1
|
Vidal MS, Radnaa E, Vora N, Khanipov K, Antich C, Ferrer M, Urrabaz-Garza R, Jacob JE, Menon R. Establishment and comparison of human term placenta-derived trophoblast cells†. Biol Reprod 2024; 110:950-970. [PMID: 38330185 PMCID: PMC11484515 DOI: 10.1093/biolre/ioae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jeena E Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
2
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Bralewska M, Pietrucha T, Sakowicz A. The Role of Catestatin in Preeclampsia. Int J Mol Sci 2024; 25:2461. [PMID: 38473713 DOI: 10.3390/ijms25052461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
4
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Ham J, Song J, Song G, Lim W. Oryzalin impairs maternal-fetal interaction during early pregnancy via ROS-mediated P38 MAPK/AKT and OXPHOS downregulation. Food Chem Toxicol 2023; 174:113665. [PMID: 36775140 DOI: 10.1016/j.fct.2023.113665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Oryzalin is a dinitroaniline pesticide for the control of weed growth via suppression of microtubule synthesis. There are studies about the deleterious effects of dinitroaniline pesticides on the reproductive system. Therefore, we attempted to demonstrate the toxic mechanisms of oryzalin on early pregnancy using porcine uterine epithelial cells (pLE) and trophectoderm (pTr) cells. According to our results, the viability and proliferation of pLE and pTr cells were suppressed in response to oryzalin exposure, and cell cycle progression was affected. Additionally, oryzalin induced apoptotic cell death and impaired mitochondrial membrane polarity in pLE and pTr cells. Moreover, we confirmed that oryzalin significantly downregulated adenosine triphosphate (ATP) production via the oxidative phosphorylation system and upregulated reactive oxygen species (ROS) generation in both pLE and pTr cells. The oryzalin-induced ROS generation was mitigated by N-acetylcysteine, a ROS scavenger, and further upregulation of phosphor-P38 MAPK/AKT/P70S6K protein expression was ameliorated in both pLE and pTr cells. We also confirmed that the suppression of migration and proliferation in oryzalin-treated pLE and pTr cells was restored upon oxidative stress mitigation. In summary, we revealed that the cytotoxic mechanisms of oryzalin-induced implantation failure were mediated by ROS-induced intracellular signaling regulation and migratory potential in pLE and pTr cells.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Meakin C, Kim C, Lampert T, Aleksunes LM. High-throughput screening of toxicants that modulate extravillous trophoblast migration. Toxicol Lett 2023; 375:1-7. [PMID: 36535517 PMCID: PMC9877196 DOI: 10.1016/j.toxlet.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Migration and subsequent invasion of extravillous trophoblasts into the uterus is essential for proper formation of the placenta. Disruption of these processes may result in poor pregnancy outcomes including preeclampsia, placenta accreta, fetal growth restriction, or fetal death. Currently, there are several methods for quantifying cell migration and invasion in vitro, each with limitations. Therefore, we developed a novel, high-throughput method to screen chemicals for their ability to alter human trophoblast migration. Human HTR8/SVneo trophoblast cells were cultured in Oris™ cell migration plates containing stopper barriers. After EVT cells attached and chemicals were added to media, stoppers were removed thereby creating a cell-free detection zone for migration. Entry of trophoblasts into this zone was monitored through imaging every 6 h and used to calculate a relative cell density. Chemicals known to increase (epidermal growth factor) and decrease (pertussis toxin and cadmium) trophoblast migration were used to validate this in vitro method. Next, a panel of environmental chemicals including bisphenols, mycoestrogens, and flame retardants, were screened for their ability to alter trophoblast invasion. In conclusion, a real-time method to track extravillous trophoblast migration offers potential for screening contaminants as placental toxicants.
Collapse
Affiliation(s)
- Cassandra Meakin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Christine Kim
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | | | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Mu Z, Shen S, Tang L, Liu Y, Zhou Z, Lei L. Hyperin promotes proliferation, migration, and invasion of HTR-8/SVneo trophoblast cells via activation of JAK1/STAT3 pathway in recurrent spontaneous abortions. Heliyon 2023; 9:e12958. [PMID: 36747955 PMCID: PMC9898646 DOI: 10.1016/j.heliyon.2023.e12958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The proliferation of extravillous trophoblasts (EVT) and their further migration, invasion, and differentiation into the decidual and myometrial vasculature are vital for spiral artery remodeling. These physiological functions of EVT are also essential steps in the implantation of the human embryo and the formation of the placenta and are closely related to pregnancy maintenance and the occurrence of abortion. Hyperin is a flavonoid with anti-inflammatory, pro-proliferative, and anti-apoptotic properties. Consequently, we investigated the previously unexplored effects of hyperin on the proliferation, migration, and invasion of HTR-8/SVneo cells. Human extravillous trophoblast-derived HTR-8/SVneo cells were incubated with different concentrations of hyperin (0, 5, 10, 25, 50, and 100 μM) to observe the changes in cell proliferation, migration, invasive capacity, and pathway activation. Proliferation, migration, and invasion were promoted by activating the JAK1/STAT3 pathway in HTR-8/SVneo cells treated with hyperin. In addition, brepocitinib (PF-06700841) significantly inhibited the proliferation, migration, and invasion effects of hyperin on HTR-8/SVneo cells. In vivo experiments confirmed that hyperin reduces the embryo loss rate in recurrent spontaneous abortion (RSA) model mice. Furthermore, our study revealed that hyperin promoted the proliferation, migration, and invasion of HTR-8/SVneo cells via activation of the JAK1/STAT3 pathway, further improving pregnancy outcomes in RSA.
