-transactivation and allele-specific expression. RNASET2 mRNA expression decreases in response to multiple modes of T cell activation and recovers following elimination of activator. In CD patients with severe disease necessitating surgical intervention, preoperative circulating RNASET2 protein levels were decreased compared to non-IBD subjects and rebounded post-operatively following removal of the inflamed region, with levels associated with allelic carriage. Furthermore, overexpression or treatment with recombinant RNASET2 significantly reduced IFN-γ secretion. These findings reveal that RNASET2 cis- and trans-acting variation contributed regulatory complexity and determined expression and provide a basis for linking genetic variation with CD pathobiology. These data may ultimately identify RNASET2 as an effective therapeutic target in a subset of CD patients with severe disease.
Collapse
Affiliation(s)
- Eva Biener-Ramanujan
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Florian Rosier
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Simon G. Coetzee
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States
| | - Dermot D. P. McGovern
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Dennis Hazelett
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Rivkah Gonsky
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| |
Collapse
|
12
|
Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne) 2021; 8:689698. [PMID: 34901047 PMCID: PMC8661097 DOI: 10.3389/fmed.2021.689698] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common systemic inflammatory rheumatic disease. It is associated with significant burden at the patient and societal level. Extensive efforts have been devoted to identifying a potential cause for the development of RA. Epidemiological studies have thoroughly investigated the association of several factors with the risk and course of RA. Although a precise etiology remains elusive, the current understanding is that RA is a multifactorial disease, wherein complex interactions between host and environmental factors determine the overall risk of disease susceptibility, persistence and severity. Risk factors related to the host that have been associated with RA development may be divided into genetic; epigenetic; hormonal, reproductive and neuroendocrine; and comorbid host factors. In turn, environmental risk factors include smoking and other airborne exposures; microbiota and infectious agents; diet; and socioeconomic factors. In the present narrative review, aimed at clinicians and researchers in the field of RA, we provide a state-of-the-art overview of the current knowledge on this topic, focusing on recent progresses that have improved our comprehension of disease risk and development.
Collapse
Affiliation(s)
- Vasco C Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Iron Deficiency Caused by Intestinal Iron Loss-Novel Candidate Genes for Severe Anemia. Genes (Basel) 2021; 12:genes12121869. [PMID: 34946818 PMCID: PMC8700796 DOI: 10.3390/genes12121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
The adult human body contains about 4 g of iron. About 1-2 mg of iron is absorbed every day, and in healthy individuals, the same amount is excreted. We describe a patient who presents with severe iron deficiency anemia with hemoglobin levels below 6 g/dL and ferritin levels below 30 ng/mL. Although red blood cell concentrates and intravenous iron have been substituted every month for years, body iron stores remain depleted. Diagnostics have included several esophago-gastro-duodenoscopies, colonoscopies, MRI of the liver, repetitive bone marrow biopsies, psychological analysis, application of radioactive iron to determine intact erythropoiesis, and measurement of iron excretion in urine and feces. Typically, gastrointestinal bleeding is a major cause of iron loss. Surprisingly, intestinal iron excretion in stool in the patient was repetitively increased, without gastrointestinal bleeding. Furthermore, whole exome sequencing was performed in the patient and additional family members to identify potential causative genetic variants that may cause intestinal iron loss. Under different inheritance models, several rare mutations were identified, two of which (in CISD1 and KRI1) are likely to be functionally relevant. Intestinal iron loss in the current form has not yet been described and is, with high probability, the cause of the severe iron deficiency anemia in this patient.
Collapse
|
14
|
BTN2A2 protein negatively regulates T cells to ameliorate collagen-induced arthritis in mice. Sci Rep 2021; 11:19375. [PMID: 34588505 PMCID: PMC8481265 DOI: 10.1038/s41598-021-98443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 12/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by persistent inflammatory responses in target tissues and organs, resulting in the destruction of joints. Collagen type II (CII)-induced arthritis (CIA) is the most used animal model for human RA. Although BTN2A2 protein has been previously shown to inhibit T cell functions in vitro, its effect on autoimmune arthritis has not been reported. In this study, we investigate the ability of a recombinant BTN2A2-IgG2a Fc (BTN2A2-Ig) fusion protein to treat CIA. We show here that administration of BTN2A2-Ig attenuates established CIA, as compared with control Ig protein treatment. This is associated with reduced activation, proliferation and Th1/Th17 cytokine production of T cells in BTN2A2-Ig-treated CIA mice. BTN2A2-Ig also inhibits CII-specific T cell proliferation and Th1/Th17 cytokine production. Although the percentage of effector T cells is decreased in BTN2A2-Ig-treated CIA mice, the proportions of naive T cells and regulatory T cells is increased. Furthermore, BTN2A2-Ig reduces the percentage of proinflammatory M1 macrophages but increases the percentage of anti-inflammatory M2 macrophages in the CIA mice. Our results suggest that BTN2A2-Ig protein has the potential to be used in the treatment of collagen-induced arthritis models.
