1
|
Ohene-Nyako M, Persons AL, Forsyth C, Keshavarzian A, Napier TC. Matrix Metalloproteinase-9 Signaling Regulates Colon Barrier Integrity in Models of HIV Infection. J Neuroimmune Pharmacol 2024; 19:57. [PMID: 39499375 DOI: 10.1007/s11481-024-10158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
Infection with human immunodeficiency virus (HIV) increases risk for maladies of the gut barrier, which promotes sustained systemic inflammation even in virally controlled patients. We previously revealed morphological disorganization of colon epithelial barrier proteins in HIV-1 transgenic (Tg) rats. The current study evaluated mechanisms that may underlie gut barrier pathology induced by toxic HIV-1 proteins. Methamphetamine (meth) use is prevalent among HIV-infected individuals, and meth can exaggerate morbidity of HIV infection. Thus, we determined whether meth exposure worsened HIV-associated gut pathology using colon samples from HIV-1 Tg and non-Tg rats that self-administered meth 2 h/day for 21 days. Immunoblotting was conducted for occludin (a gut barrier protein) and matrix metalloproteinase-9 (MMP-9; a proteinase regulator of occludin). Colon levels of occludin were decreased, and MMP-9 levels and activity were increased in HIV-1 Tg rats. A Pearson correlation revealed an inverse relationship between occludin levels and MMP-9 activity. Doses of meth that were self-administered by Tg rats were lower than other rat models. Meth-induced trends in non-Tg rats were not significant, and meth did not exaggerate effects seen in Tg rats. Accordingly, only the HIV-effects on epithelial function were explored further. Transepithelial resistance (TER) across a monolayer of human colon epithelial cells (Caco-2) was used to examine treatments with the HIV-1 toxic protein, Tat, and the ability of pioglitazone, a PPARγ agonist that inhibits MMP-9, to mitigate Tat-induced changes. Exposure to Tat for 24 h decreased TER, which co-occurred with decreases in levels of barrier tight junction proteins (occludin, claudin-1, and zonula occludens-1) and with increases in the level and activity of MMP-9. Pretreatment or post-treatment with pioglitazone respectively prevented and restored Tat-induced impairments of Caco-2 barrier. Thus, while low doses of meth did not alter barrier proteins in the current study, exposure to HIV-1 proteins disrupted the gut barrier, and this action involved a dysregulation of MMP-9.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison Street Cohn Research Building Suite #424, Chicago, IL, 60612, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0614, USA
| | - Amanda L Persons
- Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
- The Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - T Celeste Napier
- Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison Street Cohn Research Building Suite #424, Chicago, IL, 60612, USA.
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA.
- The Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
He L, Zhou JH, Li H, Zhang WL, Liu TQ, Jiang HF, Zhai RW, Zhang XJ. Characterization of Gut Microbiota in Rats and Rhesus Monkeys After Methamphetamine Self-administration. Mol Neurobiol 2024:10.1007/s12035-024-04318-x. [PMID: 38922485 DOI: 10.1007/s12035-024-04318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Methamphetamine (MA) is one of the most abused drugs globally, but the mechanism of its addiction remains unclear. Several animal studies have shown that the gut microbiota (GM) influences addictive behaviors, but the pattern of GM changes during addiction in animals of different species remains unclear. The aim of this study was to explore the association between dynamic changes in GM and MA self-administration acquisition among two classical mammals, rhesus monkeys (Macaca mulatta) and rats, MA self-administration models. Male Sprague-Dawley rats and male rhesus monkeys were subjected to classical MA self-administration training, and fecal samples were collected before and after MA self-administration training, respectively. 16S rRNA sequencing was used for GM analyses. We found that GM changes were more pronounced in rats than in rhesus monkeys, as evidenced by more GM taxa producing significant differences before and after MA self-administration training in rats than in monkeys. We also found that the expression of the genus Clostridia_vadinBB60_group significantly decreased after MA self-administration training in both rats and rhesus monkeys. Lactobacillus changes were significantly negatively correlated with total MA uptake in rats (Pearson R = - 0.666, p = 0.035; Spearman R = - 0.721, p = 0.023), whereas its change was also highly negatively correlated with total MA uptake in rhesus monkeys (Pearson R = - 0.882, p = 0.118; Spearman R = - 1.000, p = 0.083), although this was not significant. These findings suggest that MA causes significant alterations in GM in both rhesus monkeys and rats and that the genus Lactobacillus might be a common therapeutic target for MA uptake prevention across the species.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jia-Hui Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Li
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wen-Lei Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tie-Qiao Liu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hai-Feng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xiao-Jie Zhang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Ross EJ, Williams RS, Viamonte M, Reynolds JM, Duncan DT, Paul RH, Carrico AW. Overamped: Stimulant Use and HIV Pathogenesis. Curr HIV/AIDS Rep 2023; 20:321-332. [PMID: 37971597 DOI: 10.1007/s11904-023-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW In the era of HIV treatment as prevention (TasP), more clarity is needed regarding whether people with HIV who use stimulants (i.e., methamphetamine, powder cocaine, and crack cocaine) display elevated HIV viral load and greater immune dysregulation. RECENT FINDINGS Although rates of viral suppression have improved in the TasP era, stimulant use was independently associated with elevated viral load in 23 of 28 studies included in our review. In the 12 studies examining other HIV disease markers, there was preliminary evidence for stimulant-associated alterations in gut-immune dysfunction and cellular immunity despite effective HIV treatment. Studies generally focused on documenting the direct associations of stimulant use with biomarkers of HIV pathogenesis without placing these in the context of social determinants of health. Stimulant use is a key barrier to optimizing the effectiveness of TasP. Elucidating the microbiome-gut-brain axis pathways whereby stimulants alter neuroimmune functioning could identify viable targets for pharmacotherapies for stimulant use disorders. Examining interpersonal, neighborhood, and structural determinants that could modify the associations of stimulant use with biomarkers of HIV pathogenesis is critical to guiding the development of comprehensive, multi-level interventions.