Collapse
Affiliation(s)
- Zhenni Mu
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Sinan Shen
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Li Tang
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yingdie Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ziwei Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Lei
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China,Corresponding author.
| |
Collapse
|
8
|
Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, Santiago-Mercado M, Palafox-Mariscal L, Jave-Suárez L, Solorzano-Ibarra F, Villaseñor-García M, Ortiz-Lazareno P, Hernández-Flores G. Dual STAT‑3 and IL‑6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL‑6/IL‑6R/STAT‑3 axis. Oncol Rep 2022; 48:138. [PMID: 35703345 PMCID: PMC9245073 DOI: 10.3892/or.2022.8349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is a key public health problem worldwide; at diagnosis, a high percentage of patients exhibit tumor cell invasion of adjacent tissue. STAT‑3, IL‑6 receptor (R) and IL‑6 serum levels are associated with enhanced PCa migratory, invasive, clonogenic and metastatic ability. Inhibiting the STAT‑3 pathway at different levels (cytokines, receptors, and kinases) exhibits relative success in cancer. The present study investigated the effect of Stattic (Stt) + Tocilizumab (Tcz) on proliferative, clonogenic, migratory and invasive ability of human metastatic PCa (assessed by colony formation, wound healing and migration assay). RWPE‑1 (epithelial prostate immortalized cells), 22Rv1 (Tumor cells), LNCaP (Metastatic cells) and DU‑145 (metastatic, castration‑resistant prostate cells) cells were used in vitro to evaluate levels of cytokines, chemokines, growth factors (Cytometric Bead Array), STAT‑3, phosphorylated STAT‑3 (In‑Cell Western), IL‑6R, vimentin and epithelial (E‑) cadherin (Western Blot). The effect of inhibition of STAT‑3 (expressed constitutively in DU‑145 cells) with Stt and/or Tcz on expression levels of vimentin, VEGF, and E‑cadherin, as well as proliferative, clonogenic, migratory and invasive capacity of metastatic PCa cells was assessed. The expression levels of IL‑6, C‑X‑C chemokine ligand 8, VEGF and vimentin, as well as proliferation and migration, were increased in metastatic PCa cells. Treatment with Stt or Tcz decreased vimentin and VEGF and increased E‑cadherin expression levels and inhibited proliferative, clonogenic, migratory and invasive capacity of DU‑145 cells; addition of IL‑6 decreased this inhibitory effect. However, Stt + Tcz maintained inhibition even in the present of high concentrations of IL‑6. Stt + Tcz decreased expression of vimentin and VEGF and inhibited the proliferative, clonogenic, migratory and invasive capacity of metastatic PCa cells. To the best of our knowledge, the present study is the first to combine Stt, a STAT‑3 inhibitor, with Tcz, an antibody against IL‑6R, to target tumor cells.
Collapse
Affiliation(s)
- Anibal Méndez-Clemente
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Alejandro Bravo-Cuellar
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Salvador González-Ochoa
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Maria Santiago-Mercado
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Luis Palafox-Mariscal
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Luis Jave-Suárez
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Sciences (CUCS), University of Guadalajara (UdeG), Guadalajara, Jalisco 44340, México
| | - Fabiola Solorzano-Ibarra
- Chronic Degenerative Diseases Research Institute Postdoctoral Stays Program for Mexico 2021, Department of Molecular and Genomic Biology, University of Guadalajara (UdeG), University Center for Health Sciences (CUCS), Guadalajara, Jalisco 44340, México
| | - Maria Villaseñor-García
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Pablo Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| | - Georgina Hernández-Flores
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, México
| |
Collapse
|
9
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
10
|
Yu Y, Zhu T. RAR-Related Orphan Receptor: An Accelerated Preeclampsia Progression by Activating the JAK/STAT3 Pathway. Yonsei Med J 2022; 63:554-563. [PMID: 35619579 PMCID: PMC9171667 DOI: 10.3349/ymj.2022.63.6.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To investigate the effect and underlying mechanism of RAR related orphan receptor A (RORA) on preeclampsia (PE). MATERIALS AND METHODS Differentially expressed genes (DEGs) in four datasets were obtained by using the Venn diagram method. RORA mRNA and protein expressions were detected by qRT-PCR, western blot, and immunohistochemistry. HTR-8/SVneo cell viability, proliferation, invasion, migration, and angiogenesis were detected by CCK-8 assay, EdU assay, Transwell, wound healing assay, and tube formation assay, respectively. The concentration of Ang-1 in cells was assessed using available ELISA kit. Epithelial-mesenchymal transition, proliferation, and angiogenesis-related proteins were detected by western blot. GSEA analysis were performed for common DEGs, and the expression of enriched pathway-related proteins was also detected. RESULTS The expression of RORA was increased in PE tissue and HTR-8/SVneo cells. Silencing RORA could promote the migration, invasion, epithelial-mesenchymal transition, proliferation, and angiogenesis of hypoxia-treated HTR-8/SVneo cells. Mechanistically, RORA contributed to the deterioration of PE by activating the JAK2/STAT3 signaling pathway to promote cell proliferation, migration, invasion, and angiogenesis. CONCLUSION RORA was up-regulated in PE and affected HTR-8/SVneo cell proliferation, invasion, migration, apoptosis, and angiogenesis via the JAK2/STAT3 signaling pathway. This provided a novel strategy for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Ying Yu
- Department of Obstetrics, Zhangqiu District People's Hospital, Jinan, Shandong, China
| | - Tongyu Zhu
- Department of Obstetrics, 960th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan, Shandong, China.
