1
|
Despotes KA, Zariwala MA, Davis SD, Ferkol TW. Primary Ciliary Dyskinesia: A Clinical Review. Cells 2024; 13:974. [PMID: 38891105 PMCID: PMC11171568 DOI: 10.3390/cells13110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous, motile ciliopathy, characterized by neonatal respiratory distress, recurrent upper and lower respiratory tract infections, subfertility, and laterality defects. Diagnosis relies on a combination of tests for confirmation, including nasal nitric oxide (nNO) measurements, high-speed videomicroscopy analysis (HSVMA), immunofluorescent staining, axonemal ultrastructure analysis via transmission electron microscopy (TEM), and genetic testing. Notably, there is no single gold standard confirmatory or exclusionary test. Currently, 54 causative genes involved in cilia assembly, structure, and function have been linked to PCD; this rare disease has a spectrum of clinical manifestations and emerging genotype-phenotype relationships. In this review, we provide an overview of the structure and function of motile cilia, the emerging genetics and pathophysiology of this rare disease, as well as clinical features associated with motile ciliopathies, novel diagnostic tools, and updates on genotype-phenotype relationships in PCD.
Collapse
Affiliation(s)
- Katherine A. Despotes
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie D. Davis
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas W. Ferkol
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Wucherpfennig L, Wuennemann F, Eichinger M, Schmitt N, Seitz A, Baumann I, Roehmel JF, Stahl M, Hämmerling S, Chung J, Schenk JP, Alrajab A, Kauczor HU, Mall MA, Wielpütz MO, Sommerburg O. Magnetic Resonance Imaging of Pulmonary and Paranasal Sinus Abnormalities in Children with Primary Ciliary Dyskinesia Compared to Children with Cystic Fibrosis. Ann Am Thorac Soc 2024; 21:438-448. [PMID: 38206973 DOI: 10.1513/annalsats.202305-453oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024] Open
Abstract
Rationale: Primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) are characterized by inherited impaired mucociliary clearance leading to chronic progressive lung disease as well as chronic rhinosinusitis (CRS). The diseases share morphological and functional commonalities on magnetic resonance imaging (MRI) of the lungs and paranasal sinuses, but comparative MRI studies are lacking. Objectives: To determine whether PCD shows different associations of pulmonary and paranasal sinus abnormalities on MRI and lung function test results in children (infants to adolescents) compared with children with CF. Methods: Eighteen children with PCD (median age, 9.5 [IQR, 3.4-12.7] yr; range, 0-18 yr) and 36 age-matched CF transmembrane conductance regulator modulator-naive children with CF (median age, 9.4 [3.4-13.2] yr; range, 0-18 yr) underwent same-session chest and paranasal sinus MRI as well as spirometry (to determine forced expiratory volume in 1 s percent predicted) and multiple-breath washout (to determine lung clearance index z-score). Pulmonary and paranasal sinus abnormalities were assessed using previously validated chest MRI and CRS-MRI scoring systems. Results: Mean chest MRI global score was similar in children with PCD and CF (15.0 [13.5-20.8] vs. 15.0 [9.0-15.0]; P = 0.601). Consolidations were more prevalent and severe in children with PCD (56% vs. 25% and 1.0 [0.0-2.8] vs. 0.0 [0.0-0.3], respectively; P < 0.05). The chest MRI global score correlated moderately with forced expiratory volume in 1 second percent predicted in children with PCD and children with CF (r = -0.523 and -0.687; P < 0.01) and with lung clearance index in children with CF (r = 0.650; P < 0.001) but not in PCD (r = 0.353; P = 0.196). CRS-MRI sum score and mucopyocele subscore were lower in children with PCD than in children with CF (27.5 [26.3-32.0] vs. 37.0 [37.8-40.0] and 2.0 [0.0-2.0] vs. 7.5 [4.8-9.0], respectively; P < 0.01). CRS-MRI sum score did not correlate with chest MRI score in PCD (r = 0.075-0.157; P = 0.557-0.788) but correlated moderately with MRI morphology score in CF (r = 0.437; P < 0.01). Conclusions: MRI detects differences in lung and paranasal sinus abnormalities between children with PCD and those with CF. Lung disease does not correlate with CRS in PCD but correlates in CF.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Helios Dr. Horst-Schmidt-Kliniken Wiesbaden, Wiesbaden, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | | | | | - Ingo Baumann
- Department of Otorhinolaryngology, Head and Neck Surgery, and
| | - Jobst F Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research associated partner site, Berlin, Germany; and
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research associated partner site, Berlin, Germany; and
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jaehi Chung
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | | | | | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Marcus A Mall
- Department of Otorhinolaryngology, Head and Neck Surgery, and
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research associated partner site, Berlin, Germany; and
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
3
|
Keicho N, Hijikata M, Miyabayashi A, Wakabayashi K, Yamada H, Ito M, Morimoto K. Impact of primary ciliary dyskinesia: Beyond sinobronchial syndrome in Japan. Respir Investig 2024; 62:179-186. [PMID: 38154292 DOI: 10.1016/j.resinv.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by impaired motile cilia function, particularly in the upper and lower airways. To date, more than 50 causative genes related to the movement, development, and maintenance of cilia have been identified. PCD mostly follows an autosomal recessive inheritance pattern, in which PCD symptoms manifest only in the presence of pathogenic variants in both alleles. Several genes causing PCD have been recently identified that neither lead to situs inversus nor cause definitive abnormalities in ciliary ultrastructure. Importantly, the distribution of disease-causing genes and pathogenic variants varies depending on ethnicity. In Japan, homozygosity for a ∼27.7-kb deletion of DRC1 is estimated to be the most common cause of PCD, presumably as a founder mutation. The clinical picture of PCD is similar to that of sinobronchial syndrome, thus making its differentiation from diffuse panbronchiolitis and other related disorders difficult. Given the diagnostic challenges, many cases remain undiagnosed or misdiagnosed, particularly in adults. While no fundamental cure is currently available, lifelong medical subsidies are provided in Japan, and proper respiratory management, along with continued prevention and treatment of infections, is believed to mitigate the decline in respiratory function. Timely action will be necessary when specific treatments for PCD become available in the future. This narrative review focuses on variations in the disease status of PCD in a non-Western country.
