1
|
Moreno-Valencia FD, Plascencia-Espinosa MÁ, Morales-García YE, Muñoz-Rojas J. Selection and Effect of Plant Growth-Promoting Bacteria on Pine Seedlings ( Pinus montezumae and Pinus patula). Life (Basel) 2024; 14:1320. [PMID: 39459620 PMCID: PMC11509945 DOI: 10.3390/life14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Forest cover is deteriorating rapidly due to anthropogenic causes, making its restoration urgent. Plant growth-promoting bacteria (PGPB) could offer a viable solution to ensure successful reforestation efforts. This study aimed to select bacterial strains with mechanisms that promote plant growth and enhance seedling development. The bacterial strains used in this study were isolated from the rhizosphere and endophyte regions of Pinus montezumae Lamb. and Pinus patula Schl. et Cham., two Mexican conifer species commonly used for reforestation purposes. Sixteen bacterial strains were selected for their ability to produce auxins, chitinase, and siderophores, perform nitrogen fixation, and solubilize inorganic phosphates; they also harbored genes encoding antimicrobial production and ACC deaminase. The adhesion to seeds, germination rate, and seedling response of P. montezumae and P. patula were performed following inoculation with 10 bacterial strains exhibiting high plant growth-promoting potential. Some strains demonstrated the capacity to enhance seedling growth. The selected strains were taxonomically characterized and belonged to the genus Serratia, Buttiauxella, and Bacillus. These strains exhibited at least two mechanisms of action, including the production of indole-3-acetic acid, biological nitrogen fixation, and phosphate solubilization, and could serve as potential alternatives for the reforestation of affected areas.
Collapse
Affiliation(s)
- Francisco David Moreno-Valencia
- Consejo Nacional de Ciencias, Humanidades y Tecnología (CONAHCYT)—Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
| | - Miguel Ángel Plascencia-Espinosa
- Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico
| | - Yolanda Elizabeth Morales-García
- Grupo Inoculantes Microbianos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Jesús Muñoz-Rojas
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| |
Collapse
|
2
|
Liu J, Zhang S, Ma H, Huang J, Xiang M, Liu X. Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species. J GEN APPL MICROBIOL 2024; 69:327-334. [PMID: 37989280 DOI: 10.2323/jgam.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC50) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.
Collapse
Affiliation(s)
- Jinming Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| | - Shiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| | - Haikun Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| | - Jun Huang
- Shandong Yuanchen Biomedical Technology Group Co., Ltd
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| |
Collapse
|
3
|
Solórzano-Acosta R, Toro M, Zúñiga-Dávila D. Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi. Microorganisms 2024; 12:721. [PMID: 38674665 PMCID: PMC11052105 DOI: 10.3390/microorganisms12040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Avocado is one of the most in-demand fruits worldwide and the trend towards its sustainable production, regulated by international standards, is increasing. One of the most economically important diseases is root rot, caused by Phythopthora cinnamomi. Regarding this problem, antagonistic microorganism use is an interesting alternative due to their phytopathogen control efficiency. Therefore, the interaction of arbuscular mycorrhizal fungi of the phylum Glomeromycota, native to the Peruvian coast (GWI) and jungle (GFI), and avocado rhizospheric bacteria, Bacillus subtilis and Pseudomonas putida, was evaluated in terms of their biocontrol capacity against P. cinnamomi in the "Zutano" variety of avocado plants. The results showed that the GWI and Bacillus subtilis combination increased the root exploration surface by 466.36%. P. putida increased aerial biomass by 360.44% and B. subtilis increased root biomass by 433.85%. Likewise, P. putida rhizobacteria showed the highest nitrogen (24.60 mg ∙ g-1 DM) and sulfur (2.60 mg ∙ g-1 DM) concentrations at a foliar level. The combination of GWI and Bacillus subtilis was the treatment that presented the highest calcium (16.00 mg ∙ g-1 DM) and magnesium (8.80 mg ∙ g-1 DM) concentrations. The microorganisms' multifunctionality reduced disease severity by 85 to 90% due to the interaction between mycorrhizae and rhizobacteria. In conclusion, the use of growth promoting microorganisms that are antagonistic to P. cinnamomi represents a potential strategy for sustainable management of avocado cultivation.
Collapse
Affiliation(s)
- Richard Solórzano-Acosta
- Centro Experimental La Molina, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina N° 1981, Lima 15024, Peru
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| | - Marcia Toro
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
- Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| |
Collapse
|
4
|
Holkar SK, Ghotgalkar PS, Lodha TD, Bhanbhane VC, Shewale SA, Markad H, Shabeer ATP, Saha S. Biocontrol potential of endophytic fungi originated from grapevine leaves for management of anthracnose disease caused by Colletotrichum gloeosporioides. 3 Biotech 2023; 13:258. [PMID: 37405269 PMCID: PMC10314888 DOI: 10.1007/s13205-023-03675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
In the present study, 51 fungal endophytes (FEs) were isolated, purified and identified from the healthy leaf segments of ten grapevine varieties based on the spore and colony morphologies and ITS sequence information. The FEs belonged to the Ascomycota division comprising eight genera viz., Alternaria, Aspergillus, Bipolaris, Curvularia, Daldinia, Exserohilum, Fusarium and Nigrospora. The in vitro direct confrontation assay against Colletotrichum gloeosporioides revealed that six isolates viz., VR8 (70%), SB2 (83.15%), CS2 (88.42%), MN3 (88.42%), MS5 (78.94%) and MS15 (78.94%) inhibited the mycelial growth of test pathogen. The remaining 45 fungal isolates showed 20-59.9% growth inhibition of C. gloeosporioides. Indirect confrontation assay manifested that the isolates MN1 and MN4a showed 79.09% and 78.18% growth inhibition of C. gloeosporioides followed by MM4 (73.63%) and S5 (71.81%) isolates. Isolate S5 and MM4 were found to produce azulene and 1,3-Cyclopentanedione, 4,4-dimethyl as antimicrobial volatile organic compounds, respectively. The 38 FEs showed PCR amplification using internal transcribed spacer universal primers. The BLAST search revealed highest similarity with the existing sequences in the database. The phylogenetic analysis revealed the occurrence of seven distinct clusters each corresponding to single genus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03675-z.
Collapse
Affiliation(s)
- Somnath K. Holkar
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Prabhavati S. Ghotgalkar
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Tushar D. Lodha
- National Centre of Cell Science, Pune, Maharashtra 411 007 India
| | - Vrushali C. Bhanbhane
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Shraddha A. Shewale
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
- Present Address: Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra 413 705 India
| | - Harshvardhan Markad
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - A. T. P. Shabeer
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Sujoy Saha
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| |
Collapse
|
5
|
Bhadrecha P, Singh S, Dwibedi V. 'A plant's major strength in rhizosphere': the plant growth promoting rhizobacteria. Arch Microbiol 2023; 205:165. [PMID: 37012531 DOI: 10.1007/s00203-023-03502-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Human activities, industrialization and civilization have deteriorated the environment which eventually has led to alarming effects on plants and animals by heightened amounts of chemical pollutants and heavy metals in the environment, which create abiotic stress. Environmental conditions like drought, salinity, diminished macro-and micro-nutrients also contribute in abiotic stress, resulting in decrement of survival and growth of plants. Presence of pathogenic and competitive microorganisms, as well as pests lead to biotic stress and a plant alone can not defend itself. Thankfully, nature has rendered plant's rhizosphere with plant growth promoting rhizobacteria which maintain an allelopathic relationship with host plant to defend the plant and let it flourish in abiotic as well as biotic stress situations. This review discusses the mechanisms behind increase in plant growth via various direct and indirect traits expressed by associated microorganisms in the rhizosphere, along with their current scenario and promising future for sustainable agriculture. It also gives details of ten such bacterial species, viz. Acetobacter, Agrobacterium, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter and Frankia, whose association with the host plants is famed for enhancing plant's growth and survival.