| |
Collapse
|
11
|
Zhu YN, Gan XW, Pan F, Ni XT, Myatt L, Wang WS, Sun K. Role of EZH2-mediated H3K27me3 in placental ADAM12-S expression: implications for fetoplacental growth. BMC Med 2022; 20:189. [PMID: 35610640 PMCID: PMC9131539 DOI: 10.1186/s12916-022-02391-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2)-mediated histone 3 lysine 27 trimethylation (H3K27me3) is a transcription silencing mark, which is indispensable for cell lineage specification at the early blastocyst stage. This epigenetic repression is maintained in placental cytotrophoblasts but is lifted when cytotrophoblasts differentiate into syncytiotrophoblasts. However, the physiological impact of this lift remains elusive. Here, we investigated whether lifting EZH2-mediated H3K27me3 during syncytialization upregulates the expression of a short secretory isoform of a disintegrin and metalloprotease 12 (ADAM12-S), a well-recognized placenta-derived protease that cleaves insulin-like growth factor binding protein 3 to increase insulin-like growth factor (IGF) bioavailability for the stimulation of fetoplacental growth. The transcription factor and the upstream signal involved were also explored. METHODS Human placenta tissue and cultured primary human placental cytotrophoblasts were utilized to investigate the role of EZH2-mediated H3K27me3 in ADAM12-S expression and the associated transcription factor and upstream signal during syncytialization. A mouse model was used to examine whether inhibition of EZH2-mediated H3K27me3 regulates placental ADAM12-S expression and fetoplacental growth. RESULTS EZH2 and ADAM12 are distributed primarily in villous cytotrophoblasts and syncytiotrophoblasts, respectively. Increased ADAM12-S expression, decreased EZH2 expression, and decreased EZH2/H3K27me3 enrichment at the ADAM12 promoter were observed during syncytialization. Knock-down of EZH2 further increased ADAM12-S expression in trophoblasts. Syncytialization was also accompanied by increased STAT5B expression and phosphorylation as well as its enrichment at the ADAM12 promoter. Knock-down of STAT5B attenuated ADAM12-S expression during syncytialization. Epidermal growth factor (EGF) was capable of inducing ADAM12-S expression via stimulation of STAT5B expression and phosphorylation during syncytialization. Mouse studies revealed that administration of an EZH2 inhibitor significantly increased ADAM12-S levels in maternal blood and fetoplacental weights along with decreased H3K27me3 abundance and increased ADAM12-S expression in the placenta. CONCLUSIONS Lifting EZH2-mediated H3K27me3 increases ADAM12-S expression during syncytialization with the participation of EGF-activated STAT5B, which may lead to elevation of ADAM12-S level in maternal blood resulting in increased IGF bioavailability for the stimulation of fetoplacental growth in pregnancy. Our studies suggest that the role of EZH2-mediated H3K27me3 may switch from cell lineage specification at the early blastocyst stage to regulation of fetoplacental growth in later gestation.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Xiao-Tian Ni
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Bao D, Zhuang C, Jiao Y, Yang L. The possible involvement of circRNA DMNT1/p53/JAK/STAT in gestational diabetes mellitus and preeclampsia. Cell Death Discov 2022; 8:121. [PMID: 35296654 PMCID: PMC8927128 DOI: 10.1038/s41420-022-00913-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Circular RNA (circRNA) plays an important role in biological processes of gestational diabetes mellitus (GDM) and preeclampsia (PE). However, the mechanisms for circRNA DMNT1 (circ-DMNT1) in GDM and PE remain unclarified. The expression levels of circ-DMNT1 and p53 in GDM and PE were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. When the expression of circ-DMNT1 or p53 was abnormal, cell counting kit-8 (CCK-8) assay, bromodeoxyuridine (BrdU) staining, flow cytometry, cell scratch, and Transwell assays were used to assess cell viability, proliferation, cell cycle, apoptosis, migration, and invasion of trophoblast cells, respectively. Subsequently, the binding relationship between circ-DMNT1 and p53 was verified by RNA pull-down and RIP analysis, followed by the determination of JAK/STAT pathway-related protein expression levels using western blot analysis. Both circ-DMNT1 and p53 were highly expressed in GDM and PE. Upregulation of circ-DMNT1 or p53 inhibited trophoblast cell viability, proliferation, migration, and invasion, meanwhile promoting cell apoptosis but blocking cell cycle progression. However, downregulation of circ-DMNT1 or p53 induced trophoblast cell survival. In GDM and PE, circ-DMNT1 activated the JAK/STAT pathway by binding to p53, which resulted in increased expression levels of p-JAK and p-STAT. The results suggested that circ-DMNT1 was involved in the deterioration of GDM and PE, possibly through inducing p53 expression and activating the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Dongqin Bao
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China.