Collapse
Affiliation(s)
- Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
4
|
Lu D, Yang W, Zhang R, Li Y, Cheng T, Liao Y, Chen L, Liu H. Clinical Characteristics and Immune Responses in Children with Primary Ciliary Dyskinesia during Pneumonia Episodes: A Case-Control Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1727. [PMID: 38002818 PMCID: PMC10670724 DOI: 10.3390/children10111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE This study explored the clinical features and immune responses of children with primary ciliary dyskinesia (PCD) during pneumonia episodes. METHODS The 61 children with PCD who were admitted to hospital because of pneumonia were retrospectively enrolled into this study between April 2017 and August 2022. A total of 61 children with pneumonia but without chronic diseases were enrolled as the control group. The clinical characteristics, levels of inflammatory indicators, pathogens, and imaging features of the lungs were compared between the two groups. RESULTS The PCD group had higher levels of lymphocytes (42.80% versus 36.00%, p = 0.029) and eosinophils (2.40% versus 1.25%, p = 0.020), but lower neutrophil counts (3.99 versus 5.75 × 109/L, p = 0.011), percentages of neutrophils (46.39% versus 54.24%, p = 0.014), CRP (0.40 versus 4.20 mg/L, p < 0.001) and fibrinogen (257.50 versus 338.00 mg/dL, p = 0.010) levels. Children with PCD and children without chronic diseases were both most commonly infected with Mycoplasma pneumoniae (24.6% versus 51.9%). Children with PCD had significantly more common imaging features, including mucous plugging (p = 0.042), emphysema (p = 0.007), bronchiectasis (p < 0.001), mosaic attenuation (p = 0.012), interstitial inflammation (p = 0.015), and sinusitis (p < 0.001). CONCLUSION PCD is linked to immune system impairment, which significantly contributes to our understanding of the pathophysiology of this entity.
Collapse
Affiliation(s)
- Danli Lu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Rui Zhang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yan Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Tianyu Cheng
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yue Liao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Lina Chen
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
5
|
Raidt J, Loges NT, Olbrich H, Wallmeier J, Pennekamp P, Omran H. Primary ciliary dyskinesia. Presse Med 2023; 52:104171. [PMID: 37516247 DOI: 10.1016/j.lpm.2023.104171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Primary ciliary dyskinesia (PCD, ORPHA:244) is a group of rare genetic disorders characterized by dysfunction of motile cilia. It is phenotypically and genetically heterogeneous, with more than 50 genes involved. Thanks to genetic, clinical, and functional characterization, immense progress has been made in the understanding and diagnosis of PCD. Nevertheless, it is underdiagnosed due to the heterogeneous phenotype and complexity of diagnosis. This review aims to help clinicians navigate this heterogeneous group of diseases. Here, we describe the broad spectrum of phenotypes associated with PCD and address pitfalls and difficult-to-interpret findings to avoid misinterpretation. METHOD Review of literature CONCLUSION: PCD diagnosis is complex and requires integration of history, clinical picture, imaging, functional and structural analysis of motile cilia and, if available, genetic analysis to make a definitive diagnosis. It is critical that we continue to expand our knowledge of this group of rare disorders to improve the identification of PCD patients and to develop evidence-based therapeutic approaches.
Collapse
Affiliation(s)
- Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
6
|
Kouis P, Kakkoura MG, Elia SA, Ioannou P, Anagnostopoulou P, Potamiti L, Loizidou MA, Panayiotidis MI, Kyriacou K, Hadjisavvas A, Yiallouros PK. Observational study of health utilities in adult primary ciliary dyskinesia patients: preliminary data on associations with molecular diagnosis, clinical phenotype and HRQOL measures. Multidiscip Respir Med 2022; 17:881. [PMID: 36636646 PMCID: PMC9830407 DOI: 10.4081/mrm.2022.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Primary ciliary dyskinesia (PCD) is a congenital disorder characterized by chronic respiratory morbidity. To date, there is no information on PCD-specific preference-based quality of life measures such as health utilities (HU). We cross-sectionally assessed HU in adult PCD patients and explored relationships with genotype, phenotype and quality of life (QOL)-PCD scales. Methods Diagnostic testing was performed according to international guidelines, while participants completed the visual analog scale (VAS), time trade off (TTO), standard gamble (SG), and EuroQol 5 dimensions (EQ5D) HU instruments, as well as the QOL-PCD questionnaire. Hierarchical regression was used to identify the QOL-PCD scales that are most predictive of HU. Results Among 31 patients, median HU are 0.75 (VAS), 0.86 (EQ5D), 0.91 (TTO) and 0.99 (SG). The underlying genotype is not associated with HU measures. VAS and EQ5D are associated with lung function, while TTO and SG values are not sensitive to any of the examined factors. Among the QOL-PCD scales, physical functioning and lower respiratory symptoms explained much of VAS (R2= 0.419) and EQ5D (R2= 0.538) variability. Conclusions Our study demonstrates that HU elicitation in PCD is feasible using both direct and indirect methods. Overall, HU scores are relatively high among adult patients, with higher scores observed in SG and TTO, followed by EQ5D and VAS. VAS and EQ5D HU values are sensitive to lung function as well as to QOL-PCD physical functioning and lower respiratory symptom scores.