Collapse
|
15
|
Liu YQ, Liu Y, Zhang Q, Xiao T, Deng HW. Identification of Novel Pleiotropic SNPs Associated with Osteoporosis and Rheumatoid Arthritis. Calcif Tissue Int 2021; 109:17-31. [PMID: 33740106 PMCID: PMC8238865 DOI: 10.1007/s00223-021-00817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of genetic loci for osteoporosis (OP) and rheumatoid arthritis (RA), individually, however, a large proportion of the total trait heritability remains unexplained. Previous studies demonstrated that these two diseases may share some common genetic determination and risk factors, but they were generally focused on individual trait and failed to identify the common variants that play key functional roles in the etiology of these two diseases. Here, we performed a conditional false discovery rate (cFDR) analysis to identify novel pleiotropic variants shared between them by integrating two independent GWASs with summary statistics for total body bone mineral density (TB-BMD, a major risk factor for osteoporosis) (n = 66,628) and RA (n = 58,284). A fine-mapping approach was also applied to identify the most probable causal variants with biological effects on both TB-BMD and RA. As a result, we found 47 independent pleiotropic SNPs shared between TB-BMD and RA, and 40 of them were validated in heel ultrasound estimated BMD (eBMD), femoral neck BMD (FN-BMD) or lumbar spine (LS-BMD). We detected one SNP (rs13299616) was novel and not identified by previous BMD or RA-related studies. Combined with fine-mapping and GWAS-eQTL colocalization analyses, our results suggested that locus 1p13.2 (including PTPN22, MAGI3, PHTF1, and RSBN1) was an important region to regulate TB-BMD and RA simultaneously. These findings provide new insights into the shared biological mechanisms and functional genetic determinants between OP and RA, and novel potential targets for treatment development.
Collapse
Affiliation(s)
- Ying-Qi Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yong Liu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Qiang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, 70112, USA.
| |
Collapse
|
16
|
Ali Y, Khan S, Chen Y, Farooqi N, Islam ZU, Akhtar M, Aamir, Aman A, Shah AA, Jamal M, Jalil F. Association of AFF3 Gene Polymorphism rs10865035 with Rheumatoid Arthritis: A Population-Based Case-Control Study on a Pakistani Cohort. Genet Res (Camb) 2021; 2021:5544198. [PMID: 34104118 PMCID: PMC8147531 DOI: 10.1155/2021/5544198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the complex diseases with the involvement of the genetic as well as environmental factors in its onset and severity. Different genome-wide association and candidate gene studies have shown the role of several genetic variants in multiple loci/genes with ethnical and geographical variations. This study was designed to detect the association of a single-nucleotide polymorphism (SNP) rs10865035 in the AFF3 gene with the genetic background of rheumatoid arthritis (RA) in the Pakistani cohort. A total of 703 individuals, including 409 RA patients and 294 healthy controls, were genotyped using TaqMan assay and Tri primer ARMS-PCR (amplification-refractory mutation system-polymerase chain reaction) methods. The association of rs10865035 with the RA was statistically determined using different models. Interestingly, besides the homozygous recessive model (G/G vs. A/G + A/A) (OR = 1.693(1.06-2.648); P = 0.025), all other models, which included the codominant (χ 2 = 5.169; P = 0.075), homozygous dominant (A/A vs. G/G + A/G) (OR = 0.867 (0.636-1.187); P = 0.41), heterozygous (A/G vs. A/A + GG) (OR = 0.491 (0.667-1.215); P = 0.49), and additive model (OR = 0.826 (0.665-1.027); P = 0.08) showed insignificant distribution of the genotypes among the cases and controls. These findings suggest that the AFF3 gene (rs10865035) has no significant role in the onset of RA in the Pakistani population.
Collapse
Affiliation(s)
- Yasir Ali
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Suleman Khan
- Lady Ready Hospital, MTI Peshawar, Peshawar, Pakistan
| | - Yangchao Chen
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Pakistan
| | - Nadia Farooqi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Zia-Ul Islam
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mehran Akhtar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Aamir
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aisha Aman
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aftab Ali Shah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
17
|
Fernández-Díaz C, Atienza-Mateo B, Castañeda S, Melero-Gonzalez RB, Ortiz-SanJuan F, Loricera J, Casafont-Solé I, Rodríguez-García S, Aguilera-Cros C, Villa-Blanco I, Raya-Alvarez E, Ojeda-García C, Bonilla G, López-Robles A, Arboleya L, Narváez J, Cervantes E, Maiz O, Alvarez-Rivas MN, Cabezas I, Salgado E, Hidalgo-Calleja C, Fernández S, Fernández JC, Ferraz-Amaro I, González-Gay MA, Blanco R. ABATACEPT IN MONOTHERAPY VERSUS COMBINED IN INTERSTITIAL LUNG DISEASE OF RHEUMATOID ARTHRITIS. MULTICENTER STUDY OF 263 CAUCASIAN PATIENTS. Rheumatology (Oxford) 2021; 61:299-308. [PMID: 33779697 DOI: 10.1093/rheumatology/keab317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To assess the efficacy and safety of abatacept (ABA) in monotherapy (ABAMONO) versus combined-ABA, ABA plus methotrexate (ABAMTX) or ABA plus non-MTX conventional-DMARDs (ABANON-MTX), in Rheumatoid Arthritis (RA) patients with Interstitial Lung Disease (ILD) (RA-ILD). METHODS Restrospective multicenter study of RA-ILD Caucasian patients treated with ABA. We analyzed in the three groups (ABAMONO, ABAMTX, ABANON-MTX) the following outcome variables: a) Dyspnea b) FVC and DLCO c) chest HRCT, d) DAS28-ESR, e) corticosteroid-sparing effect, f) ABA retention and side-effects. Differences between basal and final follow-up were evaluated. Multivariable linear regression was used to assess the differences between the three groups. RESULTS We studied 263 RA-ILD patients (mean age 64.6±10 years) [ABAMONO (n = 111), ABAMTX (n = 46) and ABANON-MTX (n = 106)]. At baseline, ABAMONO patients were older (67±10 years) and took higher prednisone dose (10 [IQR 5-15] mg/day). At that time, there were no statistically significant differences in sex, seropositivity, ILD patterns, FVC and DLCO or disease duration. Following treatment, in all groups, most patients experienced stabilization or improvement in FVC, DLCO, dyspnoea, chest-HRCT as well as improvement in DAS28-ESR. A statistically significant difference between basal and final follow-up was only found in corticosteroid-sparing effect in the group on combined-ABA (ABAMTX or ABANON-MTX). However, in the multivariable analysis, there were no differences in any outcome variables between the three groups. CONCLUSION In Caucasian individuals with RA-ILD, ABA in monotherapy or combined with MTX or with other conventional-DMARDS seems to be equally effective and safe. However, a corticosteroid-sparing effect is only observed with combined-ABA.
