1
|
Xie B, Wu Y, Liu Z, Huang Y, Lu Q, Bian A, Han B, Yan Y, Lai Y, He B, Li Y, Yan F, Yan L, Chen F. Association of dietary and plasma fatty acids with periodontitis: Results from the 2009-2014 National Health and Nutrition Examination Survey and Mendelian randomization study. J Am Dent Assoc 2025:S0002-8177(24)00696-2. [PMID: 39864010 DOI: 10.1016/j.adaj.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The authors aimed to explore the association of fatty acids with periodontitis and its severity and to assess causality using Mendelian randomization (MR) analyses. METHODS Data for participants with complete data were extracted from the 2009-2014 National Health and Nutrition Examination Survey. Weighted logistic regression was used to explore the relationship between dietary fatty acids and periodontitis and its severity. Univariable and multivariable MR analyses were performed to explore the causal association between plasma fatty acids and periodontitis. RESULTS Two types of saturated fatty acids (hexadecanoic C16:0, octadecanoic C18:0) and monounsaturated fatty acids (hexadecenoic C16:1, docosenoic C22:1) and 3 types of polyunsaturated fatty acids (eicosatetraenoic C20:4, eicosapentaenoic C20:5, docosahexaenoic C22:6) were positively associated with periodontitis. Conversely, octadecadienoic (C18:2, a type of polyunsaturated fatty acid), total polyunsaturated fatty acids, and omega-6 fatty acids were negatively associated with periodontitis. Similar association patterns were also found between these fatty acids and the severity of periodontitis. Results of MR analyses revealed that no significant association was found between plasma fatty acids and periodontitis. CONCLUSIONS The authors provided evidence of significant associations between certain fatty acids and periodontitis and its severity, highlighting their contributory role, although the evidence does not support a causal role based on the results of MR-based analyses. PRACTICAL IMPLICATIONS The results of this study support a contributory or inhibitory role of fatty acids in the progression of periodontitis, although not as a direct cause, and underscored the importance of maintaining a balanced dietary lipid profile for periodontal health.
Collapse
|
2
|
Rafiei H, Yeung M, Kowalski S, Li MY, Harris D, Chang J, Nguyen N, Yorke E, Sampath S, Hollman S, Duns G, O'Brien L, Steidl C, Krystal G, Elisia I. Butyrate and tributyrin reduce LPS-induced inflammatory cytokine production from human visceral fat. Int J Obes (Lond) 2024; 48:1559-1567. [PMID: 38987636 DOI: 10.1038/s41366-024-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION The current obesity crisis has resulted in many people with excess adipose tissue suffering from chronic inflammation. This inflammation is largely due to the release of cytokines and chemokines from visceral fat. The aim of this study was to identify potential anti-inflammatory agents that might alleviate obesity-induced chronic inflammation. METHODS To identify agents that might alleviate this obesity-induced chronic inflammation we have developed a simple protocol for incubating intact pieces of human visceral adipose tissue in 35 mm tissue culture plates, in the presence of low-dose lipopolysaccharide (LPS) and co-incubating these samples with potential anti-inflammatory agents. RNA-Seq analysis was performed to identify enriched gene expression signatures among the most significantly differentially expressed genes. RESULTS From this screen, we have identified the short-chain fatty acid (SCFA) sodium butyrate and its triacylglyceride form, tributyrin, as effective agents, significantly reducing the production of LPS-induced inflammatory cytokines and chemokines from all adipose tissue samples tested. As well, these agents appear to be non-toxic at the concentrations tested. RNA-Seq analysis has revealed that IL36γ is one of the most upregulated genes in response to LPS and one of the most downregulated when sodium butyrate is added to human fat samples stimulated with LPS. IL-36γ ELISAs confirmed this holds true at the protein level as well. CONCLUSIONS These studies suggest that the short-chain fatty acid, sodium butyrate, and its triacylglyceride form, tributyrin, might alleviate the chronic inflammation that is associated with many individuals with obesity.
Collapse
Affiliation(s)
- Hossein Rafiei
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Michelle Yeung
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Sara Kowalski
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Michael Yu Li
- Department of Lymphoid Cancer Research, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada
| | - David Harris
- Richmond Metabolic and Bariatric Surgery Program, Richmond Hospital, Vancouver Coastal Health, Richmond, BC, V7C 5L9, Canada
| | - Jacqueline Chang
- Richmond Metabolic and Bariatric Surgery Program, Richmond Hospital, Vancouver Coastal Health, Richmond, BC, V7C 5L9, Canada
| | - Nam Nguyen
- Richmond Metabolic and Bariatric Surgery Program, Richmond Hospital, Vancouver Coastal Health, Richmond, BC, V7C 5L9, Canada
| | - Ekua Yorke
- Richmond Metabolic and Bariatric Surgery Program, Richmond Hospital, Vancouver Coastal Health, Richmond, BC, V7C 5L9, Canada
| | - Sharadh Sampath
- Richmond Metabolic and Bariatric Surgery Program, Richmond Hospital, Vancouver Coastal Health, Richmond, BC, V7C 5L9, Canada
| | - Serena Hollman
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Gerben Duns
- Department of Lymphoid Cancer Research, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Luke O'Brien
- Department of Lymphoid Cancer Research, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Ingrid Elisia
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
3
|
Aiello A, Medoro A, Accardi G, Calabrò A, Carru C, Cannavo A, Caruso C, Candore G, Scapagnini G, Corbi G, Ali S, Davinelli S. Polyunsaturated fatty acid status and markers of oxidative stress and inflammation across the lifespan: A cross-sectional study in a cohort with long-lived individuals. Exp Gerontol 2024; 195:112531. [PMID: 39079651 DOI: 10.1016/j.exger.2024.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Polyunsaturated fatty acids (PUFA) are known to have a regulatory effect on oxidative and inflammatory processes. This study aimed to identify the relationship between blood PUFA status and circulatory markers of oxidative stress and inflammation in a cohort of 172 subjects. The population was divided by sex and into three age groups: adults (18-64 years old, n = 69), older adults (65-89 years old, n = 54), and long-lived individuals (LLIs, 90-111 years old, n = 49). Whole blood PUFA content was quantified using gas chromatography. Additionally, serum levels of C-reactive protein (CRP), paraoxonase (PON), Trolox equivalent antioxidant capacity (TEAC), and malondialdehyde (MDA) were measured. Our results showed that a higher omega-3 (n-3) index in adult females was a predictor of lower MDA concentrations (p = 0.038). Conversely, total n-3 PUFA and total n-6 PUFA were positively related to MDA values among older adult females and LLI men (p < 0.05), while total n-6 PUFA was inversely correlated with MDA levels in LLI females (p < 0.05). Interestingly, increased concentrations of total n-3 PUFA and n-3 index were positively correlated with higher TEAC values in LLI men (p = 0.007), while the arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio was inversely correlated with TEAC values among LLI females (p = 0.006). These findings suggest that cellular antioxidant capacity is inversely correlated with changes in the AA/EPA ratio in long-lived females, whereas n-3 PUFA may enhance blood antioxidant capacity in long-lived men. Overall, our study highlights the complex, sex-specific interactions between PUFA profiles and oxidative stress and inflammatory markers across different age groups.