Collapse
Affiliation(s)
- Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus,Shakolas Educational Center of Clinical Medicine, Palaios Dromos Lefkosias- Lemesou 215/6, 2029 Aglantzia, Cyprus. Tel.+357.99467521 - +357.22895396.
| | - Maria G. Kakkoura
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK
| | - Stavria Artemis Elia
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus,Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Phivos Ioannou
- Pediatric Pulmonology Unit, Hospital ‘Archbishop Makarios III’, Nicosia, Cyprus
| | - Pinelopi Anagnostopoulou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus,Pediatric Pulmonology Unit, Hospital ‘Archbishop Makarios III’, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A. Loizidou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiotis K. Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus,Pediatric Pulmonology Unit, Hospital ‘Archbishop Makarios III’, Nicosia, Cyprus
| |
Collapse
|
7
|
Fabri L, Shanthikumar S, Tadd K, Morgan L, Schultz A, Robinson P. Fissure adjacent partial lobe atelectasis in primary ciliary dyskinesia. J Paediatr Child Health 2022; 58:683-686. [PMID: 34786797 DOI: 10.1111/jpc.15818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/27/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
AIM Establishing the underlying cause in a child with chronic suppurative lung disease (CSLD) allows for targeted treatment and screening for associated complications. One cause of CSLD is primary ciliary dyskinesia (PCD). Testing for PCD requires specialist expertise which is not widely available. Computed tomography (CT) scans are commonly performed when assessing CSLD. Identifying PCD-specific signs on CT would help clinicians in deciding when to refer for specialist testing. One potential PCD-specific sign we have observed is fissure adjacent partial lobe atelectasis (FAPLA). We aimed to assess if FAPLA is commonly found in CT of PCD patients. METHODS Fifty-eight CT scans from 42 adult and child PCD patients were analysed. The presence and distribution of FAPLA were noted, and its association to sputum culture and other signs commonly seen in CSLD (bronchiectasis, bronchial wall thickening, air trapping and mucus plugging). RESULTS FAPLA was found in 13 of 40 participants in their earliest CT scan. The prevalence of FAPLA was similar in children and adults. FAPLA involved the right middle lobe in all 13 cases and was systematically associated with ≥1 other structural change. There was no association between FAPLA and bacterial isolation from sputum. CONCLUSION FAPLA was found in 32.5% PCD scans, without difference between children and adults in terms of frequency. Future work will determine if it is a PCD-specific sign by assessing whether it is also found in other CSLD processes and analysing more scans from children with PCD to determine how early this sign develops.
Collapse
Affiliation(s)
- Loraine Fabri
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Brussels, Anderlecht, Belgium
| | - Shivanthan Shanthikumar
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Katelyn Tadd
- Medical Workforce Unit, Eastern Health, Melbourne, Victoria, Australia
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Hospital, Sydney, New South Wales, Australia.,School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - André Schultz
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Philip Robinson
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Cohen R, Shteinberg M. Diagnosis and Evaluation of Bronchiectasis. Clin Chest Med 2022; 43:7-22. [DOI: 10.1016/j.ccm.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lei C, Wang R, Yang D, Guo T, Luo H. Clinical phenotypes of primary ciliary dyskinesia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:116-122. [PMID: 35545371 PMCID: PMC10930489 DOI: 10.11817/j.issn.1672-7347.2022.210379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 06/15/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary disease characterized by airway mucociliary clearance dysfunction. The estimated prevalence of PCD is 1꞉10 000 to 1꞉20 000. The main respiratory manifestations in children are cough, expectoration, chronic rhinitis, sinusitis, and chronic otitis media, while the most common symptoms in adults are chronic sinusitis, bronchiectasis, and infertility. About 50% of patients with certain PCD-related gene variants are combined with situs inversus, and the incidence of congenital heart disease is also high. The pathogenesis behind PCD is that gene variants cause structural or functional disorders of respiratory cilia and motile cilia of other organs, leading to a series of heterogeneous clinical manifestations, which makes it difficult to identify and diagnose PCD. Combining different disease screening tools and understanding the relationship between genotypes and phenotypes may facilitate early diagnosis and treatment for PCD.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
10
|
Alzaid M, Al-Mobaireek K, Almannai M, Mukhtar G, Eltahir S, Zafar A, Zada AP, Alotaibi W. Clinical and molecular characteristics of primary ciliary dyskinesia: A tertiary care centre experience. Int J Pediatr Adolesc Med 2021; 8:258-263. [PMID: 34401452 PMCID: PMC8356118 DOI: 10.1016/j.ijpam.2021.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a ciliopathy with diverse clinical and genetic findings caused by abnormal motile cilia structure and function. In this study, we describe the clinical characteristics of confirmed PCD cases in our population and report the radiological, genetic, and laboratory findings. METHODS This was a retrospective, observational, single-centre study. We enrolled 18 patients who were diagnosed with confirmed PCD between 2015 and 2019. We then analyzed their data, including clinical findings and workup. RESULTS In our cohort, 56% of patients had molecularly confirmed PCD, and RSPH9 was the most common gene identified. Transmission electron microscopy (TEM) showed an ultrastructural defect in 64% of samples, all of which matched the genetic background of the patient. Situs inversus (SI) was observed in 50% of patients, and congenital heart disease was observed in 33%. The median body mass index (BMI) was 15.87 kg/m2, with a median z score of -1.48. The median FEV1 value was 67.6% (z score - 2.43). Radiologically, bronchiectasis was noted in 81% of patients at a variable degree of severity. Lung bases were involved in 91% of patients. We were unable to correlate the genotype-phenotype findings. CONCLUSION We describe the clinical and molecular characteristics of patients with confirmed PCD in a tertiary centre in Saudi Arabia and report 9 new pathogenic or likely pathogenic variants in one of the PCD-associated genes.