Collapse
Affiliation(s)
| | | | - Santos Castañeda
- HU La Princesa, IIS-Princesa, Cátedra UAM-Roche (EPID-Future), UAM, Madrid
| | | | | | - Javier Loricera
- HU Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ricardo Blanco
- HU Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander
| | | |
Collapse
|
18
|
Hlaváč V, Václavíková R, Brynychová V, Koževnikovová R, Kopečková K, Vrána D, Gatěk J, Souček P. Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response. Int J Mol Sci 2020; 21:ijms21249556. [PMID: 33334016 PMCID: PMC7765380 DOI: 10.3390/ijms21249556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 43 prioritized variants associating with response or survival in the above testing phase were then analyzed by allelic discrimination in the large validation set (n = 802). Variants in ABCA4, ABCA9, ABCA12, ABCB5, ABCC5, ABCC8, ABCC11, and ABCD4 associated with response and variants in ABCA7, ABCA13, ABCC4, and ABCG8 with survival of the patients. No association passed a false discovery rate test, however, the rs17822931 (Gly180Arg) in ABCC11, associating with response, and the synonymous rs17548783 in ABCA13 (survival) have a strong support in the literature and are, thus, interesting for further research. Although replicated associations have not reached robust statistical significance, the role of ABC transporters in breast cancer should not be ruled out. Future research and careful validation of findings will be essential for assessment of genetic variation which was not in the focus of this study, e.g., non-coding sequences, copy numbers, and structural variations together with somatic mutations.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Veronika Brynychová
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | | | - Katerina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - David Vrána
- Department of Oncology, Medical School and Teaching Hospital, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Jiří Gatěk
- Department of Surgery, EUC Hospital and University of Tomas Bata in Zlin, 760 01 Zlin, Czech Republic;
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267-082-711
| |
Collapse
|
19
|
Wang Z, Wilson CM, Ge Y, Nemes J, LaValle C, Boutté A, Carr W, Kamimori G, Haghighi F. DNA Methylation Patterns of Chronic Explosive Breaching in U.S. Military Warfighters. Front Neurol 2020; 11:1010. [PMID: 33192958 PMCID: PMC7645105 DOI: 10.3389/fneur.2020.01010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Injuries from exposure to explosions rose dramatically during the Iraq and Afghanistan wars, which motivated investigation of blast-related neurotrauma. We have undertaken human studies involving military "breachers" -exposed to controlled, low-level blast during a 3-days explosive breaching course. Methods: We screened epigenetic profiles in peripheral blood samples from 59 subjects (in two separate U.S. Military training sessions) using Infinium MethylationEPIC BeadChips. Participants had varying numbers of exposures to blast over their military careers (empirically defined as high ≥ 40, and conversely, low < 39 breaching exposures). Daily self-reported physiological symptoms were recorded. Tinnitus, memory problems, headaches, and sleep disturbances are most frequently reported. Results: We identified 14 significantly differentially methylated regions (DMRs) within genes associated with cumulative blast exposure in participants with high relative to low cumulative blast exposure. Notably, NTSR1 and SPON1 were significantly differentially methylated in high relative to low blast exposed groups, suggesting that sleep dysregulation may be altered in response to chronic cumulative blast exposure. In comparing lifetime blast exposure at baseline (prior to exposure in current training), and top associated symptoms, we identified significant DMRs associated with tinnitus, sleep difficulties, and headache. Notably, we identified KCNN3, SOD3, MUC4, GALR1, and WDR45B, which are implicated in auditory function, as differentially methylated associated with self-reported tinnitus. These findings suggest neurobiological mechanisms behind auditory injuries in our military warfighters and are particularly relevant given tinnitus is not only a primary disability among veterans, but has also been demonstrated in active duty medical records for populations exposed to blast in training. Additionally, we found that differentially methylated regions associated with the genes CCDC68 and COMT track with sleep difficulties, and those within FMOD and TNXB track with pain and headache. Conclusion: Sleep disturbances, as well as tinnitus and chronic pain, are widely reported in U.S. military service members and veterans. As we have previously demonstrated, DNA methylation encapsulates lifetime exposure to blast. The current data support previous findings and recapitulate transcriptional regulatory alterations in genes involved in sleep, auditory function, and pain. These data uncovered novel epigenetic and transcriptional regulatory mechanism underlying the etiological basis of these symptoms.