Collapse
Affiliation(s)
- Anna Aiello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulia Accardi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Calabrò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Calogero Caruso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
4
|
Liput KP, Lepczyński A, Poławska E, Ogłuszka M, Starzyński R, Urbański P, Nawrocka A, Jończy A, Pierzchała D, Pareek CS, Gołyński M, Woźniakowski G, Czarnik U, Pierzchała M. Murine hepatic proteome adaptation to high-fat diets with different contents of saturated fatty acids and linoleic acid : α-linolenic acid polyunsaturated fatty acid ratios. J Vet Res 2024; 68:427-441. [PMID: 39318514 PMCID: PMC11418388 DOI: 10.2478/jvetres-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Some health disorders, such as obesity and type 2 diabetes, are associated with a poor diet and low quality of the fat in it. The type and duration of the diet have an impact on the liver. This investigation uses the proteomic approach to identify changes in the mouse liver protein profile in adaptation to high-fat diets with different saturated fatty acid contents and linoleic acid (18:2n-6) to α-linolenic acid (18:3n-3) fatty acid ratios. Material and Methods Four groups of male mice were fed different diets: one standard diet and three high-fat diets were investigated. After six months on these diets, the animals were sacrificed for liver dissection. Two-dimensional electrophoresis was used to separate the complex liver protein mixture, which enabled the separation of proteins against a wide, 3-10 range of pH and molecular weights of 15-250 kDa. Protein profiles were analysed in the PDQuest Advanced 8.0.1 program. Differentially expressed spots were identified using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry and peptide mass fingerprinting. The levels of identified proteins were validated using Western blotting. Transcript levels were evaluated using a real-time quantitative PCR. Results The analysis of mouse liver protein profiles enabled the identification of 32 protein spots differing between nutritional groups. Conclusion A diet high in polyunsaturated fatty acids modulated the levels of liver proteins involved in critical metabolic pathways, including amino acid metabolism, carbohydrate metabolism and cellular response to oxidative stress.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106Warsaw, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, 71-270Szczecin, Poland
| | - Ewa Poławska
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Magdalena Ogłuszka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Rafał Starzyński
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Paweł Urbański
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Agata Nawrocka
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Aneta Jończy
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| | - Dorota Pierzchała
- Maria Skłodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland
| | - Chandra S. Pareek
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Marcin Gołyński
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Grzegorz Woźniakowski
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100Toruń, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Mariusz Pierzchała
- Department of Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552Magdalenka, Poland
| |
Collapse
|
5
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
6
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
8
|
Jin S, Kang PM. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:923. [PMID: 39199169 PMCID: PMC11351257 DOI: 10.3390/antiox13080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress plays a significant role in the pathogenesis of cardiovascular diseases, such as myocardial ischemia/reperfusion injury, atherosclerosis, heart failure, and hypertension. This systematic review aims to integrate most relevant studies on oxidative stress management in cardiovascular diseases. We searched relevant literatures in the PubMed database using specific keywords. We put emphasis on those manuscripts that were published more recently and in higher impact journals. We reviewed a total of 200 articles. We examined current oxidative stress managements in cardiovascular diseases, including supplements like resveratrol, vitamins C and E, omega-3 fatty acids, flavonoids, and coenzyme-10, which have shown antioxidative properties and potential cardiovascular benefits. In addition, we reviewed the pharmacological treatments including newly discovered antioxidants and nanoparticles that show potential effects in targeting the specific oxidative stress pathways. Lastly, we examined biomarkers, such as soluble transferrin receptor, transthyretin, and cystatin C in evaluating antioxidant status and identifying cardiovascular risk. By addressing oxidative stress management and mechanisms, this paper emphasizes the importance of maintaining the balance between oxidants and antioxidants in the progression of cardiovascular diseases. This review paper is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), registration # INPLASY202470064.
Collapse
Affiliation(s)
- Soyeon Jin
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
| |
Collapse
|
9
|
Fernandes CDP, Pott A, Hiane PA, do Nascimento VA, Filiú WFDO, de Oliveira LCS, Sanjinez-Argandoña EJ, Cavalheiro LF, Nazário CED, Caires ARL, Michels FS, Freitas KDC, Asato MA, Donadon JR, Bogo D, Guimarães RDCA. Comparative Analysis of Grape Seed Oil, Linseed Oil, and a Blend: In Vivo Effects of Supplementation. Foods 2024; 13:2283. [PMID: 39063367 PMCID: PMC11276530 DOI: 10.3390/foods13142283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Grape seeds are rich in bioactive substances, including polyphenols, terpenoids, and phytosterols. Linseed (Linum usitatissimum L.) boasts a high concentration of polyunsaturated fatty acids (PUFAs), lignans, phytoestrogens, and soluble fibers, all contributing to its therapeutic potential. In this study, we pioneered the formulation of an oil blend (GL) combining grape seed oil (G) and golden linseed oil (GL) in equal volumes (1:1 (v/v)) and we evaluated in terms of the nutritional, physical, and chemical properties and their influence in an in vivo experimental model. We analyzed the oils by performing physical-chemical analyses, examining the oxidative stability using Rancimat; conducting thermal analyses via thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC), performing optical UV-vis absorption analyses; examining the fluorescence emission-excitation matrix, total carotenoids, and color, and conducting metabolic assessments in an in vivo experimental trial. The fatty acid profile presented a higher fraction of linoleic acid (C18:2) in G and GL and alpha-linolenic acid (C18:3) in L. The acidity and peroxide indices were within the recommended ranges. The TG/DTG, DSC, and Rancimat analyses revealed similar behaviors, and the optical analyses revealed color variations caused by carotenoid contents in L and GL. In the in vivo trial, G (G2: 2000 mg/kg/day) promoted lower total consumption, and the blend (GL: 2000 mg/kg/day) group exhibited less weight gain per gram of consumed food. The group with G supplementation (G2: 2000 mg/kg/day) and GL had the highest levels of HDL-c. The group with L supplementation (L2: 2000 mg/kg/day) had the lowest total cholesterol level. The L2, G1 (1000 mg/kg/day), and G2 groups exhibited the lowest MCP-1 and TNF-α values. Additionally, the lowest adipocyte areas occurred in G and GL. Our results suggest that this combination is of high quality for consumption and can influence lipid profiles, markers of inflammation, and antioxidant status.
Collapse
Affiliation(s)
- Carolina Di Pietro Fernandes
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Arnildo Pott
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Wander Fernando de Oliveira Filiú
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (W.F.d.O.F.); (J.R.D.)
| | - Lincoln Carlos Silva de Oliveira
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Eliana Janet Sanjinez-Argandoña
- School of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Cidade Universitária, Dourados-Itahum Road 7 Km 12, Dourados 79804-970, Brazil;
| | - Leandro Fontoura Cavalheiro
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Carlos Eduardo Domingues Nazário
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (A.R.L.C.); (F.S.M.)
| | - Flavio Santana Michels
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (A.R.L.C.); (F.S.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Marcel Arakaki Asato
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Juliana Rodrigues Donadon
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (W.F.d.O.F.); (J.R.D.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| |
Collapse
|
10
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
11
|
Mohammadi T. Ameliorative effects of omega-3 and omega-6 on spermatogenesis, testicular antioxidant status and in vivo fertility index in heat-stressed rats. J Therm Biol 2024; 122:103885. [PMID: 38861860 DOI: 10.1016/j.jtherbio.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The current study aimed to investigate the use of omega-6 (ω6) or omega-3 (ω3) in reducing heat-induced damage to the testicles. This is due to the known detrimental effects of heat and the potential protective properties of ω6 and ω3. In the study, 48 male rats were divided into eight groups, each containing 6 rats. Group I (control) received normal saline. Group 2 was exposed to high temperatures (43 °C for 20 min/day) and also received normal saline for 60 days. Groups 3-7 underwent identical HS conditions and received varying doses of ω6 or ω3 (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT), respectively. After 60 days, various tests were conducted on the testicular tissue, sperm quality, oxidative status, gene activity, and in vivo fertility indexes to evaluate the effects of the treatments. Treatment with ω6 and ω3 could reduce abnormal morphology and DNA damage while increasing total and progressive motility, characteristics motility, viability, and plasma membrane functional impairment compared with HS-exposed groups. Antioxidant status levels in testicular tissue were improved after administration of ω6 and ω3. Furthermore, after receiving ω6 and ω3, there were significantly lower expression levels of P53 and Caspase-3 and significantly higher expression levels of Bcl-2 compared to the HS-exposed group. Furthermore, the results showed that administration of ω6 and ω3 to rats exposed to HS could increase their in vivo fertility indexes compared to the group not exposed to HS. According to our data, all doses of ω6 and ω3 (particularly doses of ω6-1.25 and ω3-300) can improve the testicular damage, testicular antioxidant defense mechanism, regulate germ cell apoptosis, and increase in vivo fertility indexes.
Collapse
Affiliation(s)
- Tohid Mohammadi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| |
Collapse
|
12
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
13
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
14
|
Mostafa H, Gutierrez-Tordera L, Mateu-Fabregat J, Papandreou C, Bulló M. Dietary fat, telomere length and cognitive function: unravelling the complex relations. Curr Opin Lipidol 2024; 35:33-40. [PMID: 38018863 DOI: 10.1097/mol.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
PURPOSE OF REVIEW The review aims to explore the recent evidence on the associations between different dietary fat intake and cognitive function, and to understand the role of telomere length in this relationship. RECENT FINDINGS Clinical and preclinical studies included in this review suggest that dietary fat intake is associated with cognitive function and telomere length. High intake of saturated fats and trans fats, commonly found in ultra-processed foods, appears to have negative effects on cognitive function and telomere length, while other dietary fats, such as omega-3 polyunsaturated fatty acids and monounsaturated fatty acids are associated with improved cognitive performance and reduced telomere attrition. Controversial results related to omega-6 polyunsaturated fatty acids intake and its impact on cognitive function were found. Dietary fats may affect telomere length and cognition through oxidative stress, inflammation, and insulin resistance. SUMMARY The current review illustrated the relationship between dietary fat and cognitive function by focusing on the role of telomere length as a potential intermediator. More future studies are required, however, in order to develop targeted interventions aimed at preserving cognitive well-being throughout life.