Collapse
Affiliation(s)
- Mohammed Alzaid
- Pulmonary Division of the Pediatric Department, Children Specialized Hospital, King Fahad Medical City, Saudi Arabia
- Corresponding author. Pulmonary Division of the Pediatric Department, Children Specialized Hospital, King Fahad Medical City, Riyadh, PO Box 13514, Saudi Arabia.
| | - Khalid Al-Mobaireek
- Pulmonary Division of the Pediatric Department, King Khalid University Hospital, Saudi Arabia
| | - Mohammed Almannai
- Genetic and Metabolic Division of the Pediatric Department, Children Specialized Hospital, King Fahad Medical City, Saudi Arabia
| | - Gawahir Mukhtar
- Pulmonary Division of the Pediatric Department, Children Specialized Hospital, King Fahad Medical City, Saudi Arabia
| | - Safa Eltahir
- Pulmonary Division of the Pediatric Department, Children Specialized Hospital, King Fahad Medical City, Saudi Arabia
| | - Adnan Zafar
- Pulmonary Division of the Pediatric Department, Children Specialized Hospital, King Fahad Medical City, Saudi Arabia
| | | | - Wadha Alotaibi
- Pathology Department, Kind Fahad Medical City, Saudi Arabia
| |
Collapse
|
11
|
Gahleitner F, Thompson J, Jackson CL, Hueppe JF, Behan L, Dehlink E, Goutaki M, Halbeisen F, Queiroz APL, Thouvenin G, Kuehni CE, Latzin P, Lucas JS, Rubbo B. Lower airway clinical outcome measures for use in primary ciliary dyskinesia research: a scoping review. ERJ Open Res 2021; 7:00320-2021. [PMID: 34853782 PMCID: PMC8628193 DOI: 10.1183/23120541.00320-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/31/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Disease-specific, well-defined and validated clinical outcome measures are essential in designing research studies. Poorly defined outcome measures hamper pooling of data and comparisons between studies. We aimed to identify and describe pulmonary outcome measures that could be used for follow-up of patients with primary ciliary dyskinesia (PCD). METHODS We conducted a scoping review by systematically searching MEDLINE, Embase and the Cochrane Database of Systematic Reviews online databases for studies published from 1996 to 2020 that included ≥10 PCD adult and/or paediatric patients. RESULTS We included 102 studies (7289 patients). 83 studies reported on spirometry, 11 on body plethysmography, 15 on multiple-breath washout, 36 on high-resolution computed tomography (HRCT), 57 on microbiology and 17 on health-related quality of life. Measurement and reporting of outcomes varied considerably between studies (e.g. different scoring systems for chest HRCT scans). Additionally, definitions of outcome measures varied (e.g. definition of chronic colonisation by respiratory pathogen), impeding direct comparisons of results. CONCLUSIONS This review highlights the need for standardisation of measurements and reporting of outcome measures to enable comparisons between studies. Defining a core set of clinical outcome measures is necessary to ensure reproducibility of results and for use in future trials and prospective cohorts.
Collapse
Affiliation(s)
- Florian Gahleitner
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Paediatric Respiratory Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Claire L. Jackson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Jana F. Hueppe
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Laura Behan
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Dept of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Florian Halbeisen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
- Basel Institute for Clinical Epidemiology and Biostatistics, Dept of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Paula L. Queiroz
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Guillaume Thouvenin
- AP-HP, Pneumologic Unit, Trousseau Hospital, Sorbonne Universités, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Claudia E. Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Jane S. Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Bruna Rubbo
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Clinical and Experimental Science, University of Southampton, Faculty of Medicine, Southampton, UK
- School of Health Sciences, University of Southampton, Faculty of Environmental and Life Sciences, Southampton, UK
| |
Collapse
|
12
|
Ledda RE, Balbi M, Milone F, Ciuni A, Silva M, Sverzellati N, Milanese G. Imaging in non-cystic fibrosis bronchiectasis and current limitations. BJR Open 2021; 3:20210026. [PMID: 34381953 PMCID: PMC8328081 DOI: 10.1259/bjro.20210026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023] Open
Abstract
Non-cystic fibrosis bronchiectasis represents a heterogenous spectrum of disorders characterised by an abnormal and permanent dilatation of the bronchial tree associated with respiratory symptoms. To date, diagnosis relies on computed tomography (CT) evidence of dilated airways. Nevertheless, definite radiological criteria and standardised CT protocols are still to be defined. Although largely used, current radiological scoring systems have shown substantial drawbacks, mostly failing to correlate morphological abnormalities with clinical and prognostic data. In limited cases, bronchiectasis morphology and distribution, along with associated CT features, enable radiologists to confidently suggest an underlying cause. Quantitative imaging analyses have shown a potential to overcome the limitations of the current radiological criteria, but their application is still limited to a research setting. In the present review, we discuss the role of imaging and its current limitations in non-cystic fibrosis bronchiectasis. The potential of automatic quantitative approaches and artificial intelligence in such a context will be also mentioned.