| | - Chaohui Zhuang
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Yan Jiao
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Li Yang
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| |
Collapse
|
13
|
Toma G, Lemnian IM, Karapetian E, Grosse I, Seliger B. Transcriptional Analysis of Total CD8 + T Cells and CD8 +CD45RA - Memory T Cells From Young and Old Healthy Blood Donors. Front Immunol 2022; 13:806906. [PMID: 35154123 PMCID: PMC8829550 DOI: 10.3389/fimmu.2022.806906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Memory CD8+ T cells accumulate with aging, while the naïve T cell compartment decreases, leading to an increased susceptibility to infections and a decreased vaccine efficiency. To get deeper insights into the underlying mechanisms, this study aims to determine the age-dependent expression profile of total versus memory CD8+ T cells from young and old donors. Total CD8+ and CD8+CD45RA- memory T cells isolated from young (<30 years) and old (>60 years) donors were stimulated with anti-CD3 and anti-CD28 antibodies for 48h before analyzing the cytokine secretion and activation markers by flow cytometry and changes in the expression profiles using RNA sequencing. Gene ontology (GO) term enrichment analyses were performed for up-regulated and uniquely expressed transcripts identified in the T cell populations of both age groups. Total and memory CD8+ T cells from old donors expressed significantly higher CD25 levels and have an increased cytokine secretion. While approximately 1,500 up-regulated transcripts were identified in all groups, CD8+CD45RA- memory T cells of old donors had approximately 500 more uniquely expressed transcripts. Four GO terms related to the JAK-STAT pathway were identified for up-regulated transcripts in the total CD8+ T cells of old donors, whereas CD8+CD45RA- memory T cells GO terms related to adjacent pathways, like JNK and MAPK/ERK, were found. Additionally, the unique transcripts of CD8+CD45RA- memory T cells of old donors were related to the JNK, MAPK and IL-12 pathways. For both T cell populations of the old donors, cytokine and JAK-STAT pathway transcripts were up-regulated. Thus, an age-dependent effect was observed on the transcriptomes of total and memory CD8+ T cells. The CD8+ CD45RA- memory T cells from old donors maintained the increased cytokine secretion of the total CD8+ T cell population and the increased JAK-STAT pathway transcripts, which have an impact on inflammation and senescence.
Collapse
Affiliation(s)
- Georgiana Toma
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Ioana Maria Lemnian
- Institute for Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Institute for Human Genetics, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Eliza Karapetian
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Ivo Grosse
- Institute for Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Department for Therapeutics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
14
|
Davis-Poynter N, Farrell HE. Constitutive Signaling by the Human Cytomegalovirus G Protein Coupled Receptor Homologs US28 and UL33 Enables Trophoblast Migration In Vitro. Viruses 2022; 14:v14020391. [PMID: 35215985 PMCID: PMC8879092 DOI: 10.3390/v14020391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes four homologs of G protein coupled receptors (vGPCRs), of which two, designated UL33 and US28, signal constitutively. UL33 and US28 are also conserved with chemokine receptors: US28 binds numerous chemokine classes, including the membrane bound chemokine, fractalkine; whereas UL33 remains an orphan receptor. There is emerging data that UL33 and US28 each contribute to HCMV associated disease, although no studies to date have reported their potential contribution to aberrant placental physiology that has been detected with HCMV congenital infection. We investigated the signaling repertoire of UL33 and US28 and their potential to enable trophoblast mobilization in vitro. Results demonstrate the constitutive activation of CREB by each vGPCR in ACIM-88 and HTR-8SVneo trophoblasts; constitutive NF-kB activation was detected for US28 only. Constitutive signaling by each vGPCR enabled trophoblast migration. For US28, fractalkine exhibited inverse agonist activity and dampened trophoblast migration. UL33 stimulated expression of both p38 mitogen activated (MAP) and Jun N-terminal (JNK) kinases; while p38 MAP kinase stimulated CREB, JNK was inhibitory, suggesting that UL33 dependent CREB activation was regulated by p38/JNK crosstalk. Given that chemokines and their receptors are important for placental development, these data point to the potential of HCMV UL33 and US28 to interfere with trophoblast responses which are important for normal placental development.
Collapse
Affiliation(s)
- Nicholas Davis-Poynter
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia;
- Centre for Child Health Research, The University of Queensland, Brisbane 4000, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia;
- Centre for Child Health Research, The University of Queensland, Brisbane 4000, Australia
- Correspondence:
| |
Collapse
|
15
|
MiR-133b regulates oxidative stress injury of trophoblasts in preeclampsia by mediating the JAK2/STAT3 signaling pathway. J Mol Histol 2021; 52:1177-1188. [PMID: 34623553 DOI: 10.1007/s10735-021-10024-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related syndrome. Aberrant placental microRNAs (miRNAs) expression might associate with PE, including miR-133b. However, its role in the pathogenesis of preeclampsia remains elusive. Therefore, this study explored the role of miR-133b in oxidative stress injury of trophoblasts in preeclampsia (PE) by mediating the JAK2/STAT3 signaling pathway. Placental tissues were collected from PE patients to detect the expression of miR-133b and JAK2/STAT3. Then, in vitro experiments were performed on human extravillous trophoblast-derived HTR-8/SVneo cells, which were divided into Normal, hypoxia/reoxygenation (H/R), H/R + miR-NC, H/R + miR-133b inhibitor, H/R + JAK2 siRNA and H/R + miR-133b inhibitor + JAK2 siRNA groups. Cell invasion and migration abilities were detected by Transwell and wound healing assays, while apoptosis was detected by flow cytometry. The intracellular oxidative stress levels were also measured. Furthermore, the expression of miR-133b and the JAK2/STAT3 pathway was determined by qRT-PCR and Western blotting. We found that miR-133b was up-regulated, with decreases in JAK2 and p-STAT3/STAT3 in placental tissues of PE patients. Additionally, HTR8/SVneo cells in the H/R group had decreased invasion and migration abilities with increased apoptotic rates and oxidative stress levels. Moreover, the expression of miR-133b was up-regulated with decreases in p-JAK2 and p-STAT3 in H/R-treated HTR8/SVneo cells. These indicators in the H/R + miR-133b inhibitor group were ameliorated in comparison with those in the H/R group but deteriorated in the H/R + JAK2 siRNA group. Moreover, JAK2 siRNA reversed the positive effect of the miR-133b inhibitor on the invasion and migration abilities of trophoblasts. In summary, inhibiting miR-133b may improve oxidative stress injury to promote the migration and invasion of trophoblasts and suppress apoptosis by activating the JAK2/STAT3 pathway.