Collapse
Affiliation(s)
- Hamza Mostafa
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
15
|
Burron S, Richards T, Krebs G, Trevizan L, Rankovic A, Hartwig S, Pearson W, Ma DWL, Shoveller AK. The balance of n-6 and n-3 fatty acids in canine, feline, and equine nutrition: exploring sources and the significance of alpha-linolenic acid. J Anim Sci 2024; 102:skae143. [PMID: 38776363 PMCID: PMC11161904 DOI: 10.1093/jas/skae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024] Open
Abstract
Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Giovane Krebs
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
16
|
Cianciosi D, Diaz YA, Gaddi AV, Capello F, Savo MT, Palí Casanova RDJ, Martínez Espinosa JC, Pascual Barrera AE, Navarro‐Hortal M, Tian L, Bai W, Giampieri F, Battino M. Can alpha‐linolenic acid be a modulator of “cytokine storm,” oxidative stress and immune response in SARS‐CoV‐2 infection? FOOD FRONTIERS 2024; 5:73-93. [DOI: 10.1002/fft2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractAlpha‐linolenic acid (ALA) is a long‐chain polyunsaturated essential fatty acid of the Ω3 series found mainly in vegetables, especially in the fatty part of oilseeds, dried fruit, berries, and legumes. It is very popular for its preventive use in several diseases: It seems to reduce the risk of the onset or decrease some phenomena related to inflammation, oxidative stress, and conditions of dysregulation of the immune response. Recent studies have confirmed these unhealthy situations also in patients with severe coronavirus disease 2019 (COVID‐19). Different findings (in vitro, in vivo, and clinical ones), summarized and analyzed in this review, have showed an important role of ALA in other various non‐COVID physiological and pathological situations against “cytokines storm,” chemokines secretion, oxidative stress, and dysregulation of immune cells that are also involved in the infection of the 2019 novel coronavirus. According to the effects of ALA against all the aforementioned situations (also present in patients with a severe clinical picture of severe acute respiratory syndrome‐(CoV‐2) infection), there may be the biologic plausibility of a prophylactic effect of this compound against COVID‐19 symptoms and fatality.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | | | - Fabio Capello
- International Study Center of Society of Telemedicine and Digital Health Bologna Italy
| | | | - Ramón del Jesús Palí Casanova
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Universidad Internacional Iberoamericana Arecibo Puerto Rico USA
| | - Julio César Martínez Espinosa
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Alina Eugenia Pascual Barrera
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Maria‐Dolores Navarro‐Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre University of Granada Armilla Spain
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| |
Collapse
|
17
|
Kobayashi Y, Sakai C, Ishida T, Nagata M, Nakano Y, Ishida M. Mitochondrial DNA is a key driver in cigarette smoke extract-induced IL-6 expression. Hypertens Res 2024; 47:88-101. [PMID: 37848561 DOI: 10.1038/s41440-023-01463-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis, the primary pathogenesis of which is inflammation. We recently reported that cigarette smoke extract (CSE) causes cytosolic and extracellular accumulation of both nuclear (n) and mitochondrial (mt) DNA, which leads to inflammation in human umbilical vein endothelial cells (HUVECs). In this study, we examined whether inflammation induction depends more on cytosolic nDNA or mtDNA, and which chemical constituents of CSE are involved. Acrolein (ACR), methyl vinyl ketone (MVK), and 2-cyclopenten-1-one (CPO) were used in the experiments, as these are the major cytotoxic factors in CSE in various cell types. Stimulation with ACR, MVK, or CPO alone resulted in the accumulation of DNA double-strand breaks (DSBs), but not oxidative DNA damage, accumulation of cytosolic DNA, or increased expression of inflammatory cytokines. Simultaneous administration of all three constituents (ALL) resulted in oxidative DNA damage in both the nucleus and mitochondria, accumulation of DSBs, reduced mitochondrial membrane potential, induction of minority mitochondrial outer membrane permeabilization, accumulation of cytosolic free DNA, and increased expression of inflammatory cytokines such as IL-6 and IL-1α. Treatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, suppressed oxidative DNA damage and the increased expression of IL-6 and IL-1α induced by ALL or CSE. The ALL- or CSE-induced increase in IL-6 expression, but not that of IL-1α, was suppressed by mtDNA depletion. In conclusion, ACR, MVK, and CPO may strongly contribute to CSE-induced inflammation. More importantly, cytosolic free mtDNA is thought to play an important role in IL-6 expression, a central mediator of inflammation.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Minako Nagata
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.
| |
Collapse
|
18
|
Khozoei S, Mahdavi AH, Rabiee F, Ghaedi K. Synergistic effects of punicic acid and alpha lipoic acid ameliorate inflammatory and metabolic genes expression in C2C12 myoblast cells under oxidative stress condition. Cell Biochem Funct 2023; 41:1403-1411. [PMID: 37987234 DOI: 10.1002/cbf.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Inflammation is a reaction of the immune system to infection and injury; in fact, it positioned at the center of metabolic disorders, particularly obesity, type 2 diabetes, and cardiovascular diseases. Thus play a major role not only in their development, but also exerts as a crucial linking factor among those diseases. In this regard, one of the strategies for tackling this problem is application of antioxidants to treat such diseases. The present study was performed to evaluate the synergistic effects of punicic acid (PUA) and alpha-lipoic acid (ALA) as antioxidants and radical scavenging reagents on the expression of some inflammatory and metabolism-related genes under oxidative stress in the muscle cells. The experimental treatments consisted of a range of 20, 40, 80, 160, and 320 µM of PUA, and 5, 25, 50, 100, and 200 µM of ALA with a 200 µM concentration of H2 O2 as an oxidative stress inducer. Accordingly, fatty acid treatments were applied for 24 h, and H2 O2 was treated for 1 h. Our results indicated that the simultaneous treatment of PUA and ALA at optimal concentrations (80 and 50 µM, respectively) decreased the expression of inflammation genes and increased the expression of regulatory genes (Pparγ, Pgc-1α) related to metabolism (p < .05). Unexpectedly, H2 O2 treatment increased the Fndc5 expression (p < .05). Maximal upregulation of Pparγ, Pgc-1α were obtained when fatty acids combination (PUA and ALA) were used in the culture of H2 O2 treated cells (p < .05). Therefore, our findings suggest that the simultaneous use of PUA and ALA fatty acids could reduce oxidative stress, and the expression of inflammatory genes, thereby improving the cell metabolism.
Collapse
Affiliation(s)
- Shiva Khozoei
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan (UI), Isfahan, Iran
| |
Collapse
|
19
|
Michaeloudes C, Christodoulides S, Christodoulou P, Kyriakou TC, Patrikios I, Stephanou A. Variability in the Clinical Effects of the Omega-3 Polyunsaturated Fatty Acids DHA and EPA in Cardiovascular Disease-Possible Causes and Future Considerations. Nutrients 2023; 15:4830. [PMID: 38004225 PMCID: PMC10675410 DOI: 10.3390/nu15224830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.C.); (P.C.); (T.-C.K.); (I.P.); (A.S.)
| | | | | | | | | | | |
Collapse
|
20
|
Lei L, Lai S, Liu W, Li Y, Zhang H, Tang Y. Chlorella pyrenoidosa mitigated the negative effect of cylindrospermopsin-producing and non-cylindrospermopsin-producing Raphidiopsis raciborskii on Daphnia magna as a dietary supplement. Front Microbiol 2023; 14:1292277. [PMID: 38033554 PMCID: PMC10687560 DOI: 10.3389/fmicb.2023.1292277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Feeding effects are crucial for evaluating the capacity of zooplankton to regulate phytoplankton populations within freshwater ecosystems. To examine the impact of the bloom-forming cyanobacteria Raphidiopsis raciborskii, which occurs in tropical and subtropical freshwaters, on the growth of zooplankton Daphnia in relation to toxins, filament length and fatty acid content, we fed D. magna with R. raciborskii only (cylindrospermopsin (CYN)-producing and non-CYN-producing, as the negative controls), Chlorella pyrenoidosa only (as the positive control) and a mixed diet containing R. raciborskii (CYN-producing and non-CYN-producing) and C. pyrenoidosa. Consequently, our findings revealed that the toxic effect of CYN-producing R. raciborskii strains on Daphnia was mitigated by the coexistence of C. pyrenoidosa containing stearidonic acid (SDA, C18:4 ω3) in mixed diets. This was evident in the elevated survival rate compared that from diets containing only R. raciborskii and a significantly higher reproduction and population intrinsic increase rate compared to diets consisting of only R. raciborskii or C. pyrenoidos. Additionally, a strong positive correlation was observed between arachidonic acid (ARA, 20:4ω6) and the population intrinsic increase rate of Daphnia; notably, R. raciborskii strains were found to be rich in the ω6 polyunsaturated fatty acid ARA. These outcomes reinforce the crucial role of polyunsaturated fatty acids in predicting the population increase of crustacean zooplankton, which has long been neglected. Furthermore, our results underscore the potential effectiveness of zooplankton, particularly in temperate lakes, in controlling CYN-producing R. raciborskii populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Yali Tang
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Kolar L, Šušnjara P, Stupin M, Stupin A, Jukić I, Mihaljević Z, Kolobarić N, Bebek I, Nejašmić D, Lovrić M, Drenjančević I. Enhanced Microvascular Adaptation to Acute Physical Stress and Reduced Oxidative Stress in Male Athletes Who Consumed Chicken Eggs Enriched with n-3 Polyunsaturated Fatty Acids and Antioxidants-Randomized Clinical Trial. Life (Basel) 2023; 13:2140. [PMID: 38004280 PMCID: PMC10671927 DOI: 10.3390/life13112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
This randomized interventional study aimed to determine the effects of n-3 polyunsaturated fatty acids, selenium, vitamin E, and lutein supplementation in the form of enriched chicken egg consumption on microvascular endothelium-dependent vasodilation, oxidative stress, and microvascular response to an acute strenuous training session (ASTS) in competitive athletes. Thirty-one male athletes were assigned to a control (n = 17) or a Nutri4 group (n = 14) who consumed three regular or enriched chicken eggs per day, respectively, for 3 weeks. Significantly enhanced endothelium-dependent responses to vascular occlusion (PORH) and iontophoresis of acetylcholine (AChID) were observed in the Nutri4 group but not in the control group after egg consumption. Formation of peroxynitrite and hydrogen peroxide in peripheral blood mononuclear cells, as well as serum concentration of 8-iso prostaglandin F2α, decreased in the Nutri4 group while remaining unchanged in controls. PORH and AChID were reduced post-ASTS compared with pre-ASTS, both before and after the diets, in both groups. However, the range of PORH responsiveness to ASTS (ΔPORH) increased after consumption of enriched eggs. These results suggest that consumption of enriched chicken eggs has a beneficial effect on microvascular endothelium-dependent vasodilation and the reduction of oxidative stress levels in competitive athletes. Also, microvascular adaptation to the ASTS was improved after consumption of Nutri4 eggs.