Collapse
Affiliation(s)
- Roberta Eufrasia Ledda
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Maurizio Balbi
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Francesca Milone
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Andrea Ciuni
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Mario Silva
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Gianluca Milanese
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| |
Collapse
|
13
|
Zhao X, Bian C, Liu K, Xu W, Liu Y, Tian X, Bai J, Xu KF, Zhang X. Clinical characteristics and genetic spectrum of 26 individuals of Chinese origin with primary ciliary dyskinesia. Orphanet J Rare Dis 2021; 16:293. [PMID: 34210339 PMCID: PMC8252271 DOI: 10.1186/s13023-021-01840-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Primary ciliary dyskinesia (PCD) is a rare, highly heterogeneous genetic disorder involving the impairment of motile cilia. With no single gold standard for PCD diagnosis and complicated multiorgan dysfunction, the diagnosis of PCD can be difficult in clinical settings. Some methods for diagnosis, such as nasal nitric oxide measurement and digital high-speed video microscopy with ciliary beat pattern analysis, can be expensive or unavailable. To confirm PCD diagnosis, we used a strategy combining assessment of typical symptoms with whole-exome sequencing (WES) and/or low-pass whole-genome sequencing (WGS) as an unbiased detection tool to identify known pathogenic mutations, novel variations, and copy number variations. Results A total of 26 individuals of Chinese origin with a confirmed PCD diagnosis aged 13 to 61 years (median age, 24.5 years) were included. Biallelic pathogenic mutations were identified in 19 of the 26 patients, including 8 recorded HGMD mutations and 24 novel mutations. The detection rate reached 73.1%. DNAH5 was the most frequently mutated gene, and c.8383C > T was the most common mutated variant, but it is relatively rare in PCD patients from other ethnic groups. Conclusion This study demonstrates the practical clinical utility of combining WES and low-pass WGS as a no-bias detecting tool in adult patients with PCD, showing a clinical characteristics and genetic spectrum of Chinese PCD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01840-2.
Collapse
Affiliation(s)
- Xinyue Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Chun Bian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Keqiang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenshuai Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
14
|
Rademacher J, Dettmer S, Fuge J, Vogel-Claussen J, Shin HO, Shah A, Pedro PI, Wilson R, Welte T, Wacker F, Loebinger MR, Ringshausen FC. The Primary Ciliary Dyskinesia Computed Tomography Score in Adults with Bronchiectasis: A Derivation und Validation Study. Respiration 2021; 100:499-509. [PMID: 33895745 PMCID: PMC8220914 DOI: 10.1159/000514927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a rare genetic disorder which requires a complex diagnostic workup. Thus, an easy and widely available screening method would be helpful to identify patients who need a further diagnostic workup for PCD. OBJECTIVES The aim of the study was to develop and validate a computed tomography (CT) score for PCD to facilitate etiological diagnosis in adults with bronchiectasis. METHOD Chest CTs from 121 adults with bronchiectasis were scored for bronchiectasis morphology, distribution, and associated findings. Patients with and without the etiological diagnosis of PCD (46 and 75, respectively) were compared. Significantly, different imaging findings (p < 0.05) in univariate analysis were considered for multivariate analysis. Distinct findings were used to build the score. Based on this score, receiver operating characteristic (ROC) curve analysis was performed. The score was validated with 2 independent cohorts, another cohort from the same institution with 56 patients (28 with PCD) and an external cohort from another referral center with 172 patients (86 with PCD). RESULTS The following parameters predicted PCD in adults with bronchiectasis and were included in the score with weighting according to their regression coefficients: 2 points were given for predominance in the middle/lower lobe, 2 points for tree-in-bud pattern, 2 points for atelectasis or prior resection of a middle/lower lobe, and 3 points for absence of emphysema and fibrosis. Situs inversus was only observed in subjects with PCD (Kartagener syndrome) and, thus, was not used in the primary ciliary dyskinesia computed tomography (PCD-CT) score as group comparisons could not be performed. ROC curve analysis revealed an area under the curve (AUC) of 0.90 (95% CI 0.85-0.96). Youden index was the highest at a threshold of >6 with a sensitivity of 83% and a specificity of 83%. In the validation cohorts, ROC curve analysis confirmed the performance of the score with an AUC of 0.83 (95% CI 0.72-0.94) in the first validation cohort and 0.79 (95% CI 0.73-0.86) in the external validation cohort. CONCLUSIONS The PCD-CT score provides the first validated CT score for PCD and helps physicians in identifying adult bronchiectasis patients who require further diagnostic workup. Key message: The PCD-CT score provides the first validated CT score to assist physicians in identifying adult bronchiectasis patients who require a further diagnostic workup for PCD. It potentially improves earlier recognition of this rare and underdiagnosed disease.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Sabine Dettmer
- Department of Radiology, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany,*Sabine Dettmer,
| | - Jan Fuge
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Department of Radiology, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Hoen-oh Shin
- Department of Radiology, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Anand Shah
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paula Inês Pedro
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Rob Wilson
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Frank Wacker