Collapse
Affiliation(s)
- Emily J Ross
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renessa S Williams
- University of Miami School of Nursing and Health Sciences, Coral Gables, FL, USA
| | | | - John M Reynolds
- Calder Memorial Library, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dustin T Duncan
- Columbia University Mailman School of Public Health, New York City, NY, USA
| | - Robert H Paul
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Adam W Carrico
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8th Street, AHC5, #407, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
He L, Zheng H, Qiu J, Chen H, Li H, Ma Y, Wang Y, Wang Q, Hao Y, Liu Y, Yang Q, Wang X, Li M, Xu H, Peng P, Li Z, Zhou Y, Wu Q, Chen S, Zhang X, Liu T. Effects of Multiple High-Dose Methamphetamine Administration on Enteric Dopaminergic Neurons and Intestinal Motility in the Rat Model. Neurotox Res 2023; 41:604-614. [PMID: 37755670 DOI: 10.1007/s12640-023-00668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Several studies have identified the effects of methamphetamine (MA) on central dopaminergic neurons, but its effects on enteric dopaminergic neurons (EDNs) are unclear. The aim of this study was to investigate the effects of MA on EDNs and intestinal motility. Male Sprague-Dawley rats were randomly divided into MA group and saline group. The MA group received the multiple high-dose MA treatment paradigm, while the controls received the same saline treatment. After enteric motility was assessed, different intestinal segments (i.e., duodenum, jejunum, ileum, and colon) were taken for histopathological, molecular biological, and immunological analysis. The EDNs were assessed by measuring the expression of two dopaminergic neuronal markers, dopamine transporter (DAT) and tyrosine hydroxylase (TH), at the transcriptional and protein levels. We also used c-Fos protein, a marker of neural activity, to detect the activation of EDNs. MA resulted in a significant reduction in TH and DAT mRNA expression as well as in the number of EDNs in the duodenum and jejunum (p < 0.05). MA caused a dramatic increase in c-Fos expression of EDNs in the ileum (p < 0.001). The positional variability of MA effects on EDNs paralleled the positional variability of its effect on intestinal motility, as evidenced by the marked inhibitory effect of MA on small intestinal motility (p < 0.0001). This study found significant effects of MA on EDNs with locational variability, which might be relevant to locational variability in the potential effects of MA on intestinal functions, such as motility.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huihui Zheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jilong Qiu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hong Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huan Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuejiao Ma
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yingying Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- School of Physical Education and Health, Hunan University of Technology and Business, Changsha, 410000, China
| | - Qianjin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuzhu Hao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yueheng Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Manyun Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huixue Xu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Pu Peng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zejun Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanan Zhou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province), Changsha, China
| | - Qiuxia Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shubao Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Tieqiao Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Al-Hakeim HK, Altufaili MF, Alhaideri AF, Almulla AF, Moustafa SR, Maes M. Increased AGE-RAGE axis stress in methamphetamine abuse and methamphetamine-induced psychosis: Associations with oxidative stress and increased atherogenicity. Addict Biol 2023; 28:e13333. [PMID: 37753569 DOI: 10.1111/adb.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Methamphetamine (MA)-induced psychosis (MIP) is associated with increased oxidative toxicity (especially lipid peroxidation) and lowered antioxidant defences. Advanced glycation end products (AGEs) cause oxidative stress upon ligand binding to AGE receptors (RAGEs). There is no data on whether MA use may cause AGE-RAGE stress or whether the latter is associated with MIP. This case-control study recruited 60 patients with MA use disorder and 30 normal controls and measured serum levels of oxidative stress toxicity (OSTOX, lipid peroxidation), antioxidant defences (ANTIOX), magnesium, copper, atherogenicity, AGE and soluble RAGE (sRAGE) and computed a composite reflecting AGE-RAGE axis activity. MA dependence and use were associated with elevated levels of AGE, sRAGE, OSTOX/ANTIOX, Castelli Risk Index 1 and atherogenic index of plasma. Increased sRAGE concentrations were strongly correlated with dependence severity and MA dose. Increased AGE-RAGE stress was correlated with OSTOX, OSTOX/ANTIOX and MA-induced intoxication symptoms, psychosis, hostility, excitement and formal thought disorders. The regression on AGE-RAGE, the OSTOX/ANTIOX ratio, decreased magnesium and increased copper explained 54.8% of the variance in MIP symptoms, and these biomarkers mediated the effects of increasing MA concentrations on MIP symptoms. OSTOX/ANTIOX, AGE-RAGE and insufficient magnesium were found to explain 36.0% of the variance in the atherogenicity indices. MA causes intertwined increases in AGE-RAGE axis stress and oxidative damage, which together predict the severity of MIP symptoms and increased atherogenicity.