Collapse
Affiliation(s)
- Luka Kolar
- Department of Internal Medicine, National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
| | - Petar Šušnjara
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department for Cardiovascular Disease, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Ana Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jukić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Nikolina Kolobarić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Iva Bebek
- BICRO BIOCENTAR d.o.o., 10000 Zagreb, Croatia; (I.B.); (D.N.); (M.L.)
| | - Diana Nejašmić
- BICRO BIOCENTAR d.o.o., 10000 Zagreb, Croatia; (I.B.); (D.N.); (M.L.)
| | - Marija Lovrić
- BICRO BIOCENTAR d.o.o., 10000 Zagreb, Croatia; (I.B.); (D.N.); (M.L.)
| | - Ines Drenjančević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
22
|
Videla LA, Valenzuela R, Del Campo A, Zúñiga-Hernández J. Omega-3 Lipid Mediators: Modulation of the M1/M2 Macrophage Phenotype and Its Protective Role in Chronic Liver Diseases. Int J Mol Sci 2023; 24:15528. [PMID: 37958514 PMCID: PMC10647594 DOI: 10.3390/ijms242115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
23
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
24
|
Sakai C, Ueda K, Goda K, Fujita R, Maeda J, Nakayama S, Sotomaru Y, Tashiro S, Yoshizumi M, Ishida T, Ishida M. A possible role for proinflammatory activation via cGAS-STING pathway in atherosclerosis induced by accumulation of DNA double-strand breaks. Sci Rep 2023; 13:16470. [PMID: 37777633 PMCID: PMC10542807 DOI: 10.1038/s41598-023-43848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
DNA damage contributes to atherosclerosis. However, causative links between DNA double-strand breaks (DSBs) and atherosclerosis have yet to be established. Here, we investigated the role of DSBs in atherosclerosis using mice and vascular cells deficient in Ku80, a DSB repair protein. After 4 weeks of a high-fat diet, Ku80-deficient apolipoprotein E knockout mice (Ku80+/-ApoE-/-) displayed increased plaque size and DSBs in the aorta compared to those of ApoE-/- control. In the preatherosclerotic stages (two-week high-fat diet), the plaque size was similar in both the Ku80+/-ApoE-/- and ApoE-/- control mice, but the number of DSBs and mRNA levels of inflammatory cytokines such as IL-6 and MCP-1 were significantly increased in the Ku80+/-ApoE-/- aortas. We further investigated molecular links between DSBs and inflammatory responses using vascular smooth muscle cells isolated from Ku80 wild-type and Ku80+/- mice. The Ku80+/- cells displayed senescent features and elevated levels of inflammatory cytokine mRNAs. Moreover, the cytosolic DNA-sensing cGAS-STING pathway was activated in the Ku80+/- cells. Inhibiting the cGAS-STING pathway reduced IL-6 mRNA level. Notably, interferon regulatory factor 3 (IRF3), a downstream effector of the cGAS-STING pathway, was activated, and the depletion of IRF3 also reduced IL-6 mRNA levels in the Ku80+/- cells. Finally, DSBs accumulation in normal cells also activated the cGAS-STING-IRF3 pathway. In addition, cGAS inhibition attenuated DNA damage-induced IL-6 expression and cellular senescence in these cells. These results suggest that DSBs accumulation promoted atherosclerosis by upregulating proinflammatory responses and cellular senescence via the cGAS-STING (-IRF3) pathway.
Collapse
Affiliation(s)
- Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Keitaro Ueda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Kohei Goda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Rikuto Fujita
- National Hospital Organization, Higashihiroshima Medical Center, Hiroshima City, Japan
| | - Junji Maeda
- Department of Cardiology, Tsuchiya General Hospital, Hiroshima City, Japan
| | - Shinya Nakayama
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima City, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| |
Collapse
|
25
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
26
|
Peng X, Wang S, Wang J, Ju W, Yang G, Gu K, Liu H, Wang Z, Jiang X, Li M, Chen H, Shi J, Chen M. Plasma 8-Hydroxy-2'-Deoxyguanosine, a Potential Valuable Biomarker for Atrial Fibrosis Is Influenced by Polymorphism of DNA Methylation Gene. Circ J 2023; 87:964-972. [PMID: 37225477 DOI: 10.1253/circj.cj-22-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Previous studies revealed a relationship between 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the occurrence/recurrence of atrial fibrillation (AF). This 2-part study aimed to validate whether DNA damage related to 8-OHdG is associated with left atrial (LA) fibrosis in AF patients quantified by voltage mapping (Part I), and to identify the underlying genetic components regulating the 8-OHdG level (Part II). METHODS AND RESULTS Plasma 8-OHdG determination, DNA extraction, and genotyping were conducted before catheter ablation. LA voltage mapping was performed under sinus rhythm. According to the percentage of low voltage area (LVA), patients were categorized as stage I (<5%), stage II (5-10%), stage III (10-20%), and stage IV (>20%). Part I included 209 AF patients. The 8-OHdG level showed an upward trend together with advanced LVA stage (stage I 8.1 [6.1, 10.5] ng/mL, stage II 8.5 [5.7, 14.1] ng/mL, stage III 14.3 [12.1, 16.5] ng/mL, stage IV 13.9 [10.5, 16.0] ng/mL, P<0.000). Part II included 175 of the 209 patients from Part I. Gene-set analysis based on genome-wide association study summary data identified that the gene set named 'DNA methylation on cytosine' was the only genetic component significantly associated with 8-OHdG concentration. CONCLUSIONS Higher 8-OHdG levels may predict more advanced LVA of the LA in AF patients. DNA methylation is the putative genetic component underlying oxidative DNA damage in AF patients.
Collapse
Affiliation(s)
- Xiafeng Peng
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Shixin Wang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Jing Wang
- Nephrology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Weizhu Ju
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Gang Yang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Kai Gu
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Hailei Liu
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Zidun Wang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Xiaohong Jiang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Mingfang Li
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Hongwu Chen
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Jiaojiao Shi
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Minglong Chen
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
27
|
Gao G, Zhou J, Wang H, Ke L, Zhou J, Ding Y, Ding W, Zhang S, Rao P. Fish oil nano-emulsion kills macrophage: Ferroptosis triggered by catalase-catalysed superoxide eruption. Food Chem 2023; 408:135249. [PMID: 36566546 DOI: 10.1016/j.foodchem.2022.135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Fish oil is increasingly utilised in the form of nano-emulsion as a nutrient and function fortifier. The nano-emulsions exceptionally high content of polyunsaturated fatty acids and electron donors at the oil/water interface provide an ideal site of the redox reaction. Here we report that a vigorous superoxide production in the fish oil nano-emulsion was catalysed by mammalian catalase in acellular and cellular systems. The resulting superoxide increased cytosolic reactive oxygen species (ROS) and membrane lipid peroxidation of murine macrophage, which eventually causes fatal oxidative damages. Cell death, was significantly inhibited by a catalase-specific inhibitor 3-Amino-1,2,4-triazole (3-AT), was via ferroptosis and not apoptosis. The ferroptosis was independent of free iron or glutathione peroxidase suppression. Our findings discovered a hidden health risk of the widely acclaimed fish oil emulsion, suggesting a novel cellular damage mechanism caused by dietary unsaturated fats on the alimentary tract mucosa.