Collapse
Affiliation(s)
- Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Gautam Budh Nagar, Uttar Pradesh, 203201, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
- Thapar Institute of Engineering and Technology, Department of Biotechnology, 147004, PATIALA, India.
| |
Collapse
|
6
|
Rani A, Rana A, Dhaka RK, Singh AP, Chahar M, Singh S, Nain L, Singh KP, Minz D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnol Adv 2023; 63:108078. [PMID: 36513315 DOI: 10.1016/j.biotechadv.2022.108078] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bacteria emit a large number of volatile organic compounds (VOCs) into the environment. VOCs are species-specific and their emission depends on environmental conditions, such as growth medium, pH, temperature, incubation time and interaction with other microorganisms. These VOCs can enhance plant growth, suppress pathogens and act as signaling molecules during plant-microorganism interactions. Some bacterial VOCs have been reported to show strong antimicrobial, nematicidal, pesticidal, plant defense, induced tolerance and plant-growth-promoting activities under controlled conditions. Commonly produced antifungal VOCs include dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonane, decanone and 1-butanol. Species of Bacillus, Pseudomonas, Arthrobacter, Enterobacter and Burkholderia produce plant growth promoting VOCs, such as acetoin and 2,3-butenediol. These VOCs affect expression of genes involved in defense and development in plant species (i.e., Arabidopsis, tobacco, tomato, potato, millet and maize). VOCs are also implicated in altering pathogenesis-related genes, inducing systemic resistance, modulating plant metabolic pathways and acquiring nutrients. However, detailed mechanisms of action of VOCs need to be further explored. This review summarizes the bioactive VOCs produced by diverse bacterial species as an alternative to agrochemicals, their mechanism of action and challenges for employment of bacterial VOCs for sustainable agricultural practices. Future studies on technological improvements for bacterial VOCs application under greenhouse and open field conditions are warranted.
Collapse
Affiliation(s)
- Annu Rani
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India; Centre for Bio-Nanotechnology, CCS HAU, Hisar, India.
| | - Rahul Kumar Dhaka
- Centre for Bio-Nanotechnology, CCS HAU, Hisar, India; Department of Chemistry, College of Basic Science & Humanities, CCS HAU, Hisar, India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Madhvi Chahar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh, India
| | - Lata Nain
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar, India; Vice Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, UP, India
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
7
|
Kadiri M, Sevugapperumal N, Nallusamy S, Ragunathan J, Ganesan MV, Alfarraj S, Ansari MJ, Sayyed RZ, Lim HR, Show PL. Pan-genome analysis and molecular docking unveil the biocontrol potential of Bacillus velezensis VB7 against Phytophthora infestans. Microbiol Res 2023; 268:127277. [PMID: 36577205 DOI: 10.1016/j.micres.2022.127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
Collapse
Affiliation(s)
- Mahendra Kadiri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Nakkeeran Sevugapperumal
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Malathi Varagur Ganesan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India.
| | - R Z Sayyed
- Asian PGPR Society, Department of Entomology, Auburn University, Auburn, AL, 36849, USA.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| |
Collapse
|
8
|
Antagonistic Activity of Pseudomonas fluorescens Strain X1 Against Different Fusaria and it's In Vivo Analysis Against Fusarium udum Infected Pigeon Pea. Curr Microbiol 2023; 80:98. [PMID: 36739341 DOI: 10.1007/s00284-023-03184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2023] [Indexed: 02/06/2023]
Abstract
A plant growth-promoting rhizobacterial strain, Pseudomonas fluorescens X1 isolated from the garden soil was employed for antagonistic activity against different species of fusaria. Strain X1 inhibited four different fusaria (Fusarium moniliforme, Fusarium oxysporum, Fusarium semitectum and Fusarium udum) in dual culture plate assay, and in broth culture using cell-free culture filtrate. Scanning electron microscopic (SEM) analysis revealed deformation and shrinkage in mycelia of fusaria after treatment with strain X1. Confocal micrographs showed degeneration of nuclei inside the cells of fusaria for the same effect. Strain X1 exhibited maximum antifungal activity, when it was grown in nutrient broth yeast (NBY) medium amended with 1 mM NH4MoO4 and 1% glucose. The antifungal extracts eluted from thin-layer chromatography (TLC) followed by high performance liquid chromatography (HPLC) showed two fractions active against different fusaria. Liquid chromatography-mass spectrometry (LCMS) analysis of the two fractions 1 and 2 corresponded to molecular ions at m/z 177.16 and m/z 177.09, respectively. Infra-red (IR) analysis showed five similar absorption bands in both the fractions analysed. In vivo analysis of strain X1 alone and along with fungicide inhibited the growth of F. udum and improved the biomass and growth of pigeon pea. These results indicated that strain X1 could be possibly used as a biocontrol agent to inhibit the growth of soil-borne diseases of different fusaria including F. udum that causes wilting in pigeon pea.
Collapse
|
9
|
Wang J, Qin S, Fan R, Peng Q, Hu X, Yang L, Liu Z, Baccelli I, Migheli Q, Berg G, Chen X, Cernava T. Plant Growth Promotion and Biocontrol of Leaf Blight Caused by Nigrospora sphaerica on Passion Fruit by Endophytic Bacillus subtilis Strain GUCC4. J Fungi (Basel) 2023; 9:132. [PMID: 36836247 PMCID: PMC9966402 DOI: 10.3390/jof9020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Passion fruit (Passiflora edulis Sims) is widely cultivated in tropic and sub-tropic regions for the production of fruit, flowers, cosmetics, and for pharmacological applications. Its high economic, nutritional, and medical values elicit the market demand, and the growing areas are rapidly increasing. Leaf blight caused by Nigrospora sphaerica is a new and emerging disease of passion fruit in Guizhou, in southwest China, where the unique karst mountainous landscape and climate conditions are considered potential areas of expansion for passion fruit production. Bacillus species are the most common biocontrol and plant-growth-promotion bacteria (PGPB) resources in agricultural systems. However, little is known about the endophytic existence of Bacillus spp. in the passion fruit phyllosphere as well as their potential as biocontrol agents and PGPB. In this study, 44 endophytic strains were isolated from 15 healthy passion fruit leaves, obtained from Guangxi province, China. Through purification and molecular identification, 42 of the isolates were ascribed to Bacillus species. Their inhibitory activity against N. sphaerica was tested in vitro. Eleven endophytic Bacillus spp. strains inhibited the pathogen by >65%. All of them produced biocontrol- and plant-growth-promotion-related metabolites, including indole-3-acetic acid (IAA), protease, cellulase, phosphatase, and solubilized phosphate. Furthermore, the plant growth promotion traits of the above 11 endophytic Bacillus strains were tested on passion fruit seedlings. One isolate, coded B. subtilis GUCC4, significantly increased passion fruit stem diameter, plant height, leaf length, leaf surface, fresh weight, and dry weight. In addition, B. subtilis GUCC4 reduced the proline content, which indicated its potential to positively regulate passion fruit biochemical properties and resulted in plant growth promotion effects. Finally, the biocontrol efficiencies of B. subtilis GUCC4 against N. sphaerica were determined in vivo under greenhouse conditions. Similarly to the fungicide mancozeb and to a commercial B. subtilis-based biofungicide, B. subtilis GUCC4 significantly reduced disease severity. These results suggest that B. subtilis GUCC4 has great potential as a biological control agent and as PGPB on passion fruit.
Collapse
Affiliation(s)
- Junrong Wang
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Shun Qin
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Qiang Peng
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Xiaojing Hu
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Liu Yang
- Guangxi Crop Genetic Improvement Biotechnology Laboratory, Nanning 530007, China
| | - Zengliang Liu
- Microbiology Research Institute, Guangxi Agricultural Science Academy, Nanning 530007, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Italy
| | - Quirico Migheli
- Dipartimento di Agraria and NRD–Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Tomislav Cernava
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
10
|
Cortazar-Murillo EM, Méndez-Bravo A, Monribot-Villanueva JL, Garay-Serrano E, Kiel-Martínez AL, Ramírez-Vázquez M, Guevara-Avendaño E, Méndez-Bravo A, Guerrero-Analco JA, Reverchon F. Biocontrol and plant growth promoting traits of two avocado rhizobacteria are orchestrated by the emission of diffusible and volatile compounds. Front Microbiol 2023; 14:1152597. [PMID: 37206331 PMCID: PMC10189041 DOI: 10.3389/fmicb.2023.1152597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Avocado (Persea americana Mill.) is a tree crop of great social and economic importance. However, the crop productivity is hindered by fast-spreading diseases, which calls for the search of new biocontrol alternatives to mitigate the impact of avocado phytopathogens. Our objectives were to evaluate the antimicrobial activity of diffusible and volatile organic compounds (VOCs) produced by two avocado rhizobacteria (Bacillus A8a and HA) against phytopathogens Fusarium solani, Fusarium kuroshium, and Phytophthora cinnamomi, and assess their plant growth promoting effect in Arabidopsis thaliana. We found that, in vitro, VOCs emitted by both bacterial strains inhibited mycelial growth of the tested pathogens by at least 20%. Identification of bacterial VOCs by gas chromatography coupled to mass spectrometry (GC-MS) showed a predominance of ketones, alcohols and nitrogenous compounds, previously reported for their antimicrobial activity. Bacterial organic extracts obtained with ethyl acetate significantly reduced mycelial growth of F. solani, F. kuroshium, and P. cinnamomi, the highest inhibition being displayed by those from strain A8a (32, 77, and 100% inhibition, respectively). Tentative identifications carried out by liquid chromatography coupled to accurate mass spectrometry of diffusible metabolites in the bacterial extracts, evidenced the presence of some polyketides such as macrolactins and difficidin, hybrid peptides including bacillaene, and non-ribosomal peptides such as bacilysin, which have also been described in Bacillus spp. for antimicrobial activities. The plant growth regulator indole-3-acetic acid was also identified in the bacterial extracts. In vitro assays showed that VOCs from strain HA and diffusible compounds from strain A8a modified root development and increased fresh weight of A. thaliana. These compounds differentially activated several hormonal signaling pathways involved in development and defense responses in A. thaliana, such as auxin, jasmonic acid (JA) and salicylic acid (SA); genetic analyses suggested that developmental stimulation of the root system architecture by strain A8a was mediated by the auxin signaling pathway. Furthermore, both strains were able to enhance plant growth and decreased the symptoms of Fusarium wilt in A. thaliana when soil-inoculated. Collectively, our results evidence the potential of these two rhizobacterial strains and their metabolites as biocontrol agents of avocado pathogens and as biofertilizers.
Collapse
Affiliation(s)
| | - Alfonso Méndez-Bravo
- CONACyT – Escuela Nacional de Estudios Superiores, Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | | | - Edith Garay-Serrano
- CONACyT – Red de Diversidad Biológica del Occidente Mexicano, Centro Regional del Bajío, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, Mexico
| | - Ana L. Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Mónica Ramírez-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Alejandro Méndez-Bravo
- Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- *Correspondence: José A. Guerrero-Analco,
| | - Frédérique Reverchon
- Red de Diversidad Biológica del Occidente Mexicano, Centro Regional del Bajío, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, Mexico
- Frédérique Reverchon,
| |
Collapse
|
11
|
Bressanin LA, Diniz AAM, de Souza KRD, Florentino LA, da Silva AB, Magalhães PC, Pasqual M, de Souza TC. Diazotrophic bacteria improve Hymenaea courbaril seedlings growth and survival in iron mine tailings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115985. [PMID: 36104887 DOI: 10.1016/j.jenvman.2022.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
One of the largest accidents with mine tailings happened in Brazil in 2015, with the rupture of the Fundão dam, and the physical characteristics of these tailings make it difficult to recover degraded areas. Hymenaea courbaril is a tree species native to Brazil that has low nutritional and water requirements, besides its capacity for survival in contaminated environments. In this study we hypothesized that inoculation with diazotrophs would improve the growth and physiology of H. courbaril in tailings, favoring the reforestation process aiming the recovery of the accident site. Every 20 days for 60 days, we investigated the morphophysiology of H. courbaril grown in iron mine tailings or soil, with the addition of nitrate (N-positive control), non-inoculation (negative control) or inoculation with native diazotrophic bacteria previously isolated from the tailings (UNIFENAS100-569; UNIFENAS100-654 and UNIFENAS100-638). We found that H. courbaril has survival capacity under mine tailings, with no growth alteration in the tailings, although there were signs of reduced ability for photoprotective responses. Inoculation with diazotrophic bacteria improved physiological aspects of H. courbaril and strain UNIFENAS100-638 was the most effective in favoring total growth of plants, net photosynthetic rate and root morphology under mine tailings. The survival capacity and growth of H. courbaril indicates the possibility of its use for reforestation in areas degraded by mine tailings. Further studies are necessary in field conditions and with a larger experimental period to more thoroughly understand H. courbaril tolerance.
Collapse
Affiliation(s)
- Leticia A Bressanin
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Gabriel Monteiro da Silva St 700, 37130-000, Alfenas, MG, Brazil
| | - André A M Diniz
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Gabriel Monteiro da Silva St 700, 37130-000, Alfenas, MG, Brazil
| | - Kamila R D de Souza
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Gabriel Monteiro da Silva St 700, 37130-000, Alfenas, MG, Brazil
| | - Ligiane A Florentino
- Departamento de Agronomia, Universidade José do Rosário Vellano, 37130-000, Alfenas, MG, Brazil
| | - Adriano B da Silva
- Departamento de Agronomia, Universidade José do Rosário Vellano, 37130-000, Alfenas, MG, Brazil
| | | | - Moacir Pasqual
- Departamento de Biologia, Universidade Federal de Lavras, 37200-000, Lavras, MG, Brazil
| | - Thiago C de Souza
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Gabriel Monteiro da Silva St 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
12
|
de Andrade Lourenço D, Branco I, Choupina A. A systematic review about biological control of phytopathogenic Phytophthora cinnamomi. Mol Biol Rep 2022; 49:9947-9962. [PMID: 35585380 DOI: 10.1007/s11033-022-07547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The oomycetes of the genus Phytophthora have the most aggressive species for agriculture and forestry, such as Phytophthora sojae which is responsible for soybean root rot, Phytophthora infestans responsible for the potato downy mildew that caused the diaspora in Ireland in the nineteenth-century, and Phytophthora cinnamomi that affects a wide variety of tree species, from avocado in America, trees in Oceania to European chestnut trees. P. cinnamomi reproduces either sexually or asexually and asexual zoospores can live as saprotrophs and subsist in the soil long after death and removal of host plants. Controlling this organism is very challenging for researchers due to the limited range of effective chemical inhibitors. In this work, we present a systematic review of alternatives for biocontrol of Phytophthora in general and P. cinnamomi in particular. Our literature review indicates that Trichoderma spp., mainly Trichoderma harzianum, T. virens, and T. asperellum are very promising fungal species in the control of different Phytophthora spp. The Bacillus genus is also very promising in the control and inhibition of several Phytophthoras spp.
Collapse
Affiliation(s)
- Darling de Andrade Lourenço
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Ramiro Barcelo's street, 2600, 90035-003, Porto Alegre, RS, Brazil
| | - Iuliia Branco
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal. .,Centro de Investigação de Montanha (CIMO) - Instituto Politécnico de Bragança, Campus Santa Apolónia, 5301-855, Bragança, Portugal.
| |
Collapse
|
13
|
Sullam KE, Musa T. Ecological Dynamics and Microbial Treatments against Oomycete Plant Pathogens. PLANTS 2021; 10:plants10122697. [PMID: 34961168 PMCID: PMC8707103 DOI: 10.3390/plants10122697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In this review, we explore how ecological concepts may help assist with applying microbial biocontrol agents to oomycete pathogens. Oomycetes cause a variety of agricultural diseases, including potato late blight, apple replant diseases, and downy mildew of grapevine, which also can lead to significant economic damage in their respective crops. The use of microbial biocontrol agents is increasingly gaining interest due to pressure from governments and society to reduce chemical plant protection products. The success of a biocontrol agent is dependent on many ecological processes, including the establishment on the host, persistence in the environment, and expression of traits that may be dependent on the microbiome. This review examines recent literature and trends in research that incorporate ecological aspects, especially microbiome, host, and environmental interactions, into biological control development and applications. We explore ecological factors that may influence microbial biocontrol agents’ efficacy and discuss key research avenues forward.
Collapse
|
14
|
|
15
|
Synek L, Rawat A, L'Haridon F, Weisskopf L, Saad MM, Hirt H. Multiple strategies of plant colonization by beneficial endophytic Enterobacter sp. SA187. Environ Microbiol 2021; 23:6223-6240. [PMID: 34472197 DOI: 10.1111/1462-2920.15747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
Although many endophytic plant growth-promoting rhizobacteria have been identified, relatively little is still known about the mechanisms by which they enter plants and promote plant growth. The beneficial endophyte Enterobacter sp. SA187 was shown to maintain the productivity of crops in extreme agricultural conditions. Here we present that roots of its natural host (Indigofera argentea), alfalfa, tomato, wheat, barley and Arabidopsis are all efficiently colonized by SA187. Detailed analysis of the colonization process in Arabidopsis showed that colonization already starts during seed germination, where seed-coat mucilage supports SA187 proliferation. The meristematic zone of growing roots attracts SA187, allowing epiphytic colonization in the elongation zone. Unlike primary roots, lateral roots are significantly less epiphytically colonized by SA187. Root endophytic colonization was found to occur by passive entry of SA187 at lateral-root bases. However, SA187 also actively penetrates the root epidermis by enzymatic disruption of plant cell wall material. In contrast to roots, endophytic colonization of shoots occurs via stomata, whereby SA187 can actively re-open stomata similarly to pathogenic bacteria. In summary, several entry strategies were identified that allow SA187 to establish itself as a beneficial endophyte in several plant species, supporting its use as a plant growth-promoting bacterium in agriculture systems.
Collapse
Affiliation(s)
- Lukas Synek
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, 165 02, Czech Republic
| | - Anamika Rawat
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Maged M Saad
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Heribert Hirt
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, Vienna, 1030, Austria
| |
Collapse
|
16
|
Heenan-Daly D, Coughlan S, Dillane E, Doyle Prestwich B. Volatile Compounds From Bacillus, Serratia, and Pseudomonas Promote Growth and Alter the Transcriptional Landscape of Solanum tuberosum in a Passively Ventilated Growth System. Front Microbiol 2021; 12:628437. [PMID: 34367077 PMCID: PMC8333284 DOI: 10.3389/fmicb.2021.628437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
The interaction of an array of volatile organic compounds (VOCs) termed bacterial volatile compounds (BVCs) with plants is now a major area of study under the umbrella of plant-microbe interactions. Many growth systems have been developed to determine the nature of these interactions in vitro. However, each of these systems have their benefits and drawbacks with respect to one another and can greatly influence the end-point interpretation of the BVC effect on plant physiology. To address the need for novel growth systems in BVC-plant interactions, our study investigated the use of a passively ventilated growth system, made possible via Microbox® growth chambers, to determine the effect of BVCs emitted by six bacterial isolates from the genera Bacillus, Serratia, and Pseudomonas. Solid-phase microextraction GC/MS was utilized to determine the BVC profile of each bacterial isolate when cultured in three different growth media each with varying carbon content. 66 BVCs were identified in total, with alcohols and alkanes being the most abundant. When cultured in tryptic soy broth, all six isolates were capable of producing 2,5-dimethylpyrazine, however BVC emission associated with this media were deemed to have negative effects on plant growth. The two remaining media types, namely Methyl Red-Voges Proskeur (MR-VP) and Murashige and Skoog (M + S), were selected for bacterial growth in co-cultivation experiments with Solanum tuberosum L. cv. ‘Golden Wonder.’ The BVC emissions of Bacillus and Serratia isolates cultured on MR-VP induced alterations in the transcriptional landscape of potato across all treatments with 956 significantly differentially expressed genes. This study has yielded interesting results which indicate that BVCs may not always broadly upregulate expression of defense genes and this may be due to choice of plant-bacteria co-cultivation apparatus, bacterial growth media and/or strain, or likely, a complex interaction between these factors. The multifactorial complexities of observed effects of BVCs on target organisms, while intensely studied in recent years, need to be further elucidated before the translation of lab to open-field applications can be fully realized.
Collapse
Affiliation(s)
- Darren Heenan-Daly
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Simone Coughlan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Eileen Dillane
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Aguirre-von-Wobeser E, Alonso-Sánchez A, Méndez-Bravo A, Villanueva Espino LA, Reverchon F. Barks from avocado trees of different geographic locations have consistent microbial communities. Arch Microbiol 2021; 203:4593-4607. [PMID: 34160629 DOI: 10.1007/s00203-021-02449-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.
Collapse
Affiliation(s)
- Eneas Aguirre-von-Wobeser
- Unidad Regional Hidalgo, CONACYT, Centro de Investigación y Desarrollo, A.C., Blvd. Sta. Catarina s/n, Col. Santiago Tlapacoya, 42110, San Agustin Tlaxiaca, Hidalgo, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacan, Mexico
| | - Luis Alberto Villanueva Espino
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacan, Mexico
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico
| |
Collapse
|
18
|
Solís-García IA, Ceballos-Luna O, Cortazar-Murillo EM, Desgarennes D, Garay-Serrano E, Patiño-Conde V, Guevara-Avendaño E, Méndez-Bravo A, Reverchon F. Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens. Front Microbiol 2021; 11:574110. [PMID: 33510714 PMCID: PMC7835518 DOI: 10.3389/fmicb.2020.574110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023] Open
Abstract
The structure and function of rhizosphere microbial communities are affected by the plant health status. In this study, we investigated the effect of root rot on the avocado rhizosphere microbiome, using 16S rDNA and ITS sequencing. Furthermore, we isolated potential fungal pathogens associated with root rot symptoms and assessed their pathogenic activity on avocado. We found that root rot did not affect species richness, diversity or community structure, but induced changes in the relative abundance of several microbial taxa. Root rot increased the proportion of Pseudomonadales and Burkholderiales in the rhizosphere but reduced that of Actinobacteria, Bacillus spp. and Rhizobiales. An increase in putative opportunistic fungal pathogens was also detected in the roots of symptomatic trees; the potential pathogenicity of Mortierella sp., Fusarium spp., Lasiodiplodia sp. and Scytalidium sp., is reported for the first time for the State of Veracruz, Mexico. Root rot also potentially modified the predicted functions carried out by rhizobacteria, reducing the proportion of categories linked with the lipid and amino-acid metabolisms whilst promoting those associated with quorum sensing, virulence, and antibiotic resistance. Altogether, our results could help identifying microbial taxa associated to the disease causal agents and direct the selection of plant growth-promoting bacteria for the development of biocontrol microbial consortia.
Collapse
Affiliation(s)
- Itzel A Solís-García
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Mexico.,Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Oscar Ceballos-Luna
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Mexico
| | | | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa, Mexico
| | - Edith Garay-Serrano
- CONACYT - Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C., Pátzcuaro, Mexico
| | - Violeta Patiño-Conde
- Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Mexico.,Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Heroica Ciudad de Huajuapan de Leon, Mexico
| | - Alfonso Méndez-Bravo
- CONACYT - Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Pátzcuaro, Mexico
| |
Collapse
|
19
|
Phytopathogenic oomycetes: a review focusing on Phytophthora cinnamomi and biotechnological approaches. Mol Biol Rep 2020; 47:9179-9188. [PMID: 33068230 DOI: 10.1007/s11033-020-05911-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as "pseudo-fungi", within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnology Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).
Collapse
|
20
|
Ana AGS, Carrillo-Cerda HA, Rodriguez-Campos J, Velázquez-Fernández JB, Patrón-Soberano OA, Contreras-Ramos SM. Dynamics of volatilomes emitted during cross-talking of plant-growth-promoting bacteria and the phytopathogen, Fusarium solani. World J Microbiol Biotechnol 2020; 36:152. [PMID: 32924087 DOI: 10.1007/s11274-020-02928-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
The dynamics of volatilomes emitted during the interaction between plant-growth-promoting bacteria (PGPB) and the phytopathogen Fusarium solani were evaluated for 5 days. The first screening was done to evaluate the antagonist activity of volatile compounds emitted by PGPB against F. solani. Volatilomes from 11 PGPB were determined individually and together with F. solani by using solid-phase microextraction coupled to gas-chromatography-mass spectrometry. Isolates of PGPB belonged to the Bacillus genus and inhibited from 18 to 24% the fungal mycelium growth. The isolates also induced morphological alterations of fungal hyphae, like small globular vesicles and the formation of chlamydospores, suggesting a stress mechanism response by the fungus. Volatilome profile showed 49 different compounds that appeared in the bacterial-fungal interaction, such as ketones, sesquiterpenes, monoterpenoids, alkanes, alkenes, carboxylic acids, and fatty acids. Some ketones and alcohols were detected in high abundance only in the interaction PGPB-fungus at 3 and 5 days. Bacillus circulans A19, Bacillus amyloliquefaciens A21, and Bacillus wiedmannii S18 shared a group of emitted alcohols and ketones when they were exposed to F. solani. F. solani produced its own volatilome profile, with the presence of sesquiterpenes, such as α-cubebene and caryophyllene, which increased significantly in co-incubation with the tested bacteria, suggesting chemical communication between them.
Collapse
Affiliation(s)
- A Gutiérrez-Santa Ana
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - H A Carrillo-Cerda
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - J Rodriguez-Campos
- Unidad de Servicios Analíticos Y Metrológicos (USAM), CIATEJ, Av. Normalistas No. 800, Col. Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico.
| | - J B Velázquez-Fernández
- Catedra-Conacyt assigned to Unidad de Tecnología Ambiental at CIATEJ, Guadalaja, Jalisco, Mexico
| | - O A Patrón-Soberano
- División de Biología Molecular, Instituto Potosino de Investigación Científica Y Tecnológica A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4ª. Sección, 78216, San Luis Potosí, San Luis Potosí, Mexico
| | - S M Contreras-Ramos
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
21
|
Netzker T, Shepherdson EMF, Zambri MP, Elliot MA. Bacterial Volatile Compounds: Functions in Communication, Cooperation, and Competition. Annu Rev Microbiol 2020; 74:409-430. [PMID: 32667838 DOI: 10.1146/annurev-micro-011320-015542] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria produce a multitude of volatile compounds. While the biological functions of these deceptively simple molecules are unknown in many cases, for compounds that have been characterized, it is clear that they serve impressively diverse purposes. Here, we highlight recent studies that are uncovering the volatile repertoire of bacteria, and the functional relevance and impact of these molecules. We present work showing the ability of volatile compounds to modulate nutrient availability in the environment; alter the growth, development, and motility of bacteria and fungi; influence protist and arthropod behavior; and impact plant and animal health. We further discuss the benefits associated with using volatile compounds for communication and competition, alongside the challenges of studying these molecules and their functional roles. Finally, we address the opportunities these compounds present from commercial, clinical, and agricultural perspectives.
Collapse
Affiliation(s)
- Tina Netzker
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Evan M F Shepherdson
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Matthew P Zambri
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Marie A Elliot
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| |
Collapse
|
22
|
Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani. 3 Biotech 2020; 10:292. [PMID: 32551213 DOI: 10.1007/s13205-020-02290-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 06/01/2020] [Indexed: 10/24/2022] Open
Abstract
The aims of this work were to screen isolated bacteria with a dual capacity: to inhibit Fusarium solani and to promote plant growth. Also, volatile compounds that would be responsible for that effect were identified. Seventy bacterial strains from the air, agricultural soils, hydrocarbons-contaminated soils, and extremophile soils were tested. The former were identified by Matrix-Assisted Laser Desorption/Ionization-time of flight mass spectrometry and 16S rDNA sequencing. The plant growth-promoting bacteria (PGPB) and their capability for phosphate solubilization, siderophores production, and indole production were determined. Twenty isolates from Bacillus and Pseudomonas genera inhibited the mycelial growth up to 40% in direct assays. Eleven isolates significantly inhibited mycelial growth in 18-24% via volatile emissions. Volatile compounds related to antifungal activity or stress response include ketones, sesquiterpenes, monoterpenoids, alkanes, and fatty acids. Our results support the potential of these PGPB to act as biocontrol agents against fungal pathogens via volatile emissions.
Collapse
|
23
|
Tzec-Interián JA, Desgarennes D, Carrión G, Monribot-Villanueva JL, Guerrero-Analco JA, Ferrera-Rodríguez O, Santos-Rodríguez DL, Liahut-Guin N, Caballero-Reyes GE, Ortiz-Castro R. Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS One 2020; 15:e0231215. [PMID: 32267901 PMCID: PMC7141680 DOI: 10.1371/journal.pone.0231215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Plants interact with a great variety of microorganisms that inhabit the rhizosphere or the epiphytic and endophytic phyllosphere and that play critical roles in plant growth as well as the biocontrol of phytopathogens and insect pests. Avocado fruit damage caused by the thrips species Scirtothrips perseae leads to economic losses of 12–51% in many countries. In this study, a screening of bacteria associated with the rhizosphere or endophytic phyllosphere of avocado roots was performed to identify bacterial isolates with plant growth-promoting activity in vitro assays with Arabidopsis seedlings and to assess the biocontrol activity of the isolates against Scirtothrips perseae. The isolates with beneficial, pathogenic and/or neutral effects on Arabidopsis seedlings were identified. The plant growth-promoting bacteria were clustered in two different groups (G1 and G3B) based on their effects on root architecture and auxin responses, particularly bacteria of the Pseudomonas genus (MRf4-2, MRf4-4 and TRf2-7) and one Serratia sp. (TS3-6). Twenty strains were selected based on their plant growth promotion characteristics to evaluate their potential as thrips biocontrol agents. Analyzing the biocontrol activity of S. perseae, it was identified that Chryseobacterium sp. shows an entomopathogenic effect on avocado thrips survival. Through the metabolic profiling of compounds produced by bacteria with plant growth promotion activity, bioactive cyclodipeptides (CDPs) that could be responsible for the plant growth-promoting activity in Arabidopsis were identified in Pseudomonas, Serratia and Stenotrophomonas. This study unravels the diversity of bacteria from the avocado rhizosphere and highlights the potential of a unique isolate to achieve the biocontrol of S. perseae.
Collapse
Affiliation(s)
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Veracruz, México
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Veracruz, México
- * E-mail: (ROC); (GC)
| | | | | | | | | | - Nut Liahut-Guin
- Red de Biodiversidad y Sistemática, Instituto de Ecología, Xalapa, Veracruz, México
| | | | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, Veracruz, México
- Catedratico-CONACyT en el Instituto de Ecología A. C., Xalapa, Veracruz, México
- * E-mail: (ROC); (GC)
| |
Collapse
|
24
|
Guevara-Avendaño E, Bravo-Castillo KR, Monribot-Villanueva JL, Kiel-Martínez AL, Ramírez-Vázquez M, Guerrero-Analco JA, Reverchon F. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Braz J Microbiol 2020; 51:861-873. [PMID: 32166656 DOI: 10.1007/s42770-020-00249-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/19/2020] [Indexed: 11/24/2022] Open
Abstract
Rhizobacteria emit bioactive metabolites with antifungal properties that could be used for biocontrol of fungal diseases. In this study, we evaluated the potential of diffusible and volatile organic compounds (VOCs) emitted by avocado rhizobacteria to inhibit the growth of Fusarium kuroshium, one of the causal agents of Fusarium dieback (FD) in avocado. Three bacterial isolates (INECOL-6004, INECOL-6005, and INECOL-6006), belonging to the Bacillus genus, were selected based on their capacity to inhibit several avocado fungal pathogens, and tested in antagonism assays against F. kuroshium. The three bacterial isolates significantly inhibited F. kuroshium mycelial growth by up to 48%. The composition of bacterial diffusible compounds was characterized by the analysis of EtOAc and n-BuOH extracts by using ultra-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (HRMS). The three bacterial isolates produced cyclo-lipopeptides belonging to the iturin, fengycin, and surfactin families. The antifungal activity of n-BuOH extracts was larger than that of EtOAc extracts, probably due to the greater relative abundance of fengycin in the former than in the latter. In addition, isolates INECOL-6004 and INECOL-6006 significantly inhibited F. kuroshium mycelial growth through VOC emission by up to 69.88%. The analysis of their VOC profiles by solid phase micro-extraction (SPME) coupled to gas chromatography and mass spectrometry (GC-MS) revealed the presence of ketones and pyrazine compounds, particularly of 2-nonanone, which was not detected in the VOC profile of isolate INECOL-6005. These results emphasize the need to further investigate the antifungal activity of each bioactive compound for the development of new formulations against fungal phytopathogens.
Collapse
Affiliation(s)
- Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, México.,Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, 69000, Huajuapan de León, Oaxaca, México
| | - Karla R Bravo-Castillo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, México.,Facultad de Ciencias Químicas, Universidad Veracruzana, 94340, Orizaba, Veracruz, México
| | - Juan L Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, México
| | - Ana L Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, México
| | - Mónica Ramírez-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, México
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, México.
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Calle Prol. Lázaro Cárdenas 253, Col. Centro, 61600, Pátzcuaro, Michoacán, México.
| |
Collapse
|
25
|
Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiol Res 2020; 235:126440. [PMID: 32109690 DOI: 10.1016/j.micres.2020.126440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/09/2019] [Accepted: 02/15/2020] [Indexed: 11/23/2022]
Abstract
Although the use of crop-associated bacteria as biological control agents of fungal diseases has gained increasing interest, the biotechnological potential of forest tree-associated microbes and their natural products has scarcely been investigated. The objective of this study was to identify bacteria or bacterial products with antagonistic activity against Fusarium solani and Fusarium kuroshium, causal agent of Fusarium dieback, by screening the rhizosphere and phyllosphere of three Lauraceae species. From 195 bacterial isolates, we identified 32 isolates that significantly reduced the growth of F. solani in vitro, which mostly belonged to bacterial taxa Bacillus, Pseudomonas and Actinobacteria. The antifungal activity of their volatile organic compounds (VOCs) was also evaluated. Bacterial strain Bacillus sp. CCeRi1-002, recovered from the rhizosphere of Aiouea effusa, showed the highest percentage of direct inhibition (62.5 %) of F. solani and produced diffusible compounds that significantly reduced its mycelial growth. HPLC-MS analyses on this strain allowed to tentatively identify bioactive compounds from three lipopeptide groups (iturin, surfactin and fengycin). Bacillus sp. CCeRi1-002 and another strain identified as Pseudomonas sp. significantly inhibited F. solani mycelial growth through the emission of VOCs. Chemical analysis of their volatile profiles indicated the likely presence of 2-nonanone, 2-undecanone, disulfide dimethyl and 1-butanol 3-methyl-, which had been previously reported with antifungal activity. In antagonism assays against F. kuroshium, Bacillus sp. CCeRi1-002 and its diffusible compounds exhibited significant antifungal activity and induced hyphal deformations. Our findings highlight the importance of considering bacteria associated with forest species and the need to include bacterial products in the search for potential antagonists of Fusarium dieback.
Collapse
|
26
|
Bruisson S, Zufferey M, L'Haridon F, Trutmann E, Anand A, Dutartre A, De Vrieze M, Weisskopf L. Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens. Front Microbiol 2019; 10:2726. [PMID: 31849878 PMCID: PMC6895011 DOI: 10.3389/fmicb.2019.02726] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023] Open
Abstract
Plants harbor diverse microbial communities that colonize both below-ground and above-ground organs. Some bacterial members of these rhizosphere and phyllosphere microbial communities have been shown to contribute to plant defenses against pathogens. In this study, we characterize the pathogen-inhibiting potential of 78 bacterial isolates retrieved from endophytic and epiphytic communities living in the leaves of three grapevine cultivars. We selected two economically relevant pathogens, the fungus Botrytis cinerea causing gray mold and the oomycete Phytophthora infestans, which we used as a surrogate for Plasmopara viticola causing downy mildew. Our results showed that epiphytic isolates were phylogenetically more diverse than endophytic isolates, the latter mostly consisting of Bacillus and Staphylococcus strains, but that mycelial inhibition of both pathogens through bacterial diffusible metabolites was more widespread among endophytes than among epiphytes. Six closely related Bacillus strains induced strong inhibition (>60%) of Botrytis cinerea mycelial growth. Among these, five led to significant perturbation in spore germination, ranging from full inhibition to reduction in germination rate and germ tube length. Different types of spore developmental anomalies were observed for different strains, suggesting multiple active compounds with different modes of action on this pathogen. Compared with B. cinerea, the oomycete P. infestans was inhibited in its mycelial growth by a higher number and more diverse group of isolates, including many Bacillus but also Variovorax, Pantoea, Staphylococcus, Herbaspirillum, or Sphingomonas strains. Beyond mycelial growth, both zoospore and sporangia germination were strongly perturbed upon exposure to cells or cell-free filtrates of selected isolates. Moreover, three strains (all epiphytes) inhibited the pathogen's growth via the emission of volatile compounds. The comparison of the volatile profiles of two of these active strains with those of two phylogenetically closely related, inactive strains led to the identification of molecules possibly involved in the observed volatile-mediated pathogen growth inhibition, including trimethylpyrazine, dihydrochalcone, and L-dihydroxanthurenic acid. This work demonstrates that grapevine leaves are a rich source of bacterial antagonists with strong inhibition potential against two pathogens of high economical relevance. It further suggests that combining diffusible metabolite-secreting endophytes with volatile-emitting epiphytes might be a promising multi-layer strategy for biological control of above-ground pathogens.
Collapse
Affiliation(s)
| | - Mónica Zufferey
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Eva Trutmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Agnès Dutartre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
27
|
Syed-Ab-Rahman SF, Carvalhais LC, Chua ET, Chung FY, Moyle PM, Eltanahy EG, Schenk PM. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:267-280. [PMID: 31349168 DOI: 10.1016/j.scitotenv.2019.07.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Biotic interactions through diffusible and volatile organic compounds (VOCs) are frequent in nature. Soil bacteria are well-known producers of a wide range of volatile compounds (both organic and inorganic) with various biologically relevant activities. Since the last decade, they have been identified as natural biocontrol agents. Volatiles are airborne chemicals, which when released by bacteria, can trigger plant responses such as defence and growth promotion. In this study, we tested whether diffusible and volatile organic compounds (VOCs) produced by soil bacterial isolates exert anti-oomycete and plant growth-promoting effects. We also investigated the effects of inoculation with VOC-producing bacteria on the growth and development of Capsicum annuum and Arabidopsis thaliana seedlings. Our results demonstrate that organic VOCs emitted by bacterial antagonists negatively influence mycelial growth of the soil-borne phytopathogenic oomycete Phytophthora capsici by 35% in vitro. The bacteria showed plant growth promoting effects by stimulating biomass production, primary root growth and root hair development. Additionally, we provide evidence to suggest that these activities were deployed by the emission of either diffusible organic compounds or VOCs. Bacterial VOC profiles were obtained through solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS). This elucidated the main volatiles emitted by the isolates, which covered a wide range of aldehydes, alcohols, esters, carboxylic acids, and ketones. Collectively, twenty-five VOCs were identified to be produced by three bacteria; some being species-specific. Our data show that bacterial volatiles inhibits P. capsici in vitro and modulate both plant growth promotion and root system development. These results confirm the significance of soil bacteria and highlights that ways of harnessing them to improve plant growth, and as a biocontrol agent for soil-borne oomycetes through their volatile emissions deserve further investigation.
Collapse
Affiliation(s)
- Sharifah Farhana Syed-Ab-Rahman
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba, Queensland 4102, Australia.
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Queensland 4001, Australia
| | - Elvis T Chua
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fong Yi Chung
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba, Queensland 4102, Australia
| | - Eladl G Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Genome Sequence of Arthrobacter sp. UKPF54-2, a Plant Growth-Promoting Rhizobacterial Strain Isolated from Paddy Soil. Microbiol Resour Announc 2019; 8:8/45/e01005-19. [PMID: 31699760 PMCID: PMC6838618 DOI: 10.1128/mra.01005-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arthrobacter sp. strain UKPF54-2, a plant growth-promoting rhizobacterium having the potential ability to control fungal and bacterial pathogens, was isolated from paddy soil in Kumamoto, Japan. We report here the whole-genome sequence of this strain. Arthrobacter sp. strain UKPF54-2, a plant growth-promoting rhizobacterium having the potential ability to control fungal and bacterial pathogens, was isolated from paddy soil in Kumamoto, Japan. We report here the whole-genome sequence of this strain.
Collapse
|
29
|
Rodríguez-Andrade O, Corral-Lugo A, Morales-García YE, Quintero-Hernández V, Rivera-Urbalejo AP, Molina-Romero D, Martínez-Contreras RD, Bernal P, Muñoz-Rojas J. Identification of Klebsiella Variicola T29A Genes Involved In Tolerance To Desiccation. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction:Several plant-beneficial bacteria have the capability to promote the growth of plants through different mechanisms. The survival of such bacteria could be affected by environmental abiotic factors compromising their capabilities of phytostimulation. One of the limiting abiotic factors is low water availability.Materials and Methods:In extreme cases, bacterial cells can suffer desiccation, which triggers harmful effects on cells. Bacteria tolerant to desiccation have developed different strategies to cope with these conditions; however, the genes involved in these processes have not been sufficiently explored.Klebsiella variicolaT29A is a beneficial bacterial strain that promotes the growth of corn plants and is highly tolerant to desiccation. In the present work, we investigated genes involved in desiccation tolerance.Results & Discussion:As a result, a library of 8974 mutants of this bacterial strain was generated by random mutagenesis with mini-Tn5 transposon, and mutants that lost the capability to tolerate desiccation were selected. We found 14 sensitive mutants; those with the lowest bacterial survival rate contained mini-Tn5 transposon inserted into genes encoding a protein domain related to BetR, putative secretion ATPase and dihydroorotase. The mutant in the betR gene had the lowest survival; therefore, the mutagenized gene was validated using specific amplification and sequencing.Conclusion:Trans complementation with the wild-type gene improved the survival of the mutant under desiccation conditions, showing that this gene is a determinant for the survival ofK. variicolaT29A under desiccation conditions.
Collapse
|
30
|
Reverchon F, García-Quiroz W, Guevara-Avendaño E, Solís-García IA, Ferrera-Rodríguez O, Lorea-Hernández F. Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp. Braz J Microbiol 2019; 50:583-592. [PMID: 31119710 PMCID: PMC6863318 DOI: 10.1007/s42770-019-00094-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/11/2019] [Indexed: 10/26/2022] Open
Abstract
The occurrence of pests and diseases can affect plant health and productivity in ecosystems that are already at risk, such as tropical montane cloud forests. The use of naturally occurring microorganisms is a promising alternative to mitigate forest tree fungal pathogens. The objectives of this study were to isolate rhizobacteria associated with five Lauraceae species from a Mexican tropical montane cloud forest and to evaluate their antifungal activity against Fusarium solani and F. oxysporum. Fifty-six rhizobacterial isolates were assessed for mycelial growth inhibition of Fusarium spp. through dual culture assays. Thirty-three isolates significantly reduced the growth of F. solani, while 21 isolates inhibited that of F. oxysporum. The nine bacterial isolates that inhibited fungal growth by more than 20% were identified through 16S rDNA gene sequence analysis; they belonged to the genera Streptomyces, Arthrobacter, Pseudomonas, and Staphylococcus. The volatile organic compounds (VOC) produced by these nine isolates were evaluated for antifungal activity. Six isolates (Streptomyces sp., Arthrobacter sp., Pseudomonas sp., and Staphylococcus spp.) successfully inhibited F. solani mycelial growth by up to 37% through VOC emission, while only the isolate INECOL-21 (Pseudomonas sp.) inhibited F. oxysporum. This work provides information on the microbiota of Mexican Lauraceae and is one of the few studies identifying forest tree-associated microbes with inhibitory activity against tree pathogens.
Collapse
Affiliation(s)
- Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico.
| | - Wilians García-Quiroz
- Universidad Interserrana del Estado de Puebla-Chilchotla, Rafael J. García Chilchotla, Puebla, Mexico
| | - Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
- Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca, Mexico
| | - Itzel A Solís-García
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
| | - Ofelia Ferrera-Rodríguez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
| | | |
Collapse
|
31
|
Liu J, Cui X, Liu Z, Guo Z, Yu Z, Yao Q, Sui Y, Jin J, Liu X, Wang G. The Diversity and Geographic Distribution of Cultivable Bacillus-Like Bacteria Across Black Soils of Northeast China. Front Microbiol 2019; 10:1424. [PMID: 31293554 PMCID: PMC6598460 DOI: 10.3389/fmicb.2019.01424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/05/2019] [Indexed: 11/21/2022] Open
Abstract
Bacillus-like species are gram-positive bacteria that are ubiquitous in soils. Many of Bacillus-like bacteria are demonstrated as beneficial microbes widely used in industry and agriculture. However, the knowledge related to their diversity and distribution patterns in soils is still rudimentary. In this study, we developed a combined research method of using culture-dependent and high-throughput sequencing to investigate the composition and diversity of cultivable Bacillus-like bacterial communities across 26 soil samples obtained from the black soil zone in northeast China. Nearly all bacterial 16S rDNA sequences were classified into the order Bacillales. Fifteen genera were detected, with Bacillus, Paenibacillus, and Brevibacillus being the three most abundant genera. Although more than 2,000 OTUs were obtained across all samples, 33 OTUs were confirmed as the abundant species with a relative abundance over 5% in at least one sample. Pairwise analysis showed that the diversity of Bacillus-like bacterial communities were significantly and positively correlated with soil total carbon contents and soil sampling latitudes, which suggests that a latitudinal gradient diversity of Bacillus-like bacterial communities exists in the black soil zone. The principal coordinates analysis revealed that the Bacillus-like bacterial communities were remarkably affected by soil sampling latitudes and soil total carbon content. In general, this study demonstrated that a distinct biogeographic distribution pattern of cultivable Bacillus-like bacterial communities existed in the black soil zone, which emphasizes that the strategy of local isolation and application of beneficial Bacillus-like strains is rather important in black soil agriculture development.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiao Cui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Zhuxiu Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Guo
- Institute of Tobacco Science, Heilongjiang Branch, China National Tobacco Corporation, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
32
|
Guevara-Avendaño E, Bejarano-Bolívar AA, Kiel-Martínez AL, Ramírez-Vázquez M, Méndez-Bravo A, von Wobeser EA, Sánchez-Rangel D, Guerrero-Analco JA, Eskalen A, Reverchon F. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol Res 2018; 219:74-83. [PMID: 30642469 DOI: 10.1016/j.micres.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/30/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022]
Abstract
Recent studies showed that bacterial volatile organic compounds (VOCs) play an important role in the suppression of phytopathogens. The ability of VOCs produced by avocado (Persea americana Mill.) rhizobacteria to suppress the growth of common avocado pathogens was therefore investigated. We evaluated the antifungal activity of VOCs emitted by avocado rhizobacteria in a first screening against Fusarium solani, and in subsequent antagonism assays against Fusarium sp. associated with Kuroshio shot hole borer, Colletotrichum gloeosporioides and Phytophthora cinnamomi, responsible for Fusarium dieback, anthracnosis and Phytophthora root rot in avocado, respectively. We also analyzed the composition of the bacterial volatile profiles by solid phase microextraction (SPME) gas chromatography coupled to mass spectrometry (GC-MS). Seven isolates, belonging to the bacterial genera Bacillus and Pseudomonas, reduced the mycelial growth of F. solani with inhibition percentages higher than 20%. Isolate HA, related to Bacillus amyloliquefaciens, significantly reduced the mycelial growth of Fusarium sp. and C. gloeosporioides and the mycelium density of P. cinnamomi. Isolates SO and SJJ, also members of the genus Bacillus, reduced Fusarium sp. mycelial growth and induced morphological alterations of fungal hyphae whilst isolate HB, close to B. mycoides, inhibited C. gloeosporioides. The analysis of the volatile profiles revealed the presence of ketones, pyrazines and sulfur-containing compounds, previously reported with antifungal activity. Altogether, our results support the potential of avocado rhizobacteria to act as biocontrol agents of avocado fungal pathogens and emphasize the importance of Bacillus spp. for the control of emerging avocado diseases such as Fusarium dieback.
Collapse
Affiliation(s)
- Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico; Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, Acatlima, 69000, Huajuapan de León, Oaxaca, Mexico.
| | - Alix Adriana Bejarano-Bolívar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico.
| | - Ana-Luisa Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico.
| | - Mónica Ramírez-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico.
| | - Alfonso Méndez-Bravo
- CONACYT - Escuela Nacional de Estudios Superiores, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Col. Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Eneas Aguirre von Wobeser
- CONACYT - Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Blvd. Sta. Catarina s/n, Col. Santiago Tlapacoya, 42110, San Agustín Tlaxiaca, Hidalgo, Mexico.
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico; CONACYT - Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico.
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico.
| | - Akif Eskalen
- Department of Plant Pathology, Universidad de California - Davis, One Shields Avenue, Davis, CA, 95616-8751, United States.
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, Col. El Haya, 91070, Xalapa, Veracruz, Mexico.
| |
Collapse
|