Collapse
Affiliation(s)
| | | | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Kyung Hee University, Seoul, Dongdaemun-gu, South Korea
| |
Collapse
|
6
|
Yu Z, Chen W, Zhang L, Chen Y, Chen W, Meng S, Lu L, Han Y, Shi J. Gut-derived bacterial LPS attenuates incubation of methamphetamine craving via modulating microglia. Brain Behav Immun 2023; 111:101-115. [PMID: 37004759 DOI: 10.1016/j.bbi.2023.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays a critical role in the pathophysiology of neuropsychiatric disorders, and the compositions of gut microbiota are altered by addictive drugs. However, the role of gut microbiota in the incubation of methamphetamine (METH) craving remains poorly understood. METHODS 16S rRNA gene sequencing was performed to assess the richness and diversity of gut microbiota in METH self-administration model. Hematoxylin and eosin staining was performed to evaluate the integrity of intestinal barrier. Immunofluorescence and three-dimensional reconstruction were performed to assess the morphologic changes of microglia. Serum levels of lipopolysaccharide (LPS) were determined using the rat enzyme-linked immunosorbent assay kits. Quantitative real-time PCR was performed to assess transcript levels of dopamine receptor, glutamate ionotropic AMPA receptor 3 and brain-derived neurotrophic factor. RESULTS METH self-administration induced gut microbiota dysbiosis, intestinal barrier damage and microglia activation in the nucleus accumbens core (NAcc), which was partially recovered after prolonged withdrawal. Microbiota depletion via antibiotic treatment increased LPS levels and induced a marked change in the microglial morphology in the NAcc, as indicated by the decreases in the lengths and numbers of microglial branches. Depleting the gut microbiota also prevented the incubation of METH craving and increased the population of Klebsiella oxytoca. Furthermore, Klebsiella oxytoca treatment or exogenous administration of the gram-negative bacterial cell wall component LPS increased serum and central LPS levels, induced microglial morphological changes and reduced the dopamine receptor transcription in the NAcc. Both treatments and NAcc microinjections of gut-derived bacterial LPS significantly decreased METH craving after prolonged withdrawal. CONCLUSIONS These data suggest that LPS from gut gram-negative bacteria may enter circulating blood, activate microglia in the brain and consequently decrease METH craving after withdrawal, which may have important implications for novel strategies to prevent METH addiction and relapse.
Collapse
Affiliation(s)
- Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China; The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Wu Y, Dong Z, Jiang X, Qu L, Zhou W, Sun X, Hou J, Xu H, Cheng M. Gut Microbiota Taxon-Dependent Transformation of Microglial M1/M2 Phenotypes Underlying Mechanisms of Spatial Learning and Memory Impairment after Chronic Methamphetamine Exposure. Microbiol Spectr 2023; 11:e0030223. [PMID: 37212669 PMCID: PMC10269813 DOI: 10.1128/spectrum.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Methamphetamine (METH) exposure may lead to cognitive impairment. Currently, evidence suggests that METH exposure alters the configuration of the gut microbiota. However, the role and mechanism of the gut microbiota in cognitive impairment after METH exposure are still largely unknown. Here, we investigated the impact of the gut microbiota on the phenotype status of microglia (microglial phenotypes M1 and microglial M2) and their secreting factors, the subsequent hippocampal neural processes, and the resulting influence on spatial learning and memory of chronically METH-exposed mice. We determined that gut microbiota perturbation triggered the transformation of microglial M2 to M1 and a subsequent change of pro-brain-derived neurotrophic factor (proBDNF)-p75NTR-mature BDNF (mBDNF)-TrkB signaling, which caused reduction of hippocampal neurogenesis and synaptic plasticity-related proteins (SYN, PSD95, and MAP2) and, consequently, deteriorated spatial learning and memory. More specifically, we found that Clostridia, Bacteroides, Lactobacillus, and Muribaculaceae might dramatically affect the homeostasis of microglial M1/M2 phenotypes and eventually contribute to spatial learning and memory decline after chronic METH exposure. Finally, we found that fecal microbial transplantation could protect against spatial learning and memory decline by restoring the microglial M1/M2 phenotype status and the subsequent proBDNF-p75NTR/mBDNF-TrkB signaling in the hippocampi of chronically METH-exposed mice. IMPORTANCE Our study indicated that the gut microbiota contributes to spatial learning and memory dysfunction after chronic METH exposure, in which microglial phenotype status plays an intermediary role. The elucidated "specific microbiota taxa-microglial M1/M2 phenotypes-spatial learning and memory impairment" pathway would provide a novel mechanism and elucidate potential gut microbiota taxon targets for the no-drug treatment of cognitive deterioration after chronic METH exposure.