Collapse
Affiliation(s)
- Guanzhen Gao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China.
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yanan Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Wei Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Suyun Zhang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Obadimu AA, Adebayo OL, Fagbohunka BS, Adenuga GA. Fish oil supplementation protects against protein undernutrition-induced testicular and ovarian biochemical alterations in rats. Reprod Toxicol 2023; 118:108367. [PMID: 36963525 DOI: 10.1016/j.reprotox.2023.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Proteins are required for biological functions and their inadequacy might impair the growth and development of the reproductive system. The study investigated the effects of fish oil (FO) supplementation on low-protein diet-induced alterations in male and female reproductive organs. Male and female rats were assigned randomly to four groups respectively. The NPD rats had five rats per group and were given 16% casein diet while the LPD rats had eight rats per group and received 5% casein diet. After the 8th week, FO was administered for 3 weeks via oral gavage at a concentration of 400mg Kg-1 after which the rats were sacrificed and testes and ovaries were excised. LPD-fed rats showed lower body weights for both genders. In LPD-fed rats, NO was significantly increased while GSH, vitamins C and E levels, the activities of CAT (except in ovaries), and GST were significantly reduced in both tissues. The activities of SOD and GPx were only reduced in the testes including sperm count, motility, and increase deformed sperm cells. Testosterone and progesterone levels were also reduced and lipid homeostasis was disrupted in the plasma of LPD-fed rats. FO supplementation reduces the NO, CHOL, TG, LDL (in females), and VLDL but significantly improves HDL (in females), testosterone, and progesterone levels, sperm count, motility, and morphology. The antioxidant status of both tissues also increased significantly in LPD-fed rats. Conclusively, FO might be effective in improving testicular and ovarian functions and for the maintenance of plasma lipid homeostasis in LPD-fed rats.
Collapse
Affiliation(s)
- Adedayo Adedeji Obadimu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Olusegun Lateef Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230 Ede, Osun State, Nigeria.
| | - Bamidele Sanya Fagbohunka
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Gbenga Adebola Adenuga
- Department of Biochemistry, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| |
Collapse
|
29
|
Ahmad S, Tan M, Hamid S. DNA repair mechanisms: Exploring potentials of nutraceutical. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
30
|
Wu S, Wu Y, Chen J, Zhuang P, Zhang Y, Jiao J. Lifelong docosahexaenoic acid intervention ameliorates aging in the telomere-DNA-mitochondria axis in telomerase-deficient mice. J Nutr Biochem 2023; 112:109202. [PMID: 36347449 DOI: 10.1016/j.jnutbio.2022.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple age-related diseases are associated with telomere length. Telomerase is intimately related to inflammation and oxidative stress, but whether the underlying function of n-3 PUFAs on telomere maintenance is based on telomerase activation or related mechanisms remains unclear. Herein, we utilized late-generation (G4) telomerase-deficient (Terc-/-) mice to perform a lifelong docosahexaenoic acid (DHA) intervention to determine the potential of DHA in telomere maintenance and health promotion. Unfortunately, DHA failed to prolong mouse longevity in either intrinsic or premature aging. However, intriguingly, lifelong dietary DHA intervention slowed the aging phenotypes and profoundly attenuated telomere attrition in blood leukocytes and multiple tissues, consistent with decreased β-galactosidase activity and other senescence hallmarks with no observed sex differences. Notably, DHA intervention alleviated telomere attrition-induced γ-H2AX accumulation dependent on poly (ADP-ribose) polymerase 1 (PARP1) recruitment, and further regulated mitochondrial dysfunction critically involved in the DNA damage response. Together with the improvement of mitochondria function, the blocked reactive oxygen species (ROS) accumulation and suppression of the nuclear factor-κB (NF-κB)/nucleotide-binding domain-like receptor protein 3 (NLRP3)/caspase-1 pathways partially indicated anti-oxidative and anti-inflammatory effects of DHA. These data revealed a regulatory paradigm involving DHA in the telomere-DNA-mitochondria feedback loop mediated by DNA damage response and inflammation in alleviating senescence, which may hold potential as a translatable intervention in telomere-related diseases during aging.
Collapse
Affiliation(s)
- Shanyun Wu
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P R China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P R China; Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P R China.
| |
Collapse
|
31
|
Ueda K, Sakai C, Ishida T, Morita K, Kobayashi Y, Horikoshi Y, Baba A, Okazaki Y, Yoshizumi M, Tashiro S, Ishida M. Cigarette smoke induces mitochondrial DNA damage and activates cGAS-STING pathway: application to a biomarker for atherosclerosis. Clin Sci (Lond) 2023; 137:163-180. [PMID: 36598778 PMCID: PMC9874975 DOI: 10.1042/cs20220525] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Cigarette smoking is a major risk factor for atherosclerosis. We previously reported that DNA damage was accumulated in atherosclerotic plaque, and was increased in human mononuclear cells by smoking. As vascular endothelial cells are known to modulate inflammation, we investigated the mechanism by which smoking activates innate immunity in endothelial cells focusing on DNA damage. Furthermore, we sought to characterize the plasma level of cell-free DNA (cfDNA), a result of mitochondrial and/or genomic DNA damage, as a biomarker for atherosclerosis. Cigarette smoke extract (CSE) increased DNA damage in the nucleus and mitochondria in human endothelial cells. Mitochondrial damage induced minority mitochondrial outer membrane permeabilization, which was insufficient for cell death but instead led to nuclear DNA damage. DNA fragments, derived from the nucleus and mitochondria, were accumulated in the cytosol, and caused a persistent increase in IL-6 mRNA expression via the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. cfDNA, quantified with quantitative PCR in culture medium was increased by CSE. Consistent with in vitro results, plasma mitochondrial cfDNA (mt-cfDNA) and nuclear cfDNA (n-cfDNA) were increased in young healthy smokers compared with age-matched nonsmokers. Additionally, both mt-cfDNA and n-cfDNA were significantly increased in patients with atherosclerosis compared with the normal controls. Our multivariate analysis revealed that only mt-cfDNA predicted the risk of atherosclerosis. In conclusion, accumulated cytosolic DNA caused by cigarette smoke and the resultant activation of the cGAS-STING pathway may be a mechanism of atherosclerosis development. The plasma level of mt-cfDNA, possibly as a result of DNA damage, may be a useful biomarker for atherosclerosis.
Collapse
Affiliation(s)
- Keitaro Ueda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Kosuke Morita
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Akiko Baba
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yuma Okazaki
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
32
|
Wang S, Tang C, Chen J, Tang H, Zhang L, Tang G. Changes in Bone Marrow Fatty Acids Early after Ovariectomy-Induced Osteoporosis in Rats and Potential Functions. Metabolites 2022; 13:metabo13010036. [PMID: 36676961 PMCID: PMC9863616 DOI: 10.3390/metabo13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the changes in bone marrow fatty acids early after ovariectomy-induced osteoporosis in rats, and explore the potential function of the bone marrow fatty acids. Ninety-six female Sprague Dawley rats (12 weeks) were randomly divided into an ovariectomized (OVX) group and Sham group (N = 48/group) and received ovariectomy or Sham surgery, respectively. After 3, 5, 7,14, 21 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by means of gas chromatography-mass spectrometry and evaluate the trabecular bone microarchitecture by means of microCT. Bone marrow rinsing fluid and serum were collected for the detection of nitric oxide synthase/nitric oxide (NOS/NO) and bone metabolism related parameters, respectively. Our results demonstrated that the bone microstructure was damaged significantly from 14 days after OVX surgery onwards. Sample clustering and group separation were observed between the OVX group and Sham group 3 and 14 days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Palmitoleate, myristate and arachidonate were found to play an important role in classification between the OVX group and Sham group on the 3rd day after surgery (VIP > 1, p < 0.05). Palmitoleate, myristate, alpha linolenate, stearate and eicosenoate were found to play an important role in classification between the OVX group and Sham group on the 14th day after surgery (VIP > 1, p < 0.05). The levels of myristate, palmitoleate, alpha linolenate and eicosenoate were significantly decreased in the OVX group, while the levels of arachidonate and stearate were significantly increased in OVX group (p < 0.05). Additionally, myristate, palmitoleate, alpha linoleate and eicosenoate were negatively correlated with C-terminal telopeptide of type 1 collagen (CTX-1, a bone resorption marker), while arachidonate was negative correlated with osteocalcin (OCN, a bone formation marker) (p < 0.05). A significant correlation was also found between eicosenoate and NOS (p < 0.05). Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. They may affect bone formation though affecting the differentiation and function of osteoclasts or osteoblasts, respectively. The NOS/NO system may mediate the influence of eicosenoate on bone formation.