Collapse
|
16
|
Liu H, Wang W, Liu C. Increased expression of IFN-γ in preeclampsia impairs human trophoblast invasion via a SOCS1/JAK/STAT1 feedback loop. Exp Ther Med 2020; 21:112. [PMID: 33335575 PMCID: PMC7739872 DOI: 10.3892/etm.2020.9544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The weakening of extravillous trophoblast (EVT) invasion results in shallow placenta implantation. In HTR8/SVneo cells, IFN-γ can activate STAT1 and reduce cell invasion, and suppressor of cytokine signaling (SOCS) is an important negative regulatory protein in the Janus kinase (JAK)/STAT activator pathway and has a negative feedback function on JAK/STAT1. The aim of the present study was to elucidate how SOCS1 feedback regulates JAK/STAT1 and affects EVT cell invasion, which in turn affects the development of preeclampsia (PE). MTT and Annexin V/phosphatidylserine (PS) assays were performed to evaluate the viability and apoptosis of HTR8/SVneo cells treated with IFN-γ, respectively. Wound healing and invasion assays were also conducted to measure the migratory and invasive abilities of IFN-γ-treated HTR8/SVneo cells. The mRNA and protein expression levels of genes were detected using reverse transcription-quantitative PCR and western blot analysis. Small interfering RNA knockdown of SOCS1 was used to verify the role of feedback regulation in the IFN-γ-activated JAK/STAT1 signaling pathway. IFN-γ can inhibit HTR8/SVneo migration and invasion, and promote apoptosis by increasing the expression of phosphorylated (p)-JAK, p-STAT1 and caspase3, and reducing the expression of platelet-derived growth factor receptor A and Ezrin. Furthermore, SOCS1 may negatively regulate JAK/STAT1 and affect HTR-8/SVneo invasiveness. Evaluation of clinical samples demonstrated that the expression levels of SOCS1 and IFN-γ were higher in patients with PE compared with the healthy group. Collectively, the present results indicated that IFN-γ reduced the invasion of HTR-8/SVneo cells by activating JAK/STAT1, concurrently leading to an increase in SOCS1, which negatively regulates JAK/STAT1 and eliminates the pro-inflammatory effects of IFN-γ, thus forming a feedback loop.
Collapse
Affiliation(s)
- Huiqiang Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China.,Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenhao Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China
| |
Collapse
|
17
|
Qu H, Yu Q, Jia B, Zhou W, Zhang Y, Mu L. HIF‑3α affects preeclampsia development by regulating EVT growth via activation of the Flt‑1/JAK/STAT signaling pathway in hypoxia. Mol Med Rep 2020; 23:68. [PMID: 33215219 PMCID: PMC7716387 DOI: 10.3892/mmr.2020.11701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Preeclampsia (PE) is a common obstetric disease occurring after 20 weeks of gestation. Hypoxia-inducible factor (HIF)-3α potentially functions as a regulatory factor in PE development, however its specific molecular mechanism remains to be elucidated. The present study aimed to investigate the function of HIF-3α in trophoblast cell line HTR-8/SVneo, to provide a better understanding of the pathology and treatment of PE. Normal and PE placentas were obtained from pregnant women. HTR8/SVneo cells were cultured under the condition of normoxia or hypoxia, pretreated with or without AG490, then transfected with HIF-3α. The gene expression levels of HIF-3α and Fms like tyrosine kinase receptor (Flt) 1 extracted from the placentas and cells were detected by reverse transcription-quantitative PCR, and the expression levels of proteins and Janus kinase signal transducer and activator of transcription (JAK/STAT) phosphorylation were detected by western blot analysis. Viability and apoptosis of the treated cells were assessed by MTT and flow cytometry. The results demonstrated that HIF-3α and Flt-1 gene expression levels of PE placentas were reduced compared with normal placentas. Under a hypoxic environment, the expression levels of HIF-3α and Flt-1, the phosphorylation of JAK/STAT and the cell viability of HTR8/SVneo cells were increased at first and then reduced, whereas cell apoptosis was promoted over time. Under chronic hypoxia, the expression levels of HIF-3α and Flt-1, JAK/STAT pathway phosphorylation and cell viability of AG490-treated HTR8/SVneo cells were reduced, but cell apoptosis was promoted. However, the upregulation of HIF-3α in HTR8/SVneo cells markedly reversed the effects of AG490 on the cells under hypoxia. Thus, the present study preliminarily demonstrated that HIF-3α was involved in PE development by regulating extravillous cytotrophoblast growth via Flt-1 and the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Hongmei Qu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Qun Yu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Bei Jia
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenzhe Zhou
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yinghong Zhang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Linsong Mu
- Department of General Surgery and Pediatric Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
18
|
EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci Rep 2020; 10:12274. [PMID: 32703964 PMCID: PMC7378053 DOI: 10.1038/s41598-020-68966-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
The members of human miR-17-92 cluster are implicated in several cancers and are known to increase cancer cells invasiveness. The present study reports reduced expression of miR-92a-1-5p in EGF treated HTR-8/SVneo trophoblastic cells by NGS and qRT-PCR. Overexpression of miR-92a-1-5p led to significantly reduced EGF-mediated HTR-8/SVneo cells invasion. MAPK8 and FAS were predicted to be miR-92a-1-5p targets, and confirmed to be reduced by qRT-PCR and Western blotting in trophoblast cells overexpressing miR-92a-1-5p. The binding of miR-92a-1-5p to MAPK8 and FAS 3'-UTR was confirmed by Luciferase reporter assay and Rescue assay. EGF increases MMP-2 & MMP-9 expression and reduces TIMP1 expression in HTR-8/SVneo cells. Inhibition of MAPK8 (by SP600125) reduced EGF-mediated MMP-9/TIMP1 ratio and invasion. Similarly, silencing of FAS by siRNA reduced EGF-mediated MMP-2/TIMP1 ratio and invasion. Treatment of HTR-8/SVneo cells with STAT1/3 inhibitors or siRNAs led to loss of EGF-mediated reduction in miR-92a-1-5p levels. Inserting the predicted binding sites of STAT3 present in promoter region of miR-92a-1-5p upstream of Luciferase promoter reduced its expression in presence of STAT3 expression vector. Thus, EGF leads to reduced miR-92a-1-5p expression which may be regulated by STAT1/STAT3 and controls HTR-8/SVneo cells invasion by targeting MAPK8 and FAS, which in turn increases MMP-2/MMP-9 expression.