- Department of Radiology, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Michael R. Loebinger
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Felix C. Ringshausen
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
15
|
Raidt J, Brillault J, Brinkmann F, Jung A, Koerner-Rettberg C, Koitschev A, Linz-Keul H, Nüßlein T, Ringshausen FC, Röhmel J, Rosewich M, Werner C, Omran H. [Management of Primary Ciliary Dyskinesia]. Pneumologie 2020; 74:750-765. [PMID: 32977348 PMCID: PMC7671756 DOI: 10.1055/a-1235-1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Die Primäre Ciliäre Dyskinesie (PCD, MIM 242650) ist eine seltene hereditäre Multisystemerkrankung mit klinisch heterogenem Phänotyp. Leitsymptom ist eine chronische Sekretretention der oberen und unteren Atemwege, welche durch die Dysfunktion motiler respiratorischer Zilien entsteht. In der Folge kommt es zur Ausbildung von Bronchiektasen, häufig zu einer Infektion durch Pseudomonas aeruginosa sowie einer abnehmenden Lungenfunktion bis hin zum Lungenversagen. Bislang gibt es kaum evidenzbasierte Therapieempfehlungen, da randomisierte Langzeitstudien zur Behandlung der PCD fehlten. In diesem Jahr wurden die Daten einer ersten placebokontrollierten Medikamentenstudie bei PCD veröffentlicht. Anlässlich dieses Meilensteins im Management der PCD wurde der vorliegende Übersichtsartikel als Konsens von Patientenvertretern sowie Klinikern, die langjährige Erfahrung in der Behandlung der PCD haben, verfasst. Diese Arbeit bietet eine Zusammenfassung aktuell eingesetzter Behandlungsverfahren, die überwiegend auf persönlichen Erfahrungen und Expertenmeinungen beruhen oder von anderen Atemwegserkrankungen wie der Cystischen Fibrose (CF), COPD oder Bronchiektasen-Erkrankung abgeleitet werden. Da es derzeit keine kurative Therapie für PCD gibt, stehen symptomatische Maßnahmen wie die regelmäßige Reinigung der Atemwege und die Behandlung von rezidivierenden Atemwegsinfektionen im Fokus. Nicht respiratorische Manifestationen werden organspezifisch behandelt. Um neben der ersten Medikamentenstudie mehr evidenzbasiertes Wissen zu generieren, werden weitere Projekte etabliert, u. a. ein internationales PCD-Register. Hierüber wird Patienten der Zugang zu klinischen und wissenschaftlichen Studien erleichtert und die Vernetzung behandelnder Zentren gefördert. Des Weiteren können Erkenntnisse über eine Genotyp-spezifische Erkrankungsschwere erlangt werden, um folglich die therapeutische Versorgung der Patienten zu verbessern und somit zu individualisieren.
Collapse
Affiliation(s)
- J Raidt
- Klinik für Kinder- und Jugendmedizin, Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster
| | - J Brillault
- Kartagener Syndrom & Primäre Ciliäre Dyskinesie e. V., Herbolzheim
| | - F Brinkmann
- Pädiatrische Pneumologie und CF-Centrum, Universitätsklinik für Kinder- und Jugendmedizin Bochum, Bochum
| | - A Jung
- Abteilung für Pneumologie, Universitäts-Kinderspital Zürich, Zürich, Schweiz
| | | | - A Koitschev
- Abteilung Pädiatrische HNO-Heilkunde und Otologie, Olgahospital, Klinikum Stuttgart, Stuttgart
| | | | - T Nüßlein
- Klinik für Kinder- und Jugendmedizin Koblenz, Gemeinschaftsklinikum Mittelrhein, Koblenz
| | - F C Ringshausen
- Klinik für Pneumologie, Medizinische Hochschule Hannover (MHH), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover
| | - J Röhmel
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Berlin
| | | | - C Werner
- Kinder- und Jugendmedizin, Helios Kliniken Schwerin, Schwerin
| | - H Omran
- Klinik für Kinder- und Jugendmedizin, Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster
| |
Collapse
|
16
|
Ferraro V, Andrinopoulou ER, Sijbring AMM, Haarman EG, Tiddens HAWM, Pijnenburg MWH. Airway-artery quantitative assessment on chest computed tomography in paediatric primary ciliary dyskinesia. ERJ Open Res 2020; 6:00210-2019. [PMID: 32964004 PMCID: PMC7487358 DOI: 10.1183/23120541.00210-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
Chest computed tomography (CT) is the gold standard for detecting structural abnormalities in patients with primary ciliary dyskinesia (PCD) such as bronchiectasis, bronchial wall thickening and mucus plugging. There are no studies on quantitative assessment of airway and artery abnormalities in children with PCD. The objectives of the present study were to quantify airway and artery dimensions on chest CT in a cohort of children with PCD and compare these with control children to analyse the influence of covariates on airway and artery dimensions. Chest CTs of 13 children with PCD (14 CT scans) and 12 control children were collected retrospectively. The bronchial tree was segmented semi-automatically and reconstructed in a three-dimensional view. All visible airway–artery (AA) pairs were measured perpendicular to the airway centre line, annotating per branch inner and outer airway and adjacent artery diameter and computing inner airway diameter/artery ratio (AinA ratio), outer airway diameter/artery ratio (AoutA ratio), wall thickness (WT), WT/outer airway diameter ratio (Awt ratio) and WT/artery ratio. In the children with PCD (38.5% male, mean age 13.5 years, range 9.8–15.3) 1526 AA pairs were measured versus 1516 in controls (58.3% male, mean age 13.5 years, range 8–14.8). AinA ratio and AoutA ratio were significantly higher in children with PCD than in control children (both p<0.001). Awt ratio was significantly higher in control children than in children with PCD (p<0.001). Our study showed that in children with PCD airways are more dilated than in controls and do not show airway wall thickening. Chest CT is the gold standard for detecting structural abnormalities in patients with PCD, and this study is the first on quantitative assessment of airway and artery abnormalities in children with PCDhttps://bit.ly/2XZYWjU
Collapse
Affiliation(s)
- Valentina Ferraro
- Unit of Pediatric Allergy and Respiratory Medicine, Dept of Women's and Children's Health, University of Padua, Padua, Italy.,Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Anna Marthe Margaretha Sijbring
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric G Haarman