Collapse
Affiliation(s)
- Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Xinze Jiang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Lei Qu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Wei Zhou
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Xu Sun
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Jiangshan Hou
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Hongmei Xu
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
He L, Yang BZ, Ma YJ, Wen L, Liu F, Zhang XJ, Liu TQ. Differences in clinical features and gut microbiota between individuals with methamphetamine casual use and methamphetamine use disorder. Front Cell Infect Microbiol 2023; 13:1103919. [PMID: 36909722 PMCID: PMC9996337 DOI: 10.3389/fcimb.2023.1103919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Background The transition from methamphetamine (MA) casual use (MCU) to compulsive use is enigmatic as some MA users can remain in casual use, but some cannot. There is a knowledge gap if gut microbiota (GM) play a role in differing MCU from MA use disorder (MUD). We aimed to investigate the clinical features and GM differences between individuals with MCU and MUD. Method We recruited two groups of MA users -MCU and MUD - and matched them according to age and body mass index (n=21 in each group). Participants were accessed using the Semi-Structured Assessment for Drug Dependence and Alcoholism, and their fecal samples were undergone 16S ribosomal DNA sequencing. We compared the hosts' clinical features and GM diversity, composition, and structure (represented by enterotypes) between the two groups. We have identified differential microbes between the two groups and performed network analyses connecting GM and the clinical traits. Result Compared with the casual users, individuals with MUD had higher incidences of MA-induced neuropsychiatric symptoms (e.g., paranoia, depression) and withdrawal symptoms (e.g., fatigue, drowsiness, and increased appetite), as well as stronger cravings for and intentions to use MA, and increased MA tolerance. The GM diversity showed no significant differences between the two groups, but four genera (Halomonas, Clostridium, Devosia, and Dorea) were enriched in the individuals with MUD (p<0.05). Three distinct enterotypes were identified in all MA users, and Ruminococcus-driven enterotype 2 was dominant in individuals with MUD compared to the MCU (61.90% vs. 28.60%, p=0.03). Network analysis shows that Devosia is the hub genus (hub index = 0.75), which is not only related to the counts of the MUD diagnostic criteria (ρ=0.40; p=0.01) but also to the clinical features of MA users such as reduced social activities (ρ=0.54; p<0.01). Devosia is also associated with the increased intention to use MA (ρ=0.48; p<0.01), increased MA tolerance (ρ=0.38; p=0.01), craving for MA (ρ=0.37; p=0.01), and MA-induced withdrawal symptoms (p<0.05). Conclusion Our findings suggest that Ruminococcus-driven enterotype 2 and the genera Devosia might be two influential factors that differentiate MA casual use from MUD, but further studies are warranted.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yue-Jiao Ma
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Wen
- Department of Internal Medicine, Section of Endocrinology & Core Laboratory of Yale Center for Clinical Investigation, Yale University School of Medicine, New Haven, CT, United States
| | - Feng Liu
- Compulsory Detoxification Center of Changsha Public Security Bureau, Changsha, Hunan, China
| | - Xiao-Jie Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tie-Qiao Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Carrico AW, Cherenack EM, Rubin LH, McIntosh R, Ghanooni D, Chavez JV, Klatt NR, Paul RH. Through the Looking-Glass: Psychoneuroimmunology and the Microbiome-Gut-Brain Axis in the Modern Antiretroviral Therapy Era. Psychosom Med 2022; 84:984-994. [PMID: 36044613 PMCID: PMC9553251 DOI: 10.1097/psy.0000000000001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Depression, substance use disorders, and other neuropsychiatric comorbidities are common in people with HIV (PWH), but the underlying mechanisms are not sufficiently understood. HIV-induced damage to the gastrointestinal tract potentiates residual immune dysregulation in PWH receiving effective antiretroviral therapy. However, few studies among PWH have examined the relevance of microbiome-gut-brain axis: bidirectional crosstalk between the gastrointestinal tract, immune system, and central nervous system. METHODS A narrative review was conducted to integrate findings from 159 articles relevant to psychoneuroimmunology (PNI) and microbiome-gut-brain axis research in PWH. RESULTS Early PNI studies demonstrated that neuroendocrine signaling via the hypothalamic-pituitary-adrenal axis and autonomic nervous system could partially account for the associations of psychological factors with clinical HIV progression. This review highlights the need for PNI studies examining the mechanistic relevance of the gut microbiota for residual immune dysregulation, tryptophan catabolism, and oxytocin release as key biological determinants of neuropsychiatric comorbidities in PWH (i.e., body-to-mind pathways). It also underscores the continued relevance of neuroendocrine signaling via the hypothalamic-pituitary-adrenal axis, autonomic nervous system, and oxytocin release in modifying microbiome-gut-brain axis functioning (i.e., mind-to-body pathways). CONCLUSIONS Advancing our understanding of PNI and microbiome-gut-brain axis pathways relevant to depression, substance use disorders, and other neuropsychiatric comorbidities in PWH can guide the development of novel biobehavioral interventions to optimize health outcomes. Recommendations are provided for biobehavioral and neurobehavioral research investigating bidirectional PNI and microbiome-gut-brain axis pathways among PWH in the modern antiretroviral therapy era.
Collapse
Affiliation(s)
- Adam W Carrico
- From the Department of Public Health Sciences (Carrico, Cherenack, Ghanooni, Chavez), University of Miami Miller School of Medicine, Miami, Florida; Departments of Neurology (Rubin) and Psychiatry and Behavioral Sciences (Rubin), Johns Hopkins University School of Medicine; Department of Epidemiology (Rubin), Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of Psychology (McIntosh), University of Miami College of Arts and Sciences, Coral Gables, Florida; Department of Surgery (Klatt), University of Minnesota School of Medicine, Minneapolis, Minnesota; and Department of Psychological Sciences (Paul), University of Missouri St. Louis, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
11
|
Inci A, Ulusan K, Yoruk G, Sari ND. Evaluation of colonoscopy results in HIV infected cases. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2022. [DOI: 10.29333/jcei/12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Wang Q, Guo X, Yue Q, Zhu S, Guo L, Li G, Zhou Q, Xiang Y, Chen G, Yin W, Sun J. Exploring the role and mechanism of gut microbiota in methamphetamine addiction using antibiotic treatment followed by fecal microbiota transplantation. Anat Rec (Hoboken) 2022; 306:1149-1164. [PMID: 36054423 DOI: 10.1002/ar.25055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Recently, the role of the gut microbiota in the context of drug addiction has attracted the attention of researchers; however, the specific effects and underlying mechanisms require further exploration. To accomplish this, C57BL/6 mice were firstly treated with methamphetamine (MA). Conditioned place preference (CPP) behavior changes, gut permeability and function, microglial activation, and inflammatory cytokine expression were systematically analyzed in antibiotics-treated mice with microbiota depletion and in fecal microbiota transplantation mice with microbiota reconstitution. MA treatment altered microbiota composition and caused gut dysbiosis. Depletion of gut microbiota with antibiotics inhibited MA-induced CPP formation, and fecal microbiota transplantation reversed this inhibition. Mechanistic analyses indicated that antibiotic treatment decreased gut permeability and neuroinflammation, while fecal microbiota transplantation offset the impact of antibiotic treatment. Additionally, MA-induced microglial activation was suppressed by antibiotics but restored by microbiota transplantation, and this correlated well with the CPP score. Compared to antibiotic treatment, microbiota transplantation significantly increased 5-HT4 receptor expression in both the nucleus accumbens and the hippocampus. Furthermore, when fecal microbiota from healthy mice was transplanted into MA-treated mice, the CPP scores decreased. Our results provide a novel avenue for understanding MA addiction and suggest a potential future intervention strategy.