Collapse
|
19
|
Qian S, Liu R. miR-30b facilitates preeclampsia through targeting MXRA5 to inhibit the viability, invasion and apoptosis of placental trophoblast cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4057-4065. [PMID: 31933801 PMCID: PMC6949775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 06/10/2023]
Abstract
Preeclampsia (PE) may induce gestational failure threatening a significant number of pregnant women. Dysfunctional placental trophoblast cells have an important impact on PE progression. microRNAs (miRNAs) have been reported to participate in PE progression, whereas the mechanism that underlies miR-30b involved in PE progression and function of placental trophoblast cells remains poorly understood. Cell viability was investigated by cell counting kit-8 (CCK-8) assay. Cell apoptosis was detected by flow cytometry using Annexin V-FITC/propidium iodide (PI) staining. Cell invasion was analyzed by trans-well assay. The expression of miR-30b was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The abundance of matrix-remodeling associated 5 (MXRA5) protein was detected by western blots (WB). The interaction between miR-30b and MXRA5 was investigated by bioinformatics analysis and luciferase activity assay. The effect of miR-30b and MXRA5 on mitogen-activated protein kinases (MAPK) pathway and invasion was evaluated by WB. Then we found miR-30b was highly expressed in PE and its overexpression inhibited cell viability and invasion while enhanced apoptosis in JEG-3 and HTR8/SVneo cells. Moreover, MXRA5 was targeted by miR-30b and MXRA5 restoration attenuated the effect of miR-30b on cell processes in HTR8/SVneo cells. Besides, both of miR-30b and MXRA5 were associated with MAPK pathway in HTR8/SVneo cells. Our data suggested miR-30b might contribute to PE through inhibiting cell viability, invasion while inducing apoptosis of placental trophoblast cells via MAPK pathway by targeting MXRA5. These indicated that miR-30b might be a novel biomarker for PE treatment.
Collapse
Affiliation(s)
- Shuangfeng Qian
- Department of Gynecology and Obstetrics, Huzhou Maternal and Child Health Hospital Huzhou, Zhejiang, China
| | - Rong Liu
- Department of Gynecology and Obstetrics, Huzhou Maternal and Child Health Hospital Huzhou, Zhejiang, China
| |
Collapse
|
20
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
21
|
New Insights into the Process of Placentation and the Role of Oxidative Uterine Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9174521. [PMID: 31341539 PMCID: PMC6615000 DOI: 10.1155/2019/9174521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells (extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate, differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines, growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine microenvironment contribution to trophoblast function will be addressed in this review.
Collapse
|
22
|
Liu S, Xie X, Lei H, Zou B, Xie L. Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and Pathways in Preeclampsia Using Bioinformatics Analysis. Med Sci Monit 2019; 25:1679-1693. [PMID: 30833538 PMCID: PMC6413561 DOI: 10.12659/msm.912801] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study aimed to identify significantly altered circRNAs/lncRNAs/miRNAs/mRNAs pathways in preeclampsia (PE), investigate their target relationships, and determine their biological functions. MATERIAL AND METHODS Base on RNA-seq technique and the GEO database, expression profiles of circRNAs/lncRNAs/miRNAs/mRNAs related to PE were obtained. Differentially expressed RNAs were determined using the Limma package in R. Gene set enrichment analysis (GSEA) was performed using GSEA software (v. 3.0) and illustrated by ClusterProfiler and ggplot2 package in R. DAVID database (v. 6.8) was implemented to analyze functional categories and the association between genes and the corresponding Gene Ontology (GO) classification. The R visualization package GOPlot was used to get a better visualization of the relationships between genes and the selected functional categories. CeRNA networks which visualized the correlations between circRNA/lncRNA-miRNA-mRNA were constructed using Cytoscape software (v. 3.6.0). Targetscan and miRanda database were used to predict target relationships between circRNA/lncRNA-miRNA-mRNA. QRT-PCR and luciferase reporter assay were used to verify the expression and target relationship of has_circ_0088196/LINC01492/miR-100-5p/LIF (leukemia inhibitory factor). RESULTS The jak-stat signaling pathway was activated and miR-100-5p was downregulated in PE compared with normal tissues both in collected placental tissue samples and GEO database. Upregulated LIF, LINC01492, and hsa_circ_0088196 were negatively correlated with miR-100-5p expression and had a targeted relationship with miR-100-5p. CONCLUSIONS miR-100-5p may suppress PE development, while LIF, LINC01492, and hsa_circ_0088196 may promote it though inhibiting miR-100-5p. The jak-stat signaling pathway was activated and involved in PE progression.