Collapse
Affiliation(s)
- Zhaoyu Wang
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
| | - Caroline M. Wilson
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeffrey Nemes
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christina LaValle
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela Boutté
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Gary Kamimori
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, New York, NY, United States
| |
Collapse
|
20
|
Fernández-Díaz C, Castañeda S, Melero-González RB, Ortiz-Sanjuán F, Juan-Mas A, Carrasco-Cubero C, Casafont-Solé I, Olivé A, Rodríguez-Muguruza S, Almodóvar-González R, Castellanos-Moreira R, Rodríguez-García SC, Aguilera-Cros C, Villa I, Ordóñez-Palau S, Raya-Alvarez E, Morales-Garrido P, Ojeda-García C, Moreno-Ramos MJ, Bonilla Hernán MG, Hernández Rodríguez I, López-Corbeto M, Andreu JL, Jiménez de Aberásturi JRD, Ruibal-Escribano A, Expósito-Molinero R, Pérez-Sandoval T, López-Robles AM, Carreira-Delgado P, Mena-Vázquez N, Urruticoechea-Arana A, Peralta-Ginés C, Arboleya-Rodríguez L, Narváez García FJ, Palma-Sánchez D, Cervantes Pérez EC, Maiz-Alonso O, Alvarez-Rivas MN, Fernández-Melón J, Vela Casasempere P, Cabezas-Rodríguez I, Castellvi-Barranco I, González-Montagut C, Blanco-Madrigal J, Del Val-Del Amo N, Fito MC, Rodríguez-Gómez M, Salgado-Pérez E, García-Magallón B, Hidalgo-Calleja C, López-Sánchez R, Fernández-Aguado S, Fernández-López JC, Castro-Oreiro S, Serrano-García I, García-Valle A, Romero-Yuste S, Expósito-Pérez L, Pérez-Albadalejo L, García-Aparicio A, Quillis-Marti N, Bernal-Vidal JA, Loricera-García J, Hernández JL, González-Gay MA, Blanco R. Abatacept in interstitial lung disease associated with rheumatoid arthritis: national multicenter study of 263 patients. Rheumatology (Oxford) 2020; 59:3906-3916. [DOI: 10.1093/rheumatology/keaa621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Indexed: 01/11/2023] Open
Abstract
Abstract
Objective
To assess the efficacy of abatacept (ABA) in RA patients with interstitial lung disease (ILD) (RA-ILD).
Methods
This was an observational, multicentre study of RA-ILD patients treated with at least one dose of ABA. ILD was diagnosed by high-resolution CT (HRCT). We analysed the following variables at baseline (ABA initiation), 12 months and at the end of the follow-up: Modified Medical Research Council (MMRC) scale (1-point change), forced vital capacity (FVC) or diffusion lung capacity for carbon monoxide (DLCO) (improvement or worsening ≥10%), HRCT, DAS on 28 joints evaluated using the ESR (DAS28ESR) and CS-sparing effect.
Results
We studied 263 RA-ILD patients [150 women/113 men; mean (s.d.) age 64.6 (10) years]. At baseline, they had a median duration of ILD of 1 (interquartile range 0.25–3.44) years, moderate or severe degree of dyspnoea (MMRC grade 2, 3 or 4) (40.3%), FVC (% of the predicted) mean (s.d.) 85.9 (21.8)%, DLCO (% of the predicted) 65.7 (18.3) and DAS28ESR 4.5 (1.5). The ILD patterns were: usual interstitial pneumonia (UIP) (40.3%), non-specific interstitial pneumonia (NSIP) (31.9%) and others (27.8%). ABA was prescribed at standard dose, i.v. (25.5%) or s.c. (74.5%). After a median follow-up of 12 (6–36) months the following variables did not show worsening: dyspnoea (MMRC) (91.9%); FVC (87.7%); DLCO (90.6%); and chest HRCT (76.6%). A significant improvement of DAS28ESR from 4.5 (1.5) to 3.1 (1.3) at the end of follow-up (P < 0.001) and a CS-sparing effect from a median 7.5 (5–10) to 5 (2.5–7.5) mg/day at the end of follow-up (P < 0.001) was also observed. ABA was withdrawn in 62 (23.6%) patients due to adverse events (n = 30), articular inefficacy (n = 27), ILD worsening (n = 3) and other causes (n = 2).
Conclusion
ABA may be an effective and safe treatment for patients with RA-ILD.