Collapse
Affiliation(s)
- Qiuting Wang
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Xiuwen Guo
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Qingwei Yue
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Shaowei Zhu
- Department of Neurology Qilu Hospital of Shandong University Jinan China
| | - Liying Guo
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Guibao Li
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Qidi Zhou
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Yunzhi Xiang
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Ganggang Chen
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Wei Yin
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medicine Shandong University Jinan China
| |
Collapse
|
13
|
Cocaine Self-Administration Influences Central Nervous System Immune Responses in Male HIV-1 Transgenic Rats. Cells 2022; 11:cells11152405. [PMID: 35954251 PMCID: PMC9368446 DOI: 10.3390/cells11152405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Cocaine use increases the neurotoxic severity of human immunodeficiency virus-1 (HIV-1) infection and the development of HIV-associated neurocognitive disorders (HAND). Among the studied cellular mechanisms promoting neurotoxicity in HIV-1 and cocaine use, central nervous system (CNS) immunity, such as neuroimmune signaling and reduced antiviral activity, are risk determinants; however, concrete evidence remains elusive. In the present study, we tested the hypothesis that cocaine self-administration by transgenic HIV-1 (HIV-1Tg) rats promotes CNS inflammation. To test this hypothesis, we measured cytokine, chemokine, and growth factor protein levels in the frontal cortex (fCTX) and caudal striatum (cSTR). Our results demonstrated that cocaine self-administration significantly increased fCTX inflammation in HIV-1Tg rats, but not in the cSTR. Accordingly, we postulate that cocaine synergizes with HIV-1 proteins to increase neuroinflammation in a region-selective manner, including the fCTX. Given the fCTX role in cognition, this interaction may contribute to the hyperimmunity and reduced antiviral activity associated with cocaine-mediated enhancement of HAND.
Collapse
|
14
|
Li Y, Kong D, Bi K, Luo H. Related Effects of Methamphetamine on the Intestinal Barrier via Cytokines, and Potential Mechanisms by Which Methamphetamine May Occur on the Brain-Gut Axis. Front Med (Lausanne) 2022; 9:783121. [PMID: 35620725 PMCID: PMC9128015 DOI: 10.3389/fmed.2022.783121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Methamphetamine (METH) is an illegal drug widely abused in many countries. Methamphetamine abuse is a major health and social problem all over the world. However, the effects of METH on the digestive system have rarely been reported. Previous studies and clinical cases have shown that METH use can lead to the impaired intestinal barrier function and severe digestive diseases. METH can cause multiple organ dysfunction, especially in the central nervous system (CNS). The gut microbiota are involved in the development of various CNS-related diseases via the gut-brain axis (GBA). Here, we describe the related effects of METH on the intestinal barrier via cytokines and the underlying mechanisms by which METH may occur in the brain-gut axis.
Collapse
Affiliation(s)
- Yuansen Li
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Deshenyue Kong
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Ke Bi
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Huayou Luo
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Luo Y, He H, Ou Y, Zhou Y, Fan N. Elevated serum levels of TNF-α, IL-6, and IL-18 in chronic methamphetamine users. Hum Psychopharmacol 2022; 37:e2810. [PMID: 34432333 DOI: 10.1002/hup.2810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chronic methamphetamine use causes aberrant changes in cytokines. Our aim was to analyze the serum levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-18 in chronic methamphetamine users. Associations between cytokines levels with the demographic properties, methamphetamine use properties, and psychiatric symptoms in chronic methamphetamine users were also evaluated. METHODS Seventy-eight chronic methamphetamine users who did not continue methamphetamine exposure since hospitalization and 64 healthy controls were enrolled. Serum levels of TNF-α, IL-6, and IL-18 were detected using an enzyme-linked immunosorbent assay. Psychopathological symptoms of chronic methamphetamine users were evaluated by the Positive and Negative Syndrome Scale, Beck Depression Inventory (BDI), and Beck Anxiety Inventory. RESULTS Serum levels of TNF-α, IL-6, and IL-18 were significantly increased in methamphetamine users who did not continue methamphetamine exposure since hospital admission (average days since last methamphetamine use = 39.06 ± 7.48) when compared to those in controls. Serum IL-6 levels showed significant positive associations with BDI score and current frequency of methamphetamine use in chronic methamphetamine users. CONCLUSIONS Our results suggest that increased TNF-α, IL-6, and IL-18 levels may have an important role in chronic methamphetamine use-associated psychopathological symptoms.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yufen Ou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| |
Collapse
|
16
|
Altered fecal microbiota composition in individuals who abuse methamphetamine. Sci Rep 2021; 11:18178. [PMID: 34518605 PMCID: PMC8437956 DOI: 10.1038/s41598-021-97548-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
As a severe public health problem, methamphetamine (METH) abuse places a heavy burden on families and society. A growing amount of evidence has indicated communication between gut microbiota and the CNS in drug addiction, with associations to neural, endocrine and immune pathways. Thus, we searched for alterations in the gut microbiota and their potential effects in METH users through 16S rRNA gene sequencing. A decreased Shannon index indicated lower bacterial diversity in the METH users than in the age-matched control group. The gut microbial community composition in the METH users was also altered, including reductions in Deltaproteobacteria and Bacteroidaceae abundances and increases in Sphingomonadales, Xanthomonadales, Romboutsia and Lachnospiraceae abundances. Moreover, the Fusobacteria abundance was correlated with the duration of METH use. Enterobacteriaceae, Ruminococcaceae, Bacteroides, and Faecalibacterium had statistically significant correlations with items related to the positive and negative symptoms of schizophrenia and to general psychopathology in the METH users, and all have previously been reported to be altered in individuals with psychotic syndromes, especially depression. Abstraction, one of the items of the cognitive assessment, was positively related to Blautia. These findings revealed alterations in the gut microbiota of METH users, and these alterations may play a role in psychotic syndrome and cognitive impairment. Although the mechanisms behind the links between these disorders and METH abuse are unknown, the relationships may indicate similarities in the pathogenesis of psychosis induced by METH abuse and other causes, providing a new paradigm for addiction and METH use disorder treatment.