- Dept of Pediatric Pulmonology, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm A W M Tiddens
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Dept of Radiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marielle W H Pijnenburg
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Kouis P, Goutaki M, Halbeisen FS, Gioti I, Middleton N, Amirav I, Barbato A, Behan L, Boon M, Emiralioglu N, Haarman EG, Karadag B, Koerner-Rettberg C, Lazor R, Loebinger MR, Maitre B, Mazurek H, Morgan L, Nielsen KG, Omran H, Özçelik U, Price M, Pogorzelski A, Snijders D, Thouvenin G, Werner C, Zivkovic Z, Kuehni CE, Yiallouros PK. Prevalence and course of disease after lung resection in primary ciliary dyskinesia: a cohort & nested case-control study. Respir Res 2019; 20:212. [PMID: 31533829 PMCID: PMC6751891 DOI: 10.1186/s12931-019-1183-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Lung resection is a controversial and understudied therapeutic modality in Primary Ciliary Dyskinesia (PCD). We assessed the prevalence of lung resection in PCD across countries and compared disease course in lobectomised and non-lobectomised patients. Methods In the international iPCD cohort, we identified lobectomised and non-lobectomised age and sex-matched PCD patients and compared their characteristics, lung function and BMI cross-sectionally and longitudinally. Results Among 2896 patients in the iPCD cohort, 163 from 20 centers (15 countries) underwent lung resection (5.6%). Among adult patients, prevalence of lung resection was 8.9%, demonstrating wide variation among countries. Compared to the rest of the iPCD cohort, lobectomised patients were more often females, older at diagnosis, and more often had situs solitus. In about half of the cases (45.6%) lung resection was performed before presentation to specialized PCD centers for diagnostic work-up. Compared to controls (n = 197), lobectomised patients had lower FVC z-scores (− 2.41 vs − 1.35, p = 0.0001) and FEV1 z-scores (− 2.79 vs − 1.99, p = 0.003) at their first post-lung resection assessment. After surgery, lung function continued to decline at a faster rate in lobectomised patients compared to controls (FVC z-score slope: − 0.037/year Vs − 0.009/year, p = 0.047 and FEV1 z-score slope: − 0.052/year Vs − 0.033/year, p = 0.235), although difference did not reach statistical significance for FEV1. Within cases, females and patients with multiple lobe resections had lower lung function. Conclusions Prevalence of lung resection in PCD varies widely between countries, is often performed before PCD diagnosis and overall is more frequent in patients with delayed diagnosis. After lung resection, compared to controls most lobectomised patients have poorer and continuing decline of lung function despite lung resection. Further studies benefiting from prospective data collection are needed to confirm these findings.
Collapse
Affiliation(s)
- Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Florian S Halbeisen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ifigeneia Gioti
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Nicos Middleton
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Israel Amirav
- Department of Pediatrics University of Alberta Edmonton, Edmonton, Canada.,Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Angelo Barbato
- Primary Ciliary Dyskinesia Centre, Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
| | | | - Laura Behan
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton, NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Mieke Boon
- Department of Paediatrics & Paediatric Pulmonology, University Hospital Gasthuisberg Leuven, Leuven, Belgium
| | | | - Eric G Haarman
- Department of pediatric pulmonology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Bulent Karadag
- Department of Pediatric Pulmonology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Cordula Koerner-Rettberg
- Department of Paediatric Pulmonology, University Children's Hospital of Ruhr University Bochum, Bochum, Germany
| | - Romain Lazor
- Department of Respiratory Medicine, Lausanne University Hospital, Lausanne, Switzerland.,Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases, Lyon, France
| | | | - Michael R Loebinger
- Host Defence Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Bernard Maitre
- Hopital intercommunal de Créteil, Service de Pneumologie, DHU ATVB, Université Paris Est Créteil, Paris, France
| | | | - Henryk Mazurek
- Klinika Pneumonologii i Mukowiscydozy, Instytut Gruźlicy i ChoróbPłuc, Rabka, Poland
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Hospital Clinical School, University of Sydney, Sydney, Australia
| | - Kim Gjerum Nielsen
- Danish PCD Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen University Hospital, Copenhagen, Denmark
| | - Heymut Omran
- Department of General Paediatrics and Adolescent Medicine, University Hospital Muenster, Muenster, Germany
| | - Ugur Özçelik
- Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Mareike Price
- Clinic for Paediatric pulmonology, Allergiology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Andrzej Pogorzelski
- Klinika Pneumonologii i Mukowiscydozy, Instytut Gruźlicy i ChoróbPłuc, Rabka, Poland
| | - Deborah Snijders
- Primary Ciliary Dyskinesia Centre, Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
| | | | - Guillaume Thouvenin
- Service de pneumologie pédiatrique, Hôpital Trousseau, APHP, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | | - Claudius Werner
- Department of General Paediatrics and Adolescent Medicine, University Hospital Muenster, Muenster, Germany.,Department of Pediatrics, Helios Hospital Schwerin, Schwerin, Germany
| | - Zorica Zivkovic
- Children's Hospital for Lung Diseases and TB, Medical Centre "Dr Dragisa Misovic", Belgrade, Serbia.,Faculty of Pharmacy Novi Sad, Business Academy in Novi Sad, Novi Sad, Serbia
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus. .,Shakolas Educational Center of Clinical Medicine, Palaios Dromos Lefkosias-Lemesou 215/6,2029 Aglantzia, Nicosia, Cyprus.