Collapse
Affiliation(s)
- Siwei Liu
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Xie Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Huajiang Lei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Bingyu Zou
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Lan Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
23
|
Chaudhary P, Babu GS, Sobti RC, Gupta SK. HGF regulate HTR-8/SVneo trophoblastic cells migration/invasion under hypoxic conditions through increased HIF-1α expression via MAPK and PI3K pathways. J Cell Commun Signal 2019; 13:503-521. [PMID: 30684191 DOI: 10.1007/s12079-019-00505-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) is reported to be down-regulated in pregnancy complications like intrauterine growth retardation and preeclampsia, which are associated with abnormal trophoblast migration/invasion. In this study, role of HGF and associated signaling pathways has been investigated in HTR-8/SVneo trophoblastic cells migration/invasion under normoxia (20% O2) and hypoxia (2% O2). HTR-8/SVneo cells exposed to hypoxia showed increase in migration and invasion as compared to cells incubated under normoxic conditions. The migration/invasion under both normoxic and hypoxic conditions was further enhanced after treatment with HGF. Subsequent to treatment with HGF, a significant increase in expression of MMP2 & MMP3 under normoxia and MMP1 & MMP9 under hypoxia was observed. Treatment of HTR-8/SVneo cells with HGF under hypoxia also led to decrease in TIMP1. Treatment of the cells with HGF led to activation of mitogen activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways. Inhibition of MAPK by U0126 and PI3K by LY294002 led to concomitant decrease in the HGF-mediated migration/invasion of HTR-8/SVneo cells. HGF treatment under hypoxia also led to a significant increase in hypoxia inducible factor (HIF-1α) expression. Additionally, inhibition of HIF-1α by siRNA led to decrease in HGF-mediated migration of HTR-8/SVneo cells under hypoxic conditions. Inhibition of HGF activated MAPK and PI3K signaling led to reduction in HIF-1α expression under hypoxia. In conclusion, HGF facilitates HTR-8/SVneo cell migration/invasion by activation of MAPK/PI3K signaling pathways and increased expression of MMPs. HIF-1α has a role in HGF-mediated increase in migration under hypoxic conditions.
Collapse
Affiliation(s)
- Piyush Chaudhary
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.,Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, 226 025, India
| | - Gosipatala Sunil Babu
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, 226 025, India
| | - Ranbir Chander Sobti
- Department of Biotechnology, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
24
|
Tian X, Yang C, Yang L, Sun Q, Liu N. PTPRF as a novel tumor suppressor through deactivation of ERK1/2 signaling in gastric adenocarcinoma. Onco Targets Ther 2018; 11:7795-7803. [PMID: 30464527 PMCID: PMC6223389 DOI: 10.2147/ott.s178152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Protein tyrosine phosphatase, receptor type F (PTPRF) is an important phosphatase playing roles in regulating cell growth, differentiation and oncogenic transformation. Overexpression of PTPRF has been observed in non-small cell lung cancer, but its clinical significance in other malignancies is still unknown. Methods We explored the expression pattern of PTPRF in gastric adenocarcinoma by using RT-qPCR and immunohistochemistry staining. The clinical significance of PTPRF was evaluated by univariate and multivariate analyses. Furthermore, the signaling pathways downstream of PTPRF was investigated by knockdown and overexpression assays combined with cellular studies. Results We found a remarkable down-regulation of PTPRF in gastric adenocarcinomas, which was significantly associated with advanced tumor TNM stages. Survival analysis showed that lower PTPRF level indicated a poorer overall survival of gastric adenocarcinoma patients. By conducting knockdown and overexpression studies in gastric adenocarcinoma cells, we revealed the role of PTPRF on inhibiting extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation and its downstream signaling. Consistent with clinical findings, cellular results demonstrated that overexpressing PTPRF can significantly inhibit tumor migration and invasion, while silencing PTPRF showed opposite effects. Conclusion In conclusion, patients with lower PTPRF expression in gastric adenocarcinoma tissues were more predisposed to advanced tumor stage and unfavorable prognosis.