Collapse
|
17
|
Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021; 753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Despite successful viral suppression by combinatorial anti-retroviral therapy, HIV infection continues to negatively impact the quality of life of patients by promoting neuropathy and HIV-Associated Neurocognitive Disorders (HAND), where substance use disorder (SUD) is highly comorbid and known to worsen health outcomes. While substance abuse exacerbates the progression of HIV, emerging evidence also suggests the virus may potentiate the rewarding effect of abused substances. As HIV does not infect neurons, these effects are theorized to be mediated by viral proteins. Key among these proteins are HIV-1 Tat, which can continue to be produced under viral suppression in patients. This review will recap the behavioral evidence for HIV-1 Tat mediation of a potentiation of cocaine, opioid and alcohol reward, and explore the neurochemical dysfunction associated by Tat as potential mechanisms underlying changes in reward. Targeting rampant oxidative stress, inflammation and excitotoxicity associated with HIV and Tat protein exposure may prove useful in combating persistent substance abuse comorbid with HIV in the clinic.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Rodriguez EA, Yamamoto BK. Toxic Effects of Methamphetamine on Perivascular Health: Co-morbid Effects of Stress and Alcohol Use Disorders. Curr Neuropharmacol 2021; 19:2092-2107. [PMID: 34344290 PMCID: PMC9185763 DOI: 10.2174/1570159x19666210803150023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Methamphetamine (Meth) abuse presents a global problem and commonly occurs with stress and/or alcohol use disorders. Regardless, the biological causes and consequences of these comorbidities are unclear. Whereas the mechanisms of Meth, stress, and alcohol abuse have been examined individually and well-characterized, these processes overlap significantly and can impact the neural and peripheral consequences of Meth. This review focuses on the deleterious cardio- and cerebrovascular effects of Meth, stress, alcohol abuse, and their comorbid effects on the brain and periphery. Points of emphasis are on the composition of the blood-brain barrier and their effects on the heart and vasculature. The autonomic nervous system, inflammation, and oxidative stress are specifically highlighted as common mediators of the toxic consequences to vascular and perivascular health. A significant portion of the Meth abusing population also presents with stress and alcohol use disorders, prompting a need to understand the mechanisms underlying their comorbidities. Little is known about their possible convergent effects. Therefore, the purpose of this critical review is to identify shared mechanisms of Meth, chronic stress, and alcohol abuse that contributes to the dysfunction of vascular health and underscores the need for studies that directly address their interactions.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Ohene-Nyako M, Persons AL, Napier TC. Hippocampal blood-brain barrier of methamphetamine self-administering HIV-1 transgenic rats. Eur J Neurosci 2021; 53:416-429. [PMID: 32725911 PMCID: PMC9949894 DOI: 10.1111/ejn.14925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Combined antiretroviral therapy for HIV infection reduces plasma viral load and prolongs life. However, the brain is a viral reservoir, and pathologies such as cognitive decline and blood-brain barrier (BBB) disruption persist. Methamphetamine abuse is prevalent among HIV-infected individuals. Methamphetamine and HIV toxic proteins can disrupt the BBB, but it is unclear if there exists a common pathway by which HIV proteins and methamphetamine induce BBB damage. Also unknown are the BBB effects imposed by chronic exposure to HIV proteins in the comorbid context of chronic methamphetamine abuse. To evaluate these scenarios, we trained HIV-1 transgenic (Tg) and non-Tg rats to self-administer methamphetamine using a 21-day paradigm that produced an equivalency dose range at the low end of the amounts self-titrated by humans. Markers of BBB integrity were measured for the hippocampus, a brain region involved in cognitive function. Outcomes revealed that tight junction proteins, claudin-5 and occludin, were reduced in Tg rats independent of methamphetamine, and this co-occurred with increased levels of lipopolysaccharide, albumin (indicating barrier breakdown) and matrix metalloproteinase-9 (MMP-9; indicating barrier matrix disruption); reductions in GFAP (indicating astrocytic dysfunction); and microglial activation (indicating inflammation). Evaluations of markers for two signaling pathways that regulate MMP-9 transcription, NF-κB and ERK/∆FosB revealed an overall genotype effect for NF-κB. Methamphetamine did not alter measurements from Tg rats, but in non-Tg rats, methamphetamine reduced occludin and GFAP, and increased MMP-9 and NF-κB. Study outcomes suggest that BBB dysregulation resulting from chronic exposure to HIV-1 proteins or methamphetamine both involve NF-κB/MMP-9.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA
| | - Amanda L. Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T. Celeste Napier
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| |
Collapse
|
20
|