| |
Collapse
|
18
|
Performance of sparse-view CT reconstruction with multi-directional gradient operators. PLoS One 2019; 14:e0209674. [PMID: 30615635 PMCID: PMC6322781 DOI: 10.1371/journal.pone.0209674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/09/2018] [Indexed: 01/21/2023] Open
Abstract
To further reduce the noise and artifacts in the reconstructed image of sparse-view CT, we have modified the traditional total variation (TV) methods, which only calculate the gradient variations in x and y directions, and have proposed 8- and 26-directional (the multi-directional) gradient operators for TV calculation to improve the quality of reconstructed images. Different from traditional TV methods, the proposed 8- and 26-directional gradient operators additionally consider the diagonal directions in TV calculation. The proposed method preserves more information from original tomographic data in the step of gradient transform to obtain better reconstruction image qualities. Our algorithms were tested using two-dimensional Shepp–Logan phantom and three-dimensional clinical CT images. Results were evaluated using the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and universal quality index (UQI). All the experiment results show that the sparse-view CT images reconstructed using the proposed 8- and 26-directional gradient operators are superior to those reconstructed by traditional TV methods. Qualitative and quantitative analyses indicate that the more number of directions that the gradient operator has, the better images can be reconstructed. The 8- and 26-directional gradient operators we proposed have better capability to reduce noise and artifacts than traditional TV methods, and they are applicable to be applied to and combined with existing CT reconstruction algorithms derived from CS theory to produce better image quality in sparse-view reconstruction.
Collapse
|
19
|
Structural and Functional Lung Impairment in Primary Ciliary Dyskinesia. Assessment with Magnetic Resonance Imaging and Multiple Breath Washout in Comparison to Spirometry. Ann Am Thorac Soc 2018; 15:1434-1442. [DOI: 10.1513/annalsats.201712-967oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Contarini M, Shoemark A, Rademacher J, Finch S, Gramegna A, Gaffuri M, Roncoroni L, Seia M, Ringshausen FC, Welte T, Blasi F, Aliberti S, Chalmers JD. Why, when and how to investigate primary ciliary dyskinesia in adult patients with bronchiectasis. Multidiscip Respir Med 2018; 13:26. [PMID: 30151188 PMCID: PMC6101078 DOI: 10.1186/s40248-018-0143-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bronchiectasis represents the final pathway of several infectious, genetic, immunologic or allergic disorders. Accurate and prompt identification of the underlying cause is a key recommendation of several international guidelines, in order to tailor treatment appropriately. Primary ciliary dyskinesia (PCD) is a genetic cause of bronchiectasis in which failure of motile cilia leads to poor mucociliary clearance. Due to poor ciliary function in other organs, individuals can suffer from chronic rhinosinusitis, otitis media and infertility. This paper explores the current literature describing why, when and how to investigate PCD in adult patients with bronchiectasis. We describe the main PCD diagnostic tests and compare the two international PCD diagnostic guidelines. The expensive multi-test diagnostic approach requiring a high level of expertise and specialist equipment, make the multifaceted PCD diagnostic pathway complex. Therefore, the risk of late or missed diagnosis is high and has clinical and research implications. Defining the number of patients with bronchiectasis due to PCD is complex. To date, few studies outlining the aetiology of adult patients with bronchiectasis conduct screening tests for PCD, but they do differ in their diagnostic approach. Comparison of these studies reveals an estimated PCD prevalence of 1-13% in adults with bronchiectasis and describe patients as younger than their counterparts with moderate impairment of lung function and higher rates of chronic infection with Pseudomonas aeruginosa. Diagnosing PCD has clinical, socioeconomic and psychological implications, which affect patients' life, including the possibility to have a specific and multidisciplinary team approach in a PCD referral centre, as well as a genetic and fertility counselling and special legal aspects in some countries. To date no specific treatments for PCD have been approved, standardized diagnostic protocols for PCD and recent diagnostic guidelines will be helpful to accurately define a population on which planning RCT studies to evaluate efficacy, safety and accuracy of PCD specific treatments.
Collapse
Affiliation(s)
- Martina Contarini
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Jessica Rademacher
- Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research (DZL), Hannover, Germany
| | - Simon Finch
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michele Gaffuri
- Department of Otolaryngology and Head and Neck Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Roncoroni
- Department of Otolaryngology and Head and Neck Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Seia
- Medical Genetics Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felix C. Ringshausen
- Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research (DZL), Hannover, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|