Collapse
Affiliation(s)
- Sizhu Wang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai 200072, China
| | - Jieying Chen
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai 200040, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Correspondence: (L.Z.); (G.T.)
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Radiology, Clinical Medical College of Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai 200072, China
- Correspondence: (L.Z.); (G.T.)
| |
Collapse
|
33
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
34
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Wu Y, Zhang Y, Jiao J. The relationship between n-3 polyunsaturated fatty acids and telomere: A review on proposed nutritional treatment against metabolic syndrome and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 64:4457-4476. [PMID: 36330807 DOI: 10.1080/10408398.2022.2142196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS), a cluster of metabolic abnormalities composed of central obesity, elevated blood pressure, glucose disturbances, hypercholesterolemia and dyslipidaemia, has increasingly become a public health problem in the 21st century worldwide. The dysfunction of telomeres, the repetitive DNA with highly conserved sequences (5'-TTAGGG-3'), is remarkably correlated with organismal aging, even suggesting a causal relationship with metabolic disorders. The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple disorders are associated with telomere length in evidence, which have recently drawn wide attention. However, functional targets and pathways for the associations of n-3 PUFAs and telomere with MetS remain scare. Few studies have summarized the role of n-3 PUFAs in DNA damage repair pathways, anti-inflammatory pathways, and redox balance, linking with telomere biology, and other potential telomere-related signaling pathways. This review aims to (i) elucidate how n-3 PUFAs ameliorate telomere attrition in the context of anti-oxidation and anti-inflammation; (ii) unravel the role of n-3 PUFAs in modulating telomere-related neuron dysfunction and regulating the neuro-endocrine-immunological network in MetS; (iii) epidemiologically implicate the associations of metabolic disorders and n-3 PUFAs with telomere length; and (iv) suggest promising biochemical approaches and advancing methodologies to overcome the inter-variation problem helpful for future research.
Collapse
Affiliation(s)
- Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
37
|
Giltvedt K, Voutour LS, Tursellino B, Zella A, Brasser SM, Hong MY. Effects of moderate ethanol consumption as a function of n-6:n-3 dietary ratio on lipid profile, inflammation, and liver function in mice. INTERNATIONAL JOURNAL OF CARDIOLOGY CARDIOVASCULAR RISK AND PREVENTION 2022; 14:200132. [PMID: 35602851 PMCID: PMC9120064 DOI: 10.1016/j.ijcrp.2022.200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kristine Giltvedt
- School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Luciano S. Voutour
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Brianna Tursellino
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Alexandra Zella
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Susan M. Brasser
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- Corresponding author. School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-7251.
| |
Collapse
|
38
|
Wang L, Sun H, Yang M, Xu Y, Hou L, Yu H, Wang X, Zhang Z, Han J. Bidirectional regulatory effects of Cordyceps on arrhythmia: Clinical evaluations and network pharmacology. Front Pharmacol 2022; 13:948173. [PMID: 36059969 PMCID: PMC9437265 DOI: 10.3389/fphar.2022.948173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cordyceps is a precious Chinese herbal medicine with rich bio-active ingredients and is used for regulating arrhythmia alongside routine treatments. However, the efficacy and potential mechanisms of Cordyceps on patients with arrhythmia remain unclear. Methods: Randomized controlled trials of bradycardia treatment with Cordyceps were retrieved from diverse databases and available data. Dichotomous variables were expressed as a risk ratio (RR) with a 95% confidence interval (CI). Continuous variables were expressed as a standardized mean difference (SMD) with a 95% CI. Network pharmacology was used to identify potential targets of Cordyceps for arrhythmia. Metascape was used for gene ontology (GO) and genome (KEGG) pathway enrichment analysis. Results: Nineteen trials included 1,805 patients with arrhythmia, of whom 918 were treated with Ningxinbao capsule plus routine drugs, and, as a control, 887 were treated with only routine drugs. Six trials reported on bradycardia and the other 13 on tachycardia. Treatment with Cordyceps significantly improved the total efficacy rate in both bradycardia (RR = 1.24; 95% CI, 1.15 to 1.35; Pz <0.00001) and tachycardia (RR = 1.27; 95% CI, 1.17 to 1.39; Pz <0.00001). Cordyceps also had beneficial secondary outcomes. No serious adverse events occurred in patients treated with Cordyceps. The results of KEGG pathway enrichment analysis were mainly connected to adrenergic signaling in cardiomyocytes and the PI3K-Akt signaling pathway. IL6, TNF, TP53, CASP3, CTNNB1, EGF, and NOS3 might be key targets for Cordyceps in the treatment of arrhythmia. Conclusion: This study confirmed that Cordyceps has a certain positive effect on the treatment of arrhythmia and that its main mechanism may be through the regulation of adrenergic signaling in cardiomyocytes and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University Weifang China, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Helin Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University Weifang China, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Meina Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs(Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Yulin Xu
- Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Linlin Hou
- Ambulatory Surgery Centers, Tai’an City Central Hospital, Tai’an, China
| | - Haomiao Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xueyin Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- *Correspondence: Zhongwen Zhang, ; Jinxiang Han,
| | - Jinxiang Han
- Key Laboratory of Biotechnology Drug (Shandong Academy of Medical Sciences), Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Zhongwen Zhang, ; Jinxiang Han,
| |
Collapse
|
39
|
Role of Nuclear Factor Erythroid 2 (Nrf2) in the Recovery of Long COVID-19 Using Natural Antioxidants: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11081551. [PMID: 36009268 PMCID: PMC9405009 DOI: 10.3390/antiox11081551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease with approximately 517 million confirmed cases, with the average number of cases revealing that patients recover immediately without hospitalization. However, several other cases found that patients still experience various symptoms after 3–12 weeks, which is known as a long COVID syndrome. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can activate nuclear factor kappa beta (NF-κβ) and unbind the nuclear factor erythroid 2-related factor 2 (Nrf2) with Kelch-like ECH-associated protein 1 (Keap1), causing inhibition of Nrf2, which has an important role in antioxidant response and redox homeostasis. Disrupting the Keap1–Nrf2 pathway enhances Nrf2 activity, and has been identified as a vital approach for the prevention of oxidative stress and inflammation. Hence, natural antioxidants from various sources have been identified as a promising strategy to prevent oxidative stress, which plays a role in reducing the long COVID-19 symptoms. Oxygen-rich natural antioxidant compounds provide an effective Nrf2 activation effect that interact with the conserved amino acid residues in the Keap1-binding pocket, such as Ser602, Ser363, Ser508, and Ser555. In this review, the benefits of various natural antioxidant compounds that can modulate the Nrf2 signaling pathway, which is critical in reducing and curing long COVID-19, are highlighted and discussed.
Collapse
|
40
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
41
|
Jiang H, Wang L, Wang D, Yan N, Li C, Wu M, Wang F, Mi B, Chen F, Jia W, Liu X, Lv J, Liu Y, Lin J, Ma L. Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes, cardiovascular disease, cancer, and mortality. Clin Nutr 2022; 41:1798-1807. [PMID: 35830775 DOI: 10.1016/j.clnu.2022.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS Considerable attention has focused on the role of omega-3 polyunsaturated fatty acids (PUFA) in the prevention of cardiometabolic diseases, which has led to dietary recommendations to increase omega-3 fatty acid intake. A meta-analysis was conducted to summarize evidence from prospective studies regarding associations between omega-3 PUFA biomarkers and risk of developing major chronic diseases. METHODS Four electronic databases were searched for articles from inception to March 1, 2022. Random-effects model was used to estimate the pooled relative risk (RR) and 95% confidence intervals (CIs) for the association of omega-3 PUFAs, including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), with risk of developing type 2 diabetes (T2D), cardiovascular disease (CVD), including coronary heart disease (CHD) and stroke, cancer, and mortality. The Grades of Recommendation, Assessment, Development and Evaluation assessment tool was used to rates the confidence in estimates. RESULTS A total of 67 prospective studies comprised of 310,955 participants were identified. Individual omega-3 PUFAs showed divergent associations with the study outcomes of interest. A significant inverse association with T2D risk was observed across categories of ALA (relative risk [RR]: 0.89, 95% confidence interval [CI]: 0.82-0.96), EPA (RR: 0.85, 95% CI: 0.72-0.99) and DPA (RR: 0.84, 95% CI: 0.73-0.96) biomarkers. The marine-origin omega-3 fatty acids biomarkers but not ALA was significantly associated with lower risks of total CVD, CHD, and overall mortality, with RRs ranging from 0.70 for DHA-CHD association to 0.85 for EPA-CHD association. A lower risk of colorectal cancer was observed at higher levels of DPA (RR: 0.76, 95% CI: 0.59-0.98) and DHA (RR: 0.80; 95% CI: 0.65-0.99), whereas no association was noted for other outcomes. In addition, a dose-response relationship was observed between an increasing level of EPA, DPA, or DHA biomarker and lower risk of CVD. CONCLUSIONS Higher concentrations of marine-derived omega-3 PUFA biomarkers were associated with a significantly reduced risk of total CVD, CHD, and total mortality. Levels of ALA were inversely associated with a lower risk of T2D but not CVD-related outcomes. These data support the dietary recommendations advocating the role of omega-3 PUFAs in maintaining an overall lower risk of developing cardiovascular disease and premature deaths.