Sun J, Chen F, Chen C, Zhang Z, Zhang Z, Tian W, Yu J, Wang K. Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1669. [PMID: 33490181 PMCID: PMC7812166 DOI: 10.21037/atm-20-7741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Methamphetamine use has become a serious global public health problem and puts increasing burdens on healthcare services. Abdominal complications caused by methamphetamine use are uncommon and often go ignored by clinicians. The exact intestinal pathological alterations and transcriptomic responses associated with methamphetamine use are not well understood. This study sought to investigate the transcriptome in a methamphetamine-induced mouse model of inflammatory bowel disease (IBD) using next-generation RNA sequencing. Methods Tissues from the ileum of methamphetamine-treated mice (n=5) and control mice (n=5) were dissected, processed and applied to RNA-sequencing. Bioinformatics and histopathological analysis were then performed. The expression profiles of intestinal tissue samples were analyzed and their expression profiles were integrated to obtain the differentially expressed genes and analyzed using bioinformatics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes were performed using Metascape. Results A total of 326 differentially expressed genes were identified; of these genes, 120 were upregulated and 206 were downregulated. The Gene Ontology analysis showed that the biological processes of the differentially expressed genes were focused primarily on the regulation of cellular catabolic processes, endocytosis, and autophagy. The main cellular components included the endoplasmic and endocytic vesicles, cytoskeleton, adherens junctions, focal adhesions, cell body, and lysosomes. Molecular functions included protein transferase, GTPase and proteinase activities, actin-binding, and protein-lipid complex binding. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed genes were mainly involved in bacterial invasion of epithelial cells, protein processing in the endoplasmic reticulum, regulation of the actin cytoskeleton, and T-cell receptor signaling pathways. A set of overlapping genes between IBD and methamphetamine-treated intestinal tissues was discovered. Conclusions The present study is the first to analyze intestinal samples from methamphetamine-treated mice using high-throughput RNA sequencing. This study revealed key molecules that might be involved in the pathogenesis of a special type of methamphetamine-induced IBD. These results offer new insights into the relationship between methamphetamine abuse and IBD.
Collapse
Affiliation(s)
- Jiaxue Sun
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zherui Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weiwei Tian
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
21
|
Carrico AW, Horvath KJ, Grov C, Moskowitz JT, Pahwa S, Pallikkuth S, Hirshfield S. Double Jeopardy: Methamphetamine Use and HIV as Risk Factors for COVID-19. AIDS Behav 2020; 24:3020-3023. [PMID: 32266501 PMCID: PMC7137401 DOI: 10.1007/s10461-020-02854-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adam W Carrico
- University of Miami School of Medicine, Miami, FL, USA.
- University of Miami Department of Public Health Sciences, 1120 NW 14th St., Office 1005, Miami, FL, 33136, USA.
| | - Keith J Horvath
- San Diego State University Department of Psychology, San Diego, CA, USA
| | - Christian Grov
- City University of New York Graduate School of Public Health, New York, NY, USA
| | | | - Savita Pahwa
- University of Miami School of Medicine, Miami, FL, USA
| | | | - Sabina Hirshfield
- State University of New York - Downstate Health Sciences University, New York, NY, USA
| |
Collapse
|
22
|
Chen Z, Zhijie C, Yuting Z, Shilin X, Qichun Z, Jinying O, Chaohua L, Jing L, Zhixian M. Antibiotic-Driven Gut Microbiome Disorder Alters the Effects of Sinomenine on Morphine-Dependent Zebrafish. Front Microbiol 2020; 11:946. [PMID: 32670209 PMCID: PMC7326116 DOI: 10.3389/fmicb.2020.00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Morphine is one of the most severely abused drugs in the world. Previous research on morphine addiction has focused on the central nervous system (CNS). Studies have shown that a two-way regulation of the brain and gut microbiota (GM), suggesting a link between GM and CNS disease. However, the functional mechanism underlying the relationship between intestinal flora and morphine dependence is unclear. In this study, the effect of sinomenine on morphine addiction was evaluated based on the microbiota-gut-brain axis (MGBA). The results show that the GM plays an important role in morphine dependence. Morphine treatment induced zebrafish conditional position preference (CPP), and significantly changed zebrafish GM characteristics and the expression of MGBA-related genes in the zebrafish brain and intestine. Importantly, sinomenine, an alkaloid with a similar structure to morphine, can reverse these morphine-induced changes. Subsequently, morphine-dependent CPP training was performed after antibiotic administration. After antibiotic treatment, zebrafish CPP behavior, the composition and proportions of the zebrafish GM, and the expression of MGBA-related genes in zebrafish were changed. More interestingly, sinomenine was no longer effective in treating morphine dependence, indicating that antibiotic-driven intestinal flora imbalance alters the efficacy of sinomenine on morphine-dependent zebrafish. This study confirms that the MGBA is bidirectionally regulated, highlighting the key role of the GM in the formation and treatment of morphine dependence, and may provide new treatment strategies for using traditional Chinese medicine to treat drug addiction.