Collapse
Affiliation(s)
| | - Santos Castañeda
- Rheumatology Cátedra UAM-Roche (EPID-Future) HU La Princesa, IIS-Princesa, UAM, Madrid
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - José L Hernández
- Rheumatology, HU Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander
| | | | - Ricardo Blanco
- Rheumatology, HU Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander
| |
Collapse
|
21
|
Takeuchi T, Miyasaka N, Pedersen RD, Sugiyama N, Hirose T. Radiographic and clinical effects of 10 mg and 25 mg twice-weekly etanercept over 52 weeks in Japanese patients with active rheumatoid arthritis. Mod Rheumatol 2020; 31:319-325. [PMID: 32735145 DOI: 10.1080/14397595.2020.1805142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To compare the radiographic and clinical effects of 25 versus 10 mg twice-weekly (BIW) etanercept over 52 weeks in Japanese patients with active rheumatoid arthritis (RA). METHODS This was a post-hoc analysis of a Phase 3 study where Japanese patients with active RA were randomized to receive BIW etanercept 25 mg (n = 182), etanercept 10 mg (n = 192), or methotrexate (n = 176) for 52 weeks (NCT00445770). This analysis included assessments of week-24 and week-52 disease activity, week-52 radiographic progression, and the relationship between baseline characteristics and week 52 clinical outcomes with clinically relevant radiographic progression (CRRP) at week 52. RESULTS At week 52, there were no significant differences between 25 and 10 mg etanercept in terms of achieving low disease activity or remission. CRRP was observed in 36% and 32% of patients in the 10 and 25 mg groups, respectively. Predictor analysis suggested that worse background disease status, treatment with methotrexate rather than etanercept, and poorer clinical outcomes at week 52 were associated with CRRP. CONCLUSIONS The 25 mg BIW etanercept dosage does not appear to be significantly more efficacious than 10 mg in Japanese patients with RA. Further studies evaluating the optimal etanercept dosing regimen in this patient population may be merited. NCT: NCT00445770.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuyuki Miyasaka
- Department of Medicine and Rheumatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Noriko Sugiyama
- Clinical Statistics, Biometrics, and Data Management, Pfizer R&D Japan, Tokyo, Japan
| | - Tomohiro Hirose
- Immunology & Inflammation Medical Affairs, Innovative Medicines Business, Pfizer Japan Inc, Tokyo, Japan
| |
Collapse
|
22
|
Wu L, Xu Y, Zhao H, Li Y. RNase T2 in Inflammation and Cancer: Immunological and Biological Views. Front Immunol 2020; 11:1554. [PMID: 32903619 PMCID: PMC7438567 DOI: 10.3389/fimmu.2020.01554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 01/13/2023] Open
Abstract
The RNase T2 family consists of evolutionarily conserved endonucleases that express in many different species, including animals, plants, protozoans, bacteria, and viruses. The main biological roles of these ribonucleases are cleaving or degrading RNA substrates. They preferentially cleave single-stranded RNA molecules between purine and uridine residues to generate two nucleotide fragments with 2'3'-cyclic phosphate adenosine/guanosine terminus and uridine residue, respectively. Accumulating studies have revealed that RNase T2 is critical for the pathophysiology of inflammation and cancer. In this review, we introduce the distribution, structure, and functions of RNase T2, its differential roles in inflammation and cancer, and the perspective for its research and related applications in medicine.
Collapse
Affiliation(s)
- Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Weber T, Schlotawa L, Dosch R, Hamilton N, Kaiser J, Schiller S, Wenske B, Gärtner J, Henneke M. Zebrafish disease model of human RNASET2-deficient cystic leukoencephalopathy displays abnormalities in early microglia. Biol Open 2020; 9:bio049239. [PMID: 32295832 PMCID: PMC7225086 DOI: 10.1242/bio.049239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Human infantile-onset RNASET2-deficient cystic leukoencephalopathy is a Mendelian mimic of in utero cytomegalovirus brain infection with prenatally developing inflammatory brain lesions. We used an RNASET2-deficient zebrafish model to elucidate the underlying disease mechanisms. Mutant and wild-type zebrafish larvae brain development between 2 and 5 days post fertilization (dpf) was examined by confocal live imaging in fluorescent reporter lines of the major types of brain cells. In contrast to wild-type brains, RNASET2-deficient larvae displayed increased numbers of microglia with altered morphology, often containing inclusions of neurons. Furthermore, lysosomes within distinct populations of the myeloid cell lineage including microglia showed increased lysosomal staining. Neurons and oligodendrocyte precursor cells remained unaffected. This study provides a first look into the prenatal onset pathomechanisms of human RNASET2-deficient leukoencephalopathy, linking this inborn lysosomal disease to the innate immune system and other immune-related childhood encephalopathies like Aicardi-Goutières syndrome (AGS).
Collapse
Affiliation(s)
- Thomas Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Roland Dosch
- Department of Human Genetics, University Medical Center Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Noémie Hamilton
- The Bateson Centre, University of Sheffield, Firth Court D31, Sheffield S10 2PT, United Kingdom
| | - Jens Kaiser
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Stina Schiller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Britta Wenske
- Department of Haematology and Oncology, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
24
|
Ramírez-Bello J, Fragoso JM, Alemán-Ávila I, Jiménez-Morales S, Campos-Parra AD, Barbosa-Cobos RE, Moreno J. Association of BLK and BANK1 Polymorphisms and Interactions With Rheumatoid Arthritis in a Latin-American Population. Front Genet 2020; 11:58. [PMID: 32153635 PMCID: PMC7045059 DOI: 10.3389/fgene.2020.00058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction BLK has been identified as a risk factor to rheumatoid arthritis (RA) primarily in Asian or European-derived populations. However, this finding has not been evaluated in other populations such as Latin-Americans, except for Colombians. On the other hand, BANK1 single nucleotide variants (SNVs) have been scarcely studied in RA patients. Objective The aim of this study was to determine whether the BLK rs2736340T/C, rs13277113A/G, and BANK1 rs10516487G/A (R61H) and rs3733197G/A (A383T) polymorphisms are risk factors to RA in a sample of patients from Central Mexico. Materials and Methods We studied 957 women; 487 controls and 470 patients with RA by means of a TaqMan® SNP genotyping assay with fluorescent probes for the BLK rs13277113A/G, rs2736340T/C and BANK1 10516487G/A (R61H) and rs3733197G/A (A383T) variants. Result The BLK rs2736340T/C and rs13277113A/G variants were associated with risk for RA: C vs T; OR 1.39, p = 0.001, and G vs A; OR 1.37, p = 0.004, respectively. In addition, there was also an association between BANK1 R61H and RA: A vs G; OR 1.49, p = 0.003, but no with BANK1 A383T. We also identified an interaction significant between genotypes of BLK rs2736340T/C-BANK1 rs10516487G/A and RA: OR 1.65, p = 0.0001. Conclusions Our data suggest that both BLK and BANK1 confer susceptibility to RA in Mexican patients. The individual association of BANK1 rs1054857G/A with RA had not been previously reported in a particular population (except for pooled patients from several countries), therefore, our study presents the first evidence of association between this BANK1 variant and RA.