Collapse
Affiliation(s)
- Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lina Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ni Yan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chao Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Min Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fan Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baibing Mi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fangyao Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wanru Jia
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiaxin Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| |
Collapse
|
42
|
Amir A, Darwin E. Omega-3 and Vitamin E Supplementation Effect on Reactive Oxygen Species and Placental Vascular Endothelial Growth Factor: Pre-eclampsia Model. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Pre-eclampsia (PE) has been associated with oxidative stress and inflammation. Omega-3 fatty acids and vitamin E have beneficial function to maintain cell membrane, prevent oxidative stress, and inhibit the production of proinflammatory cytokines. The purpose of the study was to determine the effect of omega-3 and vitamin E supplement to Reactive Oxygen Species (ROS) and placental Vascular Endothelial Growth Factor (VEGF) on PE rats model.
AIM: This study aimed to investigate the effect of omega-3 and vitamin E supplementation on ROS and placental VEGF.
METHODS: This research has been carried out at animal house and Biomedical Laboratory of the Medical Faculty Andalas University. The design of this research was experimental study with post-test only control group design. Thirty pregnant rats were divided into five groups. Group K-without treatment, group K+ was given L-NAME, group P1 was given L-NAME + omega-3, group P2 was given L-NAME + vitamin E, and group P3 was given L-NAME + omega-3 + vitamin E. The L-NAME dose was 50 mg/kg/day. At the 19th day of gestation, the pregnancy was terminated and the blood serum was used for examination of ROS and placental tissue was collected for examination of VEGF using ELISA kit. The data were analyzed by one-way ANOVA and post hoc test Bonferoni.
RESULTS: The analysis results found that there were significant differences between omega-3 and vitamin E supplements on ROS levels and placental VEGF levels. Administration of omega-3 only or combination with vitamin E can effectively improve endothelial function by increasing the level of VEGF.
CONCLUSION: Omega-3 (DHA 120 mg, EPA 180 mg) and vitamin E (α-tocopherol 300 iu) supplement decreased ROS and increased placental VEGF on pre-eclampsia rats model.
Collapse
|
43
|
da Silva A, Silveira BKS, Hermsdorff HHM, da Silva W, Bressan J. Effect of omega-3 fatty acid supplementation on telomere length and telomerase activity: A systematic review of clinical trials. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102451. [PMID: 35661999 DOI: 10.1016/j.plefa.2022.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Evidence suggests antioxidant and anti-inflammatory properties of omega-3 polyunsaturated fatty acids (n-3 PUFA). However, the effect of supplementation of this fatty acid profile on the telomere length and the telomerase enzyme activity was not revised yet. The PubMed and Embase® databases were used to search for clinical trials. A total of six clinical trials were revised. Omega-3 PUFA supplementation did not statistically affect telomere length in three out of three studies but affected telomerase activity in two out of four studies. The supplementation increased telomerase enzyme activity in subjects with first-episode schizophrenia. Besides, it decreased telomerase enzyme activity without modulating the effects of Pro12Ala polymorphism on the PPARγ gene in type 2 diabetes subjects. The methodological differences between the studies and the limited number of studies on the theme suggest that further studies are needed to elucidate the effects of n-3 PUFA supplementation on telomere length and telomerase enzyme activity in humans.
Collapse
Affiliation(s)
- Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Walmir da Silva
- Laboratory of Animal Biotechnology. Animal Science Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
44
|
Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc 2022; 97:1844-1867. [PMID: 35569818 PMCID: PMC9541442 DOI: 10.1111/brv.12866] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Atherosclerosis, characterized by lipid‐rich plaques in the arterial wall, is an age‐related disorder and a leading cause of mortality worldwide. However, the specific mechanisms remain complex. Recently, emerging evidence has demonstrated that senescence of various types of cells, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, endothelial progenitor cells (EPCs), and adipose‐derived mesenchymal stem cells (AMSCs) contributes to atherosclerosis. Cellular senescence and atherosclerosis share various causative stimuli, in which dyslipidemia has attracted much attention. Dyslipidemia, mainly referred to elevated plasma levels of atherogenic lipids or lipoproteins, or functional impairment of anti‐atherogenic lipids or lipoproteins, plays a pivotal role both in cellular senescence and atherosclerosis. In this review, we summarize the current evidence for dyslipidemia‐induced cellular senescence during atherosclerosis, with a focus on low‐density lipoprotein (LDL) and its modifications, hydrolysate of triglyceride‐rich lipoproteins (TRLs), and high‐density lipoprotein (HDL), respectively. Furthermore, we describe the underlying mechanisms linking dyslipidemia‐induced cellular senescence and atherosclerosis. Finally, we discuss the senescence‐related therapeutic strategies for atherosclerosis, with special attention given to the anti‐atherosclerotic effects of promising geroprotectors as well as anti‐senescence effects of current lipid‐lowering drugs.
Collapse
Affiliation(s)
- Qunyan Xiang
- Department of Geriatrics, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Institute of Aging and Age‐related Disease Research Central South University Changsha Hunan 410011 PR China
| | - Feng Tian
- Department of Geriatric Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Shilan Zhang
- Department of Gastroenterology, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| |
Collapse
|
45
|
Shao J, Wang S, Liu L. Maternal omega-3 fatty acid supplementation against prenatal lead exposure induced cognitive impairment in offspring mice. J Toxicol Sci 2022; 47:183-192. [PMID: 35527006 DOI: 10.2131/jts.47.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Maternal lead exposure is associated with poor outcomes in fetal brain development such as cognitive dysfunction. Here, we aimed to reveal the effect and mechanism of omega-3 fatty acids in ameliorating maternal lead exposure-induced cognitive impairment in mouse offspring. The activity levels of locomotor and anxiety, memory and learning capacity, spatial working memory, and cognitive behavioral function were determined using the open field test, Morris water maze, Y-maze, and nest-building test, respectively. The protein levels of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured using enzyme-linked immunosorbent assay or Western blot. The mRNA levels of BDNF, tyrosine kinase B (TrkB) and cyclic AMP response element binding protein (CREB) were measured by real-time qPCR. Malondialdehyde (MDA) and anti-oxidants, including SOD, GSH and CAT, were measured using bioassay kits. We found that supplementing omega-3 significantly improved cognitive behavioral function in offspring after prenatal lead exposure. The protein and mRNA levels of BDNF, TrkB and CREB in the prenatal lead exposure group were significantly upregulated by omega-3 supplementation. The MDA level in the prenatal lead exposure group was markedly elevated compared with the control group, which was significantly reduced by omega-3. Omega-3 restored anti-oxidants SOD, GSH and CAT to control levels after prenatal lead exposure. Omega-3 significantly upregulated Nrf2 nuclear expression and HO-1 expression after prenatal lead exposure. Overall, omega-3 supplementation significantly elevated the BDNF/TrkB/CREB pathway and restores anti-oxidants by upregulating the Nrf2/HO-1, thereby improving cognitive function in offspring after prenatal lead exposure.
Collapse
Affiliation(s)
- Jing Shao
- Department of Obstetrics, Daqing Oilfield General Hospital, China
| | - Shuli Wang
- Department of Obstetrics, Daqing Oilfield General Hospital, China
| | - Lan Liu
- Department of Gynecology, First Hospital of Qiqihar, Affiliated Qiqihar Hospital,Southern Medical University, China
| |
Collapse
|
46
|
Kalo D, Reches D, Netta N, Komsky-Elbaz A, Zeron Y, Moallem U, Roth Z. Carryover effects of feeding bulls with an omega-3-enriched-diet-From spermatozoa to developed embryos. PLoS One 2022; 17:e0265650. [PMID: 35324945 PMCID: PMC8947395 DOI: 10.1371/journal.pone.0265650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
The impact of omega-3 nutritional manipulation on semen cryosurvival and quality post thawing is controversial. Our aim was to examine how feeding bulls with omega-3 supplementation from different sources affects the spermatozoa quality parameters. Fifteen Israeli Holstein bulls were fed for 13 weeks with a standard ration top-dressed with encapsulated-fat supplementation: fish or flaxseed oil or saturated fatty acids (control). Ejaculates were collected before, during, and after the feeding trial. Frozen-thawed samples were evaluated by a flow cytometer for spermatozoa viability, mitochondrial membrane potential, the level of reactive oxygen species (ROS), acrosome membrane integrity, DNA fragmentation, phosphatidylserine translocation, and membrane fluidity. Both fish and flaxseed oil treatment resulted in lower ROS levels vs. control groups, during and after the feeding trial. Fewer spermatozoa with damaged acrosomes were observed in the fish oil group after the feeding trial. The spermatozoa membrane fluidity was altered in both the fish and flaxseed oil groups throughout the feeding trial, but only in the flaxseed oil group after the feeding trial. The proportion of spermatozoa with fragmented DNA was lower in the flaxseed oil group after the feeding trial. The spermatozoa fertilization competence did not differ between groups however, blastocyst formation rate was higher in the fish and flaxseed oil groups relative to the control. This was associated with differential gene expression in the blastocysts. Overall, the omega-3-enriched food improved the spermatozoa characteristics; this was further expressed in the developing blastocysts, suggesting a carryover effect from the spermatozoa to the embryos.