Collapse
Affiliation(s)
- Zhu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chen Zhijie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhou Yuting
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Shilin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhou Qichun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ou Jinying
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Luo Chaohua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Jing
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Mo Zhixian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Angoa-Pérez M, Zagorac B, Winters AD, Greenberg JM, Ahmad M, Theis KR, Kuhn DM. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One 2020; 15:e0227774. [PMID: 31978078 PMCID: PMC6980639 DOI: 10.1371/journal.pone.0227774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The list of pharmacological agents that can modify the gut microbiome or be modified by it continues to grow at a high rate. The greatest amount of attention on drug-gut microbiome interactions has been directed primarily at pharmaceuticals used to treat infection, diabetes, cardiovascular conditions and cancer. By comparison, drugs of abuse and addiction, which can powerfully and chronically worsen human health, have received relatively little attention in this regard. Therefore, the main objective of this study was to characterize how selected synthetic psychoactive cathinones (aka “Bath Salts”) and amphetamine stimulants modify the gut microbiome. Mice were treated with mephedrone (40 mg/kg), methcathinone (80 mg/kg), methamphetamine (5 mg/kg) or 4-methyl-methamphetamine (40 mg/kg), following a binge regimen consisting of 4 injections at 2h intervals. These drugs were selected for study because they are structural analogs that contain a β-keto substituent (methcathinone), a 4-methyl group (4-methyl-methamphetamine), both substituents (mephedrone) or neither (methamphetamine). Mice were sacrificed 1, 2 or 7 days after treatment and DNA from caecum contents was subjected to 16S rRNA sequencing. We found that all drugs caused significant time- and structure-dependent alterations in the diversity and taxonomic structure of the gut microbiome. The two phyla most changed by drug treatments were Firmicutes (methcathinone, 4-methyl-methamphetamine) and Bacteriodetes (methcathinone, 4-methyl-methamphetamine, methamphetamine, mephedrone). Across time, broad microbiome changes from the phylum to genus levels were characteristic of all drugs. The present results signify that these selected psychoactive drugs, which are thought to exert their primary effects within the CNS, can have profound effects on the gut microbiome. They also suggest new avenues of investigation into the possibility that gut-derived signals could modulate drug abuse and addiction via altered communication along the gut-brain axis.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Andrew D. Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jonathan M. Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Madison Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Donald M. Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
24
|
Shen S, Zhao J, Dai Y, Chen F, Zhang Z, Yu J, Wang K. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/ TNF-α/tight junction axis. Toxicol Lett 2019; 321:73-82. [PMID: 31862507 DOI: 10.1016/j.toxlet.2019.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
An enterogenic infection occurs when intestinal mucosal disruption is followed by the invasion of intestinal bacteria into the blood and distant organs, which can result in severe diseases or even death. Our previous study using Rhesus monkeys as an in vivo model revealed that methamphetamine (MA) induced intestinal mucosal barrier damage, which poses a high risk of enterogenic infection. However, how methamphetamine causes intestinal mucosal barrier damage remains largely unknown. In this study, we employed an in vitro model, and found that MA treatment could inhibit the expression of miR-181c, which directly targets and regulates TNF-α, and ultimately induces apoptosis and damages the intestinal barrier. Moreover, we measured TNF-α serum levels as well as the intestinal mucosal barrier damage indicators (diamine oxidase, d-lactic acid, and exotoxin) and found that their levels were significantly higher in MA-dependents than in healthy controls (P < 0.001). To the best of our knowledge, this is the first report evidencing that miR-181c is involved in MA-induced intestinal barrier injury via TNF-α regulation, which introduces novel potential therapeutic targets for MA-dependent intestinal diseases.
Collapse
Affiliation(s)
- Simin Shen
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jingjiao Zhao
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yicong Dai
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
25
|
Kays JS, Yamamoto BK. Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sci 2019; 9:brainsci9120340. [PMID: 31775383 PMCID: PMC6955783 DOI: 10.3390/brainsci9120340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
RNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.
Collapse
|
26
|
Ohene-Nyako M, Persons AL, Napier TC. Region-specific changes in markers of neuroplasticity revealed in HIV-1 transgenic rats by low-dose methamphetamine. Brain Struct Funct 2018; 223:3503-3513. [PMID: 29931627 DOI: 10.1007/s00429-018-1701-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Methamphetamine abuse co-occurring with HIV infection presents neuropathology in brain regions that mediate reward and motivation. A neuronal signaling cascade altered acutely by meth and some HIV-1 proteins is the mitogen-activated protein kinase (MAPK) pathway. It remains unknown if chronic co-exposure to meth and HIV-1 proteins converge on MAPK in vivo. To make this determination, we studied young adult Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats that self-administered meth (0.02-0.04 mg/kg/0.05 ml iv infusion, 2 h/day for 21 days) and their saline-yoked controls. One day following the operant task, rats were killed. Brain regions involved in reward-motivation [i.e., nucleus accumbens (NA) and ventral pallidum (VP)], were assayed for a MAPK cascade protein, extracellular signal-regulated kinase (ERK), and a downstream transcription factor, ΔFosB. In the NA, activated (phosphorylated; p) ERK-to-ERK ratio (pERK/ERK) was increased in meth-exposed Tg rats versus saline Tg controls, and versus meth non-Tg rats. ΔFosB was increased in meth Tg rats versus saline and meth non-Tg rats. Assessment of two targets of ΔFosB-regulated transcription revealed (1) increased dopamine D1 receptor (D1R) immunoreactivity in the NA shell of Tg-meth rats versus saline Tg controls, but (2) no changes in the AMPA receptor subunit, GluA2. No changes related to genotype or meth occurred for ERK, ΔFosB or D1R protein in the VP. Results reveal a region-specific activation of ERK, and increases in ΔFosB and D1R expression induced by HIV-1 proteins and meth. Such effects may contribute to the neuronal and behavioral pathology associated with meth/HIV comorbidity.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - Amanda L Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T Celeste Napier
- Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA. .,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA.
| |
Collapse
|