Collapse
Affiliation(s)
| | - José M Fragoso
- Laboratorio de Biología Molecular, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - José Moreno
- Dirección de Investigación, Hospital Juárez de México, Mexico City, Mexico
| |
Collapse
|
25
|
Jia J, Li J, Yao X, Zhang Y, Yang X, Wang P, Xia Q, Hakonarson H, Li J. Genetic architecture study of rheumatoid arthritis and juvenile idiopathic arthritis. PeerJ 2020; 8:e8234. [PMID: 31988799 PMCID: PMC6969553 DOI: 10.7717/peerj.8234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis and juvenile idiopathic arthritis are two types of autoimmune diseases with inflammation at the joints, occurring to adults and children respectively. There are phenotypic overlaps between these two types of diseases, despite the age difference in patient groups. METHODS To systematically compare the genetic architecture of them, we conducted analyses at gene and pathway levels and constructed protein-protein-interaction network based on summary statistics of genome-wide association studies of these two diseases. We examined their difference and similarity at each level. RESULTS We observed extensive overlap in significant SNPs and genes at the human leukocyte antigen region. In addition, several SNPs in other regions of the human genome were also significantly associated with both diseases. We found significantly associated genes enriched in 32 pathways shared by both diseases. Excluding genes in the human leukocyte antigen region, significant enrichment is present for pathways like interleukin-27 pathway and NO2-dependent interleukin-12 pathway in natural killer cells. DISCUSSION The identification of commonly associated genes and pathways may help in finding population at risk for both diseases, as well as shed light on repositioning and designing drugs for both diseases.
Collapse
Affiliation(s)
- Jun Jia
- Department of Surgery of Foot and Ankle, Tianjin Hospital, Tianjin, China
| | - Junyi Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xueming Yao
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - YuHang Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohao Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jin Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Acquati F, Mortara L, De Vito A, Baci D, Albini A, Cippitelli M, Taramelli R, Noonan DM. Innate Immune Response Regulation by the Human RNASET2 Tumor Suppressor Gene. Front Immunol 2019; 10:2587. [PMID: 31749812 PMCID: PMC6848152 DOI: 10.3389/fimmu.2019.02587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
The link between cancer development or progression and immune system dysregulation has long been established. Virtually every cell type belonging to both the innate and adaptive immune system has been reported to be involved in a complex interplay that might culminate into either a pro- or anti-tumorigenic response. Among the cellular components of the innate immune system, cells belonging to the monocyte/macrophage lineage have been consistently shown to play a key role in the tumorigenic process. The most advanced human tumors are reported to be strongly infiltrated with Tumor-Associated Macrophages (TAMs) endowed with the ability to contribute to tumor growth and dissemination. However, given their widely acknowledged functional plasticity, macrophages can display anti-tumor properties as well. Based on these premises, experimental approaches to promote the in vivo macrophage shift from pro-tumor to anti-tumor phenotype represent one of the most promising research field aimed at developing immune system-mediated tumor suppressive therapies. In this context, the human RNASET2 oncosuppressor gene has emerged as a potential tool for macrophage-mediated tumor suppression. A growing body of experimental evidence has been reported to suggest a role for this gene in the regulation of macrophage activity in both in vitro and in vivo experimental models. Moreover, several recent reports suggest a role for this gene in a broad range of cell types involved in immune response, pointing at RNASET2 as a putative regulator of several functional features within the immune system.
Collapse
Affiliation(s)
- Francesco Acquati
- Human Genetics Laboratory, Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annarosaria De Vito
- Human Genetics Laboratory, Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, University La Sapienza, Rome, Italy
| | - Roberto Taramelli
- Human Genetics Laboratory, Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
27
|
Zhang M, Gu Y, Huang S, Lou Q, Xie Q, Xu Z, Chen Y, Pan F, Xu S, Liu S, Tao J, Liu S, Cai J, Chen P, Qian L, Wang C, Liang C, Huang H, Pan H, Su H, Cheng J, Zhang Y, Hu W, Zou Y. Copy number variations and polymorphisms in HSP90AB1 and risk of systemic lupus erythematosus and efficacy of glucocorticoids. J Cell Mol Med 2019; 23:5340-5348. [PMID: 31124601 PMCID: PMC6653051 DOI: 10.1111/jcmm.14410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022] Open
Abstract
The aim of our study was to assess the associations of HSP90AB1 copy number variations (CNVs) with systemic lupus erythematosus (SLE) risk and glucocorticoids (GCs) efficacy, as well as the relationship between HSP90AB1 single‐nucleotide polymorphisms (SNPs) and GCs efficacy. HSP90AB1 CNVs and SLE risk were analysed in 519 patients and 538 controls. Patients treated with GCs were followed up for 12 weeks and were divided into sensitive and insensitive groups to investigate the effects of CNVs (419 patients) and SNPs (457 patients) on the efficacy of GCs. Health‐related quality of life (HRQoL) was also measured by SF‐36 at baseline and week 12 to explore the relationship between CNVs/SNPs and HRQoL improvements in Chinese SLE patients. Our results indicated a statistically significant association between HSP90AB1 CNVs and SLE (PBH = 0.039), and this association was more pronounced in the female subgroup (PBH = 0.039). However, we did not detect association of HSP90AB1 CNVs/SNPs with efficacy of GCs. But we found a marginal association between SNP rs13296 and improvement in Role‐emotional, while this association was not strong enough to survive in the multiple testing corrections. Collectively, our findings suggest that the copy number of HSP90AB1 is associated with SLE susceptibility. But copy number and polymorphisms of HSP90AB1 may not be associated with efficacy of GCs.
Collapse
Affiliation(s)
- Man Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Yuanyuan Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Shunwei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Qiuyue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Qiaomei Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Shengqian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengxiu Liu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiling Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Qian
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunhuai Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunmei Liang
- Department of Laboratory Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Hailiang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yuzhou Zhang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| |
Collapse
|
28
|
Adkar SS, Wu CL, Willard VP, Dicks A, Ettyreddy A, Steward N, Bhutani N, Gersbach CA, Guilak F. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing. Stem Cells 2018; 37:65-76. [PMID: 30378731 DOI: 10.1002/stem.2931] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) to prescribed cell fates enables the engineering of patient-specific tissue types, such as hyaline cartilage, for applications in regenerative medicine, disease modeling, and drug screening. In many cases, however, these differentiation approaches are poorly controlled and generate heterogeneous cell populations. Here, we demonstrate cartilaginous matrix production in three unique hiPSC lines using a robust and reproducible differentiation protocol. To purify chondroprogenitors (CPs) produced by this protocol, we engineered a COL2A1-GFP knock-in reporter hiPSC line by CRISPR-Cas9 genome editing. Purified CPs demonstrated an improved chondrogenic capacity compared with unselected populations. The ability to enrich for CPs and generate homogenous matrix without contaminating cell types will be essential for regenerative and disease modeling applications. Stem Cells 2019;37:65-76.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | | | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Adarsh Ettyreddy
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Cytex Therapeutics, Inc., Durham, North Carolina, USA
| |
Collapse
|
29
|
Suh B, Eoh J, Shin J. Clinical and Imaging Features of Longus Colli Calcific Tendinitis: An Analysis of Ten Cases. Clin Orthop Surg 2018; 10:204-209. [PMID: 29854344 PMCID: PMC5964269 DOI: 10.4055/cios.2018.10.2.204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Longus colli calcific tendinitis (LCCT) exhibits characteristic clinical features; thus, misidentification can be avoided once it is learned. There is a lack of reports on this disease. In this study, we analyzed the imaging and clinical features of LCCT in 10 patients. Methods We retrospectively reviewed the radiolographic findings, laboratory data and clinical features of 10 patients diagnosed with LCCT between January 2015 and June 2017. All patients were treated with medical treatment consisting of intravenous methylprednisolone 125 mg twice and oral nonsteroidal anti-inflammatory drug administration. Results On clinical findings, all 10 patients complained of severe posterior neck pain and cervical motion limitation. Odynophagia was present in nine patients. The mean time from symptom onset to hospital visit was 2.9 days. The mean time to symptom relief was 4.6 days. Of the 10 patients, three patients were admitted through the emergency room. There were five patients in the medical records who were transferred from another hospital. On the laboratory data, the mean value of C-reactive protein and erythrocyte sedimentation rate were 2.08 mg/dL (reference range, < 0.30 mg/dL) and 36.9 mm/hr (reference range, < 20 mm/hr), respectively. Leukocytosis was found in only two patients and fever was not present all patients. On radiographic findings, calcification was present on computed tomography images of all patients. The calcification was located at the lower part of the C1 arch, except for one case where calcification occurred in the anterolateral aspect of the C4–5 disc space. The mean value of the retropharyngeal space was 7.2 mm. Conclusions LCCT, a rare disease, has characteristic radiographic findings and clinical features. Understanding such characteristics of this disease can prevent unnecessary testing and misdiagnosis.
Collapse
Affiliation(s)
- Bogun Suh
- Spine Center and Department of Orthopaedic Surgery, Pohang Semyeong Christianity Hospital, Pohang, Korea
| | - Jaehyung Eoh
- Spine Center and Department of Orthopaedic Surgery, Pohang Semyeong Christianity Hospital, Pohang, Korea
| | - Jihoon Shin
- Spine Center and Department of Orthopaedic Surgery, Pohang Semyeong Christianity Hospital, Pohang, Korea
| |
Collapse
|
30
|
Sun Y, Hu X, Song J, Hu Y, Liu C, Li G. Novel RNASET2 Pathogenic Variants in an East Asian Child with Delayed Psychomotor Development. Fetal Pediatr Pathol 2018; 37:15-21. [PMID: 29336640 DOI: 10.1080/15513815.2017.1388456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION RNASET2 mutation has been reported in patients with cystic leukoencephalopathy without megalencephaly and the Aicardi-Goutieres syndrome. Both disorders are Mendelian mimics of congenital cytomegalovirus infection with overlapping features, including leukoencephalopathy, white matter alterations, intracranial calcification, delayed psychomotor development, intelligence disability and seizures. Only eight families with RNASET2 mutation have been previously reported. METHODS Whole exome sequencing was performed and copy number variants were described by read-depth strategy. RESULTS We identified a novel nonsense variant c.128G>A (p. W43*) and a 430 Kb 6q27 microdeletion encompassing RNASET2. Our patient did not show anterior temporal lobe subcortical cysts, hearing loss, dystonia or extra-neurological features. CONCLUSION Our results provided further genetic and phenotypic information of RNASET2 mutation in Chinese patients and highlighted the importance for physicians to consider RNASET2-related disorders when diagnosing patients with congenital brain infection-like phenotypes.
Collapse
Affiliation(s)
- Yan Sun
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China
| | - Xuyun Hu
- b Genetic and Metabolic Central Laboratory , Guangxi Maternal and Child Health Hospital , Nanning , Guangxi , China.,c Shanghai Children's Medical Center , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jiqing Song
- d Department of Radiology , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
| | - Yanyan Hu
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China
| | - Caihong Liu
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China
| | - Guimei Li
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China
| |
Collapse
|
31
|
No association of single nucleotide polymorphisms within H19 and HOX transcript antisense RNA (HOTAIR) with genetic susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and primary Sjögren's syndrome in a Chinese Han population. Clin Rheumatol 2017; 36:2447-2453. [PMID: 28914367 DOI: 10.1007/s10067-017-3833-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 02/05/2023]
Abstract
The H19 (rs2839698, rs3741219) and HOTAIR (rs920778) polymorphisms were related to many kinds of cancers. However, these polymorphisms have been scarcely explored in different autoimmune diseases. Here, we aimed to examine the association of the polymorphisms with susceptibility to or protection against systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and primary Sjögren's syndrome (pSS) among Chinese Han patients. We conducted a case-control study including 800 patients (300 with SLE, 350 with RA, and 150 with pSS) and 350 healthy control individuals. The polymorphisms were specified from genomic DNA using TaqMan genotyping assay on a 7300 real-time reverse transcription polymerase chain reaction system. H19 rs2839698 was not associated with SLE susceptibility and was not associated with RA and pSS, respectively (P > 0.05). Similarly, we did not find significant differences of allele or genotype frequencies between SLE, RA, and pSS patients and healthy controls for H19 gene rs3741219 polymorphism (P > 0.05). In addition, no significant evidence was detected for the relationship of HOTAIR rs920778 polymorphism with risk of these diseases. Our results suggested that H19 rs2839698, rs3741219, and HOTAIR rs920778 polymorphisms may not be involved in the genetic background of SLE, RA, and pSS in Chinese.
Collapse
|
32
|
Identification of novel genetic loci for osteoporosis and/or rheumatoid arthritis using cFDR approach. PLoS One 2017; 12:e0183842. [PMID: 28854271 PMCID: PMC5576737 DOI: 10.1371/journal.pone.0183842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are co-morbidity between osteoporosis (OP) and rheumatoid arthritis (RA). Some genetic risk factors have been identified for these two phenotypes respectively in previous research; however, they accounted for only a small portion of the underlying total genetic variances. Here, we sought to identify additional common genetic loci associated with OP and/or RA. The conditional false discovery rate (cFDR) approach allows detection of additional genetic factors (those respective ones as well as common pleiotropic ones) for the two associated phenotypes. We collected and analyzed summary statistics provided by large, multi-center GWAS studies of FNK (femoral neck) BMD (a major risk factor for osteoporosis) (n = 53,236) and RA (n = 80,799). The conditional quantile-quantile (Q-Q) plots can assess the enrichment of SNPs related to FNK BMD and RA, respectively. Furthermore, we identified shared loci between FNK BMD and RA using conjunction cFDR (ccFDR). We found strong enrichment of p-values in FNK BMD when conditional Q-Q was done on RA and vice versa. We identified 30 novel OP-RA associated pleiotropic loci that have not been reported in previous OP or RA GWAS, 18 of which located in the MHC (major histocompatibility complex) region previously reported to play an important role in immune system and bone health. We identified some specific novel polygenic factors for OP and RA respectively, and identified 30 novel OP-RA associated pleiotropic loci. These discovery findings may offer novel pathobiological insights, and suggest new targets and pathways for drug development in OP and RA patients.
Collapse
|
33
|
Müller-Ladner U, Neumann E. Editorial: Tumor Necrosis Factor-Transgenic Mice: Close Enough to Human Epigenetics? Arthritis Rheumatol 2017; 69:1512-1516. [DOI: 10.1002/art.40125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Ulf Müller-Ladner
- Justus Liebig University Giessen, Kerckhoff Klinik; Bad Nauheim Germany
| | - Elena Neumann
- Justus Liebig University Giessen, Kerckhoff Klinik; Bad Nauheim Germany
| |
Collapse
|