Collapse
Affiliation(s)
- Dorit Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- ASRC, Animal Sperm Research Center, Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Dan Reches
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Noam Netta
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- Department of Ruminant Science, Institute of Animal Science, Volcani Center, Bet-Dagan, Israel
| | - Alisa Komsky-Elbaz
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- ASRC, Animal Sperm Research Center, Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Yoel Zeron
- ASRC, Animal Sperm Research Center, Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- SION Artificial Insemination and Breeding Center, Hafetz-Haim, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Science, Volcani Center, Bet-Dagan, Israel
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- ASRC, Animal Sperm Research Center, Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| |
Collapse
|
47
|
Ali S, Scapagnini G, Davinelli S. Effect of omega-3 fatty acids on the telomere length: A mini meta-analysis of clinical trials. Biomol Concepts 2022; 13:25-33. [DOI: 10.1515/bmc-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
Abstract
Telomeres are protective caps at the end of eukaryotic chromosomes, whose length is correlated with health and lifespan. Telomere attrition is a common feature of the aging process and can be accelerated by oxidative stress and chronic inflammation. Various nutrients influence the telomere length, partially due to their antioxidant and anti-inflammatory properties. The aim of this review was to meta-analytically assess the effect of omega-3 fatty acids on the telomere length. We searched four databases (PubMed, Web of Sciences, Scopus, and the Cochrane Library) from inception until November 2021. Of 573 records, a total of 5 clinical trials were included for the quantitative meta-analysis, comprising a total of 337 participants. The results revealed an overall beneficial effect of omega-3 fatty acids on the telomere length (mean difference = 0.16; 95% CI, 0.02, 0.30; p = 0.02). Despite a limited number of studies, the available evidence suggests that omega-3 fatty acids may positively affect the telomere length. However, larger clinical trials are needed to confirm our findings, along with studies aimed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| |
Collapse
|
48
|
Zhang Y, Guo H, Liang J, Xiao W, Li Y. Relationship Between Dietary Omega-3 and Omega-6 Polyunsaturated Fatty Acids Level and Sarcopenia. A Meta-Analysis of Observational Studies. Front Nutr 2022; 8:738083. [PMID: 35096921 PMCID: PMC8789889 DOI: 10.3389/fnut.2021.738083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: This study investigates the relationship between dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) levels and sarcopenia. Methods: A comprehensive literature search in the databases of PubMed, Web of Science, and Embase (up to July 2021) were conducted to identify the observational studies on the relationship between dietary omega-3 and omega-6 PUFAs level and sarcopenia. The pooled odds ratio (OR) of sarcopenia for the highest vs. lowest dietary omega-3 and omega-6 PUFAs level and the standard mean difference (SMD) of dietary omega-3 and omega-6 PUFAs levels for sarcopenia vs. control subjects were calculated. Results: A total of six studies were identified in this meta-analysis. The overall multi-variable adjusted OR showed that dietary omega-3 PUFAs level was inversely associated with sarcopenia (OR = 0.41, 95% CI: 0.26–0.65; P = 0.0001). Moreover, the overall combined SMD showed that the dietary omega-3 PUFAs level in sarcopenia was lower than that in control subjects (SMD = −0.19, 95% CI: −0.32 to −0.07; P = 0.002). With regard to dietary omega-6 PUFAs level, the overall multi-variable adjusted OR suggested no significant relationship between dietary omega-6 PUFAs level and sarcopenia (OR = 0.64, 95% CI: 0.33–1.24; P = 0.19). However, the overall combined SMD showed that the dietary omega-6 PUFAs level in sarcopenia was slightly lower than that in control subjects (SMD = −0.15, 95% CI: −0.27 to −0.02; P = 0.02). Conclusion: Our results suggested that the dietary omega-3 PUFAs level was inversely associated with sarcopenia. However, current evidence is still insufficient to demonstrate the definite relationship between dietary omega-6 PUFAs levels and sarcopenia. More well-designed prospective cohort studies with the dietary omega-3/omega-6 PUFAs ratio are still needed.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Fujino S, Sun J, Nakayama S, Horikoshi Y, Kinugasa Y, Ishida M, Sakai C, Ike T, Doi S, Masaki T, Tashiro S. A Combination of Iohexol Treatment and Ionizing Radiation Exposure Enhances Kidney Injury in Contrast-Induced Nephropathy by Increasing DNA Damage. Radiat Res 2022; 197:384-395. [PMID: 35090038 DOI: 10.1667/rade-21-00178.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/10/2021] [Indexed: 11/03/2022]
Abstract
Contrast media has been shown to induce nephropathy (i.e., contrast-induced nephropathy) after various types of radiological examinations. The molecular mechanism of contrast-induced nephropathy has been unclear. In this study, we investigated the mechanism of contrast-induced nephropathy by examining the effects of combined treatment of contrast medium and ionizing radiation on kidney cells in vitro and kidney tissue in vivo. In human renal tubular epithelium cells, immunofluorescence analysis revealed that iohexol increased the numbers of radiation-induced γH2AX nuclear foci. The numbers of γH2AX nuclear foci remained high at 24 h, suggesting that some radiation-induced double-strand breaks remain unrepaired in the presence of iohexol. We established a mouse model of contrast-induced nephropathy, then showed that iohexol and ionizing radiation synergistically reduced renal function and induced double-strand breaks. Importantly, iohexol induced significant macrophage accumulation and oxidative DNA damage in the kidneys of contrast-induced nephropathy model mice in the absence of ionizing radiation; these effects were amplified by ionizing radiation. The results suggest that underlying inflammation and oxidative DNA damage caused by iohexol contribute to the enhancement of radiation-induced double-strand breaks, leading to contrast-induced nephropathy.
Collapse
Affiliation(s)
- Shu Fujino
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.,Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinya Nakayama
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.,Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuha Kinugasa
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
Sanyoto DD, Syahadatina Noor M, Triawanti T. Potential Combinations of Pasak Bumi (Eurycoma longifolia Jack), Docosahexaenoic Acid, and Seluang Fish (Rasbora spp.) to Improving Oxidative Stress of Rats (Rattus norvegicus) Brain Undernutrition. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The brain is very susceptible to damage from oxidative stress due to undernutrition. Provision of nutrients and compounds that act as antioxidants is needed to improve oxidative stress in the brain.
AIM: This study was conducted with the aim of proving the potential of the combination of pasak bumi (Eurycoma longifolia Jack), DHA, and seluang fish (Rasbora Spp.) to improve oxidative stress in the brains of undernourished rats (Rattus norvegicus).
METHODS: Once the rats were undernourished, they were divided: positive control (KP) = undernourished rats + placebo + standard feed; (P1) = undernourished rats + 70% ethanol extract of pasak bumi root (EPB) 15 mg/kg BW + standard feed; (P2) = undernourished rats + DHA 1 mg/kgBW + standard feed; (P3) = undernourished rats + EPB 15 mg/kg BW + DHA 1 mg/kg BW + standard feed; (P4) = undernourished rats + seluang fish; (P5) = undernourished rats + EPB 15 mg/kg BW + seluang fish for 5 weeks; plus 1 negative control group (KN) that is healthy rats given placebo and standard feed. The parameters included superoxide dismutase (SOD) activity, catalase, peroxide (H2O2) and malondialdehyde (MDA) levels. Data analysis used the Kruskall-Wallis test followed by Mann Whitney with a significance level of 95%.
RESULTS: There were significant differences in the activity of SOD (p = 0.001), catalase (p = 0.000), peroxide levels (p = 0.000), and MDA (p = 0.000) between treatments. The group that was given a combination of EPB 15 mg/kg BW and DHA 1 mg/kg BW showed better SOD and catalase activity, and lower levels of peroxide and MDA than the other groups.
CONCLUSION: The combination of 70% ethanol extract of pasak bumi 15 mg/kg BW and DHA 1 mg/kg BW has the best potential to improve brain oxidative stress in undernourished rats compared to single administration of 15 mg/kg BW EPB, DHA, or seluang fish alone.
Collapse
|