Collapse
Affiliation(s)
- Xiang'an Tian
- First Department of General Surgery, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Chengju Yang
- Second Department of Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Liguang Yang
- First Department of General Surgery, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Qinli Sun
- First Department of General Surgery, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Naiqing Liu
- First Department of General Surgery, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| |
Collapse
|
25
|
Banerjee P, Malik A, Malhotra SS, Gupta SK. Role of STAT signaling and autocrine action of chemokines during H 2 O 2 induced HTR-8/SVneo trophoblastic cells invasion. J Cell Physiol 2018; 234:1380-1397. [PMID: 30078219 DOI: 10.1002/jcp.26934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023]
Abstract
During pregnancy, regulated generation of reactive oxygen species (ROS) is important for activation of signaling pathways and placentation. In the current study, the effect of H2 O2 on invasion of HTR-8/SVneo cells, a human extravillous trophoblast cell line, is investigated. Treatment of HTR-8/SVneo cells for 24 hr with H 2 O2 (25 µM) leads to a significant increase in invasion without affecting cell proliferation, viability, and apoptosis. Concomitantly, a significant increase in the matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio is observed. Further, significant increase in phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and STAT-3 (both at ser727 residue) is observed on treating HTR-8/SVneo cells with 25 µM of H2 O2 accompanied by an increase in the secretion of interleukin-8 (IL-8) and macrophage inflammatory protein-1β (MIP-1β). A significant decrease in H2 O2 -mediated invasion of HTR-8/SVneo cells and reduced expression of IL-8 and MIP-1β accompanied by decrease in MMP-9/TIMP-1 ratio are observed on inhibiting STAT-1 and STAT-3 by small interfering RNA (siRNA). Inhibition of STAT-1 activity by fludarabine and STAT-3 activity by Stattic also leads to a decrease in H2 O2 -mediated increase in HTR-8/SVneo cell invasion. Inhibition of IL-8 and MIP-1β by siRNA also leads to a significant decrease in both basal and H2 O2 -mediated invasion. Interestingly, inhibition of MIP-1β by siRNA leads to a significant reduction in H2 O2 -mediated increase in IL-8. However, no significant effect of IL-8 silencing on H2 O2 -mediated MIP-1β expression was observed. From the above results, it can be concluded that H2 O2 activates STAT signaling, MIP-1β & IL-8 secretion and increases MMP-9/TIMP-1 ratio leading to an increased invasion of HTR-8/SVneo cells without affecting their viability.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankita Malik
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
26
|
Loch C, Haeger JD, Pfarrer C. IFNτ mediates chemotaxis, motility, metabolism and CK18 downregulation in bovine trophoblast cells in vitro via STAT1 and MAPK42/44 signaling. Placenta 2018; 64:17-26. [DOI: 10.1016/j.placenta.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
|
27
|
Verma S, Pal R, Gupta SK. Decrease in invasion of HTR-8/SVneo trophoblastic cells by interferon gamma involves cross-communication of STAT1 and BATF2 that regulates the expression of JUN. Cell Adh Migr 2018; 12:432-446. [PMID: 29394132 DOI: 10.1080/19336918.2018.1434030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Trophoblast invasion is one of the critical steps during embryo implantation. IFNG secreted during pregnancy by uterine NK cells acts as a negative regulator of invasion. IFNG in a dose dependent fashion inhibits invasion of HTR-8/SVneo trophoblastic cells. It phosphorylates STAT1 both at tyr 701 and ser 727 residues. Silencing of STAT1 significantly increases invasion (∼59%) of the cells. Based on NGS data, out of 207 genes, BATF2 expression was significantly increased after IFNG treatment. Silencing of BATF2 significantly increases the invasion of cells with (∼53%) or without (∼44%) treatment with IFNG. Expression of BATF2 and STAT1 is dependent on each other, silencing of one significantly inhibit the expression of other. Interestingly, phosphorylated JUN is also regulated by BATF2 and STAT1. Collectively, these findings showed that decrease in the invasion of HTR-8/SVneo cells after IFNG treatment is controlled by STAT1 and BATF2, which further regulates the expression of JUN.
Collapse
Affiliation(s)
- Sonam Verma
- a Reproductive Cell Biology Laboratory, National Institute of Immunology , New Delhi - 110 067 , India
| | - Rahul Pal
- b Immunoendocrinology Laboratory, National Institute of Immunology , New Delhi , India
| | - Satish Kumar Gupta
- a Reproductive Cell Biology Laboratory, National Institute of Immunology , New Delhi - 110 067 , India
| |
Collapse
|
28
|
Qin Z, Hou H, Fu F, Wu J, Han B, Yang W, Zhang L, Cao J, Jin X, Cheng S, Yang Z, Zhang M, Lan X, Yao T, Dong Q, Wu S, Zhang J, Xu Z, Li Y, Chen Y. Fine particulate matter exposure induces cell cycle arrest and inhibits migration and invasion of human extravillous trophoblast, as determined by an iTRAQ-based quantitative proteomics strategy. Reprod Toxicol 2017; 74:10-22. [DOI: 10.1016/j.reprotox.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/20/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023]
|
29
|
Jo AR, Han HS, Seo S, Shin JS, Lee JY, Kim HJ, Lee KT. Inhibitory effect of moschamine isolated from Carthamus tinctorius on LPS-induced inflammatory mediators via AP-1 and STAT1/3 inactivation in RAW 264.7 macrophages. Bioorg Med Chem Lett 2017; 27:5245-5251. [PMID: 29102229 DOI: 10.1016/j.bmcl.2017.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
Seeds of Carthamus tinctorius L. (Compositae) have been used in Korean traditional medicines for the treatment of cardiovascular and bone diseases. In this study, we investigated the anti-inflammatory effects of known serotonin derivatives (1-9) isolated from the ethyl acetate (EtOAc) soluble fraction from the seeds of C. tinctorius. Compound 2, identified as moschamine, most potently inhibited lipopolysaccharide (LPS)-induced production of prostaglandin E2 (PGE2) and nitric oxide (NO) in RAW 264.7 macrophages. Moschamine concentration-dependently inhibited LPS-induced PGE2 and NO production in RAW 264.7 macrophages. Consistent with these findings, moschamine suppressed the protein and mRNA levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E2 synthase (mPGES)-1, and inducible NO synthase (iNOS), interleukin (IL)-6, and IL-1β. In addition, pretreatment of moschamine significantly inhibited LPS-stimulated the transcriptional activity of activator protein-1 (AP-1) and the phosphorylation of signal transducer and activator of transcription (STAT)1/3 in RAW 264.7 macrophages. Moreover, moschamine inhibited LPS-induced the phosphorylation of p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK), but it had no effect on c-Jun N-terminal kinase (JNK). These results suggest that the mechanism of anti-inflammatory activity of moschamine is associated with the downregulation of COX-2, mPGES-1, iNOS, IL-6, and IL-1β expression through the suppression of AP-1 and STAT1/3 activation in LPS-induced RAW 264.7 macrophages.
Collapse
Affiliation(s)
- A-Ra Jo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seunghwan Seo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyoung Ja Kim
- Molecular Recognition Research Center, Materials and Life